1
|
Bonnefond M, Jensen O, Clausner T. Visual Processing by Hierarchical and Dynamic Multiplexing. eNeuro 2024; 11:ENEURO.0282-24.2024. [PMID: 39537353 DOI: 10.1523/eneuro.0282-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of natural environments requires highly flexible mechanisms for adaptive processing of single and multiple stimuli. Neuronal oscillations could be an ideal candidate for implementing such flexibility in neural systems. Here, we present a framework for structuring attention-guided processing of complex visual scenes in humans, based on multiplexing and phase coding schemes. Importantly, we suggest that the dynamic fluctuations of excitability vary rapidly in terms of magnitude, frequency and wave-form over time, i.e., they are not necessarily sinusoidal or sustained oscillations. Different elements of single objects would be processed within a single cycle (burst) of alpha activity (7-14 Hz), allowing for the formation of coherent object representations while separating multiple objects across multiple cycles. Each element of an object would be processed separately in time-expressed as different gamma band bursts (>30 Hz)-along the alpha phase. Since the processing capacity per alpha cycle is limited, an inverse relationship between object resolution and size of attentional spotlight ensures independence of the proposed mechanism from absolute object complexity. Frequency and wave-shape of those fluctuations would depend on the nature of the object that is processed and on cognitive demands. Multiple objects would further be organized along the phase of slower fluctuations (e.g., theta), potentially driven by saccades. Complex scene processing, involving covert attention and eye movements, would therefore be associated with multiple frequency changes in the alpha and lower frequency range. This framework embraces the idea of a hierarchical organization of visual processing, independent of environmental temporal dynamics.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tommy Clausner
- Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
Brooks CJ, Fielding J, White OB, Badcock DR, McKendrick AM. Exploring the Phenotype and Possible Mechanisms of Palinopsia in Visual Snow Syndrome. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39412817 PMCID: PMC11488523 DOI: 10.1167/iovs.65.12.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose Palinopsia (persistent afterimages and/or trailing) is a common but poorly understood symptom of the neurological condition visual snow syndrome. This study aimed to collect a phenotypical description of palinopsia in visual snow syndrome and probe for abnormalities in temporal visual processing, hypothesizing that palinopsia could arise from increased visibility of normal afterimage signals or prolonged visible persistence. Methods Thirty controls and 31 participants with visual snow syndrome (18 with migraine) took part. Participants completed a palinopsia symptom questionnaire. Contrast detection thresholds were measured before and after brief exposure to a spatial grating because deficient contrast adaptation could increase afterimage visibility. Temporal integration and segregation were assessed using missing-element and odd-element tasks, respectively, because prolonged persistence would promote integration at wide temporal offsets. To distinguish the effects of visual snow syndrome from comorbid migraine, 25 people with migraine alone participated in an additional experiment. Results Palinopsia was common in visual snow syndrome, typically presenting as unformed images that were frequently noticed. Contrary to our hypotheses, we found neither reduced contrast adaptation (F(3.22, 190.21) = 0.71, P = 0.56) nor significantly prolonged temporal integration thresholds (F(1, 59) = 2.35, P = 0.13) in visual snow syndrome. Instead, participants with visual snow syndrome could segregate stimuli in closer succession than controls (F(1, 59) = 4.62, P = 0.04, ηp2 = 0.073) regardless of co-occurring migraine (F(2, 53) = 1.22, P = 0.30). In contrast, individuals with migraine alone exhibited impaired integration (F(2, 53) = 4.44, P = 0.017, ηp2 = 0.14). Conclusions Although neither deficient contrast adaptation nor prolonged visible persistence explains palinopsia, temporal resolution of spatial cues is enhanced and potentially more flexible in visual snow syndrome.
Collapse
Affiliation(s)
- Cassandra J. Brooks
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Joanne Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen B. White
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - David R. Badcock
- School of Psychological Science, The University of Western Australia, Crawley, Australia
| | - Allison M. McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
- Lions Eye Institute, Nedlands, Australia
- School of Allied Health, The University of Western Australia, Crawley, Australia
| |
Collapse
|
3
|
Marchetti G. The self and conscious experience. Front Psychol 2024; 15:1340943. [PMID: 38333065 PMCID: PMC10851942 DOI: 10.3389/fpsyg.2024.1340943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
The primary determinant of the self (S) is the conscious experience (CE) we have of it. Therefore, it does not come as a surprise that empirical research on S mainly resorts to the CE (or lack of CE) that subjects have of their S. What comes as a surprise is that empirical research on S does not tackle the problem of how CE contributes to building S. Empirical research investigates how S either biases the cognitive processing of stimuli or is altered through a wide range of means (meditation, hypnosis, etc.). In either case, even for different reasons, considerations of how CE contributes to building S are left unspecified in empirical research. This article analyzes these reasons and proposes a theoretical model of how CE contributes to building S. According to the proposed model, the phenomenal aspect of consciousness is produced by the modulation-engendered by attentional activity-of the energy level of the neural substrate (that is, the organ of attention) that underpins attentional activity. The phenomenal aspect of consciousness supplies the agent with a sense of S and informs the agent on how its S is affected by the agent's own operations. The phenomenal aspect of consciousness performs its functions through its five main dimensions: qualitative, quantitative, hedonic, temporal, and spatial. Each dimension of the phenomenal aspect of consciousness can be explained by a specific aspect of the modulation of the energy level of the organ of attention. Among other advantages, the model explains the various forms of S as outcomes resulting from the operations of a single mechanism and provides a unifying framework for empirical research on the neural underpinnings of S.
Collapse
Affiliation(s)
- Giorgio Marchetti
- Mind, Consciousness and Language Research Center, Alano di Piave, Italy
| |
Collapse
|
4
|
Di Dona G, Ronconi L. Beta oscillations in vision: a (preconscious) neural mechanism for the dorsal visual stream? Front Psychol 2023; 14:1296483. [PMID: 38155693 PMCID: PMC10753839 DOI: 10.3389/fpsyg.2023.1296483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Neural oscillations in alpha (8-12 Hz) and beta (13-30 Hz) frequency bands are thought to reflect feedback/reentrant loops and large-scale cortical interactions. In the last decades a main effort has been made in linking perception with alpha-band oscillations, with converging evidence showing that alpha oscillations have a key role in the temporal and featural binding of visual input, configuring the alpha rhythm a key determinant of conscious visual experience. Less attention has been historically dedicated to link beta oscillations and visual processing. Nonetheless, increasing studies report that task conditions that require to segregate/integrate stimuli in space, to disentangle local/global shapes, to spatially reorganize visual inputs, and to achieve motion perception or form-motion integration, rely on the activity of beta oscillations, with a main hub in parietal areas. In the present review, we summarize the evidence linking oscillations within the beta band and visual perception. We propose that beta oscillations represent a neural code that supports the functionality of the magnocellular-dorsal (M-D) visual pathway, serving as a fast primary neural code to exert top-down influences on the slower parvocellular-ventral visual pathway activity. Such M-D-related beta activity is proposed to act mainly pre-consciously, providing the spatial coordinates of vision and guiding the conscious extraction of objects identity that are achieved with slower alpha rhythms in ventral areas. Finally, within this new theoretical framework, we discuss the potential role of M-D-related beta oscillations in visuo-spatial attention, oculo-motor behavior and reading (dis)abilities.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Xie T, Wei Y. Effects of temporal order and relative location on distractor interference in visual working memory. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-04079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Freschl J, Azizi LA, Balboa L, Kaldy Z, Blaser E. The development of peak alpha frequency from infancy to adolescence and its role in visual temporal processing: A meta-analysis. Dev Cogn Neurosci 2022; 57:101146. [PMID: 35973361 PMCID: PMC9399966 DOI: 10.1016/j.dcn.2022.101146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
While it has been shown that alpha frequency increases over development (Stroganova et al., 1999), a precise trajectory has not yet been specified, making it challenging to constrain theories linking alpha rhythms to perceptual development. We conducted a comprehensive review of studies measuring resting-state occipital peak alpha frequency (PAF, the frequency exhibiting maximum power) from birth to 18 years of age. From 889 potentially relevant studies, we identified 40 reporting PAF (109 samples; 3882 subjects). A nonlinear regression revealed that PAF increases quickly in early childhood (from 6.1 Hz at 6 months to 8.4 Hz at 5 years) and levels off in adolescence (9.7 Hz at 13 years), with an asymptote at 10.1 Hz. We found no effect of resting state procedure (eyes-open versus eyes-closed) or biological sex. PAF has been implicated as a clock on visual temporal processing, with faster frequencies associated with higher visual temporal resolution. Psychophysical studies have shown that temporal resolution reaches adult levels by 5 years of age (Freschl et al., 2019, 2020). The fact that PAF reaches the adult range of 8-12 Hz by that age strengthens the link between PAF and temporal resolution.
Collapse
Affiliation(s)
- Julie Freschl
- University of Massachusetts Boston, Boston, MA, USA; Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
| | | | | | - Zsuzsa Kaldy
- University of Massachusetts Boston, Boston, MA, USA
| | - Erik Blaser
- University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
7
|
Liu X, Balestrieri E, Melcher D. Evidence for a theta-band behavioural oscillation in rapid face detection. Eur J Neurosci 2022; 56:5033-5046. [PMID: 35943892 PMCID: PMC9805000 DOI: 10.1111/ejn.15790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Theories of rhythmic perception propose that perceptual sampling operates in a periodic way, with alternating moments of high and low responsiveness to sensory inputs. This rhythmic sampling is linked to neural oscillations and thought to produce fluctuations in behavioural outcomes. Previous studies have revealed theta- and alpha-band behavioural oscillations in low-level visual tasks and object categorization. However, less is known about fluctuations in face perception, for which the human brain has developed a highly specialized network. To investigate this, we ran an online study (N = 179) incorporating the dense sampling technique with a dual-target rapid serial visual presentation (RSVP) paradigm. In each trial, a stream of object images was presented at 30 Hz and participants were tasked with detecting whether or not there was a face image in the sequence. On some trials, one or two (identical) face images (the target) were embedded in each stream. On dual-target trials, the targets were separated by an interstimulus interval (ISI) that varied between 0 to 633 ms. The task was to indicate the presence of the target and its gender if present. Performance varied as a function of ISI, with a significant behavioural oscillation in the face detection task at 7.5 Hz, driven mainly by the male target faces. This finding is consistent with a high theta-band-based fluctuation in visual processing. Such fluctuations might reflect rhythmic attentional sampling or, alternatively, feedback loops involved in updating top-down predictions.
Collapse
Affiliation(s)
- Xiaoyi Liu
- New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Elio Balestrieri
- Institute of PsychologyUniversity of MünsterMünsterGermany
- Otto‐Creutzfeldt‐Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - David Melcher
- New York University Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
8
|
Lundqvist M, Wutz A. New methods for oscillation analyses push new theories of discrete cognition. Psychophysiology 2022; 59:e13827. [PMID: 33942323 PMCID: PMC11475370 DOI: 10.1111/psyp.13827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Classical ways of analyzing neural time series data has led to static views on cognition, in which the cognitive processes are linked to sustained neural activity and interpreted as stationary states. The core analytical focus was on slow power modulations of neural oscillations averaged across many experimental trials. Whereas this custom analytical approach reduces the complexity and increases the signal-to-noise ratio, it may disregard or even remove important aspects of the underlying neural dynamics. Novel analysis methods investigate the instantaneous frequency and phase of neural oscillations and relate them to the precisely controlled timing of brief successive sensory stimuli. This enables to capture how cognitive processes unfold in discrete windows within and across oscillatory cycles. Moreover, several recent studies analyze the oscillatory power modulations on single experimental trials. They suggest that the power modulations are packed into discrete bursts of activity, which occur at different rates and times, and with different durations from trial-to-trial. Here, we review the current work that made use of these methodological advances for neural oscillations. These novel analysis perspectives emphasize that cognitive processes occur in discrete time windows, instead of sustained, stationary states. Evidence for discretization was observed for the entire range of cognitive functions from perception and attention to working memory, goal-directed thought and motor actions, as well as throughout the entire cortical hierarchy and in subcortical regions. These empirical observations create demand for new psychological theories and computational models of cognition in the brain, which integrate its discrete temporal dynamics.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Department of Clinical NeuroscienceKarolinska InstituteStockholmSweden
- Picower Institute for Learning & MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Andreas Wutz
- Picower Institute for Learning & MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Centre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
9
|
Tuning alpha rhythms to shape conscious visual perception. Curr Biol 2022; 32:988-998.e6. [PMID: 35090592 DOI: 10.1016/j.cub.2022.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 01/31/2023]
Abstract
It is commonly held that what we see and what we believe we see are overlapping phenomena. However, dissociations between sensory events and their subjective interpretation occur in the general population and in clinical disorders, raising the question as to whether perceptual accuracy and its subjective interpretation represent mechanistically dissociable events. Here, we uncover the role that alpha oscillations play in shaping these two indices of human conscious experience. We used electroencephalography (EEG) to measure occipital alpha oscillations during a visual detection task, which were then entrained using rhythmic-TMS. We found that controlling prestimulus alpha frequency by rhythmic-TMS modulated perceptual accuracy, but not subjective confidence in it, whereas controlling poststimulus (but not prestimulus) alpha amplitude modulated how well subjective confidence judgments can distinguish between correct and incorrect decision, but not accuracy. These findings provide the first causal evidence of a double dissociation between alpha speed and alpha amplitude, linking alpha frequency to spatiotemporal sampling resources and alpha amplitude to the internal, subjective representation and interpretation of sensory events.
Collapse
|
10
|
Öğmen H, Herzog MH. Information Integration and Information Storage in Retinotopic and Non-Retinotopic Sensory Memory. Vision (Basel) 2021; 5:vision5040061. [PMID: 34941656 PMCID: PMC8704585 DOI: 10.3390/vision5040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The first stage of the Atkinson–Shiffrin model of human memory is a sensory memory (SM). The visual component of the SM was shown to operate within a retinotopic reference frame. However, a retinotopic SM (rSM) is unable to account for vision under natural viewing conditions because, for example, motion information needs to be analyzed across space and time. For this reason, the SM store of the Atkinson–Shiffrin model has been extended to include a non-retinotopic component (nrSM). In this paper, we analyze findings from two experimental paradigms and show drastically different properties of rSM and nrSM. We show that nrSM involves complex processes such as motion-based reference frames and Gestalt grouping, which establish object identities across space and time. We also describe a quantitative model for nrSM and show drastic differences between the spatio-temporal properties of rSM and nrSM. Since the reference-frame of the latter is non-retinotopic and motion-stream based, we suggest that the spatiotemporal properties of the nrSM are in accordance with the spatiotemporal properties of the motion system. Overall, these findings indicate that, unlike the traditional rSM, which is a relatively passive store, nrSM exhibits sophisticated processing properties to manage the complexities of ecological perception.
Collapse
Affiliation(s)
- Haluk Öğmen
- Department of Electrical & Computer Engineering, University of Denver, Denver, CO 80208, USA
- Correspondence:
| | - Michael H. Herzog
- Laboratory of Psychophysics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| |
Collapse
|
11
|
Zheng H, Ying X, He X, Qu J, Hou F. Defective Temporal Window of the Foveal Visual Processing in High Myopia. Invest Ophthalmol Vis Sci 2021; 62:11. [PMID: 34236385 PMCID: PMC8267181 DOI: 10.1167/iovs.62.9.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the temporal characteristics of visual processing at the fovea and the periphery in high myopia. Methods Eighteen low (LM, ≤ -0.50 and > -6.00 D) and 18 high myopic (HM, ≤ -6.00 D) participants took part in this study. The contrast thresholds in an orientation discrimination task under various stimulus onset asynchrony (SOA) masking conditions were measured at the fovea and a more peripheral area (7°) for the two groups. An elaborated perceptual template model (ePTM) was fit to the behavioral data for each participant. Results An analysis of variance with three factors (SOA, degree of myopia and eccentricity) was performed on the threshold data. The interaction between SOA and degree of myopia in the fovea was significant (F (4, 128) = 2.66, P = 0.036), suggesting that the masking effect had different temporal patterns between the two groups. The temporal profiles for the two groups were derived based on the ePTM model. The peak and the spread of the temporal window in the fovea were much lower and wider, respectively, in the HM group than that in the LM group (both Ps < 0.05). There was no significant difference in the peripheral temporal window between the two groups. Conclusions High myopia is associated with defective temporal processing in the fovea, captured by a flattened temporal window.
Collapse
Affiliation(s)
- Haiyan Zheng
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoxiao Ying
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Hou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Melcher D, Huber-Huber C, Wutz A. Enumerating the forest before the trees: The time courses of estimation-based and individuation-based numerical processing. Atten Percept Psychophys 2021; 83:1215-1229. [PMID: 33000437 PMCID: PMC8049909 DOI: 10.3758/s13414-020-02137-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 11/23/2022]
Abstract
Ensemble perception refers to the ability to report attributes of a group of objects, rather than focusing on only one or a few individuals. An everyday example of ensemble perception is the ability to estimate the numerosity of a large number of items. The time course of ensemble processing, including that of numerical estimation, remains a matter of debate, with some studies arguing for rapid, "preattentive" processing and other studies suggesting that ensemble perception improves with longer presentation durations. We used a forward-simultaneous masking procedure that effectively controls stimulus durations to directly measure the temporal dynamics of ensemble estimation and compared it with more precise enumeration of individual objects. Our main finding was that object individuation within the subitizing range (one to four items) took about 100-150 ms to reach its typical capacity limits, whereas estimation (six or more items) showed a temporal resolution of 50 ms or less. Estimation accuracy did not improve over time. Instead, there was an increasing tendency, with longer effective durations, to underestimate the number of targets for larger set sizes (11-35 items). Overall, the time course of enumeration for one or a few single items was dramatically different from that of estimating numerosity of six or more items. These results are consistent with the idea that the temporal resolution of ensemble processing may be as rapid as, or even faster than, individuation of individual items, and support a basic distinction between the mechanisms underlying exact enumeration of small sets (one to four items) from estimation.
Collapse
Affiliation(s)
- David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, 38068, Rovereto, Italy.
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Christoph Huber-Huber
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, 38068, Rovereto, Italy
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Andreas Wutz
- Center for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| |
Collapse
|
13
|
Ghiani A, Maniglia M, Battaglini L, Melcher D, Ronconi L. Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS. Front Psychol 2021; 12:643677. [PMID: 33828509 PMCID: PMC8019716 DOI: 10.3389/fpsyg.2021.643677] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8-12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40-60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations.
Collapse
Affiliation(s)
- Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy
- Neuro Vis.U.S. Laboratory, University of Padua, Padua, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
14
|
Investigating the role of temporal processing in developmental dyslexia: Evidence for a specific deficit in rapid visual segmentation. Psychon Bull Rev 2021; 27:724-734. [PMID: 32495210 DOI: 10.3758/s13423-020-01752-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current study investigates the role of temporal processing in the visual domain in participants with developmental dyslexia (DD), the most common neurodevelopmental disorder, which is characterized by severe and specific difficulties in learning to read despite normal intelligence and adequate education. Specifically, our aim was to test whether DD is associated with a general impairment of temporal sensory processing or a specific deficit in temporal integration (which ensures stability of object identity and location) or segregation (which ensures sensitivity to changes in visual input). Participants with DD performed a task that measured both temporal integration and segregation using an identical sequence of two displays separated by a varying interstimulus interval (ISI) under two different task instructions. Results showed that participants with DD performed worse in the segregation task, with a shallower slope of the psychometric curve of percentage correct as a function of the ISI between the two target displays. Moreover, we found also a relationship between temporal segregation performance and text, words, and pseudowords reading speeds at the individual level. In contrast, no significant association between reading (dis)ability and temporal integration emerged. The current findings provide evidence for a difference in the fine temporal resolution of visual processing in DD and, considering the growing evidence about a link between visual temporal segregation and neural oscillations at specific frequencies, they support the idea that DD is characterized by an altered oscillatory sampling within the visual system.
Collapse
|
15
|
Freschl J, Melcher D, Carter A, Kaldy Z, Blaser E. Seeing a Page in a Flipbook: Shorter Visual Temporal Integration Windows in 2-Year-Old Toddlers with Autism Spectrum Disorder. Autism Res 2020; 14:946-958. [PMID: 33174396 DOI: 10.1002/aur.2430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/02/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Individuals with autism spectrum disorder (ASD) experience differences in visual temporal processing, the part of vision responsible for parsing continuous input into discrete objects and events. Here we investigated temporal processing in 2-year-old toddlers diagnosed with ASD and age-matched typically developing (TD) toddlers. We used a visual search task where the visibility of the target was determined by the pace of a display sequence. On integration trials, each display viewed alone had no visible target, but if integrated over time, the target became visible. On segmentation trials, the target became visible only when displays were perceptually segmented. We measured the percent of trials when participants fixated the target as a function of the stimulus onset asynchrony (SOA) between displays. We computed the crossover point of the integration and segmentation performance functions for each group, an estimate of the temporal integration window (TIW), the period in which visual input is combined. We found that both groups of toddlers had significantly longer TIWs (125 ms) than adults (65 ms) from previous studies using the same paradigm, and that toddlers with ASD had significantly shorter TIWs (108 ms) than chronologically age-matched TD controls (142 ms). LAY SUMMARY: We investigated how young children, with and without autism, organize dynamic visual information across time, using a visual search paradigm. We found that toddlers with autism had higher temporal resolution than typically developing (TD) toddlers of the same age - that is, they are more likely to be able to detect rapid change across time, relative to TD toddlers. These differences in visual temporal processing can impact how one sees, interprets, and interacts with the world. Autism Res 2021, 14: 946-958. © 2020 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Julie Freschl
- University of Massachusetts Boston, Department of Psychology, Boston, Massachusetts, USA
| | - David Melcher
- University of Massachusetts Boston, Department of Psychology, Boston, Massachusetts, USA.,University of Trento, Center for Mind/Brain Sciences (CIMeC), Rovereto, Italy
| | - Alice Carter
- University of Massachusetts Boston, Department of Psychology, Boston, Massachusetts, USA
| | - Zsuzsa Kaldy
- University of Massachusetts Boston, Department of Psychology, Boston, Massachusetts, USA
| | - Erik Blaser
- University of Massachusetts Boston, Department of Psychology, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Ronconi L, Melcher D, Junghöfer M, Wolters CH, Busch NA. Testing the effect of tACS over parietal cortex in modulating endogenous alpha rhythm and temporal integration windows in visual perception. Eur J Neurosci 2020; 55:3438-3450. [PMID: 33098112 PMCID: PMC9542321 DOI: 10.1111/ejn.15017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/29/2022]
Abstract
Neural oscillations in the alpha band (8-12 Hz) have been proposed as a key mechanism for the temporal resolution of visual perception. Higher alpha frequencies have been related to improved segregation of visual events over time, whereas lower alpha frequencies have been related to improved temporal integration. Similarly, also the phase of ongoing alpha has been shown to correlate with temporal integration/segregation. To test a causal relationship between alpha oscillations and perception, we here employed multi-channel transcranial alternating current stimulation (mc-tACS) over the right parietal cortex, whereas participants performed a visual temporal integration/segregation task that used identical stimuli with different instructions. Before and after mc-tACS we recorded the resting-state electroencephalogram (EEG) to extract the individual alpha frequency (IAF) and delivered electrical stimulation at slightly slower and faster frequencies (IAF±2 Hz). We hypothesized that this would not only drive endogenous alpha rhythms, but also affect temporal integration and segregation in an opposite way. However, the mc-tACS protocol used here did not consistently increase or decrease the IAF after the stimulation and did not affect temporal integration/segregation accuracy as expected. Although we found some preliminary evidence for an influence of tACS phase on temporal integration accuracy, the ongoing phase of mc-tACS oscillations did not reliably modulate temporal integration/segregation accuracy in a sinusoidal way as would have been predicted by an effective entrainment of brain oscillations. These findings may guide future studies using different stimulation montages for investigating the role of cortical alpha oscillations for human vision.
Collapse
Affiliation(s)
- Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, Scientific Institute IRCCS San Raffaele, Milan, Italy.,Center for Mind/Brain Sciences and Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Department of Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Niko A Busch
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Institute of Psychology, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Oscillatory Bursts in Parietal Cortex Reflect Dynamic Attention between Multiple Objects and Ensembles. J Neurosci 2020; 40:6927-6937. [PMID: 32753515 PMCID: PMC7470925 DOI: 10.1523/jneurosci.0231-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/21/2022] Open
Abstract
The visual system uses two complimentary strategies to process multiple objects simultaneously within a scene and update their spatial positions in real time. It either uses selective attention to individuate a complex, dynamic scene into a few focal objects (i.e., object individuation), or it represents multiple objects as an ensemble by distributing attention more globally across the scene (i.e., ensemble grouping). Neural oscillations may be a key signature for focal object individuation versus distributed ensemble grouping, because they are thought to regulate neural excitability over visual areas through inhibitory control mechanisms. We recorded whole-head MEG data during a multiple-object tracking paradigm, in which human participants (13 female, 11 male) switched between different instructions for object individuation and ensemble grouping on different trials. The stimuli, responses, and the demand to keep track of multiple spatial locations over time were held constant between the two conditions. We observed increased α-band power (9-13 Hz) packed into oscillatory bursts in bilateral inferior parietal cortex during multiple-object processing. Single-trial analysis revealed greater burst occurrences on object individuation versus ensemble grouping trials. By contrast, we found no differences using standard analyses on across-trials averaged α-band power. Moreover, the bursting effects occurred only below/at, but not above, the typical capacity limits for multiple-object processing (at ∼4 objects). Our findings reveal the real-time neural correlates underlying the dynamic processing of multiple-object scenarios, which are modulated by grouping strategies and capacity. They support a rhythmic, α-pulsed organization of dynamic attention to multiple objects and ensembles.SIGNIFICANCE STATEMENT Dynamic multiple-object scenarios are an important problem in real-world and computer vision. They require keeping track of multiple objects as they move through space and time. Such problems can be solved in two ways: One can individuate a scene object by object, or alternatively group objects into ensembles. We observed greater occurrences of α-oscillatory burst events in parietal cortex for processing objects versus ensembles and below/at versus above processing capacity. These results demonstrate a unique top-down mechanism by which the brain dynamically adjusts its computational level between objects and ensembles. They help to explain how the brain copes with its capacity limitations in real-time environments and may lead the way to technological innovations for time-critical video analysis in computer vision.
Collapse
|
18
|
Battaglini L, Mena F, Ghiani A, Casco C, Melcher D, Ronconi L. The Effect of Alpha tACS on the Temporal Resolution of Visual Perception. Front Psychol 2020; 11:1765. [PMID: 32849045 PMCID: PMC7412991 DOI: 10.3389/fpsyg.2020.01765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
We experience the world around us as a smooth and continuous flow. However, there is growing evidence that the stream of sensory inputs is not elaborated in an analog way but is instead organized in discrete or quasi-discrete temporal processing windows. These discrete windows are suggested to depend on rhythmic neural activity in the alpha (and theta) frequency bands, which in turn reflect changes in neural activity within, and coupling between, cortical areas. In the present study, we investigated a possible causal link between oscillatory brain activity in the alpha range (8-12 Hz) and the temporal resolution of visual perception, which determines whether sequential stimuli are perceived as distinct entities or combined into a single representation. To this aim, we employed a two-flash fusion task while participants received focal transcranial alternating current stimulation (tACS) in extra-striate visual regions including V5/MT of the right hemisphere. Our findings show that 10-Hz tACS, as opposed to a placebo (sham tACS), reduces the temporal resolution of perception, inducing participants to integrate the two stimuli into a unique percept more often. This pattern was observed only in the contralateral visual hemifield, providing further support for a specific effect of alpha tACS. The present findings corroborate the idea of a causal link between temporal windows of integration/segregation and oscillatory alpha activity in V5/MT and extra-striate visual regions. They also stimulate future research on possible ways to shape the temporal resolution of human vision in an individualized manner.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy.,Neuro.Vis. U.S. Laboratory, University of Padua, Padua, Italy
| | - Federica Mena
- Department of General Psychology, University of Padua, Padua, Italy
| | - Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Clara Casco
- Department of General Psychology, University of Padua, Padua, Italy.,Neuro.Vis. U.S. Laboratory, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
He X, Shen M, Cui R, Zheng H, Ruan X, Lu ZL, Hou F. The Temporal Window of Visual Processing in Aging. Invest Ophthalmol Vis Sci 2020; 61:60. [PMID: 32462200 PMCID: PMC7405705 DOI: 10.1167/iovs.61.5.60] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Aging affects a variety of visual functions. In this study, we aim to quantitatively investigate the temporal characteristics of visual processing in aging. Methods Twelve younger (24.1 ± 1.6 years) and 12 older observers (58.4 ± 3.6 years) participated in the study. All participants had normal or corrected-to-normal vision. The contrast thresholds of the participants were measured using an orientation discrimination task with white external noise masks. The target-mask stimulus onset asynchronies were 16.7 ms, 33.4 ms, 50.0 ms, 83.4 ms, and ∞ (no external noise masks) in separate conditions. The signal stimulus was carefully chosen such that it was equally visible for the younger and older participants. An elaborated perceptual template model (ePTM) was fit to the data of each participant. Results Without masks, there was no difference in contrast thresholds between the younger and older groups (P = 0.707). With masks, contrast thresholds in the older group elevated more than those in the younger group, and the pattern of threshold elevation differed in the two groups. The ePTM fitted the data well, with the older observers having lower template gains than the younger observers (P = 3.58 × 10-6). A further analysis of the weight parameters of the temporal window revealed that the older observers had a flatter temporal window than the younger observers (P = 0.025). Conclusions Age-related temporal processing deficits were found in older observers with normal contrast sensitivity to the signal stimuli. The deficits were accounted for by the inferior temporal processing window of the visual system in aging.
Collapse
Affiliation(s)
- Xianghang He
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Menglu Shen
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Cui
- Biosysen (Shenzhen) Ltd., Shenzhen, Guangdong, China
| | - Haiyan Zheng
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaowei Ruan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Lin Lu
- Division of Arts and Sciences, NYU Shanghai, Shanghai, China
- Center for Neural Science and Department of Psychology, New York University, New York, New York, United States
- NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, China
| | - Fang Hou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Cheng X, Lin C, Lou C, Zhang W, Han Y, Ding X, Fan Z. Small numerosity advantage for sequential enumeration on RSVP stimuli: an object individuation-based account. PSYCHOLOGICAL RESEARCH 2019; 85:734-763. [PMID: 31696296 DOI: 10.1007/s00426-019-01264-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/28/2019] [Indexed: 01/29/2023]
Abstract
Although there is a large literature demonstrating rapid and accurate enumeration of small sets of simultaneously presented items (i.e., subitizing), it is unclear whether this small numerosity advantage (SNA) can also manifest in sequential enumeration. The present study thus has two aims: to establish a robust processing advantage for small numerosities during sequential enumeration using a rapid serial visual presentation (RSVP) paradigm, and to examine the underlying mechanism for a SNA in sequential enumeration. The results indicate that a small set of items presented in fast sequences can be enumerated accurately with a high precision and a SOA (stimulus onset asynchrony)-sensitive capacity limit, essentially generalizing the large literature on small numerosity advantage from spatial domain to temporal domain. A resource competition hypothesis was proposed and confirmed in further experiments. Specifically, sequential enumeration and other cognitive process, such as visual working memory (VWM), compete for a shared resource of object individuation by which items are segregated as individual entities. These results implied that the limited resource of object individuation can be allocated within time windows of flexible temporal scales during simultaneous and sequential enumerations. Taken together, the present study calls for attention to the dynamic aspect of the enumeration process and highlights the pivotal role of object individuation in underlying a wide range of mental operations, such as enumeration and VWM.
Collapse
Affiliation(s)
- Xiaorong Cheng
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Chunyan Lin
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Chunmiao Lou
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Weiwei Zhang
- Department of Psychology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Yaqian Han
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Xianfeng Ding
- Central China Normal University, School of Psychology, 430079, Wuhan, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China.
| | - Zhao Fan
- Central China Normal University, School of Psychology, 430079, Wuhan, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China.
| |
Collapse
|
21
|
Rassi E, Wutz A, Müller-Voggel N, Weisz N. Prestimulus feedback connectivity biases the content of visual experiences. Proc Natl Acad Sci U S A 2019; 116:16056-16061. [PMID: 31332019 PMCID: PMC6689959 DOI: 10.1073/pnas.1817317116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ongoing fluctuations in neural excitability and in networkwide activity patterns before stimulus onset have been proposed to underlie variability in near-threshold stimulus detection paradigms-that is, whether or not an object is perceived. Here, we investigated the impact of prestimulus neural fluctuations on the content of perception-that is, whether one or another object is perceived. We recorded neural activity with magnetoencephalography (MEG) before and while participants briefly viewed an ambiguous image, the Rubin face/vase illusion, and required them to report their perceived interpretation in each trial. Using multivariate pattern analysis, we showed robust decoding of the perceptual report during the poststimulus period. Applying source localization to the classifier weights suggested early recruitment of primary visual cortex (V1) and ∼160-ms recruitment of the category-sensitive fusiform face area (FFA). These poststimulus effects were accompanied by stronger oscillatory power in the gamma frequency band for face vs. vase reports. In prestimulus intervals, we found no differences in oscillatory power between face vs. vase reports in V1 or in FFA, indicating similar levels of neural excitability. Despite this, we found stronger connectivity between V1 and FFA before face reports for low-frequency oscillations. Specifically, the strength of prestimulus feedback connectivity (i.e., Granger causality) from FFA to V1 predicted not only the category of the upcoming percept but also the strength of poststimulus neural activity associated with the percept. Our work shows that prestimulus network states can help shape future processing in category-sensitive brain regions and in this way bias the content of visual experiences.
Collapse
Affiliation(s)
- Elie Rassi
- Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria;
| | - Andreas Wutz
- Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria
- The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nadia Müller-Voggel
- Center for Biomagnetismus, Department of Neurosurgery, University Hospital, 91054 Erlangen, Germany
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Nathan Weisz
- Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| |
Collapse
|
22
|
Piper MS. Neurodynamics of time consciousness: An extensionalist explanation of apparent motion and the specious present via reentrant oscillatory multiplexing. Conscious Cogn 2019; 73:102751. [DOI: 10.1016/j.concog.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
|
23
|
Freschl J, Melcher D, Kaldy Z, Blaser E. Visual temporal integration windows are adult-like in 5- to 7-year-old children. J Vis 2019; 19:5. [PMID: 31287859 PMCID: PMC6892607 DOI: 10.1167/19.7.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/02/2019] [Indexed: 11/24/2022] Open
Abstract
The visual system must organize dynamic input into useful percepts across time, balancing between stability and sensitivity to change. The temporal integration window (TIW) has been hypothesized to underlie this balance: If two or more stimuli fall within the same TIW, they are integrated into a single percept; those that fall in different windows are segmented (Arnett & Di Lollo, 1979; Wutz, Muschter, van Koningsbruggen, Weisz, & Melcher, 2016). Visual TIWs have been studied in adults, showing average windows of 65 ms (Wutz et al., 2016); however, it is unclear how windows develop through early childhood. Here we measured TIWs in 5- to 7-year-old children and adults, using a variant of the missing dot task (Di Lollo, 1980; Wutz et al. 2016), in which integration and segmentation thresholds were measured within the same participant, using the same stimuli. Participants saw a sequence of two displays separated by an interstimulus interval (ISI) that determined the visibility of a visual search target. Longer ISIs increased the likelihood of detecting a segmentation target (but decreased detection for the integration target) although shorter ISIs increased the likelihood of detecting the integration target (but decreased detection of the segmentation target). We could then estimate the TIW by measuring the point at which these two functions intersect. Children's TIWs (M = 68 ms) were comparable to adults' (M = 73 ms) with no appreciable age trend within our sample, indicating that TIWs reach adult levels by approximately 5 years of age.
Collapse
Affiliation(s)
- Julie Freschl
- Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| | - David Melcher
- Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Zsuzsa Kaldy
- Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| | - Erik Blaser
- Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
24
|
Affiliation(s)
- Peter A. White
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
25
|
Marchetti G. Consciousness: a unique way of processing information. Cogn Process 2018; 19:435-464. [PMID: 29423666 DOI: 10.1007/s10339-018-0855-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022]
Abstract
In this article, I argue that consciousness is a unique way of processing information, in that: it produces information, rather than purely transmitting it; the information it produces is meaningful for us; the meaning it has is always individuated. This uniqueness allows us to process information on the basis of our personal needs and ever-changing interactions with the environment, and consequently to act autonomously. Three main basic cognitive processes contribute to realize this unique way of information processing: the self, attention and working memory. The self, which is primarily expressed via the central and peripheral nervous systems, maps our body, the environment, and our relations with the environment. It is the primary means by which the complexity inherent to our composite structure is reduced into the "single voice" of a unique individual. It provides a reference system that (albeit evolving) is sufficiently stable to define the variations that will be used as the raw material for the construction of conscious information. Attention allows for the selection of those variations in the state of the self that are most relevant in the given situation. Attention originates and is deployed from a single locus inside our body, which represents the center of the self, around which all our conscious experiences are organized. Whatever is focused by attention appears in our consciousness as possessing a spatial quality defined by this center and the direction toward which attention is focused. In addition, attention determines two other features of conscious experience: periodicity and phenomenal quality. Self and attention are necessary but not sufficient for conscious information to be produced. Complex forms of conscious experiences, such as the various modes of givenness of conscious experience and the stream of consciousness, need a working memory mechanism to assemble the basic pieces of information selected by attention.
Collapse
|
26
|
Naughtin CK, Mattingley JB, Bender AD, Dux PE. Decoding early and late cortical contributions to individuation of attended and unattended objects. Cortex 2017; 99:45-54. [PMID: 29149617 DOI: 10.1016/j.cortex.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/29/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
To isolate a visual stimulus as a unique object with a specific spatial location and time of occurrence, it is necessary to first register (individuate) the stimulus as a distinct perceptual entity. Recent investigations into the neural substrates of object individuation have suggested it is subserved by a distributed neural network, but previous manipulations of individuation load have introduced extraneous visual confounds, which might have yielded ambiguous findings, particularly in early cortical areas. Furthermore, while it has been assumed that selective attention is required for object individuation, there is no definitive evidence on the brain regions recruited for attended and ignored objects. Here we addressed these issues by combining functional magnetic resonance imaging (fMRI) with a novel object-enumeration paradigm in which to-be-individuated objects were defined by illusory contours, such that the physical elements of the display remained constant across individuation conditions. Multi-voxel pattern analyses revealed that attended objects modulated patterns of activity in early visual cortex, as well as frontal and parietal brain areas, as a function of object-individuation load. These findings suggest that object individuation recruits both early and later cortical areas, consistent with theoretical accounts proposing that this operation acts at the junction of feed-forward and feedback processing stages in visual analysis. We also found dissociations between brain regions involved in individuation of attended and unattended objects, suggesting that voluntary spatial attention influences the brain regions recruited for this process.
Collapse
Affiliation(s)
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, Australia; Queensland Brain Institute, The University of Queensland, Australia
| | - Angela D Bender
- School of Psychology, The University of Queensland, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, Australia.
| |
Collapse
|
27
|
Time for Awareness: The Influence of Temporal Properties of the Mask on Continuous Flash Suppression Effectiveness. PLoS One 2016; 11:e0159206. [PMID: 27416317 PMCID: PMC4945020 DOI: 10.1371/journal.pone.0159206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022] Open
Abstract
Visual processing is not instantaneous, but instead our conscious perception depends on the integration of sensory input over time. In the case of Continuous Flash Suppression (CFS), masks are flashed to one eye, suppressing awareness of stimuli presented to the other eye. One potential explanation of CFS is that it depends, at least in part, on the flashing mask continually interrupting visual processing before the stimulus reaches awareness. We investigated the temporal features of masks in two ways. First, we measured the suppression effectiveness of a wide range of masking frequencies (0-32Hz), using both complex (faces/houses) and simple (closed/open geometric shapes) stimuli. Second, we varied whether the different frequencies were interleaved within blocks or separated in homogenous blocks, in order to see if suppression was stronger or weaker when the frequency remained constant across trials. We found that break-through contrast differed dramatically between masking frequencies, with mask effectiveness following a skewed-normal curve peaking around 6Hz and little or no masking for low and high temporal frequencies. Peak frequency was similar for trial-randomized and block randomized conditions. In terms of type of stimulus, we found no significant difference in peak frequency between the stimulus groups (complex/simple, face/house, closed/open). These findings suggest that temporal factors play a critical role in perceptual awareness, perhaps due to interactions between mask frequency and the time frame of visual processing.
Collapse
|
28
|
Öğmen H, Herzog MH. A New Conceptualization of Human Visual Sensory-Memory. Front Psychol 2016; 7:830. [PMID: 27375519 PMCID: PMC4899472 DOI: 10.3389/fpsyg.2016.00830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022] Open
Abstract
Memory is an essential component of cognition and disorders of memory have significant individual and societal costs. The Atkinson–Shiffrin “modal model” forms the foundation of our understanding of human memory. It consists of three stores: Sensory Memory (SM), whose visual component is called iconic memory, Short-Term Memory (STM; also called working memory, WM), and Long-Term Memory (LTM). Since its inception, shortcomings of all three components of the modal model have been identified. While the theories of STM and LTM underwent significant modifications to address these shortcomings, models of the iconic memory remained largely unchanged: A high capacity but rapidly decaying store whose contents are encoded in retinotopic coordinates, i.e., according to how the stimulus is projected on the retina. The fundamental shortcoming of iconic memory models is that, because contents are encoded in retinotopic coordinates, the iconic memory cannot hold any useful information under normal viewing conditions when objects or the subject are in motion. Hence, half-century after its formulation, it remains an unresolved problem whether and how the first stage of the modal model serves any useful function and how subsequent stages of the modal model receive inputs from the environment. Here, we propose a new conceptualization of human visual sensory memory by introducing an additional component whose reference-frame consists of motion-grouping based coordinates rather than retinotopic coordinates. We review data supporting this new model and discuss how it offers solutions to the paradoxes of the traditional model of sensory memory.
Collapse
Affiliation(s)
- Haluk Öğmen
- Department of Electrical and Computer Engineering, University of HoustonHouston, TX, USA; Center for Neuro-Engineering and Cognitive Science, University of HoustonHouston, TX, USA
| | - Michael H Herzog
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| |
Collapse
|
29
|
Wutz A, Muschter E, van Koningsbruggen MG, Weisz N, Melcher D. Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements. Curr Biol 2016; 26:1659-1668. [PMID: 27291050 PMCID: PMC4942674 DOI: 10.1016/j.cub.2016.04.070] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022]
Abstract
When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3-5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input.
Collapse
Affiliation(s)
- Andreas Wutz
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto (TN) 38068, Italy; Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Evelyn Muschter
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto (TN) 38068, Italy
| | - Martijn G van Koningsbruggen
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto (TN) 38068, Italy; Italian Institute of Technology (IIT), University of Trento, Rovereto (TN) 38068, Italy
| | - Nathan Weisz
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto (TN) 38068, Italy; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg 5020, Austria
| | - David Melcher
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto (TN) 38068, Italy.
| |
Collapse
|
30
|
Drewes J, Zhu W, Wutz A, Melcher D. Dense sampling reveals behavioral oscillations in rapid visual categorization. Sci Rep 2015; 5:16290. [PMID: 26542183 PMCID: PMC4635344 DOI: 10.1038/srep16290] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
Perceptual systems must create discrete objects and events out of a continuous flow of sensory information. Previous studies have demonstrated oscillatory effects in the behavioral outcome of low-level visual tasks, suggesting a cyclic nature of visual processing as the solution. To investigate whether these effects extend to more complex tasks, a stream of "neutral" photographic images (not containing targets) was rapidly presented (20 ms/image). Embedded were one or two presentations of a randomly selected target image (vehicles and animals). Subjects reported the perceived target category. On dual-presentation trials, the ISI varied systematically from 0 to 600 ms. At randomized timing before first target presentation, the screen was flashed with the intent of creating a phase reset in the visual system. Sorting trials by temporal distance between flash and first target presentation revealed strong oscillations in behavioral performance, peaking at 5 Hz. On dual-target trials, longer ISIs led to reduced performance, implying a temporal integration window for object category discrimination. The "animal" trials exhibited a significant oscillatory component around 5 Hz. Our results indicate that oscillatory effects are not mere fringe effects relevant only with simple stimuli, but are resultant from the core mechanisms of visual processing and may well extend into real-life scenarios.
Collapse
Affiliation(s)
- Jan Drewes
- Center for Mind/Brain Sciences (CIMeC), University of Trento Corso Bettini 31, 38068 Rovereto TN, Italy
| | - Weina Zhu
- School of Information Science, Yunnan University Cuihu Beilu, Kunming 650091, China
- Kunming Institute of Zoology Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China
| | - Andreas Wutz
- Center for Mind/Brain Sciences (CIMeC), University of Trento Corso Bettini 31, 38068 Rovereto TN, Italy
| | - David Melcher
- Center for Mind/Brain Sciences (CIMeC), University of Trento Corso Bettini 31, 38068 Rovereto TN, Italy
| |
Collapse
|
31
|
Anobile G, Turi M, Cicchini GM, Burr DC. Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects. J Vis 2015; 15:4. [PMID: 26067522 DOI: 10.1167/15.5.4] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have recently provided evidence that the perception of number and texture density is mediated by two independent mechanisms: numerosity mechanisms at relatively low numbers, obeying Weber's law, and texture-density mechanisms at higher numerosities, following a square root law. In this study we investigated whether the switch between the two mechanisms depends on the capacity to segregate individual dots, and therefore follows similar laws to those governing visual crowding. We measured numerosity discrimination for a wide range of numerosities at three eccentricities. We found that the point where the numerosity regime (Weber's law) gave way to the density regime (square root law) depended on eccentricity. In central vision, the regime changed at 2.3 dots/°2, while at 15° eccentricity, it changed at 0.5 dots/°2, three times less dense. As a consequence, thresholds for low numerosities increased with eccentricity, while at higher numerosities thresholds remained constant. We further showed that like crowding, the regime change was independent of dot size, depending on distance between dot centers, not distance between dot edges or ink coverage. Performance was not affected by stimulus contrast or blur, indicating that the transition does not depend on low-level stimulus properties. Our results reinforce the notion that numerosity and texture are mediated by two distinct processes, depending on whether the individual elements are perceptually segregable. Which mechanism is engaged follows laws that determine crowding.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy. ://www.pisavisionlab.org/index.php/people/postdocs/anobile
| | - Marco Turi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy. ://www.pisavisionlab.org/index.php/people/postdocs/marco-turi
| | - Guido Marco Cicchini
- Institute of Neuroscience, National Research Council, Pisa, Italy. ://www.pisavisionlab.org/index.php/people/postdocs/guido-marco-cicchini
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Institute of Neuroscience, National Research Council, Pisa, Italy.
| |
Collapse
|
32
|
Wutz A, Shukla A, Bapi RS, Melcher D. Expansion and Compression of Time Correlate with Information Processing in an Enumeration Task. PLoS One 2015; 10:e0135794. [PMID: 26308546 PMCID: PMC4550287 DOI: 10.1371/journal.pone.0135794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
Perception of temporal duration is subjective and is influenced by factors such as attention and context. For example, unexpected or emotional events are often experienced as if time subjectively expands, suggesting that the amount of information processed in a unit of time can be increased. Time dilation effects have been measured with an oddball paradigm in which an infrequent stimulus is perceived to last longer than standard stimuli in the rest of the sequence. Likewise, time compression for the oddball occurs when the duration of the standard items is relatively brief. Here, we investigated whether the amount of information processing changes when time is perceived as distorted. On each trial, an oddball stimulus of varying numerosity (1-14 items) and duration was presented along with standard items that were either short (70 ms) or long (1050 ms). Observers were instructed to count the number of dots within the oddball stimulus and to judge its relative duration with respect to the standards on that trial. Consistent with previous results, oddballs were reliably perceived as temporally distorted: expanded for longer standard stimuli blocks and compressed for shorter standards. The occurrence of these distortions of time perception correlated with perceptual processing; i.e. enumeration accuracy increased when time was perceived as expanded and decreased with temporal compression. These results suggest that subjective time distortions are not epiphenomenal, but reflect real changes in sensory processing. Such short-term plasticity in information processing rate could be evolutionarily advantageous in optimizing perception and action during critical moments.
Collapse
Affiliation(s)
- Andreas Wutz
- Center for Mind & Brain Sciences, University of Trento, Rovereto, Italy
| | - Anuj Shukla
- Cognitive Science Laboratory, International Institute of Information Technology, Hyderabad, India
| | - Raju S. Bapi
- Cognitive Science Laboratory, International Institute of Information Technology, Hyderabad, India
| | - David Melcher
- Center for Mind & Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
33
|
Kafaligonul H, Breitmeyer BG, Öğmen H. Feedforward and feedback processes in vision. Front Psychol 2015; 6:279. [PMID: 25814974 PMCID: PMC4357201 DOI: 10.3389/fpsyg.2015.00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM), Bilkent University Ankara, Turkey
| | - Bruno G Breitmeyer
- Department of Psychology, University of Houston Houston, TX, USA ; Center for Neuro-Engineering and Cognitive Science, University of Houston Houston, TX, USA
| | - Haluk Öğmen
- Center for Neuro-Engineering and Cognitive Science, University of Houston Houston, TX, USA ; Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA
| |
Collapse
|