1
|
Zhang Y, Wang J, Xiao Y, Wu Y, Li N, Ding C, Hao X, Yu Y, Wang L, Wang X. CsWRKY12 interacts with CsVQ4L to promote the accumulation of galloylated catechins in tender leaves of tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2861-2873. [PMID: 39570713 DOI: 10.1111/tpj.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Galloylated catechins in tea leaves, primarily epigallocatechin-3-gallate (EGCG) and epicatechin gallate (ECG), possess prominent biological activities. It is well established that EGCG and ECG are abundantly present in tender leaves but are less prevalent in mature leaves. However, the fundamental regulatory mechanisms underlying this distribution remain unknown. In this study, we integrated transcriptome data and catechin component levels in tea leaves from six leaf positions using weighted gene co-expression network analysis. This analysis revealed a positive correlation between variations in CsWRKY12 expression and EGCG and ECG levels. Further investigation using yeast one-hybrid and dual-luciferase assays, as well as electrophoretic mobility shift assay, demonstrated that CsWRKY12 activated the transcription of CsSCPL4 and CsSCPL5, which encode enzymes responsible for galloylated catechins biosynthesis, by directly binding to W-box elements in their promoters. Overexpression of CsWRKY12 in tea leaves promoted the expression of CsSCPL4 and CsSCPL5, leading to an increase in EGCG and ECG content. Moreover, we found that a VQ motif-containing protein, CsVQ4L, interacted with CsWRKY12 and facilitated its transcriptional function by regulating the expression of CsSCPL4 and CsSCPL5. Collectively, our findings suggest that the interaction between CsWRKY12 and CsVQ4L contributes to the accumulation of galloylated catechins in tender leaves of tea plants.
Collapse
Affiliation(s)
- Yongheng Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Jie Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Yezi Xiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yedie Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Changqing Ding
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| |
Collapse
|
2
|
Aggarwal PR, Mehanathan M, Choudhary P. Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154379. [PMID: 39549316 DOI: 10.1016/j.jplph.2024.154379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance. Therefore, exploring the genetic diversity underlying the immense variation of the secondary metabolite pool could unravel the adaptation mechanisms in plants against different environmental stresses. The post-genomic profiling platforms have enabled the exploration of the link between metabolic diversity and important agronomic traits. The current review focuses on the major achievements and future challenges associated with plant secondary metabolite (PSM) research in graminaceous crops using advanced omics approaches. Given this, we briefly summarize different strategies adopted to explore the genetic diversity and evolution of PSMs in cereal crops. Further, we have discussed the recent technological advancements to integrate multi-omics approaches linking the metabolome diversity with the genome, transcriptome, and proteome of these crops under stress. Combining these data with phenomics (the omics of phenotypes) provides a holistic view of how plants respond to stress. Next, we outlined the genetic manipulation studies performed so far in cereals to engineer secondary metabolic pathways for enhanced stress tolerance. In summary, our review provides new insight into developing genetic and genomic trends in exploring the secondary metabolite diversity in graminaceous crops and discusses how this information can be utilized in designing strategies to generate future stress-resilient crops.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muthamilarasan Mehanathan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Saini H, Panthri M, Bhatia P, Gupta M. Role of phenylpropanoid pathway in genetic regulation and physiological adaptation in arsenic stressed rice genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109291. [PMID: 39546947 DOI: 10.1016/j.plaphy.2024.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This study investigates the role of the phenylpropanoid pathway in arsenic (As) contaminated rice genotypes under natural conditions, exploring the intricate relationship between genetic regulation and physiological adaptation. Differential approaches adapted by rice genotypes to counteract As exposure are elucidated here through analysis of enzyme activities and related gene expression patterns, docking simulations, and nutrient dynamics. Enzymatic analysis from the phenylpropanoid pathway revealed significant variations across rice genotypes, with Mini mansoori exhibiting notably higher activity levels of key enzymes (PAL, C4H, 4CL, CHI, DFR and F3H) compared to Sampoorna and Pioneer. Additionally, the gene expression profiling unveiled differential responses, with Mini mansoori and Pioneer demonstrating higher expression of genes (OsPAL, OsCHS, OsCHI, OsF3H, OsF3'H, OsFLS, OsDFR, and OsLAR) associated with As resistance and tolerance, compared to Sampoorna. Enrichment analysis emphasized the involvement of cinnamic acid biosynthesis and related pathways. Molecular docking depicted certain proteins, such as Os4CL, OsFLS, OsDFR, and OsLAR susceptible to As binding, potentially affecting enzymatic activity. Ionomic analysis unveiled that Mini mansoori maintained higher levels of essential nutrients such as Na, Ca, P, Mn, Mg, and Zn in grains. However, this contrasted with Pioneer and Sampoorna, which experienced nutrient imbalance likely due to higher As accumulation. Chlorophyll fluorescence analysis depicted that Mini mansoori and Pioneer maintained better photosynthetic efficiency under As toxicity compared to Sampoorna. Moreover, network analysis highlights the critical role of Mg and Na interaction with essential phenolics and flavonoids, in combating the stress. Harnessing this understanding, targeted breeding effort could yield As-resistant rice varieties with enhanced nutrient and flavonoid contents, addressing both food safety and malnutrition in affected regions.
Collapse
Affiliation(s)
- Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India; National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Bhatia
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India.
| |
Collapse
|
4
|
Felisberto JS, Machado DB, Assunção JAS, Massau SAS, de Queiroz GA, Guimarães EF, Ramos YJ, Moreira DDL. Spatio-Temporal Variations of Volatile Metabolites as an Eco-Physiological Response of a Native Species in the Tropical Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:2599. [PMID: 39339574 PMCID: PMC11435382 DOI: 10.3390/plants13182599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This study evaluates the essential oil (EO) composition of Piper rivinoides Kunth, a shrub native to the Brazilian tropical rainforest, across different plant parts and developmental phases. The aim was to explore the chemical diversity of EO and its reflection in the plant's ecological interactions and adaptations. Plant organs (roots, stems, branches, and leaves) at different developmental phases were subjected to hydrodistillation followed by chemical analysis using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID). The results revealed a relevant variation in EO yield and composition among different plant parts and developmental phases. Leaves showed the highest yield and chemical diversity, with α-pinene and β-pinene as major constituents, while roots and stems were characterized by a predominance of arylpropanoids, particularly apiol. The chemical diversity in leaves increased with plant maturity, indicating a dynamic adaptation to environmental interactions. The study underscores the importance of considering the ontogeny of plant parts in understanding the ecological roles and potential applications of P. rivinoides in medicine and agriculture. The findings contribute to the overall knowledge of Piperaceae chemodiversity and ecological adaptations, offering insights into the plant's interaction with its environment and its potential uses based on chemical composition.
Collapse
Affiliation(s)
- Jéssica Sales Felisberto
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
- Earth’s Pharmacy Laboratory, Federal University of Bahia, Ondina, Salvador 40170-215, BA, Brazil
| | - Daniel B. Machado
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - Jeferson A. S. Assunção
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Samik A. S. Massau
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - George A. de Queiroz
- Department of Pharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, RJ, Brazil;
| | - Elsie F. Guimarães
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - Ygor J. Ramos
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Earth’s Pharmacy Laboratory, Federal University of Bahia, Ondina, Salvador 40170-215, BA, Brazil
| | - Davyson de Lima Moreira
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| |
Collapse
|
5
|
Saci S, Msela A, Saoudi B, Sebbane H, Trabelsi L, Alam M, Ernst B, Benguerba Y, Houali K. Assessment of antibacterial activity, modes of action, and synergistic effects of Origanum vulgare hydroethanolic extract with antibiotics against avian pathogenic Escherichia coli. Fitoterapia 2024; 177:106055. [PMID: 38838822 DOI: 10.1016/j.fitote.2024.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
This study evaluates the antibacterial effectiveness of Origanum vulgare hydroethanolic extract, both independently and in combination with antibiotics, against Escherichia coli strains associated with avian colibacillosis-a significant concern for the poultry industry due to the rise of antibiotic-resistant E. coli. The urgent demand for new treatments is addressed by analyzing the extract's phytochemical makeup via High-Performance Liquid Chromatography (HPLC), which identified sixteen phenolic compounds. Antibacterial activity was determined through agar diffusion and the measurement of minimum inhibitory and bactericidal concentrations (MIC and MBC), showing moderate efficacy (MIC: 3.9 to 7.8 mg/mL, MBC: 31.2 to 62.4 mg/mL). Combining the extract with antibiotics like ampicillin and tetracycline amplified antibacterial activity, indicating a synergistic effect and highlighting the importance of combinatory treatments against resistant strains. Further analysis revealed the extract's mechanisms of action include disrupting bacterial cell membrane integrity and inhibiting ATPase/H+ proton pumps, essential for bacterial survival. Moreover, the extract effectively inhibited and eradicated biofilms, crucial for preventing bacterial colonization. Regarding cytotoxicity, the extract showed no hemolytic effect at 1 to 9 mg/mL concentrations. These results suggest Origanum vulgare extract, particularly when used with antibiotics, offers a promising strategy for managing avian colibacillosis, providing both direct antibacterial benefits and moderating antibiotic resistance, thus potentially reducing the economic impact of the disease on the poultry industry.
Collapse
Affiliation(s)
- Sarah Saci
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Amine Msela
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Bilal Saoudi
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Hillal Sebbane
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Lamia Trabelsi
- Marine Biodiversity Laboratory, National Institute of Marine Sciences and Technology (inStm), University of Carthage, Tunis, Tunisia
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000 Strasbourg, France
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif, Algeria.
| | - Karim Houali
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria.
| |
Collapse
|
6
|
Zhang H, Lin W, Ma R, Zang Y, Hou K, Xu Z, Xi X, Zhang W, Tang S, Liang X, Sun Y, Shen C. Fungal endophytes of Taxus species and regulatory effect of two strains on taxol synthesis. BMC Microbiol 2024; 24:291. [PMID: 39097685 PMCID: PMC11297650 DOI: 10.1186/s12866-024-03445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Taxol, derived from Taxus trees, is a valuable natural resource for the development of anticancer drugs. Endophytic fungi from Taxus trees are a promising alternative source of Taxol. However, the impact of plant-endophytic microbial interaction on the host's Taxol biosynthesis is largely unknown. RESULTS In the current study, the diversity of endophytic fungi in three different Taxus species was analyzed using Internal Transcribed Spacer sequencing. A total of 271 Operational Taxonomic Units (OTUs) were identified, grouping into 2 phyla, 8 classes, 16 orders, 19 families, and 19 genera. Alpha and beta diversity analysis indicated significant differences in endophytic fungal communities among the various Taxus trees. At the genus level, Alternaria and Davidiella were predominantly found in T. mairei and T. media, respectively. By utilizing a previously published dataset, a Pearson correlation analysis was conducted to predict the taxol biosynthesis-related fungal genera. Following screening, two isolates of Alternaria (L7 and M14) were obtained. Effect of inoculation with Alternaria isolates on the gene expression and metabolite accumulation of T. mairei was determined by transcriptomic and untargeted metabolomic studies. The co-inoculation assay suggests that the two Alternaria isolates may have a negative regulatory effect on taxol biosynthesis by influencing hormone signaling pathways. CONCLUSION Our findings will serve as a foundation for advancing the production and utilization of Taxus and will also aid in screening endophytic fungi related to taxol production.
Collapse
Affiliation(s)
- Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wanting Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ruoyun Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yue Zang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhen Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaoyun Xi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Weiting Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shini Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yiming Sun
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Hanif S, Farooq S, Kiani MZ, Zia M. Surface modified ZnO NPs by betaine and proline build up tomato plants against drought stress and increase fruit nutritional quality. CHEMOSPHERE 2024; 362:142671. [PMID: 38906183 DOI: 10.1016/j.chemosphere.2024.142671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Drought stress is a serious challenge for global food production. Nanofertilizers and nanocomposites cope with such environmental stresses and also increase nutritional contents of fruits. An in vitro experiment was designed to use Zinc Oxide Nanoparticles (ZnO NPs) primed with Proline and Betaine (ZnOP and ZnOBt NPs) at 50 and 100 mg/kg soil against drought stress in Tomato (Solanum lycopersicum) plants. Plant morphological, biochemical, and fruit nutritional quality were accessed. Maximum plant height was observed under the treatment of ZnOP50 (1.09 m) and ZnO 100 (1.06 m). ZnOP and ZnOBt also improved the chlorophyll content up to 86% and 87.16%, respectively. Application of ZnOP NPs also demonstrated maximum tomato yield (204 g tomato/plant) followed by ZnO NPs and ZnOBt NPs. Nanocomposites decreased phenolics and flavonoids contents in drought stressed plants demonstrating the mitigation of oxidative stress. Nanofertilizer also increased the concentration of phenolics and flavonoids in fruits that increased the nutritional contents. Furthermore a significant accumulation of betaine, proline, and lycopene in fruits on nanocomposite treatment made it nutritional and healthy. Lycopene content increased up to 2.01% and 1.23% in presence of ZnOP50 and ZnOP100, respectively. These outcomes validate that drought stress in plant can be reduced by accumulation of different phytochemicals and quenching oxidative stress. The study deems that nano zinc carrying osmoregulators can greatly reduce the negative effects of drought stress and increase nutritional quality of tomato fruits.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Snovia Farooq
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Misbah Zeb Kiani
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan.
| |
Collapse
|
8
|
Panomai P, Thapphasaraphong S, Nualkaew N. A Comparative Study of Two Oroxylum indicum (L.) Kurz. Phenotypes Based on Phytochemicals and Antioxidant Effects, and the Anti-Inflammatory Activity of Leaf and Pod Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:2110. [PMID: 39124228 PMCID: PMC11314318 DOI: 10.3390/plants13152110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Indian trumpet tree Oroxylum indicum (L.) Kurz exhibits a wide range of biological activities in all plant parts, including anti-inflammation, antioxidant, and wound-healing activities. In Thailand, there are tall- and short-stem phenotypes. The latter are preferred for commercial cultivation due to their fast growth and lower harvesting cost. This study aimed to compare the chemical profiles and antioxidant effects of leaves and young pods between two phenotypes using principal component analysis (PCA) and then to evaluate the anti-inflammatory potential of the selected phenotype's plant parts. The biomarker contents were quantified by HPLC. The antioxidants were determined using the DPPH, ABTS, and FRAP models. Nitric oxide (NO) production assays in LPS-induced RAW264.7 macrophages were performed to determine the anti-inflammatory property of the extracts. The PCA revealed that there were no differences in total phenolic content, total flavonoid content, or antioxidant activities between short- and tall-stem phenotypes. Higher potency of the NO-inhibitory effect was achieved from the leaf extract than the pod extract. These results support using the short-stem phenotypes for utilizing the leaf and pod of O. indicum, and suggest choosing the leaf part for further anti-inflammatory product development.
Collapse
Affiliation(s)
| | | | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.T.)
| |
Collapse
|
9
|
Karimi MR, Jariani P, Yang JL, Naghavi MR. A comprehensive review of the molecular and genetic mechanisms underlying gum and resin synthesis in Ferula species. Int J Biol Macromol 2024; 269:132168. [PMID: 38729496 DOI: 10.1016/j.ijbiomac.2024.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.
Collapse
Affiliation(s)
- Mohammad Reza Karimi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
10
|
Hao Y, Yan X, Li Q. Genome-Wide Identification and Expression Profiling of Velvet Complex Transcription Factors in Populus alba × Populus glandulosa. Int J Mol Sci 2024; 25:3926. [PMID: 38612736 PMCID: PMC11011700 DOI: 10.3390/ijms25073926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The discovery of new genes with novel functions is a major driver of adaptive evolutionary innovation in plants. Especially in woody plants, due to genome expansion, new genes evolve to regulate the processes of growth and development. In this study, we characterized the unique VeA transcription factor family in Populus alba × Populus glandulosa, which is associated with secondary metabolism. Twenty VeA genes were characterized systematically on their phylogeny, genomic distribution, gene structure and conserved motif, promoter binding site, and expression profiling. Furthermore, through ChIP-qPCR, Y1H, and effector-reporter assays, it was demonstrated that PagMYB128 directly regulated PagVeA3 to influence the biosynthesis of secondary metabolites. These results provide a basis for further elucidating the function of VeAs gene in poplar and its genetic regulation mechanism.
Collapse
Affiliation(s)
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Y.H.); (Q.L.)
| | | |
Collapse
|
11
|
Ma N, Sun P, Li ZY, Zhang FJ, Wang XF, You CX, Zhang CL, Zhang Z. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. STRESS BIOLOGY 2024; 4:2. [PMID: 38163824 PMCID: PMC10758382 DOI: 10.1007/s44154-023-00140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity.
Collapse
Affiliation(s)
- Ning Ma
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Ping Sun
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Zhao-Yang Li
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Ling Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
12
|
Wang H, Ye L, Zhou L, Yu J, Pang B, Zuo D, Gu L, Zhu B, Du X, Wang H. Co-Expression Network Analysis of the Transcriptome Identified Hub Genes and Pathways Responding to Saline-Alkaline Stress in Sorghum bicolor L. Int J Mol Sci 2023; 24:16831. [PMID: 38069156 PMCID: PMC10706439 DOI: 10.3390/ijms242316831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Soil salinization, an intractable problem, is becoming increasingly serious and threatening fragile natural ecosystems and even the security of human food supplies. Sorghum (Sorghum bicolor L.) is one of the main crops growing in salinized soil. However, the tolerance mechanisms of sorghum to saline-alkaline soil are still ambiguous. In this study, RNA sequencing was carried out to explore the gene expression profiles of sorghum treated with sodium bicarbonate (150 mM, pH = 8.0, treated for 0, 6, 12 and 24 h). The results show that 6045, 5122, 6804, 7978, 8080 and 12,899 differentially expressed genes (DEGs) were detected in shoots and roots after 6, 12 and 24 h treatments, respectively. GO, KEGG and weighted gene co-expression analyses indicate that the DEGs generated by saline-alkaline stress were primarily enriched in plant hormone signal transduction, the MAPK signaling pathway, starch and sucrose metabolism, glutathione metabolism and phenylpropanoid biosynthesis. Key pathway and hub genes (TPP1, WRKY61, YSL1 and NHX7) are mainly related to intracellular ion transport and lignin synthesis. The molecular and physiological regulation processes of saline-alkali-tolerant sorghum are shown by these results, which also provide useful knowledge for improving sorghum yield and quality under saline-alkaline conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (L.Y.); (L.Z.); (J.Y.); (B.P.); (D.Z.); (L.G.); (B.Z.)
| | - Huinan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (L.Y.); (L.Z.); (J.Y.); (B.P.); (D.Z.); (L.G.); (B.Z.)
| |
Collapse
|
13
|
Nagayoshi H, Murayama N, Kim V, Kim D, Takenaka S, Yamazaki H, Guengerich FP, Shimada T. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1. Chem Res Toxicol 2023; 36:1778-1788. [PMID: 37783573 PMCID: PMC11497155 DOI: 10.1021/acs.chemrestox.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Food Chemistry Section, Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka 537-0025, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| |
Collapse
|
14
|
Zhan X, Qiu T, Zhang H, Hou K, Liang X, Chen C, Wang Z, Wu Q, Wang X, Li XL, Wang M, Feng S, Zeng H, Yu C, Wang H, Shen C. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves. PLANT COMMUNICATIONS 2023; 4:100630. [PMID: 37231648 PMCID: PMC10504593 DOI: 10.1016/j.xplc.2023.100630] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Taxus leaves provide the raw industrial materials for taxol, a natural antineoplastic drug widely used in the treatment of various cancers. However, the precise distribution, biosynthesis, and transcriptional regulation of taxoids and other active components in Taxus leaves remain unknown. Matrix-assisted laser desorption/ionization-mass spectrometry imaging analysis was used to visualize various secondary metabolites in leaf sections of Taxus mairei, confirming the tissue-specific accumulation of different active metabolites. Single-cell sequencing was used to produce expression profiles of 8846 cells, with a median of 2352 genes per cell. Based on a series of cluster-specific markers, cells were grouped into 15 clusters, suggesting a high degree of cell heterogeneity in T. mairei leaves. Our data were used to create the first Taxus leaf metabolic single-cell atlas and to reveal spatial and temporal expression patterns of several secondary metabolic pathways. According to the cell-type annotation, most taxol biosynthesis genes are expressed mainly in leaf mesophyll cells; phenolic acid and flavonoid biosynthesis genes are highly expressed in leaf epidermal cells (including the stomatal complex and guard cells); and terpenoid and steroid biosynthesis genes are expressed specifically in leaf mesophyll cells. A number of novel and cell-specific transcription factors involved in secondary metabolite biosynthesis were identified, including MYB17, WRKY12, WRKY31, ERF13, GT_2, and bHLH46. Our research establishes the transcriptional landscape of major cell types in T. mairei leaves at a single-cell resolution and provides valuable resources for studying the basic principles of cell-type-specific regulation of secondary metabolism.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Qiu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaojia Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Lin Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China.
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
15
|
Zagoskina NV, Zubova MY, Nechaeva TL, Kazantseva VV, Goncharuk EA, Katanskaya VM, Baranova EN, Aksenova MA. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int J Mol Sci 2023; 24:13874. [PMID: 37762177 PMCID: PMC10531498 DOI: 10.3390/ijms241813874] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Phenolic compounds or polyphenols are among the most common compounds of secondary metabolism in plants. Their biosynthesis is characteristic of all plant cells and is carried out with the participation of the shikimate and acetate-malonate pathways. In this case, polyphenols of various structures are formed, such as phenylpropanoids, flavonoids, and various oligomeric and polymeric compounds of phenolic nature. Their number already exceeds 10,000. The diversity of phenolics affects their biological activity and functional role. Most of their representatives are characterized by interaction with reactive oxygen species, which manifests itself not only in plants but also in the human body, where they enter through food chains. Having a high biological activity, phenolic compounds are successfully used as medicines and nutritional supplements for the health of the population. The accumulation and biosynthesis of polyphenols in plants depend on many factors, including physiological-biochemical, molecular-genetic, and environmental factors. In the review, we present the latest literature data on the structure of various classes of phenolic compounds, their antioxidant activity, and their biosynthesis, including their molecular genetic aspects (genes and transfactors). Since plants grow with significant environmental changes on the planet, their response to the action of abiotic factors (light, UV radiation, temperature, and heavy metals) at the level of accumulation and composition of these secondary metabolites, as well as their metabolic regulation, is considered. Information is given about plant polyphenols as important and necessary components of functional nutrition and pharmaceutically valuable substances for the health of the population. Proposals on promising areas of research and development in the field of plant polyphenols are presented.
Collapse
Affiliation(s)
- Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Ekaterina N. Baranova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia;
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, 127550 Moscow, Russia
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| |
Collapse
|
16
|
Yu C, Hou K, Zhang H, Liang X, Chen C, Wang Z, Wu Q, Chen G, He J, Bai E, Li X, Du T, Wang Y, Wang M, Feng S, Wang H, Shen C. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1243-1260. [PMID: 37219365 DOI: 10.1111/tpj.16315] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Taxol, which is a widely used important chemotherapeutic agent, was originally isolated from Taxus stem barks. However, little is known about the precise distribution of taxoids and the transcriptional regulation of taxoid biosynthesis across Taxus stems. Here, we used MALDI-IMS analysis to visualize the taxoid distribution across Taxus mairei stems and single-cell RNA sequencing to generate expression profiles. A single-cell T. mairei stem atlas was created, providing a spatial distribution pattern of Taxus stem cells. Cells were reordered using a main developmental pseudotime trajectory which provided temporal distribution patterns in Taxus stem cells. Most known taxol biosynthesis-related genes were primarily expressed in epidermal, endodermal, and xylem parenchyma cells, which caused an uneven taxoid distribution across T. mairei stems. We developed a single-cell strategy to screen novel transcription factors (TFs) involved in taxol biosynthesis regulation. Several TF genes, such as endodermal cell-specific MYB47 and xylem parenchyma cell-specific NAC2 and bHLH68, were implicated as potential regulators of taxol biosynthesis. Furthermore, an ATP-binding cassette family transporter gene, ABCG2, was proposed as a potential taxoid transporter candidate. In summary, we generated a single-cell Taxus stem metabolic atlas and identified molecular mechanisms underpinning the cell-specific transcriptional regulation of the taxol biosynthesis pathway.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ganlin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiaxu He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Enhui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinfen Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tingrui Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yifan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
17
|
Zhu C, Yi X, Yang M, Liu Y, Yao Y, Zi S, Chen B, Xiao G. Comparative Transcriptome Analysis of Defense Response of Potato to Phthorimaea operculella Infestation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3092. [PMID: 37687339 PMCID: PMC10490199 DOI: 10.3390/plants12173092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the most destructive pests of potato crops worldwide. Although it has been reported how potatoes integrate the early responses to various PTM herbivory stimuli by accumulatively adding the components, the broad-scale defense signaling network of potato to single stimuli at multiple time points are unclear. Therefore, we compared three potato transcriptional profiles of undamaged plants, mechanically damaged plants and PTM-feeding plants at 3 h, 48 h, and 96 h, and further analyzed the gene expression patterns of a multitude of insect resistance-related signaling pathways, including phytohormones, reactive oxygen species, secondary metabolites, transcription factors, MAPK cascades, plant-pathogen interactions, protease inhibitors, chitinase, and lectins, etc. in the potato under mechanical damage and PTM infestation. Our results suggested that the potato transcriptome showed significant responses to mechanical damage and potato tuber moth infestation, respectively. The potato transcriptome responses modulated over time and were higher at 96 than at 48 h, so transcriptional changes in later stages of PTM infestation may underlie the potato recovery response. Although the transcriptional profiles of mechanically damaged and PTM-infested plants overlap extensively in multiple signaling pathways, some genes are uniquely induced or repressed. True herbivore feeding induced more and stronger gene expression compared to mechanical damage. In addition, we identified 2976, 1499, and 117 genes that only appeared in M-vs-P comparison groups by comparing the transcriptomes of PTM-damaged and mechanically damaged potatoes at 3 h, 48 h, and 96 h, respectively, and these genes deserve further study in the future. This transcriptomic dataset further enhances the understanding of the interactions between potato and potato tuber moth, enriches the molecular resources in this research area and paves the way for breeding insect-resistant potatoes.
Collapse
Affiliation(s)
- Chunyue Zhu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Xiaocui Yi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Miao Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yiyi Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yao Yao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Shengjiang Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Bin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guanli Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
18
|
Zhang XM, Li JT, Xia Y, Shi XQ, Liu XL, Tang M, Tang J, Sun W, Yi Y. Early and Late Transcriptomic and Metabolomic Responses of Rhododendron 'Xiaotaohong' Petals to Infection with Alternaria sp. Int J Mol Sci 2023; 24:12695. [PMID: 37628875 PMCID: PMC10454523 DOI: 10.3390/ijms241612695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, petal blight disease caused by pathogens has become increasingly epidemic in Rhododendron. Breeding disease-resistant rhododendron is considered to be a more environmentally friendly strategy than is the use of chemical reagents. In this study, we aimed to investigate the response mechanisms of rhododendron varieties to petal blight, using transcriptomics and metabolomics analyses. Specifically, we monitored changes in gene expression and metabolite accumulation in Rhododendron 'Xiaotaohong' petals infected with the Alternaria sp. strain (MR-9). The infection of MR-9 led to the development of petal blight and induced significant changes in gene transcription. Differentially expressed genes (DEGs) were predominantly enriched in the plant-pathogen interaction pathway. These DEGs were involved in carrying out stress responses, with genes associated with H2O2 production being up-regulated during the early and late stages of infection. Correspondingly, H2O2 accumulation was detected in the vicinity of the blight lesions. In addition, defense-related genes, including PR and FRK, exhibited significant up-regulated expression during the infection by MR-9. In the late stage of the infection, we also observed significant changes in differentially abundant metabolites (DAMs), including flavonoids, alkaloids, phenols, and terpenes. Notably, the levels of euscaphic acid, ganoderol A, (-)-cinchonidine, and theophylline in infected petals were 21.8, 8.5, 4.5, and 4.3 times higher, respectively, compared to the control. Our results suggest that H2O2, defense-related genes, and DAM accumulation are involved in the complex response mechanisms of Rhododendron 'Xiaotaohong' petals to MR-9 infection. These insights provide a deeper understanding of the pathogenesis of petal blight disease and may have practical implications for developing disease-resistant rhododendron varieties.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Jie-Ting Li
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ying Xia
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xiao-Qian Shi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xian-Lun Liu
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ming Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
19
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023; 13:716. [PMID: 37367873 DOI: 10.3390/metabo13060716] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Varsha Toppo
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Pranjali Bajrang Chole
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wudali Narasimha Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
20
|
Wei K, Guo T. Enhancing the potential for cadmium phytoremediation by introducing Perilla frutescens genes in tobacco. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27392-5. [PMID: 37147538 DOI: 10.1007/s11356-023-27392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
To improve the potential of cadmium phytoremediation, distant hybridization between tobacco (Nicotiana tabacum L. var. 78-04), a high-biomass crop, and Perilla frutescens var. frutescens, a wild Cd-hyperaccumulator, was carried out, developing a new variety N. tabacum L. var. ZSY. Seedlings at the six-leaf stage were grown in hydroponics and treated with 0 (control), 10 µM, 180 µM, and 360 µM CdCl2 for 7 days; then, the differences in Cd tolerance and accumulation and physiological and metabolic responses were evaluated among "ZSY" and its parents. At high Cd dose, the growth of "ZSY," such as fresh weight, plant height, and root length, was evidently better than "78-04." In contrast to P. frutescens and "78-04," "ZSY" could accumulate more Cd in shoots than roots. Under the same treatment, "ZSY" accumulated greater amounts of Cd in both shoots (195-1523 mg kg-1) and roots (140-1281 mg kg-1) than "78-04" (shoots: 35-89 mg kg-1, roots: 39-252 mg kg-1), followed by P. frutescens (shoots: 156-454 mg kg-1, roots: 103-761 mg kg-1). BCF and TF values of "ZSY" reached 38-195 and 1.2-1.4, which were far higher than those of "78-04" (BCF: 2.2-35.3, TF: 0.35-0.9). Perilla frutescens was found with BCF and TF of 11-156 and 0.5-1.5. Cd stress obviously promoted the production of ROS and MDA in seedlings but reduced chlorophyll contents, especially in "78-04." As a response to Cd stress, "ZSY" had higher SOD and CAT activities when compared to P. frutescens and "78-04," while "78-04" produced more POD and proline than those of P. frutescens and "ZSY." Cd stress could affect the production and accumulation of alkaloids and phenolic compounds in root (endodermis and cortex) and mesophyll. At high Cd doses, P. frutescens and "ZSY" had more alkaloids in tissues than "78-04." Phenolic compounds in "78-04" were more obviously inhibited compared with P. frutescens and "ZSY." These secondary metabolites may play an important role in eliminating oxidative damage and enhancing Cd tolerance and accumulation in "ZSY" and P. frutescens. Results indicated that distant hybridization could be one of effective methods for introducing excellent genes from metal-hyperaccumulators into high biomass species, creating plants with superior phytoremediation potential.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, 63 Nanzhonghuan East Street, Taiyuan, 030006, People's Republic of China.
| | - Tingting Guo
- School of Life Science, Shanxi University, 63 Nanzhonghuan East Street, Taiyuan, 030006, People's Republic of China
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, 030006, China
| |
Collapse
|
21
|
Han L, Wu X, Hou K, Zhang H, Liang X, Chen C, Wang Z, Shen C. Identification and functional analysis of calcium sensor calmodulins from heavy metal hyperaccumulator Noccaea caerulescens. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:294-302. [PMID: 36683141 DOI: 10.1071/fp22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Noccaea caerulescens (J. Presl & C. Presl) F. K. Mey. is a heavy metal hyperaccumulator exhibiting extreme tolerance to various environmental stresses. To date, the functional role of Ca2+ -binding protein in this plant is largely unknown. To investigate the function of calmodulins (CaMs) in N. caerulescens , CaM2 , a Ca2+ sensor encoding gene, was identified and functionally characterised. Protein structure analysis showed that NcCaM2 contains four classic exchange factor (EF)-hand motifs with high sequence similarity to the CaM proteins from model plant Arabidopsis thaliana L. Tissue specific expression analysis showed that NcCaM2 is constitutively expressed in stems, leaves, and roots. Expression level of NcCaM2 was significantly upregulated under various environmental stimulus, indicating a potential involvement of NcCaM2 in the tolerance to abiotic stresses. The heterologous expression of NcCaM2 in a yeast mutant strain increased the heavy metal tolerance in yeast cells. Furthermore, the constitutive expression of NcCaM2 enhanced the heavy metal tolerance capability of transgenic tobacco (Nicotiana tabacum L.) plants. Our data suggested an important role of NcCaM2 in the responses to environmental stresses and provided a potential target gene to enhance of the ability to hyperaccumulate metals.
Collapse
Affiliation(s)
- Lu Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Xiaohua Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
22
|
Xu J, Du R, Wang Y, Chen J. RNA-Sequencing Reveals the Involvement of Sesquiterpene Biosynthesis Genes and Transcription Factors during an Early Response to Mechanical Wounding of Aquilaria sinensis. Genes (Basel) 2023; 14:464. [PMID: 36833391 PMCID: PMC9957285 DOI: 10.3390/genes14020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Plants respond to wounding by reprogramming the expression of genes involved in secondary metabolism. Aquilaria trees produce many bioactive secondary metabolites in response to wounding, but the regulatory mechanism of agarwood formation in the early response to mechanical wounding has remained unclear. To gain insights into the process of transcriptome changes and to determine the regulatory networks of Aquilaria sinensis to an early response (15 days) to mechanical wounding, we collected A. sinensis samples from the untreated (Asc1) and treated (Asf1) xylem tissues and performed RNA sequencing (RNA-seq). This generated 49,102,523 (Asc1) and 45,180,981 (Asf1) clean reads, which corresponded to 18,927 (Asc1) and 19,258 (Asf1) genes, respectively. A total of 1596 differentially expressed genes (DEGs) were detected in Asf1 vs. Asc1 (|log2 (fold change)| ≥ 1, Padj ≤ 0.05), of which 1088 were up-regulated and 508 genes were down-regulated. GO and KEGG enrichment analysis of DEGs showed that flavonoid biosynthesis, phenylpropanoid biosynthesis, and sesquiterpenoid and triterpenoid biosynthesis pathways might play important roles in wound-induced agarwood formation. Based on the transcription factor (TF)-gene regulatory network analysis, we inferred that the bHLH TF family could regulate all DEGs encoding for farnesyl diphosphate synthase, sesquiterpene synthase, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS), which contribute to the biosynthesis and accumulation of agarwood sesquiterpenes. This study provides insight into the molecular mechanism regulating agarwood formation in A. sinensis, and will be helpful in selecting candidate genes for improving the yield and quality of agarwood.
Collapse
Affiliation(s)
- Jieru Xu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/School of Forestry, Hainan University, Sanya 572019, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou 570228, China
| | - Ruyue Du
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/School of Forestry, Hainan University, Sanya 572019, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou 570228, China
| | - Yue Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/School of Forestry, Hainan University, Sanya 572019, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou 570228, China
| | - Jinhui Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/School of Forestry, Hainan University, Sanya 572019, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
23
|
Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang. Foods 2023; 12:foods12020425. [PMID: 36673517 PMCID: PMC9858094 DOI: 10.3390/foods12020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/17/2023] Open
Abstract
In addition to volatile compounds, metabolites also have a great effect on the flavour of food. Fresh finger citron cannot be eaten directly because of its spicy and bitter taste, so it is made into a preserved fruit product known as Laoxianghuang (LXH). To investigate the metabolites that have an effect on the flavour of LXH, untargeted metabolomics was performed using an ultrahigh-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS), and the metabolites of the Laoxianghuang samples from different locations in the Chaoshan area were compared and analysed. A total of 756 metabolites were identified and distinct differences were revealed among the different Laoxianghuang samples. A total of 33 differential metabolites with the most significant changes were screened through further multivariate analytical steps, and each group of samples had unique metabolites. For instance, pomolic acid had the highest content in the JG sample, while L-glycyl-L-isoleucine was rich in the QS sample. Moreover, flavonoid metabolites made the greatest contribution to the unique flavour of Laoxianghuang. The metabolic pathways involved are the biosynthetic pathways of flavonoids, isoflavonoids, flavones, and flavonols. This study can provide some creative information for distinguishing the quality differences of Laoxianghuang from the perspective of metabolites and offer preliminary theoretical support to characterise the formation of flavour substances in Laoxianghuang.
Collapse
|
24
|
Hao J, Zheng L, Han Y, Zhang H, Hou K, Liang X, Chen C, Wang Z, Qian J, Lin Z, Wang Z, Zeng H, Shen C. Genome-wide identification and expression analysis of TCP family genes in Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2023; 14:1161534. [PMID: 37123846 PMCID: PMC10130365 DOI: 10.3389/fpls.2023.1161534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Introduction The anti-tumor vindoline and catharanthine alkaloids are naturally existed in Catharanthus roseus (C. roseus), an ornamental plant in many tropical countries. Plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play important roles in various plant developmental processes. However, the roles of C. roseus TCPs (CrTCPs) in terpenoid indole alkaloid (TIA) biosynthesis are largely unknown. Methods Here, a total of 15 CrTCP genes were identified in the newly updated C. roseus genome and were grouped into three major classes (P-type, C-type and CYC/TB1). Results Gene structure and protein motif analyses showed that CrTCPs have diverse intron-exon patterns and protein motif distributions. A number of stress responsive cis-elements were identified in promoter regions of CrTCPs. Expression analysis showed that three CrTCP genes (CrTCP2, CrTCP4, and CrTCP7) were expressed specifically in leaves and four CrTCP genes (CrTCP13, CrTCP8, CrTCP6, and CrTCP10) were expressed specifically in flowers. HPLC analysis showed that the contents of three classic TIAs, vindoline, catharanthine and ajmalicine, were significantly increased by ultraviolet-B (UV-B) and methyl jasmonate (MeJA) in leaves. By analyzing the expression patterns under UV-B radiation and MeJA application with qRT-PCR, a number of CrTCP and TIA biosynthesis-related genes were identified to be responsive to UV-B and MeJA treatments. Interestingly, two TCP binding elements (GGNCCCAC and GTGGNCCC) were identified in several TIA biosynthesis-related genes, suggesting that they were potential target genes of CrTCPs. Discussion These results suggest that CrTCPs are involved in the regulation of the biosynthesis of TIAs, and provide a basis for further functional identification of CrTCPs.
Collapse
Affiliation(s)
- Juan Hao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Lijun Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yidie Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Jiayi Qian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhihao Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zitong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Chenjia Shen, ; Houqing Zeng,
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Chenjia Shen, ; Houqing Zeng,
| |
Collapse
|
25
|
Abdel-Aziz HMM, Benavides-Mendoza A, Rizwan M, Seleiman MF. Editorial: Nanofertilizers and abiotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1154113. [PMID: 37089660 PMCID: PMC10119583 DOI: 10.3389/fpls.2023.1154113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Heba M. M. Abdel-Aziz
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- *Correspondence: Heba M. M. Abdel-Aziz,
| | | | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| |
Collapse
|
26
|
Zafeiriou I, Ntoanidou S, Baira E, Kasiotis KM, Barmpouni T, Machera K, Mylona PV. Ingenious characterization and assessment of lentil germplasm collection to aphid Acyrthosiphon pisum stress unveils distinct responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1011026. [PMID: 36618648 PMCID: PMC9811392 DOI: 10.3389/fpls.2022.1011026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Lentil cultivation is often hampered by aphid population outspreads with detrimental impacts to crop development and production, challenging food safety and agriculture sustainability. The pea aphid (Acyrthosiphon pisum) is a significant threat to lentil in the temperate zone rainfed systems. A set of management practices including resilient cultivars and application of insecticides have effectively controlled aphid infestation. However, the plant defense against insect pests is scantily dissected and limited to the individual components including antibiosis, antixenosis and tolerance that constitute a combination of plant stress responses. Utilizing a lentil germplasm collection, we assessed the antixenosis and aphid tolerance mechanisms in association to important morphological parameters. Physiological parameters including relative water content (RWC) measured at 24h and 48h post-aphid infestation revealed genotype-specific responses. The contents of key plant hormones including salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA) and indoleacetic acid (IAA) implicated in defense signal-transduction pathways were also determined in lentil accessions after aphid herbivory infestation. In parallel, the expression of hallmark defense genes governed by SA- and JA-signaling pathways at 24h and 48h post aphid herbivory revealed significant differentiation patterns among the accessions. An interplay of hormone crosstalk is unveiled that possibly governs defense responses and aphid resistance. Besides the metabolomic profiling of accessions under aphid herbivory indicated the indispensable role of key secondary metabolites accumulation such as flavonoids, alkaloids, phenolics and fatty acids as a front line of plant defense and a potential integration of hormone signaling pathways in metabolome reprogramming. Overall, the study presents a panorama of distinct lentil responses to aphids and a critical view of the molecular mechanisms implicated in lentil insect defense to further our insight and advance crop protection and breeding approaches in a climate changing environment.
Collapse
Affiliation(s)
- Ioannis Zafeiriou
- Institute of Plant Breeding & Genetic Resources, Hellenic Agricultural Organization - DEMETER (HAO-DEMETER), Thermi, Greece
| | - Symela Ntoanidou
- Institute of Plant Breeding & Genetic Resources, Hellenic Agricultural Organization - DEMETER (HAO-DEMETER), Thermi, Greece
| | - Eirini Baira
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides’ Toxicology, Athens, Kifissia, Greece
| | - Konstantinos M. Kasiotis
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides’ Toxicology, Athens, Kifissia, Greece
| | - Theodora Barmpouni
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides’ Toxicology, Athens, Kifissia, Greece
| | - Kyriaki Machera
- Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides’ Toxicology, Athens, Kifissia, Greece
| | - Photini V. Mylona
- Institute of Plant Breeding & Genetic Resources, Hellenic Agricultural Organization - DEMETER (HAO-DEMETER), Thermi, Greece
| |
Collapse
|
27
|
Sperotto RA, Hrmova M, Graether SP, Timmers LFSM. Editorial: Structural bioinformatics and biophysical approaches for understanding the plant responses to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012584. [PMID: 36161033 PMCID: PMC9507305 DOI: 10.3389/fpls.2022.1012584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Raul A. Sperotto
- Graduate Program in Biotechnology, University of Taquari Valley – Univates, Lajeado, Brazil
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Maria Hrmova
- Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA, Australia
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Luis Fernando S. M. Timmers
- Graduate Program in Biotechnology, University of Taquari Valley – Univates, Lajeado, Brazil
- Graduate Program in Medical Sciences, University of Taquari Valley – Univates, Lajeado, Brazil
| |
Collapse
|