1
|
Feng H, Mon W, Su X, Li Y, Zhang S, Zhang Z, Zheng K. Integrated Biological Experiments and Proteomic Analyses of Nicotiana tabacum Xylem Sap Revealed the Host Response to Tomato Spotted Wilt Orthotospovirus Infection. Int J Mol Sci 2024; 25:10907. [PMID: 39456688 PMCID: PMC11507450 DOI: 10.3390/ijms252010907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The plant vascular system is not only a transportation system for delivering nutrients but also a highway transport network for spreading viruses. Tomato spotted wilt orthotospovirus (TSWV) is among the most destructive viruses that cause serious losses in economically important crops worldwide. However, there is minimal information about the long-distance movements of TSWV in the host plant vascular system. In this this study, we confirm that TSWV virions are present in the xylem as observed by transmission electron microscopy (TEM). Further, a quantitative proteomic analysis based on label-free methods was conducted to reveal the uniqueness of protein expression in xylem sap during TSWV infection. Thus, this study identified and quantified 3305 proteins in two groups. Furthermore, TSWV infection induced three viral structural proteins, N, Gn and Gc, and 315 host proteins differentially expressed in xylem (163 up-regulated and 152 down-regulated). GO enrichment analysis showed up-regulated proteins significantly enriched in homeostasis, wounding, defense response, and DNA integration terms, while down-regulated proteins significantly enriched in cell wall biogenesis/xyloglucan metabolic process-related terms. KEGG enrichment analysis showed that the differentially expressed proteins (DEPs) were most strongly associated with plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Cluster analysis of DEPs function showed the DEPs can be categorized into cell wall metabolism-related proteins, antioxidant proteins, PCD-related proteins, host defense proteins such as receptor-like kinases (RLKs), salicylic acid binding protein (SABP), pathogenesis related proteins (PR), DNA methylation, and proteinase inhibitor (PI). Finally, parallel reaction monitoring (PRM) validated 20 DEPs, demonstrating that the protein abundances were consistent between label-free and PRM data. Finally, 11 genes were selected for RT-qPCR validation of the DEPs and label-free-based proteomic analysis concordant results. Our results contribute to existing knowledge on the complexity of host plant xylem system response to virus infection and provide a basis for further study of the mechanism underlying TSWV long-distance movement in host plant vascular system.
Collapse
Affiliation(s)
- Hongping Feng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Waiwai Mon
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
- Deputy Director of Microbiology Laboratory, Department of Biotechnology Research, Ministry of Science and Technology, Tansoe Rd., Kyaukse 05151, Myanmar
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Yu Li
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Shaozhi Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| |
Collapse
|
2
|
Kuai P, Lin N, Ye M, Ye M, Chen L, Chen S, Zu H, Hu L, Gatehouse AMR, Lou Y. Identification and knockout of a herbivore susceptibility gene enhances planthopper resistance and increases rice yield. NATURE FOOD 2024; 5:846-859. [PMID: 39251763 DOI: 10.1038/s43016-024-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Brown planthoppers (Nilaparvata lugens) and white-backed planthoppers (Sogatella furcifera) are among the most destructive pests on rice. However, plant susceptibility genes have not yet been exploited for crop protection. Here we identified a leucine-rich repeat protein, OsLRR2, from susceptible rice varieties that facilitates infestation by brown planthopper N. lugens. Field trials showed that knockout of OsLRR2 significantly reduced BPH infestation and enhanced natural biological control by attracting natural enemies. Yield of a susceptible variety was increased by 18% in insecticide-treated plots that eliminated planthoppers and by 25% in untreated plots. These findings underscore the pivotal role of OsLRR2, offering a promising pathway for pest population suppression and rice yield increase.
Collapse
Affiliation(s)
- Peng Kuai
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Na Lin
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meng Ye
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lin Chen
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shuting Chen
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongyue Zu
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Yonggen Lou
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
3
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
4
|
Aslam N, Li Q, Bashir S, Yuan L, Qiao L, Li W. Integrated Review of Transcriptomic and Proteomic Studies to Understand Molecular Mechanisms of Rice's Response to Environmental Stresses. BIOLOGY 2024; 13:659. [PMID: 39336087 PMCID: PMC11428526 DOI: 10.3390/biology13090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rice (Oryza sativa L.) is grown nearly worldwide and is a staple food for more than half of the world's population. With the rise in extreme weather and climate events, there is an urgent need to decode the complex mechanisms of rice's response to environmental stress and to breed high-yield, high-quality and stress-resistant varieties. Over the past few decades, significant advancements in molecular biology have led to the widespread use of several omics methodologies to study all aspects of plant growth, development and environmental adaptation. Transcriptomics and proteomics have become the most popular techniques used to investigate plants' stress-responsive mechanisms despite the complexity of the underlying molecular landscapes. This review offers a comprehensive and current summary of how transcriptomics and proteomics together reveal the molecular details of rice's response to environmental stresses. It also provides a catalog of the current applications of omics in comprehending this imperative crop in relation to stress tolerance improvement and breeding. The evaluation of recent advances in CRISPR/Cas-based genome editing and the application of synthetic biology technologies highlights the possibility of expediting the development of rice cultivars that are resistant to stress and suited to various agroecological environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China; (N.A.); (Q.L.); (S.B.); (L.Y.); (L.Q.)
| |
Collapse
|
5
|
Shen Y, Mao L, Zhou Y, Sun Y, Lv J, Deng M, Liu Z, Yang B. Transcriptome Analysis Reveals Key Genes Involved in Trichome Formation in Pepper (Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1090. [PMID: 38674502 PMCID: PMC11054266 DOI: 10.3390/plants13081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Trichomes are specialized organs located in the plant epidermis that play important defense roles against biotic and abiotic stresses. However, the mechanisms regulating the development of pepper epidermal trichomes and the related regulatory genes at the molecular level are not clear. Therefore, we performed transcriptome analyses of A114 (less trichome) and A115 (more trichome) to dig deeper into the genes involved in the regulatory mechanisms of epidermal trichome development in peppers. In this study, the epidermal trichome density of A115 was found to be higher by phenotypic observation and was highest in the leaves at the flowering stage. A total of 39,261 genes were quantified by RNA-Seq, including 11,939 genes not annotated in the previous genome analysis and 18,833 differentially expressed genes. Based on KEGG functional enrichment, it was found that DEGs were mainly concentrated in three pathways: plant-pathogen interaction, MAPK signaling pathway-plant, and plant hormone signal transduction. We further screened the DEGs associated with the development of epidermal trichomes in peppers, and the expression of the plant signaling genes GID1B-like (Capana03g003488) and PR-6 (Capana09g001847), the transcription factors MYB108 (Capana05g002225) and ABR1-like (Capana04g001261), and the plant resistance genes PGIP-like (Capana09g002077) and At5g49770 (Capana08g001721) in the DEGs were higher at A115 compared to A114, and were highly expressed in leaves at the flowering stage. In addition, based on the WGCNA results and the establishment of co-expression networks showed that the above genes were highly positively correlated with each other. The transcriptomic data and analysis of this study provide a basis for the study of the regulatory mechanisms of pepper epidermal trichomes.
Collapse
Affiliation(s)
- Yiyu Shen
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Lianzhen Mao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Yao Zhou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Ying Sun
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Junheng Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Minghua Deng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| |
Collapse
|
6
|
Zhao Y, Han Q, Zhang D. Recent Advances in the Crosstalk between Brassinosteroids and Environmental Stimuli. PLANT & CELL PHYSIOLOGY 2024:pcae024. [PMID: 38578169 DOI: 10.1093/pcp/pcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Due to their sessile lifestyle, plants need to optimize their growth in order to adapt to ever-changing environments. Plants receive stimuli from the environment and convert them into cellular responses. Brassinosteroids (BRs), as growth-promoting steroid hormones, play a significant role in the tradeoff between growth and environmental responses. Here, we provide a comprehensive summary for understanding the crosstalk between BR and various environmental stresses, including water availability, temperature fluctuations, salinization, nutrient deficiencies and diseases. We also highlight the bottlenecks that need to be addressed in future studies. Ultimately, we suppose to improve plant environmental adaptability and crop yield by excavating natural BR mutants or modifying BR signaling and its targets.
Collapse
Affiliation(s)
- Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Zhou X, Ma Y, Miao R, Li C, Liu Z, Zhang D, Chen S, Luo J, Tang W. Physiological responses and transcriptomic analysis of StCPD gene overexpression in potato under salt stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1297812. [PMID: 38434433 PMCID: PMC10906663 DOI: 10.3389/fpls.2024.1297812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Introduction The potato (Solanum tuberosum L.), one of the most vital food crops worldwide, is sensitive to salinity. Brassinosteroids (BRs) are crucial in tolerance to various abiotic stresses. The constitutive photomorphogenesis and dwarf (CPD) gene encodes C-3 oxidase, which is a rate-limiting enzyme that controls the synthesis of BRs. Methods In this study, we used StCPD gene overexpression (T) and un-transgenic (NT) plants obtained from our former research to illustrate adaptive resistance to salt stress at levels of phenotype; cell ultrastructure, physiology, and biochemistry; hormone; and transcription. Results Results showed the accumulation of 2,4-epibrassionolide (EBL) in T potatoes. We found that under high salt situations, the changed Na+/K+ transporter gene expression was linked with the prevalent ionic responses in T plants, which led to lower concentrations of K+ and higher concentrations of Na+ in leaves. Furthermore, RNA-sequencing (RNA-seq) data elucidated that gene expressions in NT and T plants were significantly changed with 200-mM NaCl treatment for 24 h and 48 h, compared with the 0-h treatment. Functional enrichment analysis suggested that most of the differentially expressed genes (DEGs) were related to the regulation of BR-related gene expression, pigment metabolism process, light and action, and plant hormone signal transduction. Discussion These findings suggested that StCPD gene overexpression can alleviate the damage caused by salt stress and enhance the salt resistance of potato plantlets. Our study provides an essential reference for further research on BR regulation of plant molecular mechanisms in potatoes with stress tolerance.
Collapse
Affiliation(s)
- Xiangyan Zhou
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanming Ma
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rong Miao
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Caijuan Li
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ziliang Liu
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Sijin Chen
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiaqi Luo
- Qinzhou District Agricultural Technology Comprehensive Service Center in Tianshui City, Tianshui, China
| | - Wenhui Tang
- Zhuanglang Agricultural Technology Extension Center in Pingliang City, Pingliang, China
| |
Collapse
|
8
|
Yan W, Ni Y, Zhao H, Liu X, Jia M, Zhao X, Li Y, Miao H, Liu H, Zhang H. Comprehensive analysis of sesame LRR-RLKs: structure, evolution and dynamic expression profiles under Macrophomina phaseolina stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1334189. [PMID: 38410728 PMCID: PMC10895033 DOI: 10.3389/fpls.2024.1334189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) can participate in the regulation of plant growth and development, immunity and signal transduction. Sesamum indicum, one of the most important oil crops, has a significant role in promoting human health. In this study, 175 SiLRR-RLK genes were identified in S. indicum, and they were subdivided into 12 subfamilies by phylogenetic analysis. Gene duplication analysis showed that the expansion of the SiLRR-RLK family members in the sesame was mainly due to segmental duplication. Moreover, the gene expansion of subfamilies IV and III contributed to the perception of stimuli under M. phaseolina stress in the sesame. The collinearity analysis with other plant species revealed that the duplication of SiLRR-RLK genes occurred after the differentiation of dicotyledons and monocotyledons. The expression profile analysis and functional annotation of SiLRR-RLK genes indicated that they play a vital role in biotic stress. Furthermore, the protein-protein interaction and coexpression networks suggested that SiLRR-RLKs contributed to sesame resistance to Macrophomina phaseolina by acting alone or as a polymer with other SiLRR-RLKs. In conclusion, the comprehensive analysis of the SiLRR-RLK gene family provided a framework for further functional studies on SiLRR-RLK genes.
Collapse
Affiliation(s)
- Wenqing Yan
- The Shennong Laboratory, Zhengzhou, Henan, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Yunxia Ni
- The Shennong Laboratory, Zhengzhou, Henan, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Hui Zhao
- The Shennong Laboratory, Zhengzhou, Henan, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Min Jia
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Xinbei Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Yongdong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Hongmei Miao
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Hongyan Liu
- The Shennong Laboratory, Zhengzhou, Henan, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Haiyang Zhang
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Yang Y, Chu C, Qian Q, Tong H. Leveraging brassinosteroids towards the next Green Revolution. TRENDS IN PLANT SCIENCE 2024; 29:86-98. [PMID: 37805340 DOI: 10.1016/j.tplants.2023.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
The use of gibberellin-related dwarfing genes significantly increased grain yield during the Green Revolution. Brassinosteroids (BRs) play a vital role in regulating agronomic traits and stress resistance. The potential of BR-related genes in crop improvement has been well demonstrated, positioning BRs as crucial targets for the next agricultural biotechnological revolution. However, BRs exert pleiotropic effects on plants, and thus present both opportunities and challenges for their application. Recent research suggests promising strategies for leveraging BR regulatory molecules for crop improvement, such as exploring function-specific genes, identifying beneficial alleles, inducing favorable mutations, and optimizing spatial hormone distribution. Advancing our understanding of the roles of BRs in plants is imperative to implement these strategies effectively.
Collapse
Affiliation(s)
- Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
11
|
Du H, Yong R, Zhang J, Cai G, Wang R, Li J, Wang Y, Zhang H, Gao X, Huang J. OsBAK2/OsSERK2 expression is repressed by OsBZR1 to modulate brassinosteroid response and grain length in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4978-4993. [PMID: 37235693 DOI: 10.1093/jxb/erad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Brassinosteroids (BRs) are a class of polyhydroxylated steroidal phytohormones that are essential for plant growth and development. Rice BRASSINOSTEROID-INSENSITIVE1 (BRI1)-ASSOCIATED RECEPTOR KINASES (OsBAKs) are plasma membrane-localized receptor kinases belonging to the subfamily of leucine-rich repeat receptor kinases. It has been found that in Arabidopsis, BRs induce the formation of a BRI1-BAK1 heterodimer complex and transmit the cascade signal to BRASSINAZOLE RESISTANT1/bri1-EMS-SUPPRESSOR1 (BZR1/BES1) to regulate BR signaling. Here, in rice (Oryza sativa ssp. japonica), we found that OsBZR1 binds directly to the promoter of OsBAK2, but not OsBAK1, and represses the expression of OsBAK2 to form a BR feedback inhibition loop. Additionally, the phosphorylation of OsBZR1 by OsGSK3 reduced its binding to the OsBAK2 promoter. The osbak2 mutant displays a typical BR-deficiency phenotype and negative modulates the accumulation of OsBZR1. Interestingly, the grain length of the osbak2 mutant was increased whereas in the cr-osbak2/cr-osbzr1 double mutant, the reduced grain length of the cr-osbzr1 mutant was restored, implying that the increased grain length of osbak2 may be due to the rice somatic embryogenesis receptor kinase-dependent pathway. Our study reveals a novel mechanism by which OsBAK2 and OsBZR1 engage in a negative feedback loop to maintain rice BR homeostasis, facilitating a deeper understanding of the BR signaling network and grain length regulation in rice.
Collapse
Affiliation(s)
- Huaying Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Rong Yong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jiaqi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Guang Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ruqin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jianbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Yuji Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Xiuying Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| |
Collapse
|
12
|
Shaheen N, Ahmad S, Alghamdi SS, Rehman HM, Javed MA, Tabassum J, Shao G. CRISPR-Cas System, a Possible "Savior" of Rice Threatened by Climate Change: An Updated Review. RICE (NEW YORK, N.Y.) 2023; 16:39. [PMID: 37688677 PMCID: PMC10492775 DOI: 10.1186/s12284-023-00652-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/11/2023]
Abstract
Climate change has significantly affected agriculture production, particularly the rice crop that is consumed by almost half of the world's population and contributes significantly to global food security. Rice is vulnerable to several abiotic and biotic stresses such as drought, heat, salinity, heavy metals, rice blast, and bacterial blight that cause huge yield losses in rice, thus threatening food security worldwide. In this regard, several plant breeding and biotechnological techniques have been used to raise such rice varieties that could tackle climate changes. Nowadays, gene editing (GE) technology has revolutionized crop improvement. Among GE technology, CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) system has emerged as one of the most convenient, robust, cost-effective, and less labor-intensive system due to which it has got more popularity among plant researchers, especially rice breeders and geneticists. Since 2013 (the year of first application of CRISPR/Cas-based GE system in rice), several trait-specific climate-resilient rice lines have been developed using CRISPR/Cas-based GE tools. Earlier, several reports have been published confirming the successful application of GE tools for rice improvement. However, this review particularly aims to provide an updated and well-synthesized brief discussion based on the recent studies (from 2020 to present) on the applications of GE tools, particularly CRISPR-based systems for developing CRISPR rice to tackle the current alarming situation of climate change, worldwide. Moreover, potential limitations and technical bottlenecks in the development of CRISPR rice, and prospects are also discussed.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia.
| | - Salem S Alghamdi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, National Rice Research Institute, 310006, Hangzhou, China.
- Zhejiang Lab, 310006, Hangzhou, China.
| |
Collapse
|
13
|
Zhu Q, Feng Y, Xue J, Chen P, Zhang A, Yu Y. Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:427. [PMID: 36771514 PMCID: PMC9919196 DOI: 10.3390/plants12030427] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xiao F, Zhou H. Plant salt response: Perception, signaling, and tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1053699. [PMID: 36684765 PMCID: PMC9854262 DOI: 10.3389/fpls.2022.1053699] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Salt stress is one of the significant environmental stressors that severely affects plant growth and development. Plant responses to salt stress involve a series of biological mechanisms, including osmoregulation, redox and ionic homeostasis regulation, as well as hormone or light signaling-mediated growth adjustment, which are regulated by different functional components. Unraveling these adaptive mechanisms and identifying the critical genes involved in salt response and adaption are crucial for developing salt-tolerant cultivars. This review summarizes the current research progress in the regulatory networks for plant salt tolerance, highlighting the mechanisms of salt stress perception, signaling, and tolerance response. Finally, we also discuss the possible contribution of microbiota and nanobiotechnology to plant salt tolerance.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Nowicka B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3430. [PMID: 36559545 PMCID: PMC9781743 DOI: 10.3390/plants11243430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Due to the growing human population, the increase in crop yield is an important challenge for modern agriculture. As abiotic and biotic stresses cause severe losses in agriculture, it is also crucial to obtain varieties that are more tolerant to these factors. In the past, traditional breeding methods were used to obtain new varieties displaying demanded traits. Nowadays, genetic engineering is another available tool. An important direction of the research on genetically modified plants concerns the modification of phytohormone metabolism. This review summarizes the state-of-the-art research concerning the modulation of phytohormone content aimed at the stimulation of plant growth and the improvement of stress tolerance. It aims to provide a useful basis for developing new strategies for crop yield improvement by genetic engineering of phytohormone metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
17
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
18
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, Kurmanbayeva A, Srivastava S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192660. [PMID: 36235526 PMCID: PMC9572924 DOI: 10.3390/plants11192660] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/14/2023]
Abstract
Plants live under different biotic and abiotic stress conditions, and, to cope with the adversity and severity, plants have well-developed resistance mechanisms. The mechanism starts with perception of the stimuli followed by molecular, biochemical, and physiological adaptive measures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that perceives biotic and abiotic stimuli and also plays important roles in different biological processes of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different combinations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed as important receptors in immune responses, cell death, and plant development processes. However, less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs that are homologous in other plants is also reviewed in relation to their role in triggering stress response processes against biotic and abiotic stimuli and/or in exploring their additional function(s). Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses whose function and mechanism may be explored.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- Correspondence:
| | - Nurbanu Dauletova
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Symbat Serik
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Margulan Sandybek
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Sudhakar Srivastava
- NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
19
|
Dong G, Xiong H, Zeng W, Li J, Du D. Ectopic Expression of the Rice Grain-Size-Affecting Gene GS5 in Maize Affects Kernel Size by Regulating Endosperm Starch Synthesis. Genes (Basel) 2022; 13:1542. [PMID: 36140710 PMCID: PMC9498353 DOI: 10.3390/genes13091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important food crops, and maize kernel is one of the important components of maize yield. Studies have shown that the rice grain-size affecting gene GS5 increases the thousand-kernel weight by positively regulating the rice grain width and grain grouting rate. In this study, based on the GS5 transgenic maize obtained through transgenic technology with specific expression in the endosperm, molecular assays were performed on the transformed plants. Southern blotting results showed that the GS5 gene was integrated into the maize genome in a low copy number, and RT-PCR analysis showed that the exogenous GS5 gene was normally and highly expressed in maize. The agronomic traits of two successive generations showed that certain lines were significantly improved in yield-related traits, and the most significant changes were observed in the OE-34 line, where the kernel width increased significantly by 8.99% and 10.96%, the 100-kernel weight increased by 14.10% and 10.82%, and the ear weight increased by 13.96% and 15.71%, respectively; however, no significant differences were observed in the plant height, ear height, kernel length, kernel row number, or kernel number. In addition, the overexpression of the GS5 gene increased the grain grouting rate and affected starch synthesis in the rice grains. The kernels' starch content in OE-25, OE-34, and OE-57 increased by 10.30%, 7.39%, and 6.39%, respectively. Scanning electron microscopy was performed to observe changes in the starch granule size, and the starch granule diameter of the transgenic line(s) was significantly reduced. RT-PCR was performed to detect the expression levels of related genes in starch synthesis, and the expression of these genes was generally upregulated. It was speculated that the exogenous GS5 gene changed the size of the starch granules by regulating the expression of related genes in the starch synthesis pathway, thus increasing the starch content. The trans-GS5 gene was able to be stably expressed in the hybrids with the genetic backgrounds of the four materials, with significant increases in the kernel width, 100-kernel weight, and ear weight. In this study, the maize kernel size was significantly increased through the endosperm-specific expression of the rice GS5 gene, and good material for the functional analysis of the GS5 gene was created, which was of great importance in theory and application.
Collapse
Affiliation(s)
- Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Yin W, Li L, Yu Z, Zhang F, Liu D, Wu H, Niu M, Meng W, Zhang X, Dong N, Yang Y, Liu J, Liu Y, Zhang G, Xu J, Wang S, Chu C, Qian Q, Tong H. The divergence of brassinosteroid sensitivity between rice subspecies involves natural variation conferring altered internal auto-binding of OsBSK2. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1614-1630. [PMID: 35766344 DOI: 10.1111/jipb.13322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Japonica/geng and indica/xian are two major rice (Oryza sativa) subspecies with multiple divergent traits, but how these traits are related and interact within each subspecies remains elusive. Brassinosteroids (BRs) are a class of steroid phytohormones that modulate many important agronomic traits in rice. Here, using different physiological assays, we revealed that japonica rice exhibits an overall lower BR sensitivity than indica. Extensive screening of BR signaling genes led to the identification of a set of genes distributed throughout the primary BR signaling pathway with divergent polymorphisms. Among these, we demonstrate that the C38/T variant in BR Signaling Kinase2 (OsBSK2), causing the amino acid change P13L, plays a central role in mediating differential BR signaling in japonica and indica rice. OsBSK2L13 in indica plays a greater role in BR signaling than OsBSK2P13 in japonica by affecting the auto-binding and protein accumulation of OsBSK2. Finally, we determined that OsBSK2 is involved in a number of divergent traits in japonica relative to indica rice, including grain shape, tiller number, cold adaptation, and nitrogen-use efficiency. Our study suggests that the natural variation in OsBSK2 plays a key role in the divergence of BR signaling, which underlies multiple divergent traits between japonica and indica.
Collapse
Affiliation(s)
- Wenchao Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lulu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhikun Yu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Rice Research Institute of Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Fan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dapu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongkai Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mei Niu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenjing Meng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxing Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nana Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanzhao Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jihong Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianlong Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shimei Wang
- Rice Research Institute of Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Qian
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
21
|
Ma L, Liu X, Lv W, Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934877. [PMID: 35832230 PMCID: PMC9271918 DOI: 10.3389/fpls.2022.934877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 06/12/2023]
Abstract
Saline-alkali soils pose an increasingly serious global threat to plant growth and productivity. Much progress has been made in elucidating how plants adapt to salt stress by modulating ion homeostasis. Understanding the molecular mechanisms that affect salt tolerance and devising strategies to develop/breed salt-resilient crops have been the primary goals of plant salt stress signaling research over the past few decades. In this review, we reflect on recent major advances in our understanding of the cellular and physiological mechanisms underlying plant responses to salt stress, especially those involving temporally and spatially defined changes in signal perception, decoding, and transduction in specific organelles or cells.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohong Liu
- Department of Art and Design, Taiyuan University, Taiyuan, China
| | - Wanjia Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Dai L, Li P, Li Q, Leng Y, Zeng D, Qian Q. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23095236. [PMID: 35563627 PMCID: PMC9105537 DOI: 10.3390/ijms23095236] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Salt stress is one of the major constraints to rice cultivation worldwide. Thus, the development of salt-tolerant rice cultivars becomes a hotspot of current rice breeding. Achieving this goal depends in part on understanding how rice responds to salt stress and uncovering the molecular mechanism underlying this trait. Over the past decade, great efforts have been made to understand the mechanism of salt tolerance in rice through genomics, transcriptomics, proteomics, metabolomics, and epigenetics. However, there are few reviews on this aspect. Therefore, we review the research progress of omics related to salt tolerance in rice and discuss how these advances will promote the innovations of salt-tolerant rice breeding. In the future, we expect that the integration of multi-omics salt tolerance data can accelerate the solution of the response mechanism of rice to salt stress, and lay a molecular foundation for precise breeding of salt tolerance.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Peiyuan Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (Q.Q.)
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- Correspondence: (Y.L.); (Q.Q.)
| |
Collapse
|
23
|
Li Y, Jiao C, Wei Z, Chai S, Jia H, Gao M, Allison J, Li Z, Song CB, Wang X. Analysis of Grapevine's Somatic Embryogenesis Receptor Kinase (SERK) Gene Family: VqSERK3/BAK1 Overexpression Enhances Disease Resistance. PHYTOPATHOLOGY 2022; 112:1081-1092. [PMID: 34698542 DOI: 10.1094/phyto-04-21-0136-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The somatic embryogenesis receptor kinase (SERK) gene family has been intensively studied in several plant species. Here we confirmed the existence of five SERK genes in grapevine (Chinese wild grapevine Vitis quinquangularis) and named them VqSERK1, VqSERK2, VqSERK3, VqSERK4, and VqSERK5. Analysis of the predicted structures of these SERK proteins revealed they include a signal peptide domain, a leucine zipper domain, a Ser-Pro-Pro domain, a single transmembrane domain, different leucine-rich repeats, and an intracellular kinase activity domain. The SERK genes of grapevine showed different gene expression patterns when treated with powdery mildew (Erysiphe necator) and hormones (salicylic acid, jasmonic acid, abscisic acid, and ethylene). Subcellular localization assays confirmed that VqSERK family proteins localized to the cell membrane. Moreover, we cloned the SERK3/BAK1 gene from the Chinese wild grapevine V. quinquangularis clone 'Shang-24'. Heterologous VqSERK3/BAK1 expression in the Arabidopsis bak1-4 mutant lines restored control of cell death, increased resistance to powdery mildew, and strengthened stomatal immunity. Our work may provide the foundation for further studies of SERK genes for pathogen resistance and hormone treatment in grapevine.
Collapse
Affiliation(s)
- Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhenjiang Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shengyue Chai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hui Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jessica Allison
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, U.S.A
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chang-Bing Song
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, P.R. China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, Serrat X, Nogués S, Courtois B, Grenier C, Sacchi GA, San Segundo B. Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 12:797141. [PMID: 35126422 PMCID: PMC8813771 DOI: 10.3389/fpls.2021.797141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 05/24/2023]
Abstract
Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | | | - Michele Pesenti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Jorge Gómez-Ariza
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Julien Frouin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Brigitte Courtois
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Cécile Grenier
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
25
|
Liu D, Yu Z, Zhang G, Yin W, Li L, Niu M, Meng W, Zhang X, Dong N, Liu J, Yang Y, Wang S, Chu C, Tong H. Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice. PLANT PHYSIOLOGY 2021; 187:2563-2576. [PMID: 34618079 PMCID: PMC8644581 DOI: 10.1093/plphys/kiab394] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/29/2021] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) regulate various agronomic traits such as plant height, leaf angle, and grain size in rice (Oryza sativa L.); thus, BR signaling components are promising targets for molecular rational design. However, genetic materials for BR-signaling genes or family members remain limited in rice. Here, by genome editing using clustered regularly interspaced short palindromic repeats (CRSPR)/Cas9 tools, we generated a panel of single, double, triple, or quadruple mutants within three BR signaling gene families, including GSK3/SHAGGY-LIKE KINASE1 (GSK1)-GSK4, BRASSINAZOLE-RESISTANT1 (OsBZR1)-OsBZR4, and protein phosphatases with kelch-like (PPKL)1-PPKL3, under the same background (Zhonghua11, japonica). The high-order mutants were produced by either simultaneously targeting multiple sites on different genes of one family (GSKs and PPKLs) or targeting the overlapping sequences of family members (OsBZRs). The mutants exhibited a diversity of plant height, leaf angle, and grain morphology. Comparison analysis of the phenotypes together with BR sensitivity tests suggested the existence of functional redundancy, differentiation, or dominancy among the members within each family. In addition, we generated a set of transgenic plants overexpressing GSK2, OsBZR1/2, and PPKL2, respectively, in wild-type or activated forms with fusion of different tags, and also verified the protein response to BR application. Collectively, these plants greatly enriched the diversity of important agronomic traits in rice. We propose that editing of BR-related family genes could be a feasible approach for screening of desired plants to meet different requirements. Release of these materials as well as the related information also provides valuable resources for further BR research and utilization.
Collapse
Affiliation(s)
- Dapu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhikun Yu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Rice Research Institute of Anhui Academy of Agricultural Sciences, Hefei, Anhui Province 230001, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchao Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lulu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mei Niu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjing Meng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxing Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nana Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jihong Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanzhao Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shimei Wang
- Rice Research Institute of Anhui Academy of Agricultural Sciences, Hefei, Anhui Province 230001, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication:
| |
Collapse
|
26
|
Choudhary P, Pramitha L, Rana S, Verma S, Aggarwal PR, Muthamilarasan M. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. PHYSIOLOGIA PLANTARUM 2021; 173:1587-1596. [PMID: 34537966 DOI: 10.1111/ppl.13558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Soil salinity is one of the major threats that pose challenges to global cereal productivity and food security. Cereals have evolved sophisticated mechanisms to circumvent stress at morpho-physiological, biochemical, and molecular levels. Salt stress cues are perceived by the roots, which trigger the underlying signaling pathways that involve phytohormones. Each phytohormone triggers a specific signaling pathway integrated in a complex manner to produce antagonistic, synergistic, and additive responses. Phytohormones induce salt-responsive signaling pathways to modulate various physiological and anatomical mechanisms, including cell wall repair, apoplastic pH regulation, ion homeostasis, root hair formation, chlorophyll content, and leaf morphology. Exogenous applications of phytohormones moderate the adverse effects of salinity and improve growth. Understanding the complex hormonal crosstalk in cereals under salt stress will advance the knowledge about cooperation or antagonistic mechanisms among hormones and their role in developing salt-tolerant cereals to enhance the productivity of saline agricultural land. In this context, the present review focuses on the mechanisms of hormonal crosstalk that mediate the salt stress response and adaptation in graminaceous crops.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
27
|
Niu Y, Chen T, Wang C, Chen K, Shen C, Chen H, Zhu S, Wu Z, Zheng T, Zhang F, Xu J. Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study. BMC Genomics 2021; 22:602. [PMID: 34362301 PMCID: PMC8349016 DOI: 10.1186/s12864-021-07901-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. RESULTS Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. CONCLUSIONS Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.
Collapse
Affiliation(s)
- Yanan Niu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Tasmanian Institute of Agriculture, University of Tasmania, 7250, Prospect, TAS, Australia
| | - Tianxiao Chen
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Tasmanian Institute of Agriculture, University of Tasmania, 7250, Prospect, TAS, Australia
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chunchao Wang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Kai Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Congcong Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huizhen Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Pingxiang Institute of Agricultural Sciences, 337000, Pingxiang, China
| | - Shuangbing Zhu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Zhichao Wu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tianqing Zheng
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Jianlong Xu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
28
|
Hao S, Lu Y, Peng Z, Wang E, Chao L, Zhong S, Yao Y. McMYB4 improves temperature adaptation by regulating phenylpropanoid metabolism and hormone signaling in apple. HORTICULTURE RESEARCH 2021; 8:182. [PMID: 34333543 PMCID: PMC8325679 DOI: 10.1038/s41438-021-00620-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 05/15/2023]
Abstract
Temperature changes affect apple development and production. Phenylpropanoid metabolism and hormone signaling play a crucial role in regulating apple growth and development in response to temperature changes. Here, we found that McMYB4 is induced by treatment at 28 °C and 18 °C, and McMYB4 overexpression results in flavonol and lignin accumulation in apple leaves. Yeast one-hybrid (Y1H) assays and electrophoretic mobility shift assays (EMSAs) further revealed that McMYB4 targets the promoters of the flavonol biosynthesis genes CHS and FLS and the lignin biosynthesis genes CAD and F5H. McMYB4 expression resulted in higher levels of flavonol and lignin biosynthesis in apple during growth at 28 °C and 18 °C than during growth at 23 °C. At 28 °C and 18 °C, McMYB4 also binds to the AUX/ARF and BRI/BIN promoters to activate gene expression, resulting in acceleration of the auxin and brassinolide signaling pathways. Taken together, our results demonstrate that McMYB4 promotes flavonol biosynthesis and brassinolide signaling, which decreases ROS contents to improve plant resistance and promotes lignin biosynthesis and auxin signaling to regulate plant growth. This study suggests that McMYB4 participates in the abiotic resistance and growth of apple in response to temperature changes by regulating phenylpropanoid metabolism and hormone signaling.
Collapse
Affiliation(s)
- Suxiao Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Bei Nong Enterprise Management Co. Ltd, Beijing, 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yanfen Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhen Peng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Enying Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Linke Chao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Silin Zhong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- College of Life Science, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
29
|
Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. Regulation of Plant Responses to Salt Stress. Int J Mol Sci 2021; 22:ijms22094609. [PMID: 33924753 PMCID: PMC8125386 DOI: 10.3390/ijms22094609] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
- Correspondence: (S.Z.); (P.W.); Tel.: +86-531-8618-0792 (S.Z.); Fax: +86-531-8618-0792 (P.W.)
| | - Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Mingyue Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China;
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
- Correspondence: (S.Z.); (P.W.); Tel.: +86-531-8618-0792 (S.Z.); Fax: +86-531-8618-0792 (P.W.)
| |
Collapse
|