1
|
Hecht K, Kowalchuk GA, Ford Denison R, Kahmen A, Xiong W, Jousset A, Ravanbakhsh M. Deletion of ACC Deaminase in Symbionts Converts the Host Plant From Water Waster to Water Saver. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39511978 DOI: 10.1111/pce.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Increasing drought events coupled with dwindling water reserves threaten global food production and security. This issue is exacerbated by the use of crops that overconsume water, undermining yield. We show here that microorganisms naturally associated with plant roots can undermine efficient water use, whereas modified bacteria can enhance it. We demonstrate that microbe-encoded genes shape drought tolerance, likely by modulating plant hormonal balance. Specifically, we built a minimal holobiont out of Arabidopsis thaliana and either the bacterium Pseudomonas putida UW4 or its isogenic AcdS- mutant, lacking the enzyme ACC deaminase. This enzyme breaks down the precursor of ethylene, a key regulator in plant response to drought. This single mutation profoundly affected plant physiology and shifted the plant from a 'water-spender' (with more growth under well-watered conditions) to a 'water-spender' phenotype. Under drought, plants associated with wild-type bacteria consumed soil water faster, leading to a shorter period of growth followed by death. In contrast, plants associated with the AcdS- mutant managed to maintain growth by reducing water consumption via stomatal closure, thus conserving soil water. This allowed plants to survive severe water deficiency. We conclude that plant-associated bacteria can modulate plant water use strategies, opening possibilities to engineer water-savvy crop-production systems.
Collapse
Affiliation(s)
- Katharina Hecht
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - George A Kowalchuk
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St. Paul, Minnesota, USA
| | - Ansgar Kahmen
- Department of Environmental Sciences, Physiological Plant Ecology Group, The University of Basel, Basel, Switzerland
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
2
|
Su X, Wang J, Sun S, Peng W, Li M, Mao P, Dou L. Genome-wide identification of the EIN3/EIL transcription factor family and their responses under abiotic stresses in Medicago sativa. BMC PLANT BIOLOGY 2024; 24:898. [PMID: 39343877 PMCID: PMC11440698 DOI: 10.1186/s12870-024-05588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Medicago sativa, often referred to as the "king of forage", is prized for its high content of protein, minerals, carbohydrates, and digestible nutrients. However, various abiotic stresses can hinder its growth and development, ultimately resulting in reduced yield and quality, including water deficiency, high salinity, and low temperature. The ethylene-insensitive 3 (EIN3)/ethylene-insensitive 3-like (EIL) transcription factors are key regulators in the ethylene signaling pathway in plants, playing crucial roles in development and in the response to abiotic stresses. Research on the EIN3/EIL gene family has been reported for several species, but minimal information is available for M. sativa. RESULTS In this study, we identified 10 MsEIN3/EIL genes from the M. sativa genome (cv. Zhongmu No.1), which were classified into three clades based on phylogenetic analysis. The conserved structural domains of the MsEIN3/EIL genes include motifs 1, 2, 3, 4, and 9. Gene duplication analyses suggest that segmental duplication (SD) has played a significant role in the expansion of the MsEIN3/EIL gene family throughout evolution. Analysis of the cis-acting elements in the promoters of MsEIN3/EIL genes indicates their potential to respond to various hormones and environmental stresses. We conducted a further analysis of the tissue-specific expression of the MsEIN3/EIL genes and assessed the gene expression profiles of MsEIN3/EIL under various stresses using transcriptome data, including cold, drought, salt and abscisic acid treatments. The results showed that MsEIL1, MsEIL4, and MsEIL5 may act as positive regulatory factors involved in M. sativa's response to abiotic stress, providing important genetic resources for molecular design breeding. CONCLUSION This study investigated MsEIN3/EIL genes in M. sativa and identified three candidate transcription factors involved in the regulation of abiotic stresses. These findings will offer valuable insights into uncovering the molecular mechanisms underlying various stress responses in M. sativa.
Collapse
Affiliation(s)
- Xinru Su
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Juan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shoujiang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Peng
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Manli Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liru Dou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Deng R, Li Y, Feng NJ, Zheng DF, Du YW, Khan A, Xue YB, Zhang JQ, Feng YN. Integrative Analyses Reveal the Physiological and Molecular Role of Prohexadione Calcium in Regulating Salt Tolerance in Rice. Int J Mol Sci 2024; 25:9124. [PMID: 39201810 PMCID: PMC11354818 DOI: 10.3390/ijms25169124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Salinity stress severely restricts rice growth. Prohexadione calcium (Pro-Ca) modulation can effectively alleviate salt stress in rice. In this study, we explored the effects of Pro-Ca on enhancing salt tolerance in two rice varieties, IR29 and HD96-1. The results revealed that Pro-Ca markedly enhanced root and shoot morphological traits and improved plant biomass under salt stress. Chlorophyll a and b content were significantly increased, which improved photosynthetic capacity. Transcriptomic and metabolomic data showed that Pro-Ca significantly up-regulated the expression of genes involved in E3 ubiquitin ligases in IR29 and HD96-1 by 2.5-fold and 3-fold, respectively, thereby maintaining Na+ and K+ homeostasis by reducing Na+. Moreover, Pro-Ca treatment significantly down-regulated the expression of Lhcb1, Lhcb2, Lhcb3, Lhcb5, and Lhcb6 in IR29 under salt stress, which led to an increase in photosynthetic efficiency. Furthermore, salt stress + Pro-Ca significantly increased the A-AAR of IR29 and HD96-1 by 2.9-fold and 2.5-fold, respectively, and inhibited endogenous cytokinin synthesis and signal transduction, which promoted root growth. The current findings suggested that Pro-Ca effectively alleviated the harmful effects of salt stress on rice by maintaining abscisic acid content and by promoting oxylipin synthesis. This study provides a molecular basis for Pro-Ca to alleviate salt stress in rice.
Collapse
Affiliation(s)
- Rui Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yao Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Ying-Bin Xue
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Jian-Qin Zhang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Ya-Nan Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
4
|
Abdelhameed RE, Soliman ERS, Gahin H, Metwally RA. Enhancing drought tolerance in Malva parviflora plants through metabolic and genetic modulation using Beauveria bassiana inoculation. BMC PLANT BIOLOGY 2024; 24:662. [PMID: 38987668 PMCID: PMC11238386 DOI: 10.1186/s12870-024-05340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hanan Gahin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Bungala LTDC, Park C, Dique JEL, Sathasivam R, Shin SY, Park SU. Ethylene: A Modulator of the Phytohormone-Mediated Insect Herbivory Network in Plants. INSECTS 2024; 15:404. [PMID: 38921119 PMCID: PMC11203721 DOI: 10.3390/insects15060404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Plants have evolved to establish insect herbivory defences by modulating their metabolism, growth, and development. Precise networks of phytohormones are essential to induce those herbivory defences. Gaseous phytohormone ET plays an important role in forming herbivory defences. Its role in insect herbivory is not fully understood, but previous studies have shown that it can both positively and negatively regulate herbivory. This review presents recent findings on crosstalk between ET and other phytohormones in herbivory responses. Additionally, the use of exogenous ETH treatment to induce ET in response to herbivory is discussed.
Collapse
Affiliation(s)
- Leonel Tarcisio da Cristina Bungala
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (L.T.d.C.B.); (C.P.); (R.S.)
- Mozambique Agricultural Research Institute, Central Regional Center, Highway N° 6, Chimoio P.O. Box 42, Mozambique;
| | - Chanung Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (L.T.d.C.B.); (C.P.); (R.S.)
| | - José Eulário Lampi Dique
- Mozambique Agricultural Research Institute, Central Regional Center, Highway N° 6, Chimoio P.O. Box 42, Mozambique;
- Department of Biology, Natural Science Institute, Federal University of Lavras, Lavras 37203-202, Brazil
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (L.T.d.C.B.); (C.P.); (R.S.)
| | - Su Young Shin
- Using Technology Development Department, Bio-Resources Research Division, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (L.T.d.C.B.); (C.P.); (R.S.)
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Khan S, Alvi AF, Saify S, Iqbal N, Khan NA. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024; 14:90. [PMID: 38254690 PMCID: PMC10813531 DOI: 10.3390/biom14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Sadaf Saify
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| |
Collapse
|
7
|
Iglesias-Moya J, Abreu AC, Alonso S, Torres-García MT, Martínez C, Fernández I, Jamilena M. Physiological and metabolomic responses of the ethylene insensitive squash mutant etr2b to drought. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111853. [PMID: 37659732 DOI: 10.1016/j.plantsci.2023.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The squash gain-of-function mutant etr2b disrupts the ethylene-binding domain of ethylene receptor CpETR2B, conferring partial ethylene insensitivity, changes in flower and fruit development, and enhanced salt tolerance. In this paper, we found that etr2b also confers a growth advantage as well as a physiological and metabolomic response that make the mutant better adapted to drought. Mutant plants had a higher root and leaf biomass than WT under both well-watered and drought conditions, but the reduction in growth parameters in response to drought was similar in WT and etr2b. Water deficit reduced all gas-exchange parameters in both WT and etr2b, but under moderate drought the mutant increased photosynthesis rate in comparison with control conditions, and showed a higher leaf CO2 concentration, transpiration rate, and stomata conductance than WT. The response of etr2b to drought indicates that ethylene is a negative regulator of plant growth under both control and drought. Since etr2b increased ABA content in well-watered plant, but prevented the induction of ABA production in response to drought, it is likely that the etr2b response under drought is not mediated by ABA. A 1H NMR metabolomic analysis revealed that etr2b enhances the accumulation of osmolytes (soluble sugars and trigonelline), unsaturated and polyunsaturated fatty acids, and phenolic compounds under drought, concomitantly with a reduction of malic- and fumaric-acid. The role of CpETR2B and ethylene in the regulation of these drought-protective metabolites is discussed.
Collapse
Affiliation(s)
- Jessica Iglesias-Moya
- Department of Biology and Geology, CIAIMBITAL Research Centers. University of Almería, 04120 Almería, Spain
| | - Ana Cristina Abreu
- Department of Chemistry and Physics, CAESCG Research Centers. University of Almería, 04120 Almería, Spain
| | - Sonsoles Alonso
- Department of Biology and Geology, CIAIMBITAL Research Centers. University of Almería, 04120 Almería, Spain
| | - María Trinidad Torres-García
- Department of Biology and Geology, CIAIMBITAL Research Centers. University of Almería, 04120 Almería, Spain; CAESCG Research Centers. University of Almería, 04120 Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology, CIAIMBITAL Research Centers. University of Almería, 04120 Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, CAESCG Research Centers. University of Almería, 04120 Almería, Spain.
| | - Manuel Jamilena
- Department of Biology and Geology, CIAIMBITAL Research Centers. University of Almería, 04120 Almería, Spain.
| |
Collapse
|
8
|
Naing AH, Baek S, Campol JR, Kang H, Kim CK. Loss of ACO4 in petunia improves abiotic stress tolerance by reducing the deleterious effects of stress-induced ethylene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107998. [PMID: 37678091 DOI: 10.1016/j.plaphy.2023.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
To investigate the role of ethylene (ET) in abiotic stress tolerance in petunia cv. 'Mirage Rose', petunia plants in which the ET biosynthesis gene 1-aminocyclopropane-1-carboxylic acid oxidase 4 (ACO4) was knocked out (phaco4 mutants) and wild-type (WT) plants were exposed to heat and drought conditions. Loss of function of ACO4 significantly delayed leaf senescence and chlorosis under heat and drought stress by maintaining the SPAD values and the relative water content, indicating a greater stress tolerance of phaco4 mutants than that of WT plants. This tolerance was related to the lower ET and reactive oxygen species levels in the mutants than in WT plants. Furthermore, the stress-induced expression of genes related to ET signal transduction, antioxidant and proline activities, heat response, and biosynthesis of abscisic acid was higher in the mutants than in WT plants, indicating a greater stress tolerance in the former than in the latter. These results demonstrate the deleterious effects of stress-induced ET on plant growth and provide a better physiological and molecular understanding of the role of stress ET in the abiotic stress response of petunia. Because the loss of function of ACO4 in petunia improved stress tolerance, we suggest that ACO4 plays a vital role in stress-induced leaf senescence and acts as a negative regulator of abiotic stress tolerance.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Sangcheol Baek
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Jova Riza Campol
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyunhee Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
9
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
10
|
Aycan M, Nahar L, Baslam M, Mitsui T. B-type response regulator hst1 controls salinity tolerance in rice by regulating transcription factors and antioxidant mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:542-555. [PMID: 36774910 DOI: 10.1016/j.plaphy.2023.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Salinity is a serious environmental problem that limits plant yield in almost half of the agricultural fields. The hitomebore salt tolerant 1(hst1) is a mutant B-type response regulator gene that was reported to improve salinity tolerance in the 'YNU31-2-4' (YNU) genotype. The sister line (SL) is salt-sensitive, and the nearest genomic relative of the YNU plant has the OsRR22 gene, which is the non-mutant form of the hst1 gene. Biochemical and comprehensive transcriptome analysis of SL and YNU plants was performed to clarify the salinity tolerance mechanism(s) mediated by the hst1 gene. The hst1 gene reduced Na+ ions, lipid peroxidation, and H2O2 content, and improve proline and antioxidant enzymes activities under salt stress. Various transporter and gene-specific transcriptional regulator genes up-regulated in presence of the hst1 gene under saline conditions, identifying that post-stress transcription factors (OsbHLH056, OsH43, OsGRAS29, and OsMADS1) contributed to improved salinity tolerance in YNU plants. Specifically, OsSalT, miR156, and OsLPT1.16 genes were up-regulated, while upstream (OsHKs and OsHPs) and downstream regulators of the OsRR22 gene were down-regulated in YNU plants under saline conditions. Notably, the transcription factors reprogramming, upstream and downstream genes, indicate that these pathways are transcriptionally regulated by the hst1 gene. The findings of the regulatory role of the hst1 gene on plant transcriptome provide a greater understanding of hst1-mediated salt tolerance in rice plants. This knowledge will contribute to understanding the salinity tolerance mechanisms in rice and the evolution of salt-tolerant crops with the ability to withstand higher salinity to ensure food security during climate change.
Collapse
Affiliation(s)
- Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| | - Lutfun Nahar
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan; Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| |
Collapse
|
11
|
Rehman B, Javed J, Rauf M, Khan SA, Arif M, Hamayun M, Gul H, Khilji SA, Sajid ZA, Kim WC, Lee IJ. ACC deaminase-producing endophytic fungal consortia promotes drought stress tolerance in M.oleifera by mitigating ethylene and H 2O 2. FRONTIERS IN PLANT SCIENCE 2022; 13:967672. [PMID: 36618664 PMCID: PMC9814162 DOI: 10.3389/fpls.2022.967672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Introduction Drought has become more prevalent due to dramatic climate change worldwide. Consequently, the most compatible fungal communities collaborate to boost plant development and ecophysiological responses under environmental constraints. However, little is known about the specific interactions between non-host plants and endophytic fungal symbionts that produce growth-promoting and stress-alleviating hormones during water deficits. Methods The current research was rationalized and aimed at exploring the influence of the newly isolated, drought-resistant, ACC deaminase enzyme-producing endophytic fungi Trichoderma gamsii (TP), Fusarium proliferatum (TR), and its consortium (TP+TR) from a xerophytic plant Carthamus oxycantha L. on Moringa oleifera L. grown under water deficit induced by PEG-8000 (8% osmoticum solution). Results The current findings revealed that the co-inoculation promoted a significant enhancement in growth traits such as dry weight (217%), fresh weight (123%), root length (65%), shoot length (53%), carotenoids (87%), and chlorophyll content (76%) in comparison to control plants under water deficit. Total soluble sugars (0.56%), proteins (132%), lipids (43%), flavonoids (52%), phenols (34%), proline (55%), GA3 (86%), IAA (35%), AsA (170%), SA (87%), were also induced, while H2O2 (-45%), ABA (-60%) and ACC level (-77%) was decreased by co-inoculation of TP and TR in M. oleifera plants, compared with the non-inoculated plants under water deficit. The co-inoculum (TP+TR) also induced the antioxidant potential and enzyme activities POX (325%), CAT activity (166%), and AsA (21%), along with a lesser decrease (-2%) in water potential in M. oleifera plants with co-inoculation under water deficit compared with non-inoculated control. The molecular analysis for gene expression unraveled the reduced expression of ethylene biosynthesis and signaling-related genes up to an optimal level, with an induction of antioxidant enzymatic genes by endophytic co-inoculation in M. oleifera plants under water deficit, suggesting their role in drought stress tolerance as an essential regulatory function. Conclusion The finding may alert scientists to consider the impacts of optimal reduction of ethylene and induction of antioxidant potential on drought stress tolerance in M. oleifera. Hence, the present study supports the use of compatible endophytic fungi to build a bipartite mutualistic symbiosis in M. oleifera non-host plants to mitigate the negative impacts of water scarcity in arid regions throughout the world.
Collapse
Affiliation(s)
- Bushra Rehman
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Javeria Javed
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sumera Afzal Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sheza Ayaz Khilji
- Department of Botany, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | | | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Bharadwaj PS, Sanchez L, Li D, Enyi D, Van de Poel B, Chang C. The plant hormone ethylene promotes abiotic stress tolerance in the liverwort Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2022; 13:998267. [PMID: 36340412 PMCID: PMC9632724 DOI: 10.3389/fpls.2022.998267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/29/2022] [Indexed: 06/13/2023]
Abstract
Plants are often faced with an array of adverse environmental conditions and must respond appropriately to grow and develop. In angiosperms, the plant hormone ethylene is known to play a protective role in responses to abiotic stress. Here we investigated whether ethylene mediates resistance to abiotic stress in the liverwort Marchantia polymorpha, one of the most distant land plant relatives of angiosperms. Using existing M. polymorpha knockout mutants of Mpein3, and Mpctr1, two genes in the ethylene signaling pathway, we examined responses to heat, salinity, nutrient deficiency, and continuous far-red light. The Mpein3 and Mpctr1 mutants were previously shown to confer ethylene insensitivity and constitutive ethylene responses, respectively. Using mild or sub-lethal doses of each stress treatment, we found that Mpctr1 mutants displayed stress resilience similar to or greater than the wild type. In contrast, Mpein3 mutants showed less resilience than the wild type. Consistent with ethylene being a stress hormone, we demonstrated that ethylene production is enhanced by each stress treatment. These results suggest that ethylene plays a role in protecting against abiotic stress in M. polymorpha, and that ethylene has likely been conserved as a stress hormone since before the evolutionary divergence of bryophytes from the land plant lineage approximately 450 Ma.
Collapse
Affiliation(s)
- Priyanka S. Bharadwaj
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Lizbeth Sanchez
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Dongdong Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Divine Enyi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, University of Leuven, Leuven, Belgium
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
13
|
Zhang T, Sun K, Chang X, Ouyang Z, Meng G, Han Y, Shen S, Yao Q, Piao F, Wang Y. Comparative Physiological and Transcriptomic Analyses of Two Contrasting Pepper Genotypes under Salt Stress Reveal Complex Salt Tolerance Mechanisms in Seedlings. Int J Mol Sci 2022; 23:9701. [PMID: 36077098 PMCID: PMC9455954 DOI: 10.3390/ijms23179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
As a glycophyte plant, pepper (Capsicum annuum L.) is widely cultivated worldwide, but its growth is susceptible to salinity damage, especially at the seedling stage. Here, we conducted a study to determine the physiological and transcriptional differences between two genotype seedlings (P300 and 323F3) with contrasting tolerance under salt stress. The P300 seedlings were more salt-tolerant and had higher K+ contents, higher antioxidase activities, higher compatible solutes, and lower Na+ contents in both their roots and their leaves than the 323F3 seedlings. During RNA-seq analysis of the roots, more up-regulated genes and fewer down-regulated genes were identified between salt-treated P300 seedlings and the controls than between salt-treated 323F3 and the controls. Many ROS-scavenging genes and several SOS pathway genes were significantly induced by salt stress and exhibited higher expressions in the salt-treated roots of the P300 seedlings than those of 323F3 seedlings. Moreover, biosynthesis of the unsaturated fatty acids pathway and protein processing in the endoplasmic reticulum pathway were deeply involved in the responses of P300 to salt stress, and most of the differentially expressed genes involved in the two pathways, including the genes that encode mega-6 fatty acid desaturases and heat-shock proteins, were up-regulated. We also found differences in the hormone synthesis and signaling pathway genes in both the P300 and 323F3 varieties under salt stress. Overall, our results provide valuable insights into the physiological and molecular mechanisms that affect the salt tolerance of pepper seedlings, and present some candidate genes for improving salt tolerance in pepper.
Collapse
Affiliation(s)
- Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Kaile Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoke Chang
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhaopeng Ouyang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Geng Meng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanan Han
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuju Yao
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|