1
|
Chen X, Zhang Y, Tang W, Zhang G, Wang Y, Yan Z. Genetic Variation, Polyploidy, Hybridization Influencing the Aroma Profiles of Rosaceae Family. Genes (Basel) 2024; 15:1339. [PMID: 39457463 PMCID: PMC11507021 DOI: 10.3390/genes15101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The fragrance and aroma of Rosaceae plants are complex traits influenced by a multitude of factors, with genetic variation standing out as a key determinant which is largely impacted by polyploidy. Polyploidy serves as a crucial evolutionary mechanism in plants, significantly boosting genetic diversity and fostering speciation. OBJECTIVE This review focuses on the Rosaceae family, emphasizing how polyploidy influences the production of volatile organic compounds (VOCs), which are essential for the aromatic characteristics of economically important fruits like strawberries, apples, and cherries. The review delves into the biochemical pathways responsible for VOC biosynthesis, particularly highlighting the roles of terpenoids, esters alcohols, aldehydes, ketones, phenolics, hydrocarbons, alongside the genetic mechanisms that regulate these pathways. Key enzymes, such as terpene synthases and alcohol acyltransferases, are central to this process. This review further explores how polyploidy and hybridization can lead to the development of novel metabolic pathways, contributing to greater phenotypic diversity and complexity in fruit aromas. It underscores the importance of gene dosage effects, isoenzyme diversity, and regulatory elements in determining VOC profiles. CONCLUSIONS These findings provide valuable insights for breeding strategies aimed at improving fruit quality and aligning with consumer preferences. Present review not only elucidates the complex interplay between genomic evolution and fruit aroma but also offers a framework for future investigations in plant biology and agricultural innovation.
Collapse
Affiliation(s)
- Xi Chen
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| | - Yu Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China;
| | - Weihua Tang
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| | - Geng Zhang
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| | - Yuanhua Wang
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| | - Zhiming Yan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China; (W.T.); (G.Z.); (Y.W.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Jurong 212400, China
| |
Collapse
|
2
|
Novello MA, Bustamante CA, Svetaz LA, Goldy C, Valentini GH, Drincovich MF, Brotman Y, Fernie AR, Lara MV. Integrated Metabolomic, Lipidomic and Proteomic Analysis Define the Metabolic Changes Occurring in Curled Areas in Leaves With Leaf Peach Curl Disease. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420723 DOI: 10.1111/pce.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Peach Leaf Curl Disease, caused by Taphrina deformans, is characterized by reddish hypertrophic and hyperplasic leaf areas. To comprehend the biochemical imbalances caused by the fungus, dissected symptomatic (C) and asymptomatic areas (N) from leaves with increasing disease extension were analyzed by an integrated approach including metabolomics, lipidomics, proteomics, and complementary biochemical techniques. Drastic metabolic differences were identified in C areas with respect to either N areas or healthy leaves, including altered chloroplastic functioning and composition, which differs from the typical senescence process. In C areas, alteration in redox-homoeostasis proteins and in triacylglycerols content, peroxidation and double bond index were observed. Proteomic data revealed induction of host enzymes involved in auxin and jasmonate biosynthesis and an upregulation of phenylpropanoid and mevalonate pathways and downregulation of the plastidic methylerythritol phosphate route. Amino acid pools were affected, with upregulation of proteins involved in asparagine synthesis. Curled areas exhibited a metabolic shift towards functioning as a sink tissue importing sugars, probably from N areas, and producing energy through fermentation and respiration and reductive power via the pentose phosphate route. Identifying the metabolic disturbances leading to disease symptoms is a key step in designing strategies to prevent or delay the progression of the disease.
Collapse
Affiliation(s)
- María Angelina Novello
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Anabel Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura Andrea Svetaz
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Goldy
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriel Hugo Valentini
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), San Pedro, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yariv Brotman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
3
|
Liu YQ, Wu HL, Zhang ZQ, Wang WL, Han GQ, Zhang CH, Lyu XL, Ma CJ, Li MH. Traditional Use, Phytochemistry, Pharmacology, Toxicology and Clinical Applications of Persicae Semen: A Review. Chin J Integr Med 2024:10.1007/s11655-024-3815-4. [PMID: 39073515 DOI: 10.1007/s11655-024-3815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 07/30/2024]
Abstract
Persicae Semen (Taoren), the seed of mature peaches consumed as both food and medicine, is native to the temperate regions of China, distributed in the provinces of North and East China, and currently cultivated worldwide. The primary components of Persicae Semen include volatile oil, protein, amino acids, amygdalin, and prunasin, all of which have pharmacological properties, such as anti-inflammatory, antioxidant, and immune regulatory effects, and are clinically used in the treatment of gynecological, cardiovascular, cerebrovascular, orthopedic, and digestive system diseases. This review provides a comprehensive perspective on the resource status, ethnopharmacology, phytochemistry, pharmacology, and toxicology, as well as the trend of Persicae Semen patent, global distribution, and clinical applications. This review will help facilitate the development and utilization of Persicae Semen in clinical settings.
Collapse
Affiliation(s)
- Yu-Quan Liu
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010000, China
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Hui-Li Wu
- School of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Zhi-Qiang Zhang
- Infectious Disease Department, Hohhot Mongolian Medicine of Traditional Chinese Medicine Hospital, Hohhot, 010000, China
| | - Wen-le Wang
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Guo-Qing Han
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Chun-Hong Zhang
- School of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Xin-Liang Lyu
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Chun-Jie Ma
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010000, China.
| | - Min-Hui Li
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China.
- School of Pharmacy, Baotou Medical College, Baotou, 014040, China.
| |
Collapse
|
4
|
Wang Y, Shao Q, Yang X, Su K, Li Z, Yang Y, Yuan X, Chen R. Diversity in Pyracantha fortuneana fruits maturity stages enables discrepancy in the phenolic compounds, antioxidant activity, and tyrosinase inhibitory activity. J Food Sci 2024; 89:3469-3483. [PMID: 38720586 DOI: 10.1111/1750-3841.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024]
Abstract
Pyracantha fortuneana (P. fortuneana) fruit is a wild fruit that is popular because of its delicious taste and numerous nutrients, and phenolic compounds are considered to be the main bioactive components in P. fortuneana fruits. However, the relationship between phenolic compounds and their antioxidant and tyrosinase (TYR) inhibitory activities during the ripening process is still unclear. The study compared the influence of the five developmental stages on the accumulation of phenolic compounds, antioxidant activity, and TYR inhibitory activity in the fruits of P. fortuneana. The compounds were identified by offline two-dimensional liquid chromatography-electrochemical detection (2D-LC-ECD) combined with liquid chromatography-tandem mass spectrometry, and the main active ingredients were quantified. The results showed that stage II had higher total phenolic and flavonoid content, as well as higher antioxidant and TYR inhibitory activity, but the total anthocyanin content was lowest at this stage. A total of 30 compounds were identified by 2D-LC-ECD. Orthogonal partial least squares discriminant analysis screened out six major potential markers, including phenolic acids, procyanidins, and flavonoids. In addition, it was found that caffeoylquinic acids, procyanidins, and flavonoids were higher in stage II than in stages I, III, IV, and V, whereas anthocyanins accumulated gradually from stages III to V. Therefore, this study suggests that the changes in antioxidant and TYR inhibitory activities of P. fortuneana during the five developmental stages may be due to the transformation of procyanidins, caffeoylquinic acids, and phenolic glycosides into other forms during the fruit maturation process. Practical Application: Differences in chemical constituents, antioxidant, and tyrosinase inhibitory activities in fruit maturity stages of P. fortuneana were elucidated to provide reference for rational harvesting and utilization of the fruits and their bioactive components. These findings are expected to provide a comprehensive assessment of the bioactive profile and guide the food industrial production.
Collapse
Affiliation(s)
- Yan Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qiju Shao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xijin Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ke Su
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhirong Li
- The Third Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Yuyao Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Rongxiang Chen
- School of Basic Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Yadav A, Kaushik M, Tiwari P, Dada R. From microbes to medicine: harnessing the gut microbiota to combat prostate cancer. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:187-197. [PMID: 38803512 PMCID: PMC11129862 DOI: 10.15698/mic2024.05.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiome (GM) has been identified as a crucial factor in the development and progression of various diseases, including cancer. In the case of prostate cancer, commensal bacteria and other microbes are found to be associated with its development. Recent studies have demonstrated that the human GM, including Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectale, and Mycoplasma genitalium, are involved in prostate cancer development through both direct and indirect interactions. However, the pathogenic mechanisms of these interactions are yet to be fully understood. Moreover, the microbiota influences systemic hormone levels and contributes to prostate cancer pathogenesis. Currently, it has been shown that supplementation of prebiotics or probiotics can modify the composition of GM and prevent the onset of prostate cancer. The microbiota can also affect drug metabolism and toxicity, which may improve the response to cancer treatment. The composition of the microbiome is crucial for therapeutic efficacy and a potential target for modulating treatment response. However, their clinical application is still limited. Additionally, GM-based cancer therapies face limitations due to the complexity and diversity of microbial composition, and the lack of standardized protocols for manipulating gut microbiota, such as optimal probiotic selection, treatment duration, and administration timing, hindering widespread use. Therefore, this review provides a comprehensive exploration of the GM's involvement in prostate cancer pathogenesis. We delve into the underlying mechanisms and discuss their potential implications for both therapeutic and diagnostic approaches in managing prostate cancer. Through this analysis, we offer valuable insights into the pivotal role of the microbiome in prostate cancer and its promising application in future clinical settings.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | | | - Prabhakar Tiwari
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | - Rima Dada
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| |
Collapse
|
6
|
Prieto-Santiago V, Aguiló-Aguayo I, Bravo FI, Mulero M, Abadias M. Valorization of Peach Fruit and Wine Lees through the Production of a Functional Peach and Grape Juice. Foods 2024; 13:1095. [PMID: 38611399 PMCID: PMC11011757 DOI: 10.3390/foods13071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The valorization of agri-food products not only represents important economic and environmental benefits but can also be a source of potentially profitable, functional, and safe ingredients. This study aimed to valorize peach fruit and wine lees (WL) by producing functional juice. WL were incorporated at different concentrations (1.5 and 2%; w:w) in unpasteurized peach and grape juice and subsequently stored under refrigeration (5 °C). The antimicrobial activity of WL in peach and grape juices was assessed against Listeria monocytogenes and Saccharomyces cerevisiae as well as physicochemical, nutritional microbiological, and sensory acceptability. The maximum addition of WL to the juice (2%) showed a significant inhibitory effect against L. monocytogenes (4-log reduction) and increased the content of total soluble solids (TSS) (10%), total polyphenol content (TPC) (75%), and total antioxidant activity (AOX) (86%). During storage, AOX, TPC, TSS, pH, and titratable acidity (TA) remained stable. A significant correlation was observed between TPC and AOX. Total mesophilic aerobic bacteria and yeast counts increased during storage. Fifty-seven percent of tasters (n = 26) rated the functional juice positively. Thus, these agri-food products could be useful for producing functional juices with a longer shelf life, contributing to their valorization.
Collapse
Affiliation(s)
- Virginia Prieto-Santiago
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.)
| | - Ingrid Aguiló-Aguayo
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain; (F.I.B.); (M.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain; (F.I.B.); (M.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Maribel Abadias
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.)
| |
Collapse
|
7
|
Martínez-Rivas FJ, Fernie AR. Metabolomics to understand metabolic regulation underpinning fruit ripening, development, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1726-1740. [PMID: 37864494 PMCID: PMC10938048 DOI: 10.1093/jxb/erad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Classically fruit ripening and development was studied using genetic approaches, with understanding of metabolic changes that occurred in concert largely focused on a handful of metabolites including sugars, organic acids, cell wall components, and phytohormones. The advent and widespread application of metabolomics has, however, led to far greater understanding of metabolic components that play a crucial role not only in this process but also in influencing the organoleptic and nutritive properties of the fruits. Here we review how the study of natural variation, mutants, transgenics, and gene-edited fruits has led to a considerable increase in our understanding of these aspects. We focus on fleshy fruits such as tomato but also review berries, receptacle fruits, and stone-bearing fruits. Finally, we offer a perspective as to how comparative analyses and machine learning will likely further improve our comprehension of the functional importance of various metabolites in the future.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Pieper JR, Anthony BM, Chaparro JM, Prenni JE, Minas IS. Rootstock vigor dictates the canopy light environment that regulates metabolite profile and internal fruit quality development in peach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108449. [PMID: 38503188 DOI: 10.1016/j.plaphy.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
Five rootstock cultivars of differing vigor: vigorous ('Atlas™' and 'Bright's Hybrid® 5'), standard ('Krymsk® 86' and 'Lovell') and dwarfing ('Krymsk® 1') grafted with 'Redhaven' as the scion were studied for their impact on productivity, mid-canopy photosynthetic active radiation transmission (i.e., light availability) and internal fruit quality. Αverage yield (kg per tree) and fruit count increased significantly with increasing vigor (trunk cross sectional area, TCSA). Α detailed peach fruit quality analysis on fruit of equal maturity (based on the index of absorbance difference, IAD) coming from trees with equal crop load (no. of fruit cm-2 of TCSA) characterized the direct impact of rootstock vigor on peach internal quality [dry matter content (DMC) and soluble solids concentration (SSC)]. DMC and SSC increased significantly with decreasing vigor and increasing light availability, potentially due to reduced intra-tree shading and better light distribution within the canopy. Physiologically characterized peach fruit mesocarp was further analyzed by non-targeted metabolite profiling using gas chromatography mass spectrometry (GC-MS). Metabolite distribution was associated with rootstock vigor class, mid-canopy light availability and fruit quality characteristics. Fructose, glucose, sorbose, neochlorogenic and quinic acids, catechin and sorbitol were associated with high light environments and enhanced quality traits, while sucrose, butanoic and malic acids related to low light conditions and inferior fruit quality. These outcomes show that while rootstock genotype and vigor are influencing peach tree productivity and yield, their effect on manipulating the light environment within the canopy also plays a significant role in fruit quality development.
Collapse
Affiliation(s)
- Jeff R Pieper
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brendon M Anthony
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
9
|
Wu M, Northen TR, Ding Y. Stressing the importance of plant specialized metabolites: omics-based approaches for discovering specialized metabolism in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1272363. [PMID: 38023861 PMCID: PMC10663375 DOI: 10.3389/fpls.2023.1272363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Plants produce a diverse range of specialized metabolites that play pivotal roles in mediating environmental interactions and stress adaptation. These unique chemical compounds also hold significant agricultural, medicinal, and industrial values. Despite the expanding knowledge of their functions in plant stress interactions, understanding the intricate biosynthetic pathways of these natural products remains challenging due to gene and pathway redundancy, multifunctionality of proteins, and the activity of enzymes with broad substrate specificity. In the past decade, substantial progress in genomics, transcriptomics, metabolomics, and proteomics has made the exploration of plant specialized metabolism more feasible than ever before. Notably, recent advances in integrative multi-omics and computational approaches, along with other technologies, are accelerating the discovery of plant specialized metabolism. In this review, we present a summary of the recent progress in the discovery of plant stress-related specialized metabolites. Emphasis is placed on the application of advanced omics-based approaches and other techniques in studying plant stress-related specialized metabolism. Additionally, we discuss the high-throughput methods for gene functional characterization. These advances hold great promise for harnessing the potential of specialized metabolites to enhance plant stress resilience in the future.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Trent R. Northen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yezhang Ding
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
10
|
Rodríguez-Blázquez S, Gómez-Mejía E, Rosales-Conrado N, León-González ME, García-Sánchez B, Miranda R. Valorization of Prunus Seed Oils: Fatty Acids Composition and Oxidative Stability. Molecules 2023; 28:7045. [PMID: 37894525 PMCID: PMC10609056 DOI: 10.3390/molecules28207045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prunus fruit seeds are one of the main types of agri-food waste generated worldwide during the processing of fruits to produce jams, juices and preserves. To valorize this by-product, the aim of this work was the nutritional analysis of peach, apricot, plum and cherry seeds using the official AOAC methods, together with the extraction and characterization of the lipid profile of seed oils using GC-FID, as well as the measurement of the antioxidant activity and oxidative stability using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. Chemometric tools were required for data evaluation and the obtained results indicated that the main component of seeds were oils (30-38%, w). All seed oils were rich in oleic (C18:1n9c) and linoleic (C18:2n6c) acids and presented heart-healthy lipid indexes. Oil antioxidant activity was estimated in the range IC50 = 20-35 mg·mL-1, and high oxidative stability was observed for all evaluated oils during 1-22 storage days, with the plum seed oil being the most antioxidant and stable over time. Oxidative stability was also positively correlated with oleic acid content and negatively correlated with linoleic acid content. Therefore, this research showed that the four Prunus seed oils present interesting healthy characteristics for their use and potential application in the cosmetic and nutraceutical industries.
Collapse
Affiliation(s)
- Sandra Rodríguez-Blázquez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (S.R.-B.); (E.G.-M.); (N.R.-C.)
- Department of Chemical Engineering and Materials, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (B.G.-S.); (R.M.)
| | - Esther Gómez-Mejía
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (S.R.-B.); (E.G.-M.); (N.R.-C.)
| | - Noelia Rosales-Conrado
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (S.R.-B.); (E.G.-M.); (N.R.-C.)
| | - María Eugenia León-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (S.R.-B.); (E.G.-M.); (N.R.-C.)
| | - Beatriz García-Sánchez
- Department of Chemical Engineering and Materials, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (B.G.-S.); (R.M.)
| | - Ruben Miranda
- Department of Chemical Engineering and Materials, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (B.G.-S.); (R.M.)
| |
Collapse
|
11
|
Pieroni V, Ottaviano FG, Sosa M, Gabilondo J, Budde C, Colletti AC, Denoya G, Polenta G, Bustamante C, Müller G, Pachado J, Andres SC, Cardinal P, Rodriguez G, Garitta L. Effects of gamma irradiation on the sensory and metabolic profiles of two peach cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6362-6372. [PMID: 37199063 DOI: 10.1002/jsfa.12712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND The suitability of commercial peaches for minimal processing (MP) is limited, mainly due to shortened shelf-life. Gamma irradiation has emerged in MP fruits as a promising technology. This study aimed to investigate the effects of gamma irradiation on the sensory and metabolic profiles of MP peaches from two cultivars - 'Forastero' (FT) and 'Ruby Prince' (RP) - and evaluate the relationship between both profiles. MP peaches were packaged and divided into two groups: one without additional treatment (K) and the other subjected to gamma irradiation (1.0 kGy, I- irradiation treatment), making a total of four samples (FTK, FTI, RPK and RPI). The sensory profile was carried out by an assessor panel. Metabolite analysis was accomplished by gas chromatography-mass spectrometry. RESULTS Irradiation significantly affected color, homogeneity, peach aroma, total flavor intensity, peach flavor, sweetness and juiciness in FT, increasing their intensities. In the RP cultivar, irradiation increased brightness, total aroma intensity, peach aroma, and flavor and texture descriptors. Regarding metabolites, only malic acid and sucrose increased their concentrations in the irradiated samples. Partial least squares showed that sucrose was mainly correlated with sweet, total aroma intensity and peach flavors, and linked with FTI sample. Bitter along with peach aroma and total intensity flavor were associated with RPI sample. CONCLUSION The applied dose accelerated the ripening process of the peach. The study highlights the importance of complementing sensory analysis with metabolomics tools to optimize fruit quality in minimally processed peaches. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Victoria Pieroni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires, Argentina
- Instituto Superior Experimental de Tecnología Alimentaria - Comisión de Investigaciones Científicas de la Provincia de Buenos aires (ISETA-CICPBA), Buenos Aires, Argentina
| | - Fernanda Gugole Ottaviano
- Instituto Superior Experimental de Tecnología Alimentaria - Comisión de Investigaciones Científicas de la Provincia de Buenos aires (ISETA-CICPBA), Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
| | - Miriam Sosa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
| | - Julieta Gabilondo
- Estación Experimental Agropecuaria INTA San Pedro, Buenos Aires, Argentina
| | - Claudio Budde
- Estación Experimental Agropecuaria INTA San Pedro, Buenos Aires, Argentina
| | - Analía C Colletti
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Tecnología de Alimentos (ITA), Castelar, Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Buenos Aires, Argentina
| | - Gabriela Denoya
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Tecnología de Alimentos (ITA), Castelar, Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Buenos Aires, Argentina
| | - Gustavo Polenta
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Tecnología de Alimentos (ITA), Castelar, Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Buenos Aires, Argentina
| | - Claudia Bustamante
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires, Argentina
- Centro de estudios Fotosintéticos y Bioquímicos (CEFOBI), (CONICET), Rosario, Argentina
| | - Gabriela Müller
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires, Argentina
- Centro de estudios Fotosintéticos y Bioquímicos (CEFOBI), (CONICET), Rosario, Argentina
| | - José Pachado
- Gerencia Aplicaciones y Tecnología de las Radiaciones, CNEA, Ezeiza, Argentina
| | - Silvina C Andres
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-CICPBA - Fac. Cs. Exactas UNLP, La Plata, Argentina
| | - Paula Cardinal
- Instituto Superior Experimental de Tecnología Alimentaria - Comisión de Investigaciones Científicas de la Provincia de Buenos aires (ISETA-CICPBA), Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
| | - Graciela Rodriguez
- Instituto Superior Experimental de Tecnología Alimentaria - Comisión de Investigaciones Científicas de la Provincia de Buenos aires (ISETA-CICPBA), Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
| | - Lorena Garitta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
| |
Collapse
|
12
|
Pawar VA, Srivastava S, Tyagi A, Tayal R, Shukla SK, Kumar V. Efficacy of Bioactive Compounds in the Regulation of Metabolism and Pathophysiology in Cardiovascular Diseases. Curr Cardiol Rep 2023; 25:1041-1052. [PMID: 37458865 DOI: 10.1007/s11886-023-01917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW An imbalance in reactive oxygen species (ROS) homeostasis can wreak damage to metabolic and physiological processes which can eventually lead to an advancement in cardiovascular diseases (CVD). Mitochondrial dysfunction is considered as a key source of ROS. The purpose of the current review is to concisely discuss the role of bioactive compounds in the modulation of cardiovascular metabolism and their potential application in the management of cardiovascular diseases. RECENT FINDINGS Recently, it has been shown that bioactive compounds exhibit immunomodulatory function by regulating inflammatory pathways and ROS homeostasis. It has also been reported that bioactive compounds regulate mitochondria dynamics, thus modulating the autophagy and energy metabolism in the cells. In the present article, we have discussed the roles of different bioactive compounds in the modulation of different inflammatory drivers. The functional properties of bioactive compounds in mitochondrial dynamics and its impact on cardiac disease protection have been briefly summarized. Furthermore, we have also discussed various aspects of bioactive compounds with respect to metabolism, immune modulation, circadian rhythm, and its impact on CVD's pathophysiology.
Collapse
Affiliation(s)
| | - Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi, 110054, India
| | - Rajul Tayal
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Surendra Kumar Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Melo LFMD, Aquino-Martins VGDQ, Silva APD, Oliveira Rocha HA, Scortecci KC. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem 2023; 414:135645. [PMID: 36821920 DOI: 10.1016/j.foodchem.2023.135645] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Secondary metabolites are divided into three classes: phenolic, terpenoid, and nitrogenous compounds. Phenolic compounds are also known as polyphenols and include tannins, classified as hydrolysable or condensed. Herein, we explored tannins for their ROS reduction characteristics and role in homeostasis. These activities are associated with the numbers and degree of polymerisation of reactive hydroxyl groups present in the phenolic rings of tannins. These characteristics are associated with anti-inflammatory, anti-aging, and anti-proliferative health benefits. Tannins can reduce the risk of cancer and neurodegenerative diseases, such as cardiovascular diseases and Alzheimer's, respectively. These biomolecules may be used as nutraceuticals to maintain good gut microbiota. Industrial applications include providing durability to leather, anti-corrosive properties to metals, and substrates for 3D printing and in bio-based foam manufacture. This review updates regarding tannin-based research and highlights its biological and pharmacological relevance and potential applications.
Collapse
Affiliation(s)
- Luciana Fentanes Moura de Melo
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Ariana Pereira da Silva
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil; Departamento de Bioquímica - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Katia Castanho Scortecci
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil.
| |
Collapse
|
14
|
Mustafa MH, Corre MN, Heurtevin L, Bassi D, Cirilli M, Quilot-Turion B. Stone fruit phenolic and triterpenoid compounds modulate gene expression of Monilinia spp. in culture media. Fungal Biol 2023; 127:1085-1097. [PMID: 37495299 DOI: 10.1016/j.funbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023]
Abstract
Phenolic and triterpenoid compounds are essential components in stone fruit skin and flesh tissues. They are thought to possess general antimicrobial activity. However, regarding brown rot disease, investigations were only confined to a limited number of phenolics, especially chlorogenic acid. The activity of triterpenoids against Monilinia spp., as an essential part of the peach cuticular wax, has not been studied before. In this work, the anti-fungal effect of some phenolics, triterpenoids, and fruit surface compound (FSC) extracts of peach fruit at two developmental stages were investigated on Monilinia fructicola and Monilinia laxa characteristics during in vitro growth. A new procedure for assaying anti-fungal activity of triterpenoids, which are notoriously difficult to assess in vitro because of their hydrophobicity, has been developed. Measurements of colony diameter, sporulation, and germination of second-generation conidia were recorded. Furthermore, the expression of twelve genes of M. fructicola associated with germination and/or appressorium formation and virulence-related genes was studied relative to the presence of the compounds. The study revealed that certain phenolics and triterpenoids showed modest anti-fungal activity while dramatically modulating gene expression in mycelium of M. fructicola on culture medium. MfRGAE1 gene was overexpressed by chlorogenic and ferulic acids and MfCUT1 by betulinic acid, at 4- and 7- days of mycelium incubation. The stage II FSC extract, corresponding to the period when the fruit is resistant to Monilinia spp., considerably up-regulated the MfLAE1 gene. These findings effectively contribute to the knowledge of biochemical compounds effects on fungi on in vitro conditions.
Collapse
Affiliation(s)
- Majid Hassan Mustafa
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy; INRAE, GAFL, F-84143, Montfavet, France
| | | | | | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | - Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
15
|
Li J, Liu H, Mazhar MS, Quddus S, Agar OT, Suleria HAR. Australian Native Plum: A Review of the Phytochemical and Health Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Jiaxun Li
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Haoyao Liu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Muhammad Sohail Mazhar
- Department of Industry, Tourism and Trade of the Northern Territory Government, Darwin, NT, Australia
| | - Salman Quddus
- Department of Industry, Tourism and Trade of the Northern Territory Government, Darwin, NT, Australia
| | - Osman Tuncay Agar
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
From Biorefinery to Food Product Design: Peach (Prunus persica) By-Products Deserve Attention. FOOD BIOPROCESS TECH 2022; 16:1197-1215. [PMID: 36465719 PMCID: PMC9702882 DOI: 10.1007/s11947-022-02951-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is an increasing demand for functional foods to attend the consumers preference for products with health benefits. Peach (Prunus persica), from Rosaceae family, is a worldwide well-known fruit, and its processing generates large amounts of by-products, consisting of peel, stone (seed shell + seed), and pomace, which represent about 10% of the annual global production, an equivalent of 2.4 million tons. Some studies have already evaluated the bioactive compounds from peach by-products, although, the few available reviews do not consider peach by-products as valuable materials for product design methodology. Thereby, a novelty of this review is related to the use of these mostly unexplored by-products as alternative sources of valuable components, encouraging the circular bioeconomy approach by designing new food products. Besides, this review presents recent peach production data, compiles briefly the extraction methods for the recovery of lipids, proteins, phenolics, and fiber from peach by-products, and also shows in vivo study reports on anti-inflammatory, anti-obesity, and anti-cerebral ischemia activities associated with peach components and by-product. Therefore, different proposals to recover bioactive fractions from peach by-products are provided, for further studies on food-product design.
Collapse
|
18
|
Desai S, Sharma P, Kashyap P, Choudhary B, Kaur J. Bioactive compounds, bio‐functional properties, and food applications of
Garcinia indica
: A review. J Food Biochem 2022; 46:e14344. [DOI: 10.1111/jfbc.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Sahil Desai
- Department of Food Technology and Nutrition School of Agriculture, Lovely Professional University Phagwara India
| | - Poorva Sharma
- Department of Food Technology and Nutrition School of Agriculture, Lovely Professional University Phagwara India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition School of Agriculture, Lovely Professional University Phagwara India
| | | | - Jasleen Kaur
- Department of Food Technology and Nutrition School of Agriculture, Lovely Professional University Phagwara India
| |
Collapse
|
19
|
Santhiravel S, Bekhit AEDA, Mendis E, Jacobs JL, Dunshea FR, Rajapakse N, Ponnampalam EN. The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. Int J Mol Sci 2022; 23:ijms23158124. [PMID: 35897699 PMCID: PMC9332059 DOI: 10.3390/ijms23158124] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal tract of humans is a complex microbial ecosystem known as gut microbiota. The microbiota is involved in several critical physiological processes such as digestion, absorption, and related physiological functions and plays a crucial role in determining the host’s health. The habitual consumption of specific dietary components can impact beyond their nutritional benefits, altering gut microbiota diversity and function and could manipulate health. Phytochemicals are non-nutrient biologically active plant components that can modify the composition of gut microflora through selective stimulation of proliferation or inhibition of certain microbial communities in the intestine. Plants secrete these components, and they accumulate in the cell wall and cell sap compartments (body) for their development and survival. These compounds have low bioavailability and long time-retention in the intestine due to their poor absorption, resulting in beneficial impacts on gut microbiota population. Feeding diets containing phytochemicals to humans and animals may offer a path to improve the gut microbiome resulting in improved performance and/or health and wellbeing. This review discusses the effects of phytochemicals on the modulation of the gut microbiota environment and the resultant benefits to humans; however, the effect of phytochemicals on the gut microbiota of animals is also covered, in brief.
Collapse
Affiliation(s)
- Sarusha Santhiravel
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Alaa El-Din A Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Eresha Mendis
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Joe L Jacobs
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Ellinbank, VIC 3821, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Niranjan Rajapakse
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| |
Collapse
|
20
|
Guizani M, Dabbou S, Maatallah S, Montevecchi G, Antonelli A, Serrano M, Hajlaoui H, Rezig M, Kilani-Jaziri S. Evaluation of Two Water Deficit Models on Phenolic Profiles and Antioxidant Activities of Different Peach Fruits Parts. Chem Biodivers 2022; 19:e202100851. [PMID: 35312161 DOI: 10.1002/cbdv.202100851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 01/16/2023]
Abstract
The present work was designed to evaluate the effects of two water shortage strategies on the phenolic profile and antioxidants activities of four Prunus persica L. cultivars (Flordastar, Early May crest, Rubirich and O'Henry). Over the course of two successive seasons (2016 and 2017), three different irrigation strategies were tested: full irrigation (FI: 100 % crop evapotranspiration (Etc)), sustained deficit irrigation (SDI: 50 % ETc), and cyclic deficit irrigation (CDI: irrigation at 100 % field capacity with a soil moisture of 50 % field capacity). HPLC-UV/VIS profile of phenolic compounds, enzymatic and non-enzymatic antioxidant activities were assessed in exocarp and mesocarp. The results showed that deficit irrigation improved the content of phenolic compounds and the antioxidant activities. In O'Henry, ascorbate peroxidase activity increased significantly under CDI in exocarp (249 %). In conclusion, most cultivars showed an improvement of the fruit quality under SDI, whereas O'Henry fruits gathered the highest phenolic amounts and displayed the best antioxidant activity under CDI.
Collapse
Affiliation(s)
- Monia Guizani
- University of Carthage, Non-Conventional Water Valuation Research Laboratory (LR VENC), INRGREF, Hedi EL Karray Street, El Menzah IV, 1004 Tunis, Tunisia.,Institution of Research and Higher Education Agriculture (IRESA), Regional Center of Agricultural Research, Sidi Bouzid, 9100, Tunisia
| | - Samia Dabbou
- Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Dentistry Faculty, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia.,Dentistry Faculty, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Samira Maatallah
- University of Carthage, Non-Conventional Water Valuation Research Laboratory (LR VENC), INRGREF, Hedi EL Karray Street, El Menzah IV, 1004 Tunis, Tunisia.,Institution of Research and Higher Education Agriculture (IRESA), Regional Center of Agricultural Research, Sidi Bouzid, 9100, Tunisia
| | - Giuseppe Montevecchi
- Department of Life Science, BIOGEST - SITEIA Interdepartmental Center, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124, Reggio Emilia, Italy
| | - Andrea Antonelli
- Department of Life Science, BIOGEST - SITEIA Interdepartmental Center, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124, Reggio Emilia, Italy
| | - Maria Serrano
- Department of Applied Biology, University Miguel Hernández, 03202, Elche, Spain
| | - Hichem Hajlaoui
- University of Carthage, Non-Conventional Water Valuation Research Laboratory (LR VENC), INRGREF, Hedi EL Karray Street, El Menzah IV, 1004 Tunis, Tunisia.,Institution of Research and Higher Education Agriculture (IRESA), Regional Center of Agricultural Research, Sidi Bouzid, 9100, Tunisia
| | - Mourad Rezig
- Laboratory of Rural Engineering, National Institute of Research of Rural Engineering, Waters and Forests of Tunis, INRGREF, Hedi EL Karray Street, El Menzah IV, 1004, Tunis, Tunisia
| | - Soumaya Kilani-Jaziri
- Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Dentistry Faculty, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia.,Department of Pharmaceutical Sciences A, Faculty of Pharmacy of Monastir University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| |
Collapse
|
21
|
Canton M, Farinati S, Forestan C, Joseph J, Bonghi C, Varotto S. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in peach reproductive tissues. PLANT METHODS 2022; 18:43. [PMID: 35361223 PMCID: PMC8973749 DOI: 10.1186/s13007-022-00876-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Perennial fruit trees display a growth behaviour characterized by annual cycling between growth and dormancy, with complex physiological features. Rosaceae fruit trees represent excellent models for studying not only the fruit growth/patterning but also the progression of the reproductive cycle depending upon the impact of climate conditions. Additionally, current developments in high-throughput technologies have impacted Rosaceae tree research while investigating genome structure and function as well as (epi)genetic mechanisms involved in important developmental and environmental response processes during fruit tree growth. Among epigenetic mechanisms, chromatin remodelling mediated by histone modifications and other chromatin-related processes play a crucial role in gene modulation, controlling gene expression. Chromatin immunoprecipitation is an effective technique to investigate chromatin dynamics in plants. This technique is generally applied for studies on chromatin states and enrichment of post-transcriptional modifications (PTMs) in histone proteins. RESULTS Peach is considered a model organism among climacteric fruits in the Rosaceae family for studies on bud formation, dormancy, and organ differentiation. In our work, we have primarily established specific protocols for chromatin extraction and immunoprecipitation in reproductive tissues of peach (Prunus persica). Subsequently, we focused our investigations on the role of two chromatin marks, namely the trimethylation of histone H3 at lysine in position 4 (H3K4me3) and trimethylation of histone H3 at lysine 27 (H3K27me3) in modulating specific gene expression. Bud dormancy and fruit growth were investigated in a nectarine genotype called Fantasia as our model system. CONCLUSIONS We present general strategies to optimize ChIP protocols for buds and mesocarp tissues of peach and analyze the correlation between gene expression and chromatin mark enrichment/depletion. The procedures proposed may be useful to evaluate any involvement of histone modifications in the regulation of gene expression during bud dormancy progression and core ripening in fruits.
Collapse
Affiliation(s)
- Monica Canton
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Justin Joseph
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| |
Collapse
|
22
|
Domínguez-Rodríguez G, Marina ML, Plaza M. In vitro assessment of the bioavailability of bioactive non-extractable polyphenols obtained by pressurized liquid extraction combined with enzymatic-assisted extraction from sweet cherry (Prunus avium L.) pomace. Food Chem 2022; 385:132688. [PMID: 35305433 DOI: 10.1016/j.foodchem.2022.132688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 01/19/2023]
Abstract
In vitro digestion and absorption simulation processes of non-extractable polyphenols (NEPs) obtained by pressurized liquid extraction combined with enzymatic-assisted extraction with Promod enzyme (PLE-EAE) from the residue of conventional extraction of sweet cherry pomace were studied. In general, total phenolic and proanthocyanidin contents decreased in each phase of the digestion. However, the antioxidant capacity increased when the digestion process progressed. In addition, the highest total phenolic and proanthocyanidin contents and antioxidant capacity were obtained in the absorbed fraction. NEPs from PLE-EAE extract, digestive fractions, absorbed and unabsorbed fractions were analyzed by ultra-high-performance liquid chromatography coupled to electrospray ionization quadrupole Exactive-Orbitrap mass spectrometry (UHPLC-ESI-Q-Orbitrap-MS). Fifteen NEPs were identified in the intestinal fraction and five in the absorbed fraction after the digestion process. Results obtained in this study define for the first time the bioavailability of antioxidant NEPs obtained from sweet cherry pomace.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, 28871 Alcalá de Henares Madrid, Spain
| | - Merichel Plaza
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, 28871 Alcalá de Henares Madrid, Spain.
| |
Collapse
|
23
|
Shi R, Tao L, Tu X, Zhang C, Xiong Z, Rami Horowitz A, Asher JB, He J, Hu F. Metabolite Profiling and Transcriptome Analyses Provide Insight Into Phenolic and Flavonoid Biosynthesis in the Nutshell of Macadamia Ternifolia. Front Genet 2022; 12:809986. [PMID: 35265099 PMCID: PMC8899216 DOI: 10.3389/fgene.2021.809986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
Macadamia ternifolia is a dynamic oil-producing nut crop in the world. However, the nutshell is frequently considered as a low-quality material. Further, its metabolic profile is still uncharacterized. In order to explore the industrial significance of the nutshell, this study performed metabolic and transcriptomic analyses at various developmental stages of the nutshell. The qualitative and quantitative metabolic data analysis identified 596 metabolic substances including several species of phenolic acids, flavonoids, lipids, organic acids, amino acids and derivatives, nucleotides and derivatives, alkaloids, lignans, coumarins, terpenoids, tannins, and others. However, phenolic acids and flavonoids were predominant, and their abundance levels were significantly altered across various developmental stages of the nutshell. Comparative transcriptome analysis revealed that the expression patterns of phenolic acid and flavonoid pathway related genes were significantly changed during the nutshell growth. In particular, the expression of phenylalanine ammonia-lyase, C4H, 4CL, CHS, CHI, F3H, and FLS had dynamic differences at the various developmental stages of the nutshell. Our integrative metabolomic and transcriptomic analyses identified the key metabolic substances and their abundance levels. We further discussed the regulatory mechanism of phenolic and flavonoid biosynthesis in the nutshell of M. ternifolia. Our results provide new insights into the biological profiles of the nutshell of M. ternifolia and help to elucidate the molecular mechanisms of phenolic and flavonoid biosynthesis in the nutshell of M. ternifolia.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, China
| | - Liang Tao
- Yunnan Institute of Tropical Crops, Xishuangbanna, Yunnan, China
| | - Xinghao Tu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chunsheng Zhang
- Office of Academic Affairs, Yunnan University of Finance and Economics, Kunming, China
- *Correspondence: Chunsheng Zhang, ; Jun He, ; Faguang Hu,
| | - Zhi Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, China
| | - Abraham Rami Horowitz
- French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Jiftah Ben Asher
- French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Chunsheng Zhang, ; Jun He, ; Faguang Hu,
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
- *Correspondence: Chunsheng Zhang, ; Jun He, ; Faguang Hu,
| |
Collapse
|
24
|
Detection of Monilia Contamination in Plum and Plum Juice with NIR Spectroscopy and Electronic Tongue. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plums are one of the commercially important stone fruits that are available on the market in both fresh and processed form and the most sought-after products are prunes, cans, jams, and juices. Maturity, harvest, and post-harvest technologies fundamentally determine the relatively short shelf life of plums which is often threatened by Monilinia spp. Causing brown rot worldwide. The aim of the present research was to use advanced analytical techniques, such as hand-held near infrared spectroscopy (NIRS) and electronic tongue (e-tongue) to detect M. fructigena fungal infection on plums and quantify this fungal contamination in raw plum juices. For this purpose, plums were inoculated with fungal mycelia in different ways (control, intact, and through injury) and stored under different conditions (5 °C, and 24 °C) for eight days. The results obtained with the two instruments were analyzed with chemometric methods, such as linear discriminant analysis (LDA) and partial least squares regression (PLSR). The NIRS-based method proved successful when detectability before the appearance of visible signs of the infection was studied. E-tongue was able to detect and quantify the concentration of juice derived from plum developed with M. fructigena with RMSECV lower than 5% w/w. Overall, the two methods proved to be suitable for discriminating between the treatment groups, however, the classification accuracy was higher for samples stored at 24 °C. The research results show both NIRS and e-tongue are beneficial methods to reduce food waste by providing rapid determination of fruit quality.
Collapse
|
25
|
Fang B, Li J, Zhao Q, Liang Y, Yu J. Assembly of the Complete Mitochondrial Genome of Chinese Plum ( Prunus salicina): Characterization of Genome Recombination and RNA Editing Sites. Genes (Basel) 2021; 12:genes12121970. [PMID: 34946920 PMCID: PMC8701122 DOI: 10.3390/genes12121970] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Despite the significant progress that has been made in the genome sequencing of Prunus, this area of research has been lacking a systematic description of the mitochondrial genome of this genus for a long time. In this study, we assembled the mitochondrial genome of the Chinese plum (Prunus salicina) using Illumina and Oxford Nanopore sequencing data. The mitochondrial genome size of P. salicina was found to be 508,035 base pair (bp), which is the largest reported in the Rosaceae family to date, and P. salicina was shown to be 63,453 bp longer than sweet cherry (P. avium). The P. salicina mitochondrial genome contained 37 protein-coding genes (PCGs), 3 ribosomal RNA (rRNA) genes, and 16 transfer RNA (tRNA) genes. Two plastid-derived tRNA were identified. We also found two short repeats that captured the nad3 and nad6 genes and resulted in two copies. In addition, nine pairs of repeat sequences were identified as being involved in the mediation of genome recombination. This is crucial for the formation of subgenomic configurations. To characterize RNA editing sites, transcriptome data were used, and we identified 480 RNA editing sites in protein-coding sequences. Among them, the initiation codon of the nad1 gene confirmed that an RNA editing event occurred, and the genomic encoded ACG was edited as AUG in the transcript. Combined with previous reports on the chloroplast genome, our data complemented our understanding of the last part of the organelle genome of plum, which will facilitate our understanding of the evolution of organelle genomes.
Collapse
Affiliation(s)
- Bo Fang
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (B.F.); (Q.Z.)
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, Chongqing 400716, China
| | - Qian Zhao
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (B.F.); (Q.Z.)
| | - Yuping Liang
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, Chongqing 400716, China
- Correspondence:
| |
Collapse
|
26
|
GC-MS Metabolic Profile and α-Glucosidase-, α-Amylase-, Lipase-, and Acetylcholinesterase-Inhibitory Activities of Eight Peach Varieties. Molecules 2021; 26:molecules26144183. [PMID: 34299456 PMCID: PMC8306053 DOI: 10.3390/molecules26144183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The inhibition of certain digestive enzymes by target food matrices represents a new approach in the treatment of socially significant diseases. Proving the ability of fruits to inhibit such enzymes can support the inclusion of specific varieties in the daily diets of patients with diabetes, obesity, Alzheimer's disease, etc., providing them with much more than just valuable micro- and macromolecules. The current study aimed atidentifying and comparing the GC-MS metabolic profiles of eight peach varieties ("Filina", "Ufo 4, "Gergana", "Laskava", "July Lady", "Flat Queen", "Evmolpiya", and "Morsiani 90") grown in Bulgaria (local and introduced) and to evaluate the inhibitory potential of their extracts towards α-glucosidase, α-amylase, lipase, and acetylcholinesterase. In order to confirm samples' differences or similarities, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were also applied to the identified metabolites. The results provide important insights into the metabolomic profiles of the eight peach varieties and represent a first attempt to characterize the peels of the peach varieties with respect to α-glucosidase-, α-amylase-, lipase-, and acetylcholinesterase-inhibitory activities. All of the studied peach extracts displayed inhibitory activity towards α-glucosidase (IC50: 125-757 mg/mL) and acetylcholinesterase (IC50: 60-739 mg/mL), but none of them affected α-amylase activity. Five of the eight varieties showed inhibitory activity towards porcine pancreatic lipase (IC50: 24-167 mg/mL). The obtained results validate the usefulness of peaches and nectarines as valuable sources of natural agents beneficial for human health, although further detailed investigation should be performed in order to thoroughly identify the enzyme inhibitors responsible for each activity.
Collapse
|
27
|
Yao S, Zhao Z, Lu W, Dong X, Hu J, Liu X. Evaluation of Dissipation Behavior, Residues, and Dietary Risk Assessment of Fludioxonil in Cherry via QuEChERS Using HPLC-MS/MS Technique. Molecules 2021; 26:molecules26113344. [PMID: 34199388 PMCID: PMC8199599 DOI: 10.3390/molecules26113344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
The chemical fungicide fludioxonil is widely used to control post-harvest fungal disease in cherries. This study was implemented to investigate the dissipation behaviours and residues of fludioxonil on cherries. A reliable and efficient analytical method was established. Cherry samples from four product areas were analyzed by QuEChERS and HPLC-MS/MS methods with acceptable linearity (R2 > 0.99), accuracy (recoveries of 81–94%), and precision (relative standard deviation of 2.5–11.9%). The limits of quantification (LOQs) and limits of detection (LODs) of cherries were 0.01 mg/kg and 0.005 mg/kg. The dissipation of fludioxonil on cherries followed first order kinetics with half-lives of 33.7–44.7 days. The terminal residues of fludioxonil were all lower than 5.00 mg/kg, which is the MRL recommended by the European Commission. According to Chinese dietary patterns and terminal residue distributions, the risk quotient (RQs) of fludioxonil was 0.61%, revealing that the evaluated cherries exhibited an acceptably low dietary risk to consumers.
Collapse
|
28
|
Comprehensive Evaluation of Late Season Peach Varieties ( Prunus persica L.): Fruit Nutritional Quality and Phytochemicals. Molecules 2021; 26:molecules26092818. [PMID: 34068685 PMCID: PMC8126153 DOI: 10.3390/molecules26092818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Peaches are one of the most preferred seasonal fruits, and a reliable source of nutrients. They possess biologically active substances that largely differ among varieties. Hence, revealing the potential of several late season peaches is of present interest. Three commonly consumed varieties ("Flat Queen"; "Evmolpiya"; "Morsiani 90") were studied in terms of nutritive and phytochemical content, as well as antioxidant activity with the use of reliable spectrophotometric and High Performance Liquid Chromatographic (HPLC) methods. An analysis of the soil was also made. The phytochemical data were subjected to principal component analysis in order to evaluate their relationship. The "Morsiani 90" variety had the highest minerals concentration (2349.03 mg/kg fw), total carbohydrates (16.21 g/100 g fw), and α-tocopherol (395.75 µg/100 g fresh weight (fw)). Similar amounts of TDF (approx. 3 g/100 g fw) were reported for all three varieties. "Flat Queen's" peel extract was the richest in monomeric anthocyanins (2279.33 µg cyanidin-3-glucoside (C3GE)/100 g fw). The "Morsiani 90" variety extracts had the highest antioxidant potential, defined by 2,2-diphenil-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) and cupric ion-reducing antioxidant capacity (CUPRAC) assays.
Collapse
|
29
|
Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020063] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plant-based foods are rich sources of vitamins and essential micronutrients. For the proper functioning of the human body and their crucial role, trace minerals (iron, zinc, magnesium, manganese, etc.) are required in appropriate amounts. Cereals and pulses are the chief sources of these trace minerals. Despite these minerals, adequate consumption of plant foods cannot fulfill the human body’s total nutrient requirement. Plant foods also contain ample amounts of anti-nutritional factors such as phytate, tannins, phenols, oxalates, etc. These factors can compromise the bioavailability of several essential micronutrients in plant foods. However, literature reports show that fermentation and related processing methods can improve nutrient and mineral bioavailability of plant foods. In this review, studies related to fermentation methods that can be used to improve micronutrient bioavailability in plant foods are discussed.
Collapse
|
30
|
Comparative Study of Early- and Mid-Ripening Peach ( Prunus persica L.) Varieties: Biological Activity, Macro-, and Micro- Nutrient Profile. Foods 2021; 10:foods10010164. [PMID: 33466935 PMCID: PMC7830338 DOI: 10.3390/foods10010164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Exploring the chemical composition and biological activity of different fruit varieties is essential for the valorization of their health claims. The current study focuses on a detailed comparative analysis of three early- and two mid-ripening peach varieties: “Filina” (peach), “July Lady” (peach), “Laskava” (peach), “Gergana” (nectarine), and “Ufo 4” (flat peach). They were characterized in terms of essential nutrients such as carbohydrates (sugars and dietary fibers), amino acid content, and lipids as well as mineral content, fat-soluble vitamins, carotenoids, and chlorophyll. Polyphenolic compounds and the related antioxidant activity were also assessed. The methanolic extract of the peel seems to be richer in the studied biologically active substances compared to the fleshy part of the fruit. Anthocyanins were most abundant in “Gergana” and “July Lady” extracts (6624.8 ± 404.9 and 7133.6 ± 388.8 µg cyanidin-3-glucoside/100 g fw, resp.). The total phenol content of the samples varied from 34.11 ± 0.54 to 157.97 ± 0.67 mg gallic acid equivalents (GAE)/100 g fw. “Filina” and “July Lady” varieties possessed the highest antioxidant activity. Overall, the results of this study confirm that the studied peach varieties have satisfactory nutritional value and are potential sources of biologically active substances. Each variety represents an individual palette of nutrients that should be considered separately from the other.
Collapse
|
31
|
Anthony BM, Chaparro JM, Prenni JE, Minas IS. Early metabolic priming under differing carbon sufficiency conditions influences peach fruit quality development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:416-431. [PMID: 33202321 DOI: 10.1016/j.plaphy.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Crop load management is an important preharvest factor to balance yield, quality, and maturation in peach. However, few studies have addressed how preharvest factors impact metabolism on fruit of equal maturity. An experiment was conducted to understand how carbon competition impacts fruit internal quality and metabolism in 'Cresthaven' peach trees by imposing distinct thinning severities. Fruit quality was evaluated at three developmental stages (S2, S3, S4), while controlling for equal maturity using non-destructive visual to near-infrared spectroscopy. Non-targeted metabolite profiling was used to characterize fruit at each developmental stage from trees that were unthinned (carbon starvation) or thinned (carbon sufficiency). Carbon sufficiency resulted in significantly higher fruit dry matter content and soluble solids concentration at harvest when compared to the carbon starved, underscoring the true impact of carbon manipulation on fruit quality. Significant differences in the fruit metabolome between treatments were observed at S2 when phenotypes were similar, while less differences were observed at S4 when the carbon sufficient fruit exhibited a superior phenotype. This suggests a potential metabolic priming effect on fruit quality when carbon is sufficiently supplied during early fruit growth and development. In particular, elevated levels of catechin may suggest a link between secondary/primary metabolism and fruit quality development.
Collapse
Affiliation(s)
- Brendon M Anthony
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
32
|
Roncero JM, Álvarez-Ortí M, Pardo-Giménez A, Rabadán A, Pardo JE. Review about Non-Lipid Components and Minor Fat-Soluble Bioactive Compounds of Almond Kernel. Foods 2020; 9:E1646. [PMID: 33187330 PMCID: PMC7697880 DOI: 10.3390/foods9111646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/28/2022] Open
Abstract
This work presents a bibliographic review about almond kernel non-lipid components, in particular about the protein fraction, the carbohydrates and the mineral fraction. In addition, other fat-soluble phytochemicals which are present in minor concentrations but show important antioxidant activities are reviewed. Almond kernel is a rich protein food (8.4-35.1%), in which the globulin-albumin fraction dominates, followed by glutelins and prolamins. Within the almond kernel protein profile, amandine dominates. Free amino acids represent a small amount of the total nitrogen quantity, highlighting the presence of glutamic acid and aspartic acid, followed by arginine. Carbohydrates that appear in almond kernels (14-28%) are soluble sugars (mainly sucrose), starch and other polysaccharides such as cellulose and non-digestible hemicelluloses. Regarding the mineral elements, potassium is the most common, followed by phosphorus; both macronutrients represent more than 70% of the total mineral fraction, without taking into account nitrogen. Microminerals include sodium, iron, copper, manganese and zinc. Within the phytochemical compounds, tocopherols, squalene, phytosterols, stanols, sphingolipids, phospholipids, chlorophylls, carotenoids, phenols and volatile compounds can be found.
Collapse
Affiliation(s)
- José M. Roncero
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - Manuel Álvarez-Ortí
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - Arturo Pardo-Giménez
- Mushroom Research, Experimentation and Service Centre, C/Peñicas, s/n, Apartado 63, Quintanar del Rey, 16220 Cuenca, Spain;
| | - Adrián Rabadán
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| | - José E. Pardo
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain; (M.Á.-O.); (A.R.); (J.E.P.)
| |
Collapse
|