1
|
Karpinska B, Foyer CH. Superoxide signalling and antioxidant processing in the plant nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4599-4610. [PMID: 38460122 PMCID: PMC11317529 DOI: 10.1093/jxb/erae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
The superoxide anion radical (O2·-) is a one-electron reduction product of molecular oxygen. Compared with other forms of reactive oxygen species (ROS), superoxide has limited reactivity. Nevertheless, superoxide reacts with nitric oxide, ascorbate, and the iron moieties of [Fe-S] cluster-containing proteins. Superoxide has largely been neglected as a signalling molecule in the plant literature in favour of the most stable ROS form, hydrogen peroxide. However, superoxide can accumulate in plant cells, particularly in meristems, where superoxide dismutase activity and ascorbate accumulation are limited (or absent), or when superoxide is generated within the lipid environment of membranes. Moreover, oxidation of the nucleus in response to environmental stresses is a widespread phenomenon. Superoxide is generated in many intracellular compartments including mitochondria, chloroplasts, and on the apoplastic/cell wall face of the plasma membrane. However, nuclear superoxide production and functions remain poorly documented in plants. Accumulating evidence suggests that the nuclear pools of antioxidants such as glutathione are discrete and separate from the cytosolic pools, allowing compartment-specific signalling in the nucleus. We consider the potential mechanisms of superoxide generation and targets in the nucleus, together with the importance of antioxidant processing in regulating superoxide signalling.
Collapse
Affiliation(s)
- Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
2
|
Willems P, Sterck L, Dard A, Huang J, De Smet I, Gevaert K, Van Breusegem F. The Plant PTM Viewer 2.0: in-depth exploration of plant protein modification landscapes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4611-4624. [PMID: 38872385 DOI: 10.1093/jxb/erae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Post-translational modifications (PTMs) greatly increase protein diversity and functionality. To help the plant research community interpret the ever-increasing number of reported PTMs, the Plant PTM Viewer (https://www.psb.ugent.be/PlantPTMViewer) provides an intuitive overview of plant protein PTMs and the tools to assess it. This update includes 62 novel PTM profiling studies, adding a total of 112 000 modified peptides reporting plant PTMs, including 14 additional PTM types and three species (moss, tomato, and soybean). Furthermore, an open modification re-analysis of a large-scale Arabidopsis thaliana mass spectrometry tissue atlas identified previously uncharted landscapes of lysine acylations predominant in seed and flower tissues and 3-phosphoglycerylation on glycolytic enzymes in plants. An extra 'Protein list analysis' tool was developed for retrieval and assessing the enrichment of PTMs in a protein list of interest. We conducted a protein list analysis on nuclear proteins, revealing a substantial number of redox modifications in the nucleus, confirming previous assumptions regarding the redox regulation of transcription. We encourage the plant research community to use PTM Viewer 2.0 for hypothesis testing and new target discovery, and also to submit new data to expand the coverage of conditions, plant species, and PTM types, thereby enriching our understanding of plant biology.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
3
|
Dard A, Van Breusegem F, Mhamdi A. Redox regulation of gene expression: proteomics reveals multiple previously undescribed redox-sensitive cysteines in transcription complexes and chromatin modifiers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4476-4493. [PMID: 38642390 DOI: 10.1093/jxb/erae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Redox signalling is crucial for regulating plant development and adaptation to environmental changes. Proteins with redox-sensitive cysteines can sense oxidative stress and modulate their functions. Recent proteomics efforts have comprehensively mapped the proteins targeted by oxidative modifications. The nucleus, the epicentre of transcriptional reprogramming, contains a large number of proteins that control gene expression. Specific redox-sensitive transcription factors have long been recognized as key players in decoding redox signals in the nucleus and thus in regulating transcriptional responses. Consequently, the redox regulation of the nuclear transcription machinery and its cofactors has received less attention. In this review, we screened proteomic datasets for redox-sensitive cysteines on proteins of the core transcription complexes and chromatin modifiers in Arabidopsis thaliana. Our analysis indicates that redox regulation affects every step of gene transcription, from initiation to elongation and termination. We report previously undescribed redox-sensitive subunits in transcription complexes and discuss the emerging challenges in unravelling the landscape of redox-regulated processes involved in nuclear gene transcription.
Collapse
Affiliation(s)
- Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
4
|
Panda SK, Gupta D, Patel M, Vyver CVD, Koyama H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2071. [PMID: 39124190 PMCID: PMC11313751 DOI: 10.3390/plants13152071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Agriculture and changing environmental conditions are closely related, as weather changes could adversely affect living organisms or regions of crop cultivation. Changing environmental conditions trigger different abiotic stresses, which ultimately cause the accumulation of reactive oxygen species (ROS) in plants. Common ROS production sites are the chloroplast, endoplasmic reticulum, plasma membrane, mitochondria, peroxisomes, etc. The imbalance in ROS production and ROS detoxification in plant cells leads to oxidative damage to biomolecules such as lipids, nucleic acids, and proteins. At low concentrations, ROS initiates signaling events related to development and adaptations to abiotic stress in plants by inducing signal transduction pathways. In plants, a stress signal is perceived by various receptors that induce a signal transduction pathway that activates numerous signaling networks, which disrupt gene expression, impair the diversity of kinase/phosphatase signaling cascades that manage the stress response in the plant, and result in changes in physiological responses under various stresses. ROS production also regulates ABA-dependent and ABA-independent pathways to mitigate drought stress. This review focuses on the common subcellular location of manufacturing, complex signaling mechanisms, and networks of ROS, with an emphasis on cellular effects and enzymatic and non-enzymatic antioxidant scavenging mechanisms of ROS in Poaceae crops against drought stress and how the manipulation of ROS regulates stress tolerance in plants. Understanding ROS systems in plants could help to create innovative strategies to evolve paths of cell protection against the negative effects of excessive ROS in attempts to improve crop productivity in adverse environments.
Collapse
Affiliation(s)
- Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Divya Gupta
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Mayur Patel
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Christell Van Der Vyver
- Institute of Plant Biotechnology, Stellenbosch University, Private Bag X1, Stellenbosch 7601, South Africa;
| | - Hiroyuki Koyama
- Faculty of Applied Biology, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
5
|
Mishra S, Ganapathi TR, Pandey GK, Foyer CH, Srivastava AK. Meta-Analysis of Antioxidant Mutants Reveals Common Alarm Signals for Shaping Abiotic Stress-Induced Transcriptome in Plants. Antioxid Redox Signal 2024; 41:42-55. [PMID: 37597205 DOI: 10.1089/ars.2023.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Affiliation(s)
- Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Girdhar Kumar Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | | | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
6
|
Foyer CH, Kunert K. The ascorbate-glutathione cycle coming of age. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2682-2699. [PMID: 38243395 PMCID: PMC11066808 DOI: 10.1093/jxb/erae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Karl Kunert
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, 2001, South Africa
| |
Collapse
|
7
|
Herbst J, Li QQ, De Veylder L. Mechanistic insights into DNA damage recognition and checkpoint control in plants. NATURE PLANTS 2024; 10:539-550. [PMID: 38503962 DOI: 10.1038/s41477-024-01652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The plant DNA damage response (DDR) pathway safeguards genomic integrity by rapid recognition and repair of DNA lesions that, if unrepaired, may cause genome instability. Most frequently, DNA repair goes hand in hand with a transient cell cycle arrest, which allows cells to repair the DNA lesions before engaging in a mitotic event, but consequently also affects plant growth and yield. Through the identification of DDR proteins and cell cycle regulators that react to DNA double-strand breaks or replication defects, it has become clear that these proteins and regulators form highly interconnected networks. These networks operate at both the transcriptional and post-transcriptional levels and include liquid-liquid phase separation and epigenetic mechanisms. Strikingly, whereas the upstream DDR sensors and signalling components are well conserved across eukaryotes, some of the more downstream effectors are diverged in plants, probably to suit unique lifestyle features. Additionally, DDR components display functional diversity across ancient plant species, dicots and monocots. The observed resistance of DDR mutants towards aluminium toxicity, phosphate limitation and seed ageing indicates that gaining knowledge about the plant DDR may offer solutions to combat the effects of climate change and the associated risk for food security.
Collapse
Affiliation(s)
- Josephine Herbst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Qian-Qian Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
8
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
9
|
Wang Y, Jia X, An S, Yin W, Huang J, Jiang X. Nanozyme-Based Regulation of Cellular Metabolism and Their Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301810. [PMID: 37017586 DOI: 10.1002/adma.202301810] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Metabolism is the sum of the enzyme-dependent chemical reactions, which produces energy in catabolic process and synthesizes biomass in anabolic process, exhibiting high similarity in mammalian cell, microbial cell, and plant cell. Consequently, the loss or gain of metabolic enzyme activity greatly affects cellular metabolism. Nanozymes, as emerging enzyme mimics with diverse functions and adjustable catalytic activities, have shown attractive potential for metabolic regulation. Although the basic metabolic tasks are highly similar for the cells from different species, the concrete metabolic pathway varies with the intracellular structure of different species. Here, the basic metabolism in living organisms is described and the similarities and differences in the metabolic pathways among mammalian, microbial, and plant cells and the regulation mechanism are discussed. The recent progress on regulation of cellular metabolism mainly including nutrient uptake and utilization, energy production, and the accompanied redox reactions by different kinds of oxidoreductases and their applications in the field of disease therapy, antimicrobial therapy, and sustainable agriculture is systematically reviewed. Furthermore, the prospects and challenges of nanozymes in regulating cell metabolism are also discussed, which broaden their application scenarios.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Wenbo Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Jiahao Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Abro AA, Anwar M, Javwad MU, Zhang M, Liu F, Jiménez-Ballesta R, Salama EA, Ahmed MA. Morphological and physio-biochemical responses under heat stress in cotton: Overview. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 40:e00813. [PMID: 37859996 PMCID: PMC10582760 DOI: 10.1016/j.btre.2023.e00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
Cotton is an important cash crop in addition to being a fiber commodity, and it plays an essential part in the economies of numerous nations. High temperature is the most critical element affecting its yield from fertilization to harvest. The optimal temperature for root formation is 30 C -35 °C; however, root development ends around 40 °C. Increased temperature, in particular, influences different biochemical and physiological processes associated with cotton plant, resulting in low seed cotton production. Many studies in various agroecological zones used various agronomic strategies and contemporary breeding techniques to reduce heat stress and improve cotton productivity. To attain desired traits, cotton breeders should investigate all potential possibilities, such as generating superior cultivars by traditional breeding, employing molecular techniques and transgenic methods, such as using genome editing techniques. The main objective of this review is to provide the recent information on the environmental factors, such as temperature, heat and drought, influence the growth and development, morphology and physio-chemical alteration associated with cotton. Furthermore, recent advancement in cotton breeding to combat the serious threat of drought and heat stress.
Collapse
Affiliation(s)
- Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Muhammad Umer Javwad
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mjie Zhang
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | | | - Ehab A. A. Salama
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore- 641003, India
- Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture - Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| |
Collapse
|
11
|
Yow AG, Laosuntisuk K, Young RA, Doherty CJ, Gillitt N, Perkins-Veazie P, Jenny Xiang QY, Iorizzo M. Comparative transcriptome analysis reveals candidate genes for cold stress response and early flowering in pineapple. Sci Rep 2023; 13:18890. [PMID: 37919298 PMCID: PMC10622448 DOI: 10.1038/s41598-023-45722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Pineapple originates from tropical regions in South America and is therefore significantly impacted by cold stress. Periodic cold events in the equatorial regions where pineapple is grown may induce early flowering, also known as precocious flowering, resulting in monetary losses due to small fruit size and the need to make multiple passes for harvesting a single field. Currently, pineapple is one of the most important tropical fruits in the world in terms of consumption, and production losses caused by weather can have major impacts on worldwide exportation potential and economics. To further our understanding of and identify mechanisms for low-temperature tolerance in pineapple, and to identify the relationship between low-temperature stress and flowering time, we report here a transcriptomic analysis of two pineapple genotypes in response to low-temperature stress. Using meristem tissue collected from precocious flowering-susceptible MD2 and precocious flowering-tolerant Dole-17, we performed pairwise comparisons and weighted gene co-expression network analysis (WGCNA) to identify cold stress, genotype, and floral organ development-specific modules. Dole-17 had a greater increase in expression of genes that confer cold tolerance. The results suggested that low temperature stress in Dole-17 plants induces transcriptional changes to adapt and maintain homeostasis. Comparative transcriptomic analysis revealed differences in cuticular wax biosynthesis, carbohydrate accumulation, and vernalization-related gene expression between genotypes. Cold stress induced changes in ethylene and abscisic acid-mediated pathways differentially between genotypes, suggesting that MD2 may be more susceptible to hormone-mediated early flowering. The differentially expressed genes and module hub genes identified in this study are potential candidates for engineering cold tolerance in pineapple to develop new varieties capable of maintaining normal reproduction cycles under cold stress. In addition, a total of 461 core genes involved in the development of reproductive tissues in pineapple were also identified in this study. This research provides an important genomic resource for understanding molecular networks underlying cold stress response and how cold stress affects flowering time in pineapple.
Collapse
Affiliation(s)
- Ashley G Yow
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA
| | - Kanjana Laosuntisuk
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Roberto A Young
- Research Department of Dole, Standard Fruit de Honduras, Zona Mazapan, 31101, La Ceiba, Honduras
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Penelope Perkins-Veazie
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Massimo Iorizzo
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA.
| |
Collapse
|
12
|
Postiglione AE, Muday GK. Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. PLANT PHYSIOLOGY 2023; 192:469-487. [PMID: 36573336 PMCID: PMC10152677 DOI: 10.1093/plphys/kiac601] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/04/2022] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) drives stomatal closure to minimize water loss due to transpiration in response to drought. We examined the subcellular location of ABA-increased accumulation of reactive oxygen species (ROS) in guard cells, which drive stomatal closure, in Arabidopsis (Arabidopsis thaliana). ABA-dependent increases in fluorescence of the generic ROS sensor, dichlorofluorescein (DCF), were observed in mitochondria, chloroplasts, cytosol, and nuclei. The ABA response in all these locations was lost in an ABA-insensitive quintuple receptor mutant. The ABA-increased fluorescence in mitochondria of both DCF- and an H2O2-selective probe, Peroxy Orange 1, colocalized with Mitotracker Red. ABA treatment of guard cells transformed with the genetically encoded H2O2 reporter targeted to the cytoplasm (roGFP2-Orp1), or mitochondria (mt-roGFP2-Orp1), revealed H2O2 increases. Consistent with mitochondrial ROS changes functioning in stomatal closure, we found that guard cells of a mutant with mitochondrial defects, ABA overly sensitive 6 (abo6), have elevated ABA-induced ROS in mitochondria and enhanced stomatal closure. These effects were phenocopied with rotenone, which increased mitochondrial ROS. In contrast, the mitochondrially targeted antioxidant, MitoQ, dampened ABA effects on mitochondrial ROS accumulation and stomatal closure in Col-0 and reversed the guard cell closure phenotype of the abo6 mutant. ABA-induced ROS accumulation in guard cell mitochondria was lost in mutants in genes encoding respiratory burst oxidase homolog (RBOH) enzymes and reduced by treatment with the RBOH inhibitor, VAS2870, consistent with RBOH machinery acting in ABA-increased ROS in guard cell mitochondria. These results demonstrate that ABA elevates H2O2 accumulation in guard cell mitochondria to promote stomatal closure.
Collapse
Affiliation(s)
- Anthony E Postiglione
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA 27109
| | - Gloria K Muday
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA 27109
| |
Collapse
|
13
|
Dard A, Weiss A, Bariat L, Auverlot J, Fontaine V, Picault N, Pontvianne F, Riondet C, Reichheld JP. Glutathione-mediated thermomorphogenesis and heat stress responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2707-2725. [PMID: 36715641 DOI: 10.1093/jxb/erad042] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/28/2023] [Indexed: 06/06/2023]
Abstract
In the context of climate change, the global rise of temperature and intense heat waves affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which perturbs the cellular redox state. In plants, the dynamics of the cellular and subcellular redox state have been poorly investigated under high temperature. Glutathione plays a major role in maintaining the cellular redox state. We investigated its contribution in adaptation of Arabidopsis thaliana to contrasting high temperature regimes: high ambient temperature inducing thermomorphogenesis and heat stress affecting plant viability. Using the genetically encoded redox marker roGFP2, we show that high temperature regimes lead to cytoplasmic and nuclear oxidation and impact the glutathione pool. This pool is restored within a few hours, which probably contributes to plant adaptation to high temperatures. Moreover, low glutathione mutants fail to adapt to heat stress and to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate the transcriptomic signature in the two high temperature regimes and identified gene expression deviations in low glutathione mutants, which might contribute to their sensitivity to high temperature. Thus, we define glutathione as a major player in the adaptation of Arabidopsis to contrasting high temperature regimes.
Collapse
Affiliation(s)
- Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Valentine Fontaine
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Nathalie Picault
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Frédéric Pontvianne
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
14
|
Hendrix S, Dard A, Meyer AJ, Reichheld JP. Redox-mediated responses to high temperature in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2489-2507. [PMID: 36794477 DOI: 10.1093/jxb/erad053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
As sessile organisms, plants are particularly affected by climate change and will face more frequent and extreme temperature variations in the future. Plants have developed a diverse range of mechanisms allowing them to perceive and respond to these environmental constraints, which requires sophisticated signalling mechanisms. Reactive oxygen species (ROS) are generated in plants exposed to various stress conditions including high temperatures and are presumed to be involved in stress response reactions. The diversity of ROS-generating pathways and the ability of ROS to propagate from cell to cell and to diffuse through cellular compartments and even across membranes between subcellular compartments put them at the centre of signalling pathways. In addition, their capacity to modify the cellular redox status and to modulate functions of target proteins, notably through cysteine oxidation, show their involvement in major stress response transduction pathways. ROS scavenging and thiol reductase systems also participate in the transmission of oxidation-dependent stress signals. In this review, we summarize current knowledge on the functions of ROS and oxidoreductase systems in integrating high temperature signals, towards the activation of stress responses and developmental acclimation mechanisms.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
15
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
16
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|
17
|
Mattoon EM, McHargue W, Bailey CE, Zhang N, Chen C, Eckhardt J, Daum CG, Zane M, Pennacchio C, Schmutz J, O'Malley RC, Cheng J, Zhang R. High-throughput identification of novel heat tolerance genes via genome-wide pooled mutant screens in the model green alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2023; 46:865-888. [PMID: 36479703 PMCID: PMC9898210 DOI: 10.1111/pce.14507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Different high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae. We utilized the insertional, indexed, genome-saturating mutant library of the unicellular, eukaryotic green alga Chlamydomonas reinhardtii to perform genome-wide, quantitative, pooled screens under moderate (35°C) or acute (40°C) high temperatures with or without organic carbon sources. We identified heat-sensitive mutants based on quantitative growth rates and identified putative heat tolerance genes (HTGs). By triangulating HTGs with heat-induced transcripts or proteins in wildtype cultures and MapMan functional annotations, we presented a high/medium-confidence list of 933 Chlamydomonas genes with putative roles in heat tolerance. Triangulated HTGs include those with known thermotolerance roles and novel genes with little or no functional annotation. About 50% of these high-confidence HTGs in Chlamydomonas have orthologs in green lineage organisms, including crop species. Arabidopsis thaliana mutants deficient in the ortholog of a high-confidence Chlamydomonas HTG were also heat sensitive. This work expands our knowledge of heat responses in photosynthetic cells and provides engineering targets to improve thermotolerance in algae and crops.
Collapse
Affiliation(s)
- Erin M. Mattoon
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri 63130, USA
| | - William McHargue
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | - Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - James Eckhardt
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Chris G. Daum
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matt Zane
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christa Pennacchio
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan C. O'Malley
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| |
Collapse
|
18
|
Fine Tuning of ROS, Redox and Energy Regulatory Systems Associated with the Functions of Chloroplasts and Mitochondria in Plants under Heat Stress. Int J Mol Sci 2023; 24:ijms24021356. [PMID: 36674866 PMCID: PMC9865929 DOI: 10.3390/ijms24021356] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Heat stress severely affects plant growth and crop production. It is therefore urgent to uncover the mechanisms underlying heat stress responses of plants and establish the strategies to enhance heat tolerance of crops. The chloroplasts and mitochondria are known to be highly sensitive to heat stress. Heat stress negatively impacts on the electron transport chains, leading to increased production of reactive oxygen species (ROS) that can cause damages on the chloroplasts and mitochondria. Disruptions of photosynthetic and respiratory metabolisms under heat stress also trigger increase in ROS and alterations in redox status in the chloroplasts and mitochondria. However, ROS and altered redox status in these organelles also activate important mechanisms that maintain functions of these organelles under heat stress, which include HSP-dependent pathways, ROS scavenging systems and retrograde signaling. To discuss heat responses associated with energy regulating organelles, we should not neglect the energy regulatory hub involving TARGET OF RAPAMYCIN (TOR) and SNF-RELATED PROTEIN KINASE 1 (SnRK1). Although roles of TOR and SnRK1 in the regulation of heat responses are still unknown, contributions of these proteins to the regulation of the functions of energy producing organelles implicate the possible involvement of this energy regulatory hub in heat acclimation of plants.
Collapse
|
19
|
Rao X, Cheng N, Mathew IE, Hirschi KD, Nakata PA. Crucial role of Arabidopsis glutaredoxin S17 in heat stress response revealed by transcriptome analysis. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:58-70. [PMID: 36099929 DOI: 10.1071/fp22002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Heat stress can have detrimental effects on plant growth and development. However, the mechanisms by which the plant is able to perceive changes in ambient temperature, transmit this information, and initiate a temperature-induced response are not fully understood. Previously, we showed that heterologous expression of an Arabidopsis thaliana L. monothiol glutaredoxin AtGRXS17 enhances thermotolerance in various crops, while disruption of AtGRXS17 expression caused hypersensitivity to permissive temperature. In this study, we extend our investigation into the effect of AtGRXS17 and heat stress on plant growth and development. Although atgrxs17 plants were found to exhibit a slight decrease in hypocotyl elongation, shoot meristem development, and root growth compared to wild-type when grown at 22°C, these growth phenotypic differences became more pronounced when growth temperatures were raised to 28°C. Transcriptome analysis revealed significant changes in genome-wide gene expression in atgrxs17 plants compared to wild-type under conditions of heat stress. The expression of genes related to heat stress factors, auxin response, cellular communication, and abiotic stress were altered in atgrxs17 plants in response to heat stress. Overall, our findings indicate that AtGRXS17 plays a critical role in controlling the transcriptional regulation of plant heat stress response pathways.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| | - Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Iny E Mathew
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Lasorella C, Fortunato S, Dipierro N, Jeran N, Tadini L, Vita F, Pesaresi P, de Pinto MC. Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1058831. [PMID: 36618674 PMCID: PMC9813751 DOI: 10.3389/fpls.2022.1058831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Heat stress (HS) severely affects different cellular compartments operating in metabolic processes and represents a critical threat to plant growth and yield. Chloroplasts are crucial for heat stress response (HSR), signaling to the nucleus the environmental challenge and adjusting metabolic and biosynthetic functions accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein, has been recognized as one of the main players of chloroplast retrograde signaling. Here, we investigate HSR in Arabidopsis wild-type and gun1 plantlets subjected to 2 hours of HS at 45°C. In wild-type plants, Reactive Oxygen Species (ROS) accumulate promptly after HS, contributing to transiently oxidize the cellular environment and acting as signaling molecules. After 3 hours of physiological recovery at growth temperature (22°C), the induction of enzymatic and non-enzymatic antioxidants prevents oxidative damage. On the other hand, gun1 mutants fail to induce the oxidative burst immediately after HS and accumulate ROS and oxidative damage after 3 hours of recovery at 22°C, thus resulting in enhanced sensitivity to HS. These data suggest that GUN1 is required to oxidize the cellular environment, participating in the acquisition of basal thermotolerance through the redox-dependent plastid-to-nucleus communication.
Collapse
Affiliation(s)
- Cecilia Lasorella
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Stefania Fortunato
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nunzio Dipierro
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Federico Vita
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano, Italy
| | - Maria Concetta de Pinto
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
21
|
Rogiers SY, Greer DH, Liu Y, Baby T, Xiao Z. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. FRONTIERS IN PLANT SCIENCE 2022; 13:1094633. [PMID: 36618637 PMCID: PMC9811181 DOI: 10.3389/fpls.2022.1094633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Compressed vintages, high alcohol and low wine acidity are but a few repercussions of climate change effects on Australian viticulture. While warm and cool growing regions may have different practical concerns related to climate change, they both experience altered berry and must composition and potentially reduced desirable wine characteristics and market value. Storms, drought and uncertain water supplies combined with excessive heat not only depress vine productivity through altered physiology but can have direct consequences on the fruit. Sunburn, shrivelling and altered sugar-flavour-aroma balance are becoming more prevalent while bushfires can result in smoke taint. Moreover, distorted pest and disease cycles and changes in pathogen geographical distribution have altered biotic stress dynamics that require novel management strategies. A multipronged approach to address these challenges may include alternative cultivars and rootstocks or changing geographic location. In addition, modifying and incorporating novel irrigation regimes, vine architecture and canopy manipulation, vineyard floor management, soil amendments and foliar products such as antitranspirants and other film-forming barriers are potential levers that can be used to manage the effects of climate change. The adoption of technology into the vineyard including weather, plant and soil sensors are giving viticulturists extra tools to make quick decisions, while satellite and airborne remote sensing allow the adoption of precision farming. A coherent and comprehensive approach to climate risk management, with consideration of the environment, ensures that optimum production and exceptional fruit quality is maintained. We review the preliminary findings and feasibility of these new strategies in the Australian context.
Collapse
Affiliation(s)
- Suzy Y. Rogiers
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Dennis H. Greer
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Yin Liu
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agriculture Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Tintu Baby
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Zeyu Xiao
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
22
|
Luo J, Jiang J, Sun S, Wang X. Brassinosteroids promote thermotolerance through releasing BIN2-mediated phosphorylation and suppression of HsfA1 transcription factors in Arabidopsis. PLANT COMMUNICATIONS 2022; 3:100419. [PMID: 35927943 PMCID: PMC9700127 DOI: 10.1016/j.xplc.2022.100419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
High temperature adversely affects plant growth and development. The steroid phytohormones brassinosteroids (BRs) are recognized to play important roles in plant heat stress responses and thermotolerance, but the underlying mechanisms remain obscure. Here, we demonstrate that the glycogen synthase kinase 3 (GSK3)-like kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative component in the BR signaling pathway, interacts with the master heat-responsive transcription factors CLASS A1 HEAT SHOCK TRANSCRIPTION FACTORS (HsfA1s). Furthermore, BIN2 phosphorylates HsfA1d on T263 and S56 to suppress its nuclear localization and inhibit its DNA-binding ability, respectively. BR signaling promotes plant thermotolerance by releasing the BIN2 suppression of HsfA1d to facilitate its nuclear localization and DNA binding. Our study provides insights into the molecular mechanisms by which BRs promote plant thermotolerance by strongly regulating HsfA1d through BIN2 and suggests potential ways to improve crop yield under extreme high temperatures.
Collapse
Affiliation(s)
- Jinyu Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Shiyong Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China.
| |
Collapse
|
23
|
Lu Q, Houbaert A, Ma Q, Huang J, Sterck L, Zhang C, Benjamins R, Coppens F, Van Breusegem F, Russinova E. Adenosine monophosphate deaminase modulates BIN2 activity through hydrogen peroxide-induced oligomerization. THE PLANT CELL 2022; 34:3844-3859. [PMID: 35876813 PMCID: PMC9520590 DOI: 10.1093/plcell/koac203] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/17/2022] [Indexed: 05/06/2023]
Abstract
The Arabidopsis thaliana GSK3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) is a key negative regulator of brassinosteroid (BR) signaling and a hub for crosstalk with other signaling pathways. However, the mechanisms controlling BIN2 activity are not well understood. Here we performed a forward genetic screen for resistance to the plant-specific GSK3 inhibitor bikinin and discovered that a mutation in the ADENOSINE MONOPHOSPHATE DEAMINASE (AMPD)/EMBRYONIC FACTOR1 (FAC1) gene reduces the sensitivity of Arabidopsis seedlings to both bikinin and BRs. Further analyses revealed that AMPD modulates BIN2 activity by regulating its oligomerization in a hydrogen peroxide (H2O2)-dependent manner. Exogenous H2O2 induced the formation of BIN2 oligomers with a decreased kinase activity and an increased sensitivity to bikinin. By contrast, AMPD activity inhibition reduced the cytosolic reactive oxygen species (ROS) levels and the amount of BIN2 oligomers, correlating with the decreased sensitivity of Arabidopsis plants to bikinin and BRs. Furthermore, we showed that BIN2 phosphorylates AMPD to possibly alter its function. Our results uncover the existence of an H2O2 homeostasis-mediated regulation loop between AMPD and BIN2 that fine-tunes the BIN2 kinase activity to control plant growth and development.
Collapse
Affiliation(s)
- Qing Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Cheng Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - René Benjamins
- Plant Developmental Biology, Wageningen University Research, 6708 PB Wageningen, The Netherlands
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | |
Collapse
|
24
|
Li M, Zhou J, Du J, Li X, Sun Y, Wang Z, Lin Y, Zhang Y, Wang Y, He W, Wang X, Chen Q, Zhang Y, Luo Y, Tang H. Comparative Physiological and Transcriptomic Analyses of Improved Heat Stress Tolerance in Celery (Apium Graveolens L.) Caused by Exogenous Melatonin. Int J Mol Sci 2022; 23:ijms231911382. [PMID: 36232683 PMCID: PMC9569527 DOI: 10.3390/ijms231911382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
Melatonin (MT) is crucial in plant growth, development, and response to stress. Celery is a vegetable that grows in a cool climate, and a hot climate can deteriorate its growth, yield, and quality. This study investigates the effect of exogenous melatonin on celery physiology. Transcriptional levels were analyzed by spraying celery with exogenous MT before exposing it to high temperatures. The regulatory mechanism of exogenous MT-mediated heat tolerance was examined. The results show that the exogenous MT reduced the thermal damage state of celery seedlings, as well as the malondialdehyde (MDA) content and relative conductivity (REC), increasing the oxidase activity, the osmotic regulatory substances, and chlorophyll, enhancing the leaf transpiration and the light energy utilization efficiency. We examined the mechanism of exogenous MT in mitigating high-temperature damage using the transcriptome sequencing method. A total of 134 genes were expressed differently at high temperature in the celery treated with MT compared with the untreated celery. Functional annotation analysis revealed that the differentially expressed genes were abundant in the “pyruvate metabolism” pathway and the “peroxidase activity” pathway. According to the pathway-based gene expression analysis, exogenous MT can inhibit the upregulation of pyruvate synthesis genes and the downregulation of pyruvate consumption genes, preventing the accumulated pyruvate from rapidly upregulating the expression of peroxidase genes, and thereby enhancing peroxidase activity. RT-qPCR verification showed a rising encoding peroxidase gene expression under MT treatment. The gene expression pattern involved in pyruvate anabolism and metabolism agreed with the abundant transcriptome expression, validating the physiological index results. These results indicate that the application of exogenous MT to celery significantly enhances the ability of plant to remove reactive oxygen species (ROS) in response to heat stress, thereby improving the ability of plant to resist heat stress. The results of this study provide a theoretical basis for the use of MT to alleviate the damage caused by heat stress in plant growth and development.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiageng Du
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhuo Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
25
|
Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 2022; 23:663-679. [PMID: 35760900 DOI: 10.1038/s41580-022-00499-2] [Citation(s) in RCA: 565] [Impact Index Per Article: 282.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Reactive oxygen species (ROS) are key signalling molecules that enable cells to rapidly respond to different stimuli. In plants, ROS play a crucial role in abiotic and biotic stress sensing, integration of different environmental signals and activation of stress-response networks, thus contributing to the establishment of defence mechanisms and plant resilience. Recent advances in the study of ROS signalling in plants include the identification of ROS receptors and key regulatory hubs that connect ROS signalling with other important stress-response signal transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle and cell-to-cell signalling. Our understanding of how ROS are regulated in cells by balancing production, scavenging and transport has also increased. In this Review, we discuss these promising developments and how they might be used to increase plant resilience to environmental stress.
Collapse
|
26
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
27
|
Kerchev PI, Van Breusegem F. Improving oxidative stress resilience in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:359-372. [PMID: 34519111 DOI: 10.1111/tpj.15493] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 05/22/2023]
Abstract
Originally conceived as harmful metabolic byproducts, reactive oxygen species (ROS) are now recognized as an integral part of numerous cellular programs. Thanks to their diverse physicochemical properties, compartmentalized production, and tight control exerted by the antioxidant machinery they activate signaling pathways that govern plant growth, development, and defense. Excessive ROS levels are often driven by adverse changes in environmental conditions, ultimately causing oxidative stress. The associated negative impact on cellular constituents have been a major focus of decade-long research efforts to improve the oxidative stress resilience by boosting the antioxidant machinery in model and crop species. We highlight the role of enzymatic and non-enzymatic antioxidants as integral factors of multiple signaling cascades beyond their mere function to prevent oxidative damage under adverse abiotic stress conditions.
Collapse
Affiliation(s)
- Pavel I Kerchev
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| |
Collapse
|
28
|
Iqbal N, Umar S, Khan NA, Corpas FJ. Crosstalk between abscisic acid and nitric oxide under heat stress: exploring new vantage points. PLANT CELL REPORTS 2021; 40:1429-1450. [PMID: 33909122 DOI: 10.1007/s00299-021-02695-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/05/2021] [Indexed: 05/22/2023]
Abstract
Heat stress adversely affects plants growth potential. Global warming is reported to increase in the intensity, frequency, and duration of heatwaves, eventually affecting ecology, agriculture and economy. With an expected increase in average temperature by 2-3 °C over the next 30-50 years, crop production is facing a severe threat to sub-optimum growth conditions. Abscisic acid (ABA) and nitric oxide (NO) are growth regulators that are involved in the adaptation to heat stress by affecting each other and changing the adaptation process. The interaction between these molecules has been discussed in various studies in general or under stress conditions; however, regarding high temperature, their interaction has little been worked out. In the present review, the focus is shifted on the role of these molecules under heat stress emphasizing the different possible interactions between ABA and NO as both regulate stomatal closure and other molecules including hydrogen peroxide (H2O2), hydrogen sulfide (H2S), antioxidants, proline, glycine betaine, calcium (Ca2+) and heat shock protein (HSP). Exploring the crosstalk between ABA and NO with other molecules under heat stress will provide us with a comprehensive knowledge of plants mechanism of heat tolerance which could be useful to develop heat stress-resistant varieties.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain.
| |
Collapse
|
29
|
Schwarczinger I, Kolozsváriné Nagy J, Király L, Mészáros K, Bányai J, Kunos V, Fodor J, Künstler A. Heat Stress Pre-Exposure May Differentially Modulate Plant Defense to Powdery Mildew in a Resistant and Susceptible Barley Genotype. Genes (Basel) 2021; 12:genes12050776. [PMID: 34069722 PMCID: PMC8160753 DOI: 10.3390/genes12050776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Heat stress negatively affects barley production and under elevated temperatures defense responses to powdery mildew (Blumeria graminis f. sp. hordei, Bgh) are altered. Previous research has analyzed the effects of short-term (30 s to 2 h) heat stress, however, few data are available on the influence of long-term exposure to heat on powdery mildew infections. We simultaneously assessed the effects of short and long term heat pre-exposure on resistance/susceptibility of barley to Bgh, evaluating powdery mildew infection by analyzing symptoms and Bgh biomass with RT-qPCR in barley plants pre-exposed to high temperatures (28 and 35 °C from 30 s to 5 days). Plant defense gene expression after heat stress pre-exposure and inoculation was also monitored. Our results show that prolonged heat stress (24, 48 and 120 h) further enhanced Bgh susceptibility in a susceptible barley line (MvHV118-17), while a resistant line (MvHV07-17) retained its pathogen resistance. Furthermore, prolonged heat stress significantly repressed the expression of several defense-related genes (BAX inhibitor-1, Pathogenesis related-1b and Respiratory burst oxidase homologue F2) in both resistant and susceptible barley lines. Remarkably, heat-suppressed defense gene expression returned to normal levels only in MvHV07-17, a possible reason why this barley line retains Bgh resistance even at high temperatures.
Collapse
Affiliation(s)
- Ildikó Schwarczinger
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - Judit Kolozsváriné Nagy
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - Lóránt Király
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
- Correspondence: ; Tel.: +36-1-487-7527
| | - Klára Mészáros
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - Judit Bányai
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - Viola Kunos
- Centre for Agricultural Research, Agricultural Institute, ELKH, 2 Brunszvik Str., H-2462 Martonvásár, Hungary; (K.M.); (J.B.); (V.K.)
| | - József Fodor
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| | - András Künstler
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (I.S.); (J.K.N.); (J.F.); (A.K.)
| |
Collapse
|