1
|
McBride A, Arblaster G. Schizophrenia and Orthoptic Conditions: A Literature Review. Br Ir Orthopt J 2024; 20:133-145. [PMID: 38681187 PMCID: PMC11049682 DOI: 10.22599/bioj.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose A narrative review of the literature reporting ocular abnormalities in patients with schizophrenia was undertaken to determine the types and prevalence of orthoptic conditions in this patient cohort. Methods A systematic search of multiple databases yielded 1,974 studies published between January 1992 and January 2022. All were screened for relevance based on their title and abstract. Results Seventeen studies were included in the final review. Ocular abnormalities reported in schizophrenia included a high incidence of strabismus, reduced visual acuity and reduced stereopsis compared to controls. Additionally, eye movement abnormalities (including reduced smooth pursuit gain and increased prosaccade latency) were frequently reported. Reduced visual acuity was associated with negative symptoms and reduced quality of life in schizophrenia. Conclusions Orthoptists and eye care professionals should be aware that a higher incidence of strabismus, reduced visual acuity, reduced stereoacuity, and eye movement abnormalities are reported in patients with schizophrenia. Further research is required to determine whether, or to what extent, ocular abnormalities and visual disturbances influence or exacerbate the symptoms of schizophrenia, and whether there is an effect of schizophrenia medication on these orthoptic conditions.
Collapse
Affiliation(s)
- Anna McBride
- University of Sheffield (BMedSci Orthoptics), UK
- University Hospitals Dorset, UK
| | - Gemma Arblaster
- School of Allied Health Professions, Nursing and Midwifery, Faculty of Health, University of Sheffield, UK
| |
Collapse
|
2
|
Kaup B, Ulrich R, Bausenhart KM, Bryce D, Butz MV, Dignath D, Dudschig C, Franz VH, Friedrich C, Gawrilow C, Heller J, Huff M, Hütter M, Janczyk M, Leuthold H, Mallot H, Nürk HC, Ramscar M, Said N, Svaldi J, Wong HY. Modal and amodal cognition: an overarching principle in various domains of psychology. PSYCHOLOGICAL RESEARCH 2024; 88:307-337. [PMID: 37847268 PMCID: PMC10857976 DOI: 10.1007/s00426-023-01878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023]
Abstract
Accounting for how the human mind represents the internal and external world is a crucial feature of many theories of human cognition. Central to this question is the distinction between modal as opposed to amodal representational formats. It has often been assumed that one but not both of these two types of representations underlie processing in specific domains of cognition (e.g., perception, mental imagery, and language). However, in this paper, we suggest that both formats play a major role in most cognitive domains. We believe that a comprehensive theory of cognition requires a solid understanding of these representational formats and their functional roles within and across different domains of cognition, the developmental trajectory of these representational formats, and their role in dysfunctional behavior. Here we sketch such an overarching perspective that brings together research from diverse subdisciplines of psychology on modal and amodal representational formats so as to unravel their functional principles and their interactions.
Collapse
Affiliation(s)
- Barbara Kaup
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany.
| | - Rolf Ulrich
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany.
| | - Karin M Bausenhart
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Donna Bryce
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
- Department of Psychology, University of Augsburg, Augsburg, Germany
| | - Martin V Butz
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - David Dignath
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Carolin Dudschig
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Volker H Franz
- Department of Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Claudia Friedrich
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Caterina Gawrilow
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Jürgen Heller
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Markus Huff
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | - Mandy Hütter
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Markus Janczyk
- Department of Psychology, University of Bremen, Bremen, Germany
| | - Hartmut Leuthold
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Hanspeter Mallot
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Hans-Christoph Nürk
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Michael Ramscar
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Nadia Said
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
| | - Jennifer Svaldi
- Department of Psychology, Fachbereich Psychologie, University of Tübingen, Schleichstr. 4, 72076, Tübingen, Germany
- German Center for Mental Health (DZPG), partner site, Tübingen, Germany
| | - Hong Yu Wong
- Department of Philosophy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Xu X, Li Q, Qian Y, Cai H, Zhang C, Zhao W, Zhu J, Yu Y. Genetic mechanisms underlying gray matter volume changes in patients with drug-naive first-episode schizophrenia. Cereb Cortex 2023; 33:2328-2341. [PMID: 35640648 DOI: 10.1093/cercor/bhac211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Brain structural damage is a typical feature of schizophrenia. Investigating such disease phenotype in patients with drug-naive first-episode schizophrenia (DFSZ) may exclude the confounds of antipsychotics and illness chronicity. However, small sample sizes and marked clinical heterogeneity have precluded definitive identification of gray matter volume (GMV) changes in DFSZ as well as their underlying genetic mechanisms. Here, GMV changes in DFSZ were assessed using a neuroimaging meta-analysis of 19 original studies, including 605 patients and 637 controls. Gene expression data were derived from the Allen Human Brain Atlas and processed with a newly proposed standardized pipeline. Then, we used transcriptome-neuroimaging spatial correlations to identify genes associated with GMV changes in DFSZ, followed by a set of gene functional feature analyses. Meta-analysis revealed consistent GMV reduction in the right superior temporal gyrus, right insula and left inferior temporal gyrus in DFSZ. Moreover, we found that these GMV changes were spatially correlated with expression levels of 1,201 genes, which exhibited a wide range of functional features. Our findings may provide important insights into the genetic mechanisms underlying brain morphological abnormality in schizophrenia.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China.,Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei 238000, China.,Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.,Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei 238000, China.,Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| |
Collapse
|
4
|
Shoham N, Lewis G, Hayes JF, Silverstein SM, Cooper C. Association between visual impairment and psychosis: A longitudinal study and nested case-control study of adults. Schizophr Res 2023; 254:81-89. [PMID: 36805651 DOI: 10.1016/j.schres.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND Theories propose that visual impairment might increase the risk of psychosis, and vice versa. We aimed to investigate the relationship between visual impairment and psychosis in the UK Biobank cohort. STUDY DESIGN In a nested case control study of ~116,000 adults, we tested whether a Schizophrenia Spectrum Disorder (SSD) diagnosis as exposure was associated with visual impairment. We also tested longitudinally whether poorer visual acuity, and thinner retinal structures on Optical Coherence Tomography (OCT) scans in 2009 were associated with psychotic experiences in 2016. We adjusted for age, sex, depression and anxiety symptoms; and socioeconomic variables and vascular risk factors where appropriate. We compared complete case with multiple imputation models, designed to reduce bias potentially introduced by missing data. RESULTS People with visual impairment had greater odds of SSD than controls in multiply imputed data (Adjusted Odds Ratio [AOR] 1.42, 95 % Confidence Interval [CI] 1.05-1.93, p = 0.021). We also found evidence that poorer visual acuity was associated with psychotic experiences during follow-up (AOR per 0.1 point worse visual acuity score 1.06, 95 % CI 1.01-1.11, p = 0.020; and 1.04, 95 % CI 1.00-1.08, p = 0.037 in right and left eye respectively). In complete case data (15 % of this cohort) we found no clear association, although confidence intervals included the multiple imputation effect estimates. OCT measures were not associated with psychotic experiences. CONCLUSIONS Our findings highlight the importance of eye care for people with psychotic illnesses. We could not conclude whether visual impairment is a likely causal risk factor for psychosis.
Collapse
Affiliation(s)
- Natalie Shoham
- University College London Division of Psychiatry, 6th Floor Maple House, 149 Tottenham Court Road, London W1T 7NF, UK; Camden and Islington NHS Foundation Trust, St Pancras Hospital, 4 St Pancras Way, London NW1 0PE, UK.
| | - Gemma Lewis
- University College London Division of Psychiatry, 6th Floor Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| | - Joseph F Hayes
- University College London Division of Psychiatry, 6th Floor Maple House, 149 Tottenham Court Road, London W1T 7NF, UK; Camden and Islington NHS Foundation Trust, St Pancras Hospital, 4 St Pancras Way, London NW1 0PE, UK
| | - Steven M Silverstein
- University of Rochester Medical Center, Department of Psychiatry, 300 Crittenden Boulevard, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Claudia Cooper
- University College London Division of Psychiatry, 6th Floor Maple House, 149 Tottenham Court Road, London W1T 7NF, UK; Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University London, London E1 2AD, UK; East London NHS Foundation Trust, UK
| |
Collapse
|
5
|
Kody E, Diwadkar VA. Magnocellular and parvocellular contributions to brain network dysfunction during learning and memory: Implications for schizophrenia. J Psychiatr Res 2022; 156:520-531. [PMID: 36351307 DOI: 10.1016/j.jpsychires.2022.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Memory deficits are core features of schizophrenia, and a central aim in biological psychiatry is to identify the etiology of these deficits. Scrutiny is naturally focused on the dorsolateral prefrontal cortex and the hippocampal cortices, given these structures' roles in memory and learning. The fronto-hippocampal framework is valuable but restrictive. Network-based underpinnings of learning and memory are substantially diverse and include interactions between hetero-modal and early sensory networks. Thus, a loss of fidelity in sensory information may impact memorial and cognitive processing in higher-order brain sub-networks, becoming a sensory source for learning and memory deficits. In this overview, we suggest that impairments in magno- and parvo-cellular visual pathways result in degraded inputs to core learning and memory networks. The ascending cascade of aberrant neural events significantly contributes to learning and memory deficits in schizophrenia. We outline the network bases of these effects, and suggest that any network perspectives of dysfunction in schizophrenia must assess the impact of impaired perceptual contributions. Finally, we speculate on how this framework enriches the space of biomarkers and expands intervention strategies to ameliorate this prototypical disconnection syndrome.
Collapse
Affiliation(s)
- Elizabeth Kody
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
6
|
Motlaghian SM, Belger A, Bustillo JR, Ford JM, Iraji A, Lim K, Mathalon DH, Mueller BA, O'Leary D, Pearlson G, Potkin SG, Preda A, van Erp TGM, Calhoun VD. Nonlinear functional network connectivity in resting functional magnetic resonance imaging data. Hum Brain Mapp 2022; 43:4556-4566. [PMID: 35762454 PMCID: PMC9491296 DOI: 10.1002/hbm.25972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022] Open
Abstract
In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique using normalized mutual information (NMI) that calculates the nonlinear relationship between different brain regions. We demonstrate our proposed approach using simulated data and then apply it to a dataset previously studied by Damaraju et al. This resting-state fMRI data included 151 schizophrenia patients and 163 age- and gender-matched healthy controls. We first decomposed these data using group independent component analysis (ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear approach. Group analysis identified significant differences in explicitly nonlinear functional network connectivity (FNC) between schizophrenia patients and healthy controls, particularly in the visual cortex, with controls showing more nonlinearity (i.e., higher normalized mutual information between time courses with linear relationships removed) in most cases. Certain domains, including subcortical and auditory, showed relatively less nonlinear FNC (i.e., lower normalized mutual information), whereas links between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall, these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a complementary and potentially important tool for studying brain function by exposing relevant variation that is typically ignored. Beyond this, we propose a method that captures both linear and nonlinear effects in a "boosted" approach. This method increases the sensitivity to group differences compared to the standard linear approach, at the cost of being unable to separate linear and nonlinear effects.
Collapse
Affiliation(s)
- Sara M Motlaghian
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico, USA
| | - Judith M Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Armin Iraji
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| | - Kelvin Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel O'Leary
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Godfrey Pearlson
- Department of Psychiatry and Neurobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
8
|
Shoham N, Cooper C. Eyes, the window on psychosis? BJPsych Open 2022; 8:e44. [PMID: 35139983 PMCID: PMC8867869 DOI: 10.1192/bjo.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Much has been written on the theory that congenital blindness might protect against schizophrenia, but proof remains elusive. It has been suggested that visual ability might be associated with schizophrenia in a bell-shaped distribution, with both lifelong absent and perfect vision being protective. Alternatively, ocular aberrations and schizophrenia may share an aetiology. Any neuronal pathology implicated in schizophrenia could affect the retina, since it is an embryological extension of the brain. The retina is more amenable to direct imaging than other parts of the central nervous system and may give unique insights into schizophrenia-associated neuropathology. It is also possible that psychosis causes visual impairment: people with psychotic illnesses are probably not accessing optical care optimally and have higher levels of risk factors for visual loss.
Collapse
Affiliation(s)
- Natalie Shoham
- Division of Psychiatry, University College London (UCL), UK; and Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK
| | - Claudia Cooper
- Division of Psychiatry, University College London (UCL), UK; and Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK
| |
Collapse
|
9
|
Hettwer MD, Lancaster TM, Raspor E, Hahn PK, Mota NR, Singer W, Reif A, Linden DEJ, Bittner RA. Evidence From Imaging Resilience Genetics for a Protective Mechanism Against Schizophrenia in the Ventral Visual Pathway. Schizophr Bull 2022; 48:551-562. [PMID: 35137221 PMCID: PMC9077432 DOI: 10.1093/schbul/sbab151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Illuminating neurobiological mechanisms underlying the protective effect of recently discovered common genetic resilience variants for schizophrenia is crucial for more effective prevention efforts. Current models implicate adaptive neuroplastic changes in the visual system and their pro-cognitive effects as a schizophrenia resilience mechanism. We investigated whether common genetic resilience variants might affect brain structure in similar neural circuits. METHOD Using structural magnetic resonance imaging, we measured the impact of an established schizophrenia polygenic resilience score (PRSResilience) on cortical volume, thickness, and surface area in 101 healthy subjects and in a replication sample of 33 224 healthy subjects (UK Biobank). FINDING We observed a significant positive whole-brain correlation between PRSResilience and cortical volume in the right fusiform gyrus (FFG) (r = 0.35; P = .0004). Post-hoc analyses in this cluster revealed an impact of PRSResilience on cortical surface area. The replication sample showed a positive correlation between PRSResilience and global cortical volume and surface area in the left FFG. CONCLUSION Our findings represent the first evidence of a neurobiological correlate of a genetic resilience factor for schizophrenia. They support the view that schizophrenia resilience emerges from strengthening neural circuits in the ventral visual pathway and an increased capacity for the disambiguation of social and nonsocial visual information. This may aid psychosocial functioning, ameliorate the detrimental effects of subtle perceptual and cognitive disturbances in at-risk individuals, and facilitate coping with the cognitive and psychosocial consequences of stressors. Our results thus provide a novel link between visual cognition, the vulnerability-stress concept, and schizophrenia resilience models.
Collapse
Affiliation(s)
- Meike D Hettwer
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas M Lancaster
- School of Psychology, Bath University, Bath, UK,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Eva Raspor
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Peter K Hahn
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Wolf Singer
- Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany,Max Planck Institute for Brain Research (MPI BR), Frankfurt am Main, Germany,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK,School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Robert A Bittner
- To whom correspondence should be addressed; Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany; tel: 69-6301-84713, fax: 69-6301-81775, e-mail:
| |
Collapse
|
10
|
Bui TA, Shatto J, Cuppens T, Droit A, Bolduc FV. Phenotypic Trade-Offs: Deciphering the Impact of Neurodiversity on Drug Development in Fragile X Syndrome. Front Psychiatry 2021; 12:730987. [PMID: 34733188 PMCID: PMC8558248 DOI: 10.3389/fpsyt.2021.730987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common single-gene cause of intellectual disability and autism spectrum disorder. Individuals with FXS present with a wide range of severity in multiple phenotypes including cognitive delay, behavioral challenges, sleep issues, epilepsy, and anxiety. These symptoms are also shared by many individuals with other neurodevelopmental disorders (NDDs). Since the discovery of the FXS gene, FMR1, FXS has been the focus of intense preclinical investigation and is placed at the forefront of clinical trials in the field of NDDs. So far, most studies have aimed to translate the rescue of specific phenotypes in animal models, for example, learning, or improving general cognitive or behavioral functioning in individuals with FXS. Trial design, selection of outcome measures, and interpretation of results of recent trials have shown limitations in this type of approach. We propose a new paradigm in which all phenotypes involved in individuals with FXS would be considered and, more importantly, the possible interactions between these phenotypes. This approach would be implemented both at the baseline, meaning when entering a trial or when studying a patient population, and also after the intervention when the study subjects have been exposed to the investigational product. This approach would allow us to further understand potential trade-offs underlying the varying effects of the treatment on different individuals in clinical trials, and to connect the results to individual genetic differences. To better understand the interplay between different phenotypes, we emphasize the need for preclinical studies to investigate various interrelated biological and behavioral outcomes when assessing a specific treatment. In this paper, we present how such a conceptual shift in preclinical design could shed new light on clinical trial results. Future clinical studies should take into account the rich neurodiversity of individuals with FXS specifically and NDDs in general, and incorporate the idea of trade-offs in their designs.
Collapse
Affiliation(s)
- Truong An Bui
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Julie Shatto
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Tania Cuppens
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - François V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Shoham N, Hayes JF, Cooper C, Theodorsson M, Lewis G. Association Between Childhood Visual Acuity and Late Adolescent Psychotic Experiences: A Prospective Birth Cohort Study. Schizophr Bull 2021; 48:325-334. [PMID: 34624117 PMCID: PMC8886579 DOI: 10.1093/schbul/sbab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A cross-sectional association between visual impairment and psychosis exists, but longitudinal evidence from children and young people is limited. We investigated whether childhood visual acuity was associated with subsequent psychotic experiences. Our sample was 6686 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We investigated whether our primary exposures, best corrected visual acuity at ages 7 and 11, were associated with psychotic experiences at ages 17 and 24. We also tested whether the following exposures at ages 7 and 11 were associated with subsequent psychotic experiences: requiring glasses, presence of any visual impairment, and between-eye visual acuity difference; and at age 7: strabismus, measures of binocular vision, history of eye patch, near vision impairment, and abnormal saccadic or pursuit eye movements. Analyses used multilevel models before and after adjusting for confounders. Odds of psychotic experiences increased with each 0.1-point deterioration in visual acuity score at age 11 (adjusted odds ratio [AOR] 1.23; 95% confidence interval [CI] 1.06-1.42), and at age 7 (AOR 1.18; 95% CI 1.00-1.40). Wearing glasses and visual impairment at age 11 were associated with psychotic experiences (AOR 1.63; 95% CI 1.21-2.19; AOR 1.64; 95% CI 1.23-2.19, respectively). There was no evidence of an association with other visual exposures. Visual acuity impairment in childhood is associated with psychotic experiences in late adolescence. Future research should aim to elucidate the nature of this association.
Collapse
Affiliation(s)
- Natalie Shoham
- Division of Psychiatry, University College London, London, UK,Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK,To whom correspondence should be addressed; Division of Psychiatry, University College London, 6th Floor Maple House, 149 Tottenham Court Road, London W1C 7NF, UK; e-mail:
| | - Joseph F Hayes
- Division of Psychiatry, University College London, London, UK,Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK
| | - Claudia Cooper
- Division of Psychiatry, University College London, London, UK,Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK
| | | | - Gemma Lewis
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
12
|
Zhuo C, Xiao B, Ji F, Lin X, Jiang D, Tian H, Xu Y, Wang W, Chen C. Patients with first-episode untreated schizophrenia who experience concomitant visual disturbances and auditory hallucinations exhibit co-impairment of the brain and retinas-a pilot study. Brain Imaging Behav 2021; 15:1533-1541. [PMID: 32748321 DOI: 10.1007/s11682-020-00351-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are limited structural brain and retina alteration data from schizophrenia patients who experience visual disturbances (VDs) with or without auditory hallucinations (AHs). We compared brain and retina alterations between first-episode untreated schizophrenia patients with VDs (FUSCH-VDs) with versus without AHs, and between patients and healthy controls (HCs)(N = 30/group). VDs, AHs, gray matter volumes (GMVs), and retinal thicknesses were evaluated with the Bonn Scale for Assessment of Basic Symptoms (BSABS) scale, the Auditory Hallucinations Rating Scale (AHRS), magnetic resonance imaging (MRI), and optical coherence tomography (OCT), respectively. Compared to HCs, FUSCH-VDs had reduced GMVs, mainly in dorsal V3/V3A and V5 regions, the fusiform gyrus, and ventral V4 and V8 regions. Most FUSCH-VDs (85.0%; 51/60) had primary visual cortex-retina co-impairments. FUSCH-VDs with AHs had more serious and larger scope GMV reductions than FUSCH-VDs without AHs. FUSCH-VDs with AHs had significant retinal thickness reductions compared to HCs. Primary visual cortex-retina co-impairments were found to be more common, and more pronounced when present, in FUSCH-VDs with AHs than in FUSCH-VDs without AHs. The present findings support the notion that VDs and AHs may have reciprocal deteriorating actions in patients with schizophrenia.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, 272119, Shandong, China. .,Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China. .,Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China.
| | - Bo Xiao
- Department of OCT, Tianjin Eye Hospital, Tianjin, 300034, China
| | - Feng Ji
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, 272119, Shandong, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China
| | - Deguo Jiang
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenqiang Wang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, 361000, Fujian, China
| | - Ce Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
13
|
Shoham N, Eskinazi M, Hayes JF, Lewis G, Theodorsson M, Cooper C. Associations between psychosis and visual acuity impairment: A systematic review and meta-analysis. Acta Psychiatr Scand 2021; 144:6-27. [PMID: 34028803 PMCID: PMC8504204 DOI: 10.1111/acps.13330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Several theories propose that visual acuity impairment is associated with psychosis. Visual impairment could lead to psychosis or the converse, or they may share underlying pathology or risk factors. In the first evidence synthesis in this area for over 25 years, we collated studies measuring the association between visual acuity impairment and psychosis. METHODS We searched the MEDLINE, EMBASE, PsycINFO, and Web of Science databases for studies published from 1992 to 2020, using the Newcastle Ottawa Scale to assess risk of bias. We narratively synthesized findings and meta-analyzed sufficiently homogenous results. RESULTS We included 40 papers, which reported on 31 studies. Evidence from seven cohort studies was inconsistent, which precluded meta-analysis of this study design. These contradictory results also made it difficult to draw conclusions regarding a temporal association. We found evidence for an association from eight cross-sectional studies treating visual acuity impairment as the exposure and psychosis as the outcome [pooled odds ratio (OR) =1.76, 95% confidence interval (CI): 1.34-2.31], and four with the reverse exposure and outcome (OR: 1.85, 95% CI: 1.17-2.92). Seven case-control studies with mixed findings were found, but only two primarily addressed our research question, and these findings were mixed. CONCLUSIONS Although evidence supports a cross-sectional association between visual acuity impairment and psychosis, further research is needed to clarify the temporal direction, given the mixed findings in cohort studies. Understanding the association may give insights into prevention strategies for people at risk of visual acuity impairment and psychosis.
Collapse
Affiliation(s)
- Natalie Shoham
- Division of PsychiatryUniversity College LondonLondonUK,Camden and Islington NHS Foundation TrustLondonUK
| | - Michelle Eskinazi
- Division of PsychiatryUniversity College LondonLondonUK,Camden and Islington NHS Foundation TrustLondonUK
| | - Joseph F. Hayes
- Division of PsychiatryUniversity College LondonLondonUK,Camden and Islington NHS Foundation TrustLondonUK
| | - Gemma Lewis
- Division of PsychiatryUniversity College LondonLondonUK
| | | | - Claudia Cooper
- Division of PsychiatryUniversity College LondonLondonUK,Camden and Islington NHS Foundation TrustLondonUK
| |
Collapse
|
14
|
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY,Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY,Center for Visual Science, University of Rochester, Rochester, NY,To whom correspondence should be addressed; Department of Psychiatry, University of Rochester Medical Center, 300 Crittenden Boulevard, Rochester, NY 14642, US; tel: 505-275-6742, fax: 585-276-2094, e-mail:
| | - Brian P Keane
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY,Center for Visual Science, University of Rochester, Rochester, NY
| | | |
Collapse
|
15
|
Crabtree J, Hudson JL, Brockman R, Newton-John T. Spatial working memory, not IQ or executive function, discriminates early psychosis and clinically vulnerable creative individuals. Early Interv Psychiatry 2021; 15:47-56. [PMID: 31910493 DOI: 10.1111/eip.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/13/2019] [Accepted: 12/14/2019] [Indexed: 12/01/2022]
Abstract
AIM While associations between creativity and psychopathology have been well researched, the specific cognitive processes that distinguish highly creative from those with psychopathology warrant further investigation. This study will examine whether IQ, executive function, cognitive inhibition or spatial working memory differentiate individuals with early psychosis, clinically vulnerable creative individuals, creative controls and non-creative controls. METHODS The study sample consisted of 110 participants: early psychosis (n = 21); clinically vulnerable creative controls (n = 25); creative controls (n = 30) and non-creative control (n = 34). The Diagnostic Interview for Psychosis assessed early psychosis participants and the Mini Neuropsychiatric Interview was used to screen for psychopathology in the remaining groups. Several cognitive tests were administered: IQ, neurocognitive measures of executive function and spatial working memory. Creativity was assessed using the Torrance Test of Creativity and Creative Achievement Questionnaire. A measure of vividness of mental imagery was also given. RESULTS Across all cognitive tests, spatial working memory differentiated the early psychosis group from both creative and non-creative control groups. Spatial working memory predicted group membership but vivid imagery was a better predictor of creative achievement. The early psychosis, clinically vulnerable creative and creative groups all recorded significantly higher results on creative achievement and creative cognition compared to non-creative controls. CONCLUSIONS Our results provide further support for spatial working memory as an early neuro-cognitive marker for early psychosis. Spatial working memory, rather than IQ or executive function, may also be an early protective factor for clinically vulnerable young creative individuals.
Collapse
Affiliation(s)
- Julie Crabtree
- Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jennifer L Hudson
- Centre for Emotional Health, Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Robert Brockman
- Institute for Positive Psychology and Education, Australian Catholic University, Sydney, New South Wales, Australia
| | - Toby Newton-John
- Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Abstract
It is now well documented that schizophrenia is associated with impairments in visual processing at all levels of vision, and that these disturbances are related to deficits in multiple higher-level cognitive and social cognitive functions. Visual remediation methods have been slow to appear in the literature as a potential treatment strategy to target these impairments, however, in contrast to interventions that aim to improve auditory and higher cognitive functions in schizophrenia. In this report, we describe a National Institute of Mental Health (NIMH)-funded R61/R33 grant that uses a phased approach to optimize and evaluate a novel visual remediation intervention for people with schizophrenia. The goals of this project are: (1) in the R61 phase, to establish the optimal components and dose (number of sessions) of a visual remediation intervention from among two specific visual training strategies (and their combination) for improving low and mid-level visual functions in schizophrenia; and (2) in the R33 phase, to determine the extent to which the optimal intervention improves not only visual processing but also higher-level cognitive and role functions. Here we present the scientific background for and innovation of the study, along with our methods, hypotheses, and preliminary data. The results of this study will help determine the utility of this novel intervention approach for targeting visual perceptual, cognitive, and functional impairments in schizophrenia.
Collapse
|
17
|
Shoham N, Lewis G, Hayes J, McManus S, Kiani R, Brugha T, Bebbington P, Cooper C. Psychotic symptoms and sensory impairment: Findings from the 2014 adult psychiatric morbidity survey. Schizophr Res 2020; 215:357-364. [PMID: 31481335 PMCID: PMC7613093 DOI: 10.1016/j.schres.2019.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Hearing and visual impairment have been associated with psychosis. Mechanisms behind this are poorly understood. We tested whether i) self-reported hearing and visual impairments are associated with psychotic symptoms in the 2014 UK Adult Psychiatric Morbidity Survey; ii) the odds of having psychotic symptoms vary with self-perceived degree of impairments; and iii) reduced social functioning partially explains these associations. METHODS We analysed cross-sectional data using logistic regression. Hearing and visual impairment were the exposures, and screening positive on the Psychosis Screening Questionnaire was the outcome. We used structural equation modelling to assess mediation by social functioning, measured by the Social Functioning Questionnaire. RESULTS Psychotic symptoms were strongly associated with visual impairment (Adjusted Odds Ratio (AOR) 1.81, 95% Confidence Intervals (CI) 1.33 to 2.44), especially moderate visual impairment (AOR 2.75, 95% CI 1.78 to 4.24, p < .001). Psychotic symptoms were associated with a severe degree of hearing impairment (AOR 4.94, 95% CI 1.66 to 14.67, p = .004), and weakly associated with hearing impairment overall (AOR 1.50, 95% CI 1.10 to 2.04, p = .010). Social functioning accounted for approximately 50% of associations with both types of sensory impairment, but the confidence intervals around these estimates were broad. CONCLUSIONS Our findings suggest an association between psychosis and visual impairment, with the strongest evidence for moderate visual impairment; the findings also support a linear relationship between psychosis and degree of hearing impairment. Social functioning may mediate these relationships and be a potential target for intervention, alongside sensory correction. These should be investigated longitudinally.
Collapse
Affiliation(s)
- Natalie Shoham
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London W1T 7BN, United Kingdom of Great Britain and Northern Ireland.
| | - Gemma Lewis
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London W1T 7BN, United Kingdom of Great Britain and Northern Ireland
| | - Joseph Hayes
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London W1T 7BN, United Kingdom of Great Britain and Northern Ireland
| | - Sally McManus
- NatCen Social Research, 35 Northampton Square, London EC1V 0AX, United Kingdom of Great Britain and Northern Ireland
| | - Reza Kiani
- University of Leicester, Centre for Medicine, University Road, Leicester LE1 7RH, United Kingdom of Great Britain and Northern Ireland
| | - Traolach Brugha
- University of Leicester, Centre for Medicine, University Road, Leicester LE1 7RH, United Kingdom of Great Britain and Northern Ireland
| | - Paul Bebbington
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London W1T 7BN, United Kingdom of Great Britain and Northern Ireland
| | - Claudia Cooper
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London W1T 7BN, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
18
|
Abstract
The relationship between visual loss and psychosis is complex: congenital visual loss appears to be protective against the development of a psychotic disorder, particularly schizophrenia. In later life, however, visual deprivation or visual loss can give rise to hallucinosis, disorders of visual insight such as blindsight or Anton syndrome, or, in the context of neurodegenerative disorders, more complex psychotic presentations. We draw on a computational psychiatric approach to consider the foundational role of vision in the construction of representations of the world and the effects of visual loss at different developmental stages. Using a Bayesian prediction error minimization model, we describe how congenital visual loss may be protective against the development of the kind of computational deficits postulated to underlie schizophrenia, by increasing the precision (and consequent stability) of higher-level (including supramodal) priors, focusing on visual loss-induced changes in NMDA receptor structure and function as a possible mechanistic substrate. In simple terms, we argue that when people cannot see from birth, they rely more heavily on the context they extract from the other senses, and the resulting model of the world is more impervious to the false inferences, made in the face of inevitably noisy perceptual input, that characterize schizophrenia. We show how a Bayesian prediction error minimization framework can also explain the relationship between later visual loss and other psychotic symptoms, as well as the effects of visual deprivation and hallucinogenic drugs, and outline experimentally testable hypotheses generated by this approach.
Collapse
Affiliation(s)
- Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, New Haven, CT,To whom correspondence should be addressed; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s Health Partners, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK; tel: +44 (0) 207 848 5135, fax: +44 (0) 207 848 0572, e-mail:
| | - Philip R Corlett
- Department of Psychiatry and Psychology, Yale University, School of Medicine, Connecticut Mental Health Center, New Haven, CT
| |
Collapse
|
19
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
20
|
Crespi B, Dinsdale N. Autism and psychosis as diametrical disorders of embodiment. Evol Med Public Health 2019; 2019:121-138. [PMID: 31402979 PMCID: PMC6682708 DOI: 10.1093/emph/eoz021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Humans have evolved an elaborate system of self-consciousness, self-identity, self-agency, and self-embodiment that is grounded in specific neurological structures including an expanded insula. Instantiation of the bodily self has been most-extensively studied via the 'rubber hand illusion', whereby parallel stimulation of a hidden true hand, and a viewed false hand, leads to the felt belief that the false hand is one's own. Autism and schizophrenia have both long been regarded as conditions centrally involving altered development of the self, but they have yet to be compared directly with regard to the self and embodiment. Here, we synthesize the embodied cognition literature for these and related conditions, and describe evidence that these two sets of disorders exhibit opposite susceptibilities from typical individuals to the rubber hand illusion: reduced on the autism spectrum and increased in schizophrenia and other psychotic-affective conditions. Moreover, the opposite illusion effects are mediated by a consilient set of associated phenomena, including empathy, interoception, anorexia risk and phenotypes, and patterns of genetic correlation. Taken together, these findings: (i) support the diametric model of autism and psychotic-affective disorders, (ii) implicate the adaptive human system of self-embodiment, and its neural bases, in neurodevelopmental disorders, and suggest new therapies and (iii) experimentally ground Bayesian predictive coding models with regard to autism compared with psychosis. Lay summary: Humans have evolved a highly developed sense of self and perception of one's own body. The 'rubber hand illusion' can be used to test individual variation in sense of self, relative to connection with others. We show that this illusion is reduced in autism spectrum disorders, and increased in psychotic and mood disorders. These findings have important implications for understanding and treatment of mental disorders.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Natalie Dinsdale
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Hayes JF, Picot S, Osborn DPJ, Lewis G, Dalman C, Lundin A. Visual Acuity in Late Adolescence and Future Psychosis Risk in a Cohort of 1 Million Men. Schizophr Bull 2019; 45:571-578. [PMID: 29901774 PMCID: PMC6483575 DOI: 10.1093/schbul/sby084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND We aimed to determine whether late adolescent visual impairment is associated with later psychosis. METHODS We conducted a longitudinal cohort study of Swedish male military conscripts aged 18 or 19 years from January 1, 1974, through December 31, 1997 (N = 1140710). At conscription, uncorrected and optometry-lens-corrected distance visual acuity was measured. Participants were then followed up to see if they received an inpatient diagnosis of non-affective psychotic disorder, including schizophrenia (N = 10769). Multivariable Cox modeling was used to estimate differences between groups. RESULTS After adjustment for confounders, those with severe impairment before optical correction in their best eye (decimal fraction <0.3) had an increased psychosis rate compared to those with normal uncorrected vision (decimal fraction 1.0) (hazard ratio [HR] 1.26, 95% CI 1.16-1.37). Larger interocular visual acuity difference was associated with an increased psychosis rate (adjusted HR 1.49, 95% CI 1.37-1.63 in those with differences >0.5 compared to those with no between eye acuity difference). Individuals with impaired vision that could not be corrected to normal with lenses had highest rates of psychosis (best eye adjusted HR 1.56; 95% CI 1.33-1.82), those with imperfect, but correctable vision also had elevated rates (best eye adjusted HR 1.21; 95% CI 1.15-1.28). Individuals with visual impairment had higher rates of psychosis than their full siblings with normal vision (adjusted HR 1.20, 95% CI 1.07-1.35). CONCLUSIONS Impaired visual acuity is associated with non-affective psychosis. Visual impairment as a phenotype in psychosis requires further consideration.
Collapse
Affiliation(s)
- Joseph F Hayes
- Division of Psychiatry, University College London, London, UK,To whom correspondence should be addressed; Division of Psychiatry, University College London, 6th Floor Maple House, 149 Tottenham Court Road, London W1T 7NF, UK; tel: 020-767-99736, e-mail:
| | - Suzanne Picot
- Division of Psychiatry, University College London, London, UK
| | | | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Christina Dalman
- Department of Public Health Sciences, Unit of Public Health Epidemiology, Karolinska Institute, Stockholm, Sweden
| | - Andreas Lundin
- Department of Public Health Sciences, Unit of Public Health Epidemiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
22
|
Seasonality of births in horizontal strabismus: comparison with birth seasonality in schizophrenia and other disease conditions. J Dev Orig Health Dis 2019; 10:636-644. [PMID: 30898179 DOI: 10.1017/s2040174419000102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent work has implicated one type of horizontal strabismus (exotropia) as a risk factor for schizophrenia. This new insight raises questions about a potential common developmental origin of the two diseases. Seasonality of births is well established for schizophrenia. Seasonal factors such as light exposure affect eye growth and can cause vision abnormalities, but little is known about seasonality of births in strabismus. We examined birth seasonality in people with horizontal strabismus in a retrospective study in Washoe County, Nevada, and re-examined similar previously obtained data from Osaka, Japan. We then compared seasonal patterns of births between strabismus, refractive error, schizophrenia and congenital toxoplasmosis. Patients with esotropia had a significant seasonality of births, with a deficit in March, then increasing to an excess in September, while patients with exotropia had a distinctly different pattern, with an excess of births in July, gradually decreasing to a deficit in November. These seasonalities were statistically significant with either χ2 or Kolmogorov-Smirnov-type statistics. The birth seasonality of esotropia resembled that for hyperopia, with an increase in amplitude, while the seasonality for myopia involved a phase-shift. There was no correlation between seasonality of births between strabismus and congenital toxoplasmosis. The pattern of an excess of summer births for people with exotropia was remarkably similar to the well-established birth seasonality of one schizophrenia subtype, the deficit syndrome, but not schizophrenia as a whole. This suggests a testable hypothesis: that exotropia may be a risk factor primarily for the deficit type of schizophrenia.
Collapse
|
23
|
Abstract
After been exposed to the visual input, in the first year of life, the brain experiences subtle but massive changes apparently crucial for communicative/emotional and social human development. Its lack could be the explanation of the very high prevalence of autism in children with total congenital blindness. The present theory postulates that the superior colliculus is the key structure for such changes for several reasons: it dominates visual behavior during the first months of life; it is ready at birth for complex visual tasks; it has a significant influence on several hemispheric regions; it is the main brain hub that permanently integrates visual and non-visual, external and internal information (bottom-up and top-down respectively); and it owns the enigmatic ability to take non-conscious decisions about where to focus attention. It is also a sentinel that triggers the subcortical mechanisms which drive social motivation to follow faces from birth and to react automatically to emotional stimuli. Through indirect connections it also activates simultaneously several cortical structures necessary to develop social cognition and to accomplish the multiattentional task required for conscious social interaction in real life settings. Genetic or non-genetic prenatal or early postnatal factors could disrupt the SC functions resulting in autism. The timing of postnatal biological disruption matches the timing of clinical autism manifestations. Astonishing coincidences between etiologies, clinical manifestations, cognitive and pathogenic autism theories on one side and SC functions on the other are disclosed in this review. Although the visual system dependent of the SC is usually considered as accessory of the LGN canonical pathway, its imprinting gives the brain a qualitatively specific functions not supplied by any other brain structure.
Collapse
Affiliation(s)
- Rubin Jure
- Centro Privado de Neurología y Neuropsicología Infanto Juvenil WERNICKE, Córdoba, Argentina
| |
Collapse
|
24
|
Morgan VA, Clark M, Crewe J, Valuri G, Mackey DA, Badcock JC, Jablensky A. Congenital blindness is protective for schizophrenia and other psychotic illness. A whole-population study. Schizophr Res 2018; 202:414-416. [PMID: 30539775 DOI: 10.1016/j.schres.2018.06.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Congenital/early blindness is reportedly protective against schizophrenia. Using a whole-population cohort of 467,945 children born in Western Australia between 1980 and 2001, we examined prevalence of schizophrenia and psychotic illness in individuals with congenital/early blindness. Overall, 1870 children developed schizophrenia (0.4%) while 9120 developed a psychotic illness (1.9%). None of the 66 children with cortical blindness developed schizophrenia or psychotic illness. Eight of the 613 children with peripheral blindness developed a psychotic illness other than schizophrenia and fewer had developed schizophrenia. Our results support findings from small case studies that congenital/early cortical but not peripheral blindness is protective against schizophrenia.
Collapse
Affiliation(s)
- Vera A Morgan
- Neuropsychiatric Epidemiology Research Unit, Division of Psychiatry, Faculty of Health and Medical Sciences, University of Western Australia, Medical Research Foundation Building, Rear 50, Murray Street, Perth 6000, Australia; Centre for Clinical Research in Neuropsychiatry, Division of Psychiatry, Faculty of Health and Medical Sciences, University of Western Australia, Medical Research Foundation Building, Rear 50, Murray Street, Perth 6000, Australia.
| | - Melanie Clark
- Centre for Clinical Research in Neuropsychiatry, Division of Psychiatry, Faculty of Health and Medical Sciences, University of Western Australia, Medical Research Foundation Building, Rear 50, Murray Street, Perth 6000, Australia
| | - Julie Crewe
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Australia
| | - Giulietta Valuri
- Neuropsychiatric Epidemiology Research Unit, Division of Psychiatry, Faculty of Health and Medical Sciences, University of Western Australia, Medical Research Foundation Building, Rear 50, Murray Street, Perth 6000, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Australia
| | - Johanna C Badcock
- Centre for Clinical Research in Neuropsychiatry, Division of Psychiatry, Faculty of Health and Medical Sciences, University of Western Australia, Medical Research Foundation Building, Rear 50, Murray Street, Perth 6000, Australia; Perth Voices Clinic, South Street, Murdoch, WA 6150, Australia
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry, Division of Psychiatry, Faculty of Health and Medical Sciences, University of Western Australia, Medical Research Foundation Building, Rear 50, Murray Street, Perth 6000, Australia
| |
Collapse
|
25
|
Wu L, Caprihan A, Bustillo J, Mayer A, Calhoun V. An approach to directly link ICA and seed-based functional connectivity: Application to schizophrenia. Neuroimage 2018; 179:448-470. [PMID: 29894827 PMCID: PMC6072460 DOI: 10.1016/j.neuroimage.2018.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Independent component analysis (ICA) and seed-based analyses are widely used techniques for studying intrinsic neuronal activity in task-based or resting scans. In this work, we show there is a direct link between the two, and show that there are some important differences between the two approaches in terms of what information they capture. We developed an enhanced connectivity-matrix independent component analysis (cmICA) for calculating whole brain voxel maps of functional connectivity, which reduces the computational complexity of voxel-based connectivity analysis on performing many temporal correlations. We also show there is a mathematical equivalency between parcellations on voxel-to-voxel functional connectivity and simplified cmICA. Next, we used this cost-efficient data-driven method to examine the resting state fMRI connectivity in schizophrenia patients (SZ) and healthy controls (HC) on a whole brain scale and further quantified the relationship between brain functional connectivity and cognitive performances measured by the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) battery. Current results suggest that SZ exhibit a wide-range abnormality, primarily a decrease, in functional connectivity both between networks and within different network hubs. Specific functional connectivity decreases were associated with MATRICS performance deficits. In addition, we found that resting state functional connectivity decreases was extensively associated with aging regardless of groups. In contrast, there was no relationship between positive and negative symptoms in the patients and functional connectivity. In sum, we have developed a novel mathematical relationship between ICA and seed-based connectivity that reduces computational complexity, which has broad applicability, and showed a specific application of this approach to characterize connectivity changes associated with cognitive scores in SZ.
Collapse
Affiliation(s)
- Lei Wu
- The Mind Research Network, Albuquerque, NM, 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
| | | | - Juan Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew Mayer
- The Mind Research Network, Albuquerque, NM, 87106, USA
| | - Vince Calhoun
- The Mind Research Network, Albuquerque, NM, 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychiatry, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
26
|
A Possible Link between Anxiety and Schizophrenia and a Possible Role of Anhedonia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2018; 2018:5917475. [PMID: 29593903 PMCID: PMC5822762 DOI: 10.1155/2018/5917475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/24/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
In the prodromal phase of schizophrenia, severe alterations of the visual appearance of the environment have been found, accompanied by a state of intense anxiety. The present study considers the possibility that these alterations really exist in the appearance of objects, but that healthy people do not see them. The image of the world that we see is continuously deformed and fragmented by foreshortenings, partial overlapping, and so on and must be constantly reassembled and interpreted; otherwise, it could change so much that we would hardly recognize it. Since pleasure has been found to be involved in visual and cognitive information processing, the possibility is considered that anhedonia (the reduction of the ability to feel pleasure) might interfere with the correct reconstruction and interpretation of the image of the environment and alter its appearance. The possibility is also considered that these alterations might make the environment hostile, might at times evoke the sensation of being trapped by a predator, and might be the cause of the anxiety that accompanies them. According to some authors, they might also induce delusional ideas, in an attempt to restore meaning in a world that has become chaotic and frightening.
Collapse
|
27
|
Agarwal AB, Christensen AJ, Feng CY, Wen D, Johnson LA, von Bartheld CS. Expression of schizophrenia biomarkers in extraocular muscles from patients with strabismus: an explanation for the link between exotropia and schizophrenia? PeerJ 2017; 5:e4214. [PMID: 29302405 PMCID: PMC5742522 DOI: 10.7717/peerj.4214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/10/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies have implicated exotropia as a risk factor for schizophrenia. We determined whether schizophrenia biomarkers have abnormal levels of expression in extraocular muscles from patients with strabismus and explored whether differences in gene expression between medial and lateral rectus muscles may explain the specific association of schizophrenia with exotropia but not esotropia. Samples from horizontal extraocular muscles were obtained during strabismus surgery and compared with age- and muscle type-matched normal muscles from organ donors. We used PCR arrays to identify differences in gene expression among 417 signaling molecules. We then focused on established schizophrenia-related growth factors, cytokines, and regulators of the extracellular matrix. Among 36 genes with significantly altered gene expression in dysfunctional horizontal rectus muscles, over one third were schizophrenia-related: CTGF, CXCR4, IL1B, IL10RA, MIF, MMP2, NPY1R, NRG1, NTRK2, SERPINA3, TIMP1, TIMP2, and TNF (adjusted p value ≤ 0.016667). By PCR array, expression of three of these genes was significantly different in medial rectus muscles, while eleven were significantly altered in lateral rectus muscles. Comparing baseline levels between muscle types, three schizophrenia-related genes (NPY1R, NTRK2, TIMP2) had lower levels of expression in medial rectus muscles. Despite the surprisingly large number of schizophrenia-related genes with altered gene expression levels in dysfunctional muscles, the lack of specificity for medial rectus muscles undermines a model of shared, region-specific gene expression abnormalities between exotropia and schizophrenia, but rather suggests consideration of the alternative model: that exotropia-induced aberrant early visual experiences may enable and/or contribute as a causative factor to the development of schizophrenia.
Collapse
Affiliation(s)
- Andrea B. Agarwal
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Austin J. Christensen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Cheng-Yuan Feng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Dan Wen
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | | | | |
Collapse
|
28
|
Parellada M, Gomez-Vallejo S, Burdeus M, Arango C. Developmental Differences Between Schizophrenia and Bipolar Disorder. Schizophr Bull 2017; 43:1176-1189. [PMID: 29045744 PMCID: PMC5737496 DOI: 10.1093/schbul/sbx126] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ample evidence supports a neurodevelopmental origin in some cases of schizophrenia (SZ). More inconsistent information is available for bipolar disorder (BD). We herein review studies with a focus on premorbid (adjustment and functionality) and early developmental milestones that include both SZ and BD patients. A search was performed in the PubMed electronic database, retrieving 619 abstracts; 30 were ultimately included in this systematic review. Eight prospective cohorts, 15 retrospective studies, and 7 studies based on national registries. Psychomotor developmental deviations and general adjustment problems characterize the childhood of subjects later diagnosed with SZ or BD; they are more marked in those later diagnosed with SZ vs BD, earlier onset vs later onset, and psychotic vs nonpsychotic disorders. Cognitive impairment follows a linear risk trend for SZ and a U-shaped trend for BD. Social isolation and visuoperceptual/reading anomalies more frequently antecede SZ. Pervasive developmental disorders increase the risk for both SZ and BD, more so in cases with normal intelligence. The predictive risk of each isolated developmental marker is low, but a significant percentage of subjects with SZ and a minority of adults with BD showed signs of premorbid abnormalities in childhood. The great limitation is still the lack of studies comparing SZ and BD that include psychotic and nonpsychotic bipolar cases separately. There are many cases, even in childhood/adolescent SZ, where no premorbid anomalies are found, and immunological disorders or other etiologies should be searched for. At least in cases with clear neurodevelopmental markers, rare genetic variants should be investigated.
Collapse
Affiliation(s)
- Mara Parellada
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain,IiSGM, School of Medicine, Universidad Complutense, CIBERSAM, Madrid, Spain,To whom correspondence should be addressed; Mara Parellada, Hospital General Universitario Gregorio Marañón, Ibiza 43, Madrid 28009, Spain; tel: +34-91-5868133, fax: +34-91-4265004, e-mail:
| | - Sandra Gomez-Vallejo
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Monica Burdeus
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain,IiSGM, School of Medicine, Universidad Complutense, CIBERSAM, Madrid, Spain
| |
Collapse
|
29
|
Leivada E. Vision, language and a protective mechanism towards psychosis. Neurosci Lett 2016; 617:178-81. [PMID: 26899155 DOI: 10.1016/j.neulet.2016.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/29/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
The absence of co-occurrence of schizophrenia with congenital/early blindness (CB) has led to the claim that CB confers protection against schizophrenia. It has recently been shown that the protective effects are particularly reinforced in cases of CB of cortical origin, since cases of CB of peripheral origin and schizophrenia in fact exist. The present work shows that the protection extends to psychosis more broadly and describes the brain basis of the protective mechanism and its relation to the language faculty and the language areas of the brain.
Collapse
Affiliation(s)
- Evelina Leivada
- Cyprus Acquisition Team, University of Cyprus, 75 Kallipoleos, P.O. Box 20537, 1087 Nicosia, Cyprus.
| |
Collapse
|
30
|
Silverstein SM. Visual Perception Disturbances in Schizophrenia: A Unified Model. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:77-132. [PMID: 27627825 DOI: 10.1007/978-3-319-30596-7_4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Crespi BJ, Go MC. Diametrical diseases reflect evolutionary-genetic tradeoffs: Evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol Med Public Health 2015; 2015:216-53. [PMID: 26354001 PMCID: PMC4600345 DOI: 10.1093/emph/eov021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Tradeoffs centrally mediate the expression of human adaptations. We propose that tradeoffs also influence the prevalence and forms of human maladaptation manifest in disease. By this logic, increased risk for one set of diseases commonly engenders decreased risk for another, diametric, set of diseases. We describe evidence for such diametric sets of diseases from epidemiological, genetic and molecular studies in four clinical domains: (i) psychiatry (autism vs psychotic-affective conditions), (ii) rheumatology (osteoarthritis vs osteoporosis), (iii) oncology and neurology (cancer vs neurodegenerative disorders) and (iv) immunology (autoimmunity vs infectious disease). Diametric disorders are important to recognize because genotypes or environmental factors that increase risk for one set of disorders protect from opposite disorders, thereby providing novel and direct insights into disease causes, prevention and therapy. Ascertaining the mechanisms that underlie disease-related tradeoffs should also indicate means of circumventing or alleviating them, and thus reducing the incidence and impacts of human disease in a more general way.
Collapse
Affiliation(s)
| | - Matthew C Go
- Department of Biological Sciences; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 Present address: Department of Anthropology, University of Illinois at Urbana-Champaign, 109 Davenport Hall, 607 S Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Bergmann J, Genç E, Kohler A, Singer W, Pearson J. Smaller Primary Visual Cortex Is Associated with Stronger, but Less Precise Mental Imagery. Cereb Cortex 2015; 26:3838-50. [DOI: 10.1093/cercor/bhv186] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
33
|
González-Hernández JA, Pita-Alcorta C, Wolters CH, Padrón A, Finalé A, Galán-García L, Marot M, Lencer R. Specificity and sensitivity of visual evoked potentials in the diagnosis of schizophrenia: rethinking VEPs. Schizophr Res 2015; 166:231-4. [PMID: 26004691 DOI: 10.1016/j.schres.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Alterations of the visual evoked potential (VEP) component P1 at the occipital region represent the most extended functional references of early visual dysfunctions in schizophrenia (SZ). However, P1 deficits are not reliable enough to be accepted as standard susceptibility markers for use in clinical psychiatry. We have previously reported a novel approach combining a standard checkerboard pattern-reversal stimulus, spectral resolution VEP, source detection techniques and statistical procedures which allowed the correct classification of all patients as SZ compared to controls. Here, we applied the same statistical approach but to a single surface VEP - in contrast to the complex EEG source analyses in our previous report. P1 and N1 amplitude differences among spectral resolution VEPs from a POz-F3 bipolar montage were computed for each component. The resulting F-values were then Z-transformed. Individual comparisons of each component of P1 and N1 showed that in 72% of patients, their individual Z-score deviated from the normal distribution of controls for at least one of the two components. Crossvalidation against the distribution in the SZ-group improved the detection rate to 93%. In all, six patients were misclassified. Clinical validation yielded striking positive (78.13%) and negative (92.69%) predictive values. The here presented procedure offers a potential clinical screening method for increased susceptibility to SZ which should then be followed by high density electrode array and source detection analyses. The most important aspect of this work is represented by the fact that this diagnostic technique is low-cost and involves equipment that is feasible to use in typical community clinics.
Collapse
Affiliation(s)
- J A González-Hernández
- Department of Neurophysiology, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry and Psychotherapy, University of Münster, Germany.
| | - C Pita-Alcorta
- Department of Psychiatry, "Manuel Fajardo" Hospital, University of Medical Science of Havana, Cuba
| | - C H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| | - A Padrón
- Department of Neurophysiology, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| | - A Finalé
- Department of Neurophysiology, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| | - L Galán-García
- Department of Neurostatistics, Cuban Neuroscience Center, Havana, Cuba; Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba
| | - M Marot
- Department of Neurophysiology, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba; Department of Psychiatry, "Hermanos-Ameijeiras" Hospital, University of Medical Science of Havana, Cuba
| | - R Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| |
Collapse
|
34
|
Abstract
Although visual processing impairments are common in schizophrenia, it is not clear to what extent these originate in the eye vs. the brain. This review highlights potential contributions, from the retina and other structures of the eye, to visual processing impairments in schizophrenia and high-risk states. A second goal is to evaluate the status of retinal abnormalities as biomarkers for schizophrenia. The review was motivated by known retinal changes in other disorders (e.g., Parkinson’s disease, multiple sclerosis), and their relationships to perceptual and cognitive impairments, and disease progression therein. The evidence reviewed suggests two major conclusions. One is that there are multiple structural and functional disturbances of the eye in schizophrenia, all of which could be factors in the visual disturbances of patients. These include retinal venule widening, retinal nerve fiber layer thinning, dopaminergic abnormalities, abnormal ouput of retinal cells as measured by electroretinography (ERG), maculopathies and retinopathies, cataracts, poor acuity, and strabismus. Some of these are likely to be illness-related, whereas others may be due to medication or comorbid conditions. The second conclusion is that certain retinal findings can serve as biomarkers of neural pathology, and disease progression, in schizophrenia. The strongest evidence for this to date involves findings of widened retinal venules, thinning of the retinal nerve fiber layer, and abnormal ERG amplitudes. These data suggest that a greater understanding of the contribution of retinal and other ocular pathology to the visual and cognitive disturbances of schizophrenia is warranted, and that retinal changes have untapped clinical utility.
Collapse
|
35
|
Improper eye care during inpatient psychiatric stay. Gen Hosp Psychiatry 2015; 37:e5-6. [PMID: 25492851 DOI: 10.1016/j.genhosppsych.2014.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 11/21/2022]
|
36
|
Leivada E, Boeckx C. Schizophrenia and cortical blindness: protective effects and implications for language. Front Hum Neurosci 2014; 8:940. [PMID: 25506321 PMCID: PMC4246684 DOI: 10.3389/fnhum.2014.00940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/04/2014] [Indexed: 01/20/2023] Open
Abstract
The repeatedly noted absence of case-reports of individuals with schizophrenia and congenital/early developed blindness has led several authors to argue that the latter can confer protective effects against the former. In this work, we present a number of relevant case-reports from different syndromes that show comorbidity of congenital and early blindness with schizophrenia. On the basis of these reports, we argue that a distinction between different types of blindness in terms of the origin of the visual deficit, cortical or peripheral, is crucial for understanding the observed patterns of comorbidity. We discuss the genetic underpinnings and the brain structures involved in schizophrenia and blindness, with insights from language processing, laying emphasis on the three structures that particularly stand out: the occipital cortex, the lateral geniculate nucleus (LGN), and the pulvinar. Last, we build on previous literature on the nature of the protective effects in order to offer novel insights into the nature of the protection mechanism from the perspective of the brain structures involved in each type of blindness.
Collapse
Affiliation(s)
- Evelina Leivada
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | - Cedric Boeckx
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
| |
Collapse
|
37
|
Landgraf S, Blumenauer K, Osterheider M, Eisenbarth H. A clinical and demographic comparison between a forensic and a general sample of female patients with schizophrenia. Psychiatry Res 2013; 210:1176-83. [PMID: 24103910 DOI: 10.1016/j.psychres.2013.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 01/05/2023]
Abstract
Diagnoses of psychiatric diseases do not include criminal behavior. In schizophrenia, a non-negligible subgroup is incarcerated for capital and other crimes. Most studies that compared offender and non-offender patients with schizophrenia have only focused on male patients. With this study, we compared demographic and disease-related characteristics between 35 female incarcerated forensic patients (fSZ) and 35 female inpatients with schizophrenia (SZ). Basic clinical documentation and basic forensic clinical documentation revealed significant clinical and demographic differences between the two groups. Compared to SZ, fSZ were more severely clinically impaired, showing higher rates of comorbid alcohol and substance disorder, more suicide attempts, had more previous hospitalizations, and were younger at disease onset. Regarding demographic variables, fSZ showed a higher rate of unemployment and homelessness and had to rely more often on housing and legal guardianships compared to SZ. These results suggest that female forensic patients with schizophrenia are more severely affected by clinical and non-clinical variables requiring an adapted intervention program. These results may also indicate two developmental trajectories for criminal and non-criminal schizophrenia in females.
Collapse
Affiliation(s)
- Steffen Landgraf
- University of Regensburg, Department of Forensic Psychiatry and Psychotherapy, Universitätsstraße 84, 93053 Regensburg, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | | | | | | |
Collapse
|