1
|
Deng X, Shi R, Elnour RO, Guo Z, Wang J, Liu W, Li G, Jiao Z. Analysis of rhizosphere fungal diversity in lavender at different planting years based on high-throughput sequencing technology. PLoS One 2024; 19:e0310929. [PMID: 39361671 PMCID: PMC11449376 DOI: 10.1371/journal.pone.0310929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Continuous cropping is a common cultivation practice in lavender cultivation, and the structure of the soil microbial community is one of the main reasons affecting the continuous cropping disorder in lavender; however, the relationship between the number of years of cultivation and inter-root microbial composition has not yet been investigated; using Illumina high-throughput sequencing we detected fungal community structure of rhizosphere soil under 1 (L1), 3 (L3), 5 (L5) and 0 (L0) years' of lavender cultivation in Yili, Xinjiang China. The results showed that with the extension of planting years, the physical-chemical characteristics of the soil shifted, and the diversity of the fungal communities shrank, the abundance and richness of species decreased and then increased, and the phylogenetic diversity increased, The structure of the soil fungal communities varied greatly. At phylum level, dominant fungal phyla were Ascomycetes, Basidiomycetes, etc. At genus level, dominant genera were Gibberella, Mortierella, etc, whose absolute abundance all increased with increasing planting years (P < 0.05); redundancy analysis showed that thesoil physicochemical characteristics significantly correlated with dominant bacterial genera. The FUN Guild prediction showed that six groups of plant pathogens and plant saprotrophs changed significantly (P < 0.05), the amount of harmful bacteria in the soil increased while the amount of arbuscular mycorrhizal fungui (AMF) decreased, leading to a continuous cropping obstacle of lavender. The findings of this study provida theoretical foundation for the management of continuous cropping and the prevention fungus-related diseases in lavender.
Collapse
Affiliation(s)
- Xia Deng
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Renzeng Shi
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Rehab O Elnour
- Faculty of Sciences and Arts, Biology Department, King Khalid University, Dahran Al-Janoub, Saudi Arabia
| | - Zixuan Guo
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Junzhu Wang
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Wenwen Liu
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Guihua Li
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| |
Collapse
|
2
|
He P, Sun A, Jiao X, Ren P, Li F, Wu B, He JZ, Hu HW. National-scale distribution of protists associated with sorghum leaves and roots. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70024. [PMID: 39351609 PMCID: PMC11443160 DOI: 10.1111/1758-2229.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Protists, as integral constituents of the plant microbiome, are posited to confer substantial benefits to plant health and performance. Despite their significance, protists have received considerably less attention compared to other constituents of the plant microbiome, such as bacteria and fungi. To investigate the diversity and community structure of protists in sorghum leaves and roots, we employed amplicon sequencing of the eukaryotic 18S rRNA gene in 563 leaf and root samples collected from 57 locations across China. We found significant differences in the diversity and community structure of protists in sorghum leaves and roots. The leaf was taxonomically dominated by Evosea, Cercozoa and Ciliophora, while the root was dominated by Endomyxa, Cercozoa and Oomycota. The functional taxa of protists exhibited notable differences between leaves and roots, with the former being predominantly occupied by consumers and the latter by parasites. The community composition of protists in the leaf was predominantly influenced by mean annual precipitation, whereas soil pH played a more significant role in the root. The present study identified the most abundant and distributed protists in sorghum leaves and roots and elucidated the underlying factors that govern their community structure. The present study offers a novel perspective on the factors that shape plant-associated protist communities and their potential roles in enhancing the functionality of plant ecosystems.
Collapse
Affiliation(s)
- Peng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xiaoyan Jiao
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan, China
| | - Peixin Ren
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Bingxue Wu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Frémont A, Sas E, Sarrazin M, Brisson J, Pitre FE, Brereton NJB. Arsenic stress triggers active exudation of arsenic-phytochelatin complexes from Lupinus albus roots. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5897-5908. [PMID: 38864852 PMCID: PMC11427844 DOI: 10.1093/jxb/erae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/20/2024] [Indexed: 06/13/2024]
Abstract
Arsenic (As) contamination of soils threatens the health of millions globally through accumulation in crops. While plants detoxify As via phytochelatin (PC) complexation and efflux of arsenite from roots, arsenite efflux mechanisms are not fully understood. Here, white lupin (Lupinus albus) was grown in semi-hydroponics, and exudation of glutathione (GSH) derivatives and PCs in response to As was measured using LC-MS/MS. Inhibiting synthesis of the PC precursor GSH with l-buthionine sulfoximine (BSO) or ABC transporters with vanadate drastically reduced (>22%) GSH derivative and PC2 exudation, but not PC3 exudation. This was accompanied by As hypersensitivity in plants treated with BSO and moderate sensitivity with vanadate treatment. Investigating As-PC complexation revealed two distinct As-PC complexes, As bound to GSH and PC2 (GS-As-PC2) and As bound to PC3 (As-PC3), in exudates of As-treated lupin plants. Vanadate inhibited As-PC exudation, while BSO inhibited both the synthesis and exudation of As-PC complexes. These results demonstrate a role for GSH derivatives and PC exudation in lupin As tolerance and reveal As-PC exudation as a new potential mechanism contributing to active As efflux in plants. Overall, this study uncovers insights into rhizosphere As detoxification with potential to help mitigate pollution and reduce As accumulation in crops.
Collapse
Affiliation(s)
- Adrien Frémont
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC H1X 2B2, Canada
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eszter Sas
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| | - Mathieu Sarrazin
- Collège de Maisonneuve CÉPROCQ, 6220 Sherbrooke Est, Montréal, QC H1N 1C1, Canada
| | - Jacques Brisson
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| | - Frédéric Emmanuel Pitre
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC H1X 2B2, Canada
- Montreal Botanical Garden, 4101 Sherbrooke Est, Montreal, QC H1X 2B2, Canada
| | | |
Collapse
|
4
|
Wang JY, Chen GTE, Braguy J, Al-Babili S. Distinguishing the functions of canonical strigolactones as rhizospheric signals. TRENDS IN PLANT SCIENCE 2024; 29:925-936. [PMID: 38521698 DOI: 10.1016/j.tplants.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Strigolactones (SLs) act as regulators of plant architecture as well as signals in rhizospheric communications. Reduced availability of minerals, particularly phosphorus, leads to an increase in the formation and release of SLs that enable adaptation of root and shoot architecture to nutrient limitation and, simultaneously, attract arbuscular mycorrhizal fungi (AMF) for establishing beneficial symbiosis. Based on their chemical structure, SLs are designated as either canonical or non-canonical; however, the question of whether the two classes are also distinguished in their biological functions remained largely elusive until recently. In this review we summarize the latest advances in SL biosynthesis and highlight new findings pointing to rhizospheric signaling as the major function of canonical SLs.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Guerrieri E, Rasmann S. Exposing belowground plant communication. Science 2024; 384:272-273. [PMID: 38635697 DOI: 10.1126/science.adk1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Root exudation could be harnessed for ecological and applied research.
Collapse
Affiliation(s)
- Emilio Guerrieri
- URT- CNR IPSP DISIT Università del Piemonte Orientale, Alessandria, Italy
- Institute for Sustainable Plant Protection, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Sergio Rasmann
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
6
|
Meshram S, Adhikari TB. Microbiome-Mediated Strategies to Manage Major Soil-Borne Diseases of Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:364. [PMID: 38337897 PMCID: PMC10856849 DOI: 10.3390/plants13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The tomato (Solanum lycopersicum L.) is consumed globally as a fresh vegetable due to its high nutritional value and antioxidant properties. However, soil-borne diseases can severely limit tomato production. These diseases, such as bacterial wilt (BW), Fusarium wilt (FW), Verticillium wilt (VW), and root-knot nematodes (RKN), can significantly reduce the yield and quality of tomatoes. Using agrochemicals to combat these diseases can lead to chemical residues, pesticide resistance, and environmental pollution. Unfortunately, resistant varieties are not yet available. Therefore, we must find alternative strategies to protect tomatoes from these soil-borne diseases. One of the most promising solutions is harnessing microbial communities that can suppress disease and promote plant growth and immunity. Recent omics technologies and next-generation sequencing advances can help us develop microbiome-based strategies to mitigate tomato soil-borne diseases. This review emphasizes the importance of interdisciplinary approaches to understanding the utilization of beneficial microbiomes to mitigate soil-borne diseases and improve crop productivity.
Collapse
Affiliation(s)
- Shweta Meshram
- Department of Plant Pathology, Lovely Professional University, Phagwara 144402, India;
| | - Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
8
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
9
|
Zhao S, Zhang A, Zhao Q, Dong Y, Su L, Sun Y, Zhu F, Hua D, Xiong W. The impact of main Areca Catechu root exudates on soil microbial community structure and function in coffee plantation soils. Front Microbiol 2023; 14:1257164. [PMID: 37928668 PMCID: PMC10623314 DOI: 10.3389/fmicb.2023.1257164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Coffee is an important cash crop worldwide, but it has been plagued by serious continuous planting obstacles. Intercropping with Areca catechu could alleviate the continuous planting obstacle of coffee due to the diverse root secretions of Areca catechu. However, the mechanism of Areca catechu root secretion in alleviating coffee continuous planting obstacle is still unclear. The changes of coffee rhizosphere soil microbial compositions and functions were explored by adding simulated root secretions of Areca catechu, the primary intercropping plant species (i.e., amino acids, plant hormone, organic acids, phenolic acids, flavonoids and sugars) in current study. The results showed that the addition of coffee root exudates altered soil physicochemical properties, with significantly increasing the availability of potassium and organic matter contents as well as promoting soil enzyme activity. However, the addition of plant hormone, organic acids, or phenolic acids led to a decrease in the Shannon index of bacterial communities in continuously planted coffee rhizosphere soil (RS-CP). The inclusion of phenolic acids specifically caused the decrease of fungal Shannon index. Plant hormone, flavonoids, phenolic acids, and sugars increased the relative abundance of beneficial bacteria with reduced bacterial pathogens. Flavonoids and organic acids increased the relative abundance of potential fungal pathogen Fusarium. The polyphenol oxidase, dehydrogenase, urease, catalase, and pH were highly linked with bacterial community structure. Moreover, catalase, pH, and soil-available potassium were the main determinants of fungal communities. In conclusion, this study highlight that the addition of plant hormone, phenolic acids, and sugars could enhance enzyme activity, and promote synergistic interactions among microorganisms by enhancing the physicochemical properties of RS-CP, maintaining the soil functions in coffee continuous planting soil, which contribute to alleviate the obstacles associated with continuous coffee cultivation.
Collapse
Affiliation(s)
- Shaoguan Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
- College of Agricultural Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - Ang Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Qingyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Science, Sanya, China
| | - Yunping Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Lanxi Su
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Yan Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Feifei Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science, Wanning, China
| | - Dangling Hua
- College of Agricultural Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Lin HA, Coker HR, Howe JA, Tfaily MM, Nagy EM, Antony-Babu S, Hague S, Smith AP. Progressive drought alters the root exudate metabolome and differentially activates metabolic pathways in cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2023; 14:1244591. [PMID: 37711297 PMCID: PMC10499043 DOI: 10.3389/fpls.2023.1244591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Root exudates comprise various primary and secondary metabolites that are responsive to plant stressors, including drought. As increasing drought episodes are predicted with climate change, identifying shifts in the metabolome profile of drought-induced root exudation is necessary to understand the molecular interactions that govern the relationships between plants, microbiomes, and the environment, which will ultimately aid in developing strategies for sustainable agriculture management. This study utilized an aeroponic system to simulate progressive drought and recovery while non-destructively collecting cotton (Gossypium hirsutum) root exudates. The molecular composition of the collected root exudates was characterized by untargeted metabolomics using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) and mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Over 700 unique drought-induced metabolites were identified throughout the water-deficit phase. Potential KEGG pathways and KEGG modules associated with the biosynthesis of flavonoid compounds, plant hormones (abscisic acid and jasmonic acid), and other secondary metabolites were highly induced under severe drought, but not at the wilting point. Additionally, the associated precursors of these metabolites, such as amino acids (phenylalanine and tyrosine), phenylpropanoids, and carotenoids, were also mapped. The potential biochemical transformations were further calculated using the data generated by FT-ICR MS. Under severe drought stress, the highest number of potential biochemical transformations, including methylation, ethyl addition, and oxidation/hydroxylation, were identified, many of which are known reactions in some of the mapped pathways. With the application of FT-ICR MS, we revealed the dynamics of drought-induced secondary metabolites in root exudates in response to drought, providing valuable information for drought-tolerance strategies in cotton.
Collapse
Affiliation(s)
- Heng-An Lin
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Harrison R. Coker
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Julie A. Howe
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Malak M. Tfaily
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Elek M. Nagy
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Steve Hague
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - A. Peyton Smith
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
11
|
Sun J, Yang J, Zhao S, Yu Q, Weng L, Xiao C. Root exudates influence rhizosphere fungi and thereby synergistically regulate Panax ginseng yield and quality. Front Microbiol 2023; 14:1194224. [PMID: 37547697 PMCID: PMC10397396 DOI: 10.3389/fmicb.2023.1194224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Root exudates contain a complex array of primary and specialized metabolites that play important roles in plant growth due to their stimulatory and inhibitory activities that can select for specific microbes. In this study, we investigated the effects of different root exudate concentrations on the growth of ginseng (Panax ginseng C. A. Mey), ginsenoside levels, and soil fungal community composition and diversity. The results showed that low root exudate concentrations in the soil promoted ginseng rhizome biomass and ginsenoside levels (Rg1, Re, Rf, Rg2, Rb1, Ro, Rc, Rb2, Rb3, and Rd) in rhizomes. However, the rhizome biomass and ginsenoside levels gradually decreased with further increases in the root exudate concentration. ITS sequencing showed that low root exudate concentrations in the soil hardly altered the rhizosphere fungal community structure. High root exudate concentrations altered the structure, involving microecological imbalance, with reduced abundances of potentially beneficial fungi (such as Mortierella) and increased abundances of potentially pathogenic fungi (such as Fusarium). Correlation analysis showed that rhizome biomass and ginsenoside levels were significantly positively correlated with the abundances of potentially beneficial fungi, while the opposite was true for potentially pathogenic fungi. Overall, low root exudate concentrations promote the growth and development of ginseng; high root exudate concentrations lead to an imbalance in the rhizosphere fungal community of ginseng and reduce the plant's adaptability. This may be an important factor in the reduced ginseng yield and quality and soil sickness when ginseng is grown continuously.
Collapse
|