1
|
Yang H, Zhao Y, Wei S, Yu X. Isolation of Allelochemicals from Rhododendron capitatum and Their Allelopathy on Three Perennial Herbaceous Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2585. [PMID: 39339560 PMCID: PMC11434890 DOI: 10.3390/plants13182585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Rhododendron capitatum community expansion is a major threat to alpine meadow. Allelopathy is an important mediator in managing relationships between plants in natural ecosystems. However, allelopathy and specific allelochemicals of R. capitatum have not been studied yet. In this study, the allelopathy of the foliage litter of R. capitatum was explored on Elymus nutans, Poa pratensis and Medicago ruthenica, and the chemical composition and their allelopathy were studied. The results showed that the aqueous extract of the foliage litter of R. capitatum had an allelopathy of "low concentration promotion and high concentration inhibition" on the germination of E. nutans, P. pratensis, and M. ruthenica. Organic acids, fatty acids, terpenes, phenols, and phenolic acid compounds were identified, with Zanamivir (77.81%), alpha-linolenic acid (18%), Kaurenoic acid (23.50%), 4-hydroxyphenylglycolic acid (21.54%), and Quinic acid (28.24%) having the highest relative content, and all five compounds showed significantly inhibitory effects on seed germination and seedling growth of E. nutans, P. pratensis, and M. ruthenica, which further suggests that the five compounds are the critical allelochemicals for negative allelopathy of R. capitatum. These results highlight the crucial role of inhibitory allelopathy produced by R. capitatum in the establishment and expansion of its populations.
Collapse
Affiliation(s)
- Hang Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-Sponsored by Ministry and Province), Lanzhou 730070, China
| | - Yishan Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-Sponsored by Ministry and Province), Lanzhou 730070, China
| | - Shaochong Wei
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-Sponsored by Ministry and Province), Lanzhou 730070, China
| | - Xiaojun Yu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-Sponsored by Ministry and Province), Lanzhou 730070, China
| |
Collapse
|
2
|
Geng T, Luo L, Ruan X, Shen B, Fang R, Zhao J, Zhou Y. Drug resistance and genetic characteristics of one Eimeria tenella isolate from Xiantao, Hubei Province, China. Parasitol Res 2024; 123:289. [PMID: 39096422 DOI: 10.1007/s00436-024-08310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Chicken coccidiosis causes retarded growth and low production performance in poultry, resulting in huge economic losses to the poultry industry. In order to prevent and control chicken coccidiosis, great efforts have been made to develop new drugs and vaccines, which require pure isolates of Eimeria spp. In this study, we obtained the Eimeira tenella Xiantao isolate by single oocyst isolation technology and compared its genome with the reference genome GCF_000499545.2_ETH001 of the Houghton strain. The results of the comparative genomic analysis indicated that the genome of this isolate contained 46,888 single nucleotide polymorphisms (SNPs). There were 15,107 small insertion and deletion variations (indels), 1693 structural variations (SV), and 3578 copy number variations (CNV). In addition, 64 broilers were used to determine the resistance profile of Xiantao strain. Drug susceptibility testing revealed that this isolate was completely resistant to monensin, diclazuril, halofuginone, sulfachlorpyrazine sodium, and toltrazuril, but sensitive to decoquinate. These data improve our understanding of drug resistance in avian coccidia.
Collapse
Affiliation(s)
- Tiantian Geng
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Liyan Luo
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Xiaodie Ruan
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Shizishan St. 1, Wuhan, 430070, Hubei, PR China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Shizishan St. 1, Wuhan, 430070, Hubei, PR China
| | - Junlong Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Shizishan St. 1, Wuhan, 430070, Hubei, PR China
- Shanchuan Biotechnology (Wuhan) Co., Ltd, Wuhan, PR China
| | - Yanqin Zhou
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Shizishan St. 1, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
3
|
Yang F, Zhao R, Suo J, Ding Y, Tan J, Zhu Q, Ma Y. Understanding quality differences between kiwifruit varieties during softening. Food Chem 2024; 430:136983. [PMID: 37527582 DOI: 10.1016/j.foodchem.2023.136983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Research into variations between kiwifruit varieties particularly their softening quality during storage is important in improving kiwifruit quality. The potential reasons for ripening quality differences between 'Cuixiang' (CX) and 'Hayward' (HWD) kiwifruit were analyzed by physiology and metabolomic data combined with the random forests learning algorithm. The results showed that the storability difference between the two varieties mainly resulted from differences in polygalacturonase (PG) and β-galactosidase activities. The 1 °C slowed the fruit softening process of both varieties by decreasing their PG activities. A total of 368 metabolites were identified and amino acid, carbohydrate, cofactors and vitamins, as well as nucleotide metabolism are key metabolic modules that affect the ripening differences of CX and HWD kiwifruit. A total of 30 metabolites showed remarkable ability in distinguish the ripening quality of CX and HWD kiwifruit, in which d-glucose, d-maltose, 2-hydroxybutyric acid, phenyllactate, and vitamin B2 were noteworthy for their potential application on the evaluation of kiwifruit taste and nutritional value. These findings provide positive insights into the underlying mechanism of ripening quality differences between CX and HWD kiwifruit and new ideas for identifying key metabolic markers in kiwifruit.
Collapse
Affiliation(s)
- Fan Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Renkai Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiangtao Suo
- Shaanxi Bairui Kiwi Research Institute Co., Ltd., in China, Xi'an, Shaanxi 710000, PR China
| | - Yuduan Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiawei Tan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yanping Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
4
|
Wang P, Feng X, Jiang J, Yan P, Li Z, Luo W, Chen Y, Ye W. Transcriptome Analysis Reveals Fruit Quality Formation in Actinidia eriantha Benth. PLANTS (BASEL, SWITZERLAND) 2023; 12:4079. [PMID: 38140408 PMCID: PMC10747155 DOI: 10.3390/plants12244079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Actinidia chinensis Planch. is a fruit tree originating from China that is abundant in the wild. Actinidia eriantha Benth. is a type of A. chinensis that has emerged in recent years. The shape of A. eriantha is an elongated oval, and the skin is covered with dense, non-shedding milk-white hairs. The mature fruit has flesh that is bright green in colour, and the fruit has a strong flavour and a grass-like smell. It is appreciated for its rich nutrient content and unique flavour. Vitamin C, sugar, and organic acids are key factors in the quality and flavour composition of A. eriantha but have not yet been systematically analysed. Therefore, we sequenced the transcriptome of A. eriantha at three developmental stages and labelled them S1, S2, and S3, and comparisons of S1 vs. S2, S1 vs. S3, and S2 vs. S3 revealed 1218, 4019, and 3759 upregulated differentially expressed genes and 1823, 3415, and 2226 downregulated differentially expressed genes, respectively. Furthermore, the upregulated differentially expressed genes included 213 core genes, and Gene Ontology enrichment analysis showed that they were enriched in hormones, sugars, organic acids, and many organic metabolic pathways. The downregulated differentially expressed genes included 207 core genes, which were enriched in the light signalling pathway. We further constructed the metabolic pathways of sugars, organic acids, and vitamin C in A. eriantha and identified the genes involved in vitamin C, sugar, and organic acid synthesis in A. eriantha fruits at different stages. During fruit development, the vitamin C content decreased, the carbohydrate compound content increased, and the organic acid content decreased. The gene expression patterns were closely related to the accumulation patterns of vitamin C, sugars, and organic acids in A. eriantha. The above results lay the foundation for the accumulation of vitamin C, sugars, and organic acids in A. eriantha and for understanding flavour formation in A. eriantha.
Collapse
Affiliation(s)
- Peiyu Wang
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Xin Feng
- Fruit Tree Research Institute of Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Jinlan Jiang
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Peipei Yan
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Zunwen Li
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Weihong Luo
- Institute of Horticultural Plant Bioengineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yiting Chen
- Fruit Tree Research Institute of Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Wei Ye
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| |
Collapse
|
5
|
Liao G, Xu Q, Allan AC, Xu X. L-Ascorbic acid metabolism and regulation in fruit crops. PLANT PHYSIOLOGY 2023; 192:1684-1695. [PMID: 37073491 PMCID: PMC10315321 DOI: 10.1093/plphys/kiad241] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
L-Ascorbic acid (AsA) is more commonly known as vitamin C and is an indispensable compound for human health. As a major antioxidant, AsA not only maintains redox balance and resists biological and abiotic stress but also regulates plant growth, induces flowering, and delays senescence through complex signal transduction networks. However, AsA content varies greatly in horticultural crops, especially in fruit crops. The AsA content of the highest species is approximately 1,800 times higher than that of the lowest species. There have been significant advancements in the understanding of AsA accumulation in the past 20 years. The most noteworthy accomplishment was the identification of the critical rate-limiting genes for the 2 major AsA synthesis pathways (L-galactose pathway and D-galacturonic acid pathway) in fruit crops. The rate-limiting genes of the former are GMP, GME, GGP, and GPP, and the rate-limiting gene of the latter is GalUR. Moreover, APX, MDHAR, and DHAR are also regarded as key genes in degradation and regeneration pathways. Interestingly, some of these key genes are sensitive to environmental factors, such as GGP being induced by light. The efficiency of enhancing AsA content is high by editing upstream open reading frames (uORF) of the key genes and constructing multi-gene expression vectors. In summary, the AsA metabolism has been well understood in fruit crops, but the transport mechanism of AsA and the synergistic improvement of AsA and other traits is less known, which will be the focus of AsA research in fruit crops.
Collapse
Affiliation(s)
- Guanglian Liao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Kiwifruit Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Xiaobiao Xu
- Kiwifruit Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| |
Collapse
|
6
|
Wang C, Zhou J, Zhang S, Gao X, Yang Y, Hou J, Chen G, Tang X, Wu J, Yuan L. Combined Metabolome and Transcriptome Analysis Elucidates Sugar Accumulation in Wucai ( Brassica campestris L.). Int J Mol Sci 2023; 24:ijms24054816. [PMID: 36902245 PMCID: PMC10003340 DOI: 10.3390/ijms24054816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Wucai (Brassica campestris L.) is a leafy vegetable that originated in China, its soluble sugars accumulate significantly to improve taste quality during maturation, and it is widely accepted by consumers. In this study, we investigated the soluble sugar content at different developmental stages. Two periods including 34 days after planting (DAP) and 46 DAP, which represent the period prior to and after sugar accumulation, respectively, were selected for metabolomic and transcriptomic profiling. Differentially accumulated metabolites (DAMs) were mainly enriched in the pentose phosphate pathway, galactose metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and fructose and mannose metabolism. By orthogonal projection to latent structures-discriminant s-plot (OPLS-DA S-plot) and MetaboAnalyst analyses, D-galactose and β-D-glucose were identified as the major components of sugar accumulation in wucai. Combined with the transcriptome, the pathway of sugar accumulation and the interact network between 26 DEGs and the two sugars were mapped. CWINV4, CEL1, BGLU16, and BraA03g023380.3C had positive correlations with the accumulation of sugar accumulation in wucai. The lower expression of BraA06g003260.3C, BraA08g002960.3C, BraA05g019040.3C, and BraA05g027230.3C promoted sugar accumulation during the ripening of wucai. These findings provide insights into the mechanisms underlying sugar accumulation during commodity maturity, providing a basis for the breeding of sugar-rich wucai cultivars.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jiajie Zhou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shengnan Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xun Gao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yitao Yang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-0551-65786212
| |
Collapse
|
7
|
Zhang L, Tang Z, Zheng H, Zhong C, Zhang Q. Comprehensive Analysis of Metabolome and Transcriptome in Fruits and Roots of Kiwifruit. Int J Mol Sci 2023; 24:ijms24021299. [PMID: 36674815 PMCID: PMC9861564 DOI: 10.3390/ijms24021299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Kiwifruit (Actinidia chinensis) roots instead of fruits are widely used as Chinese medicine, but the functional metabolites remain unclear. In this study, we conducted comparative metabolome analysis between root and fruit in kiwifruit. A total of 410 metabolites were identified in the fruit and root tissues, and of them, 135 metabolites were annotated according to the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway. Moreover, 54 differentially expressed metabolites (DEMs) were shared in root and fruit, with 17 DEMs involved in the flavonoid pathway. Of the 17 DEMs, three flavonols (kaempferol-3-rhamnoside, L-Epicatechin and trifolin) and one dihydrochalcone (phloretin) showed the highest differences in the content level, suggesting that flavonols and dihydrochalcones may act as functional components in kiwifruit root. Transcriptome analysis revealed that genes related to flavonols and dihydrochalcones were highly expressed in root. Moreover, two AP2 transcription factors (TFs), AcRAP2-4 and AcAP2-4, were highly expressed in root, while one bHLH TF AcbHLH62 showed extremely low expression in root. The expression profiles of these TFs were similar to those of the genes related to flavonols and dihydrochalcones, suggesting they are key candidate genes controlling the flavonoid accumulation in kiwifruit. Our results provided an insight into the functional metabolites and their regulatory mechanism in kiwifruit root.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhengmin Tang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Zheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (C.Z.); (Q.Z.)
| | - Qiong Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (C.Z.); (Q.Z.)
| |
Collapse
|
8
|
The ITS analysis and identification of Actinidia eriantha and its related species. PLoS One 2022; 17:e0274358. [PMID: 36136983 PMCID: PMC9498973 DOI: 10.1371/journal.pone.0274358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
The dried plant material of medically important plant Actinidia eriantha especially when it remains in the form of powder often look morphologically similar to its related species. The lack of efficient methods to distinguish the authentic material from other similar species leads to chances of adulteration. The molecular authentication of herbal plant materials such as the internal transcribed spacer (ITS) sequences is considered as more reliable method compared to morphological traits. In this study, we aim to evaluate the potential of identification for roots of A. eriantha and its related species by ITS sequences. The lengths of ITS regions ranged from 624 to 636 bp with GC content ranging from 50.96% to 59.55%. A total of 194 variation sites and 46 haplotypes were formed in 185 samples. Among them, the roots of A. eriantha possessed specific sites at 85bp (C), 205bp (T), 493bp (C), 542bp (G), 574bp (C), 582bp (T) and 610bp (G), while A. hemsleyana, A. callosa, A. valvata and A. polygama have their own specific sites. The inter-specific genetic distance among 8 Actinidia species in the range 2.28% to 11.00%. The phylogenetic tree constructed with ITS, ITS1 and ITS2 region showed that the ITS sequences have higher potential for identification in 8 Actinidia species. However, as to A. eriantha, A. hemsleyana and A. valvata, these three barcodes have the same identification ability. The ITS regions indicated that different samples from same species can be grouped together, except for A. arguta and A. melanandrah. In conclusion, the ITS sequences can be used as an efficient DNA barcode for the identification of A. eriantha and its related species.
Collapse
|
9
|
Gao Y, Yao Y, Chen X, Wu J, Wu Q, Liu S, Guo A, Zhang X. Metabolomic and transcriptomic analyses reveal the mechanism of sweet-acidic taste formation during pineapple fruit development. FRONTIERS IN PLANT SCIENCE 2022; 13:971506. [PMID: 36161024 PMCID: PMC9493369 DOI: 10.3389/fpls.2022.971506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Pineapple (Ananas comosus L.) is one of the most valuable subtropical fruit crop in the world. The sweet-acidic taste of the pineapple fruits is a major contributor to the characteristic of fruit quality, but its formation mechanism remains elusive. Here, targeted metabolomic and transcriptomic analyses were performed during the fruit developmental stages in two pineapple cultivars ("Comte de Paris" and "MD-2") to gain a global view of the metabolism and transport pathways involved in sugar and organic acid accumulation. Assessment of the levels of different sugar and acid components during fruit development revealed that the predominant sugar and organic acid in mature fruits of both cultivars was sucrose and citric acid, respectively. Weighted gene coexpression network analysis of metabolic phenotypes and gene expression profiling enabled the identification of 21 genes associated with sucrose accumulation and 19 genes associated with citric acid accumulation. The coordinated interaction of the 21 genes correlated with sucrose irreversible hydrolysis, resynthesis, and transport could be responsible for sucrose accumulation in pineapple fruit. In addition, citric acid accumulation might be controlled by the coordinated interaction of the pyruvate-to-acetyl-CoA-to-citrate pathway, gamma-aminobutyric acid pathway, and tonoplast proton pumps in pineapple. These results provide deep insights into the metabolic regulation of sweetness and acidity in pineapple.
Collapse
Affiliation(s)
- Yuyao Gao
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yanli Yao
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Xin Chen
- Taixing Institute of Agricultural Sciences, Taixing, China
| | - Jianyang Wu
- Department of Science Education, Zhanjiang Preschool Education College, Zhanjiang, China
| | - Qingsong Wu
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shenghui Liu
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Anping Guo
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Xiumei Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
10
|
Jia H, Tao J, Zhong W, Jiao X, Chen S, Wu M, Gao Z, Huang C. Nutritional Component Analyses in Different Varieties of Actinidia eriantha Kiwifruit by Transcriptomic and Metabolomic Approaches. Int J Mol Sci 2022; 23:ijms231810217. [PMID: 36142128 PMCID: PMC9499367 DOI: 10.3390/ijms231810217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Actinidia eriantha is a unique germplasm resource for kiwifruit breeding. Genetic diversity and nutrient content need to be evaluated prior to breeding. In this study, we looked at the metabolites of three elite A. eriantha varieties (MM-11, MM-13 and MM-16) selected from natural individuals by using a UPLC-MS/MS-based metabolomics approach and transcriptome, with a total of 417 metabolites identified. The biosynthesis and metabolism of phenolic acid, flavonoids, sugars, organic acid and AsA in A. eriantha fruit were further analyzed. The phenolic compounds accounted for 32.37% of the total metabolites, including 48 phenolic acids, 60 flavonoids, 7 tannins and 20 lignans and coumarins. Correlation analysis of metabolites and transcripts showed PAL (DTZ79_15g06470), 4CL (DTZ79_26g05660 and DTZ79_29g0271), CAD (DTZ79_06g11810), COMT (DTZ79_14g02670) and FLS (DTZ79_23g14660) correlated with polyphenols. There are twenty-three metabolites belonging to sugars, the majority being sucrose, glucose arabinose and melibiose. The starch biosynthesis-related genes (AeglgC, AeglgA and AeGEB1) were expressed at lower levels compared with metabolism-related genes (AeamyA and AeamyB) in three mature fruits of three varieties, indicating that starch was converted to soluble sugar during fruit maturation, and the expression level of SUS (DTZ79_23g00730) and TPS (DTZ79_18g05470) was correlated with trehalose 6-phosphate. The main organic acids in A. eriantha fruit are citric acid, quinic acid, succinic acid and D-xylonic acid. Correlation analysis of metabolites and transcripts showed ACO (DTZ79_17g07470) was highly correlated with citric acid, CS (DTZ79_17g00890) with oxaloacetic acid, and MDH1 (DTZ79_23g14440) with malic acid. Based on the gene expression, the metabolism of AsA acid was primarily through the L-galactose pathway, and the expression level of GMP (DTZ79_24g08440) and MDHAR (DTZ79_27g01630) highly correlated with L-Ascorbic acid. Our study provides additional evidence for the correlation between the genes and metabolites involved in phenolic acid, flavonoids, sugars, organic acid and AsA synthesis and will help to accelerate the kiwifruit molecular breeding approaches.
Collapse
Affiliation(s)
- Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junjie Tao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqi Zhong
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xudong Jiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuangshuang Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mengting Wu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongshan Gao
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Huang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|