1
|
Swanson LR, Jungers S, Varghese R, Cullen KR, Evans MD, Nielson JL, Schallmo MP. Enhanced visual contrast suppression during peak psilocybin effects: Psychophysical results from a pilot randomized controlled trial. J Vis 2024; 24:5. [PMID: 39499526 PMCID: PMC11540033 DOI: 10.1167/jov.24.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
In visual perception, an effect known as surround suppression occurs wherein the apparent contrast of a center stimulus is reduced when it is presented within a higher-contrast surrounding stimulus. Many key aspects of visual perception involve surround suppression, yet the neuromodulatory processes involved remain unclear. Psilocybin is a serotonergic psychedelic compound known for its robust effects on visual perception, particularly texture, color, object, and motion perception. We asked whether surround suppression is altered under peak effects of psilocybin. Using a contrast-matching task with different center-surround stimulus configurations, we measured surround suppression after 25 mg of psilocybin compared with placebo (100 mg niacin). Data on harms were collected, and no serious adverse events were reported. After taking psilocybin, participants (n = 6) reported stronger surround suppression of perceived contrast compared to placebo. Furthermore, we found that the intensity of subjective psychedelic visuals induced by psilocybin correlated positively with the magnitude of surround suppression. We note the potential relevance of our findings for the field of psychiatry, given that studies have demonstrated weakened visual surround suppression in both major depressive disorder and schizophrenia. Our findings are thus relevant to understanding the visual effects of psilocybin, and the potential mechanisms of visual disruption in mental health disorders.
Collapse
Affiliation(s)
- Link Ray Swanson
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Jungers
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ranji Varghese
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn R Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Evans
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jessica L Nielson
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Li Y, Dai W, Wang T, Wu Y, Dou F, Xing D. Visual surround suppression at the neural and perceptual levels. Cogn Neurodyn 2024; 18:741-756. [PMID: 38699623 PMCID: PMC11061091 DOI: 10.1007/s11571-023-10027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 05/05/2024] Open
Abstract
Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.
Collapse
Affiliation(s)
- Yang Li
- School of Criminology, People’s Public Security University of China, Beijing, 100038 China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
3
|
Yu H, Chen S, Ye Z, Zhang Q, Tu Y, Hua T. Top-down influence of areas 21a and 7 differently affects the surround suppression of V1 neurons in cats. Cereb Cortex 2023; 33:11047-11059. [PMID: 37724432 DOI: 10.1093/cercor/bhad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Surround suppression (SS) is a phenomenon whereby a neuron's response to stimuli in its central receptive field (cRF) is suppressed by stimuli extending to its surround receptive field (sRF). Recent evidence show that top-down influence contributed to SS in the primary visual cortex (V1). However, how the top-down influence from different high-level cortical areas affects SS in V1 has not been comparatively observed. The present study applied transcranial direct current stimulation (tDCS) to modulate the neural activity in area 21a (A21a) and area 7 (A7) of cats and examined the changes in the cRF and sRF of V1 neurons. We found that anode-tDCS at A21a reduced V1 neurons' cRF size and increased their response to visual stimuli in cRF, causing an improved SS strength. By contrast, anode-tDCS at A7 increased V1 neurons' sRF size and response to stimuli in cRF, also enhancing the SS. Modeling analysis based on DoG function indicated that the increased SS of V1 neurons after anode-tDCS at A21a could be explained by a center-only mechanism, whereas the improved SS after anode-tDCS at A7 might be mediated through a combined center and surround mechanism. In conclusion, A21a and A7 may affect the SS of V1 neurons through different mechanisms.
Collapse
Affiliation(s)
- Hao Yu
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
- School of Basic Medical Sciences, Wannan Medical College, West Wenchang Road, Yijiang District, Wuhu, Anhui, China
| | - Shunshun Chen
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| | - Qiuyu Zhang
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| | - Yanni Tu
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| |
Collapse
|
4
|
Batista-Brito R, Majumdar A, Nuño A, Ward C, Barnes C, Nikouei K, Vinck M, Cardin JA. Developmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics. Mol Psychiatry 2023; 28:3133-3143. [PMID: 37069344 PMCID: PMC10618960 DOI: 10.1038/s41380-023-02066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
GABAergic inhibition plays an important role in the establishment and maintenance of cortical circuits during development. Neuregulin 1 (Nrg1) and its interneuron-specific receptor ErbB4 are key elements of a signaling pathway critical for the maturation and proper synaptic connectivity of interneurons. Using conditional deletions of the ERBB4 gene in mice, we tested the role of this signaling pathway at two developmental timepoints in parvalbumin-expressing (PV) interneurons, the largest subpopulation of cortical GABAergic cells. Loss of ErbB4 in PV interneurons during embryonic, but not late postnatal development leads to alterations in the activity of excitatory and inhibitory cortical neurons, along with severe disruption of cortical temporal organization. These impairments emerge by the end of the second postnatal week, prior to the complete maturation of the PV interneurons themselves. Early loss of ErbB4 in PV interneurons also results in profound dysregulation of excitatory pyramidal neuron dendritic architecture and a redistribution of spine density at the apical dendritic tuft. In association with these deficits, excitatory cortical neurons exhibit normal tuning for sensory inputs, but a loss of state-dependent modulation of the gain of sensory responses. Together these data support a key role for early developmental Nrg1/ErbB4 signaling in PV interneurons as a powerful mechanism underlying the maturation of both the inhibitory and excitatory components of cortical circuits.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Department of Psychiatry and Behavioral Sciences, Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
- Department of Genetics, Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
| | - Antara Majumdar
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, OX1 3PT, England
| | - Alejandro Nuño
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Claire Ward
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA
| | - Clayton Barnes
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Kasra Nikouei
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528, Frankfurt, Germany
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
- Wu Tsai Institute, Yale University, 100 College St., New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Ahn J, Ryu J, Lee S, Lee C, Im CH, Lee SH. Transcranial direct current stimulation elevates the baseline activity while sharpening the spatial tuning of the human visual cortex. Brain Stimul 2023; 16:1154-1164. [PMID: 37517465 DOI: 10.1016/j.brs.2023.07.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Jeongyeol Ahn
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Juhyoung Ryu
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangjun Lee
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chany Lee
- Department of Structure & Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Sperandio I, Chouinard PA, Paice E, Griffiths-King DJ, Hodgekins J. Visual illusions in young people reporting psychotic-like experiences. J Behav Ther Exp Psychiatry 2023; 79:101839. [PMID: 36764025 DOI: 10.1016/j.jbtep.2023.101839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES A disruption in the co-ordination of bottom-up and top-down processing is thought to underlie anomalous perceptual experiences in psychosis. Visual illusions represent a valuable methodology in exploring this disruption. Here, we examined visual illusions in a group of young people having psychotic-like experiences. We also examined the relationship between illusion susceptibility and appraisal of psychotic-like experiences as well as depression, anxiety and stress levels. METHOD 25 young people reporting psychotic-like experiences and 53 healthy participants performed an adjustment task that measured susceptibility to a battery of 13 visual illusions. Levels of depression, anxiety and stress were quantified in both groups. The clinical group also completed measures examining frequency, appraisals and emotional responses to psychotic-like experiences. RESULTS A general increase of illusion susceptibility was found in the clinical group compared to the control group. However, when depression, anxiety and stress levels were controlled for, this difference disappeared. Stress turned out to be the best predictor of illusion susceptibility in the clinical group, whereas anomalous experiences, depression and anxiety were unrelated to overall illusion strength. LIMITATIONS This study is limited to young participants reporting significant mental health difficulties and psychotic-like experiences. Findings should be replicated in an Ultra High Risk (prodromal) group. CONCLUSIONS Increased levels of stress explained the enhanced vulnerability to illusions in the clinical group. This increased susceptibility suggests a perceptual style that relies too heavily on prior expectations at the expense of the true sensory evidence, potentially leading to an altered perceptual experience of the world.
Collapse
Affiliation(s)
- Irene Sperandio
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, 38068, Italy.
| | - Philippe A Chouinard
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Emily Paice
- Norwich and North Norfolk Older Persons Community Mental Health Team, The Sophie Centre, Julian Hospital, Bowthorpe Road, Norwich, NR2 3TD, UK
| | - Daniel J Griffiths-King
- College of Health and Life Sciences and Institute of Health and Neurodevelopment, Aston University, Birmingham, B4 7ET, UK
| | - Joanne Hodgekins
- Department of Clinical Psychology and Psychological Therapies, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
7
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The Psychosis Human Connectome Project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN.
| | - Kimberly B Weldon
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN; Department of Psychology, University of Minnesota, Minneapolis, MN
| | - Andrea N Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
8
|
Pokorny VJ, Schallmo MP, Sponheim SR, Olman CA. Weakened untuned gain control is associated with schizophrenia while atypical orientation-tuned suppression depends on visual acuity. J Vis 2023; 23:2. [PMID: 36723929 PMCID: PMC9904333 DOI: 10.1167/jov.23.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Perceptual distortions are core features of psychosis. Weakened contrast surround suppression has been proposed as a neural mechanism underlying atypical perceptual experiences. Although previous work has measured suppression by asking participants to report the perceived contrast of a low-contrast target surrounded by a high-contrast surround, it is possible to modulate perceived contrast solely by manipulating the orientation of a matched-contrast center and surround. Removing the bottom-up segmentation cue of contrast difference and isolating orientation-dependent suppression may clarify the neural processes responsible for atypical surround suppression in psychosis. We examined surround suppression across a spectrum of psychotic psychopathology including people with schizophrenia (PSZ; N = 31) and people with bipolar disorder (PBD; N = 29), first-degree biological relatives of these patient groups (PBDrel, PSZrel; N = 28, N = 21, respectively), and healthy controls (N = 29). PSZ exhibited reduced surround suppression across orientations; although group differences were minimal at the condition that produced the strongest suppression. PBD and PSZrel exhibited intermediate suppression, whereas PBDrel performed most similarly to controls. Intriguingly, group differences in orientation-dependent surround suppression magnitude were moderated by visual acuity. A simulation in which visual acuity and/or focal attention interact with untuned gain control reproduces the observed pattern of results, including the lack of group differences when orientation of center and surround are the same. Our findings further elucidate perceptual mechanisms of impaired center-surround processing in psychosis and provide insights into the effects of visual acuity on orientation-dependent suppression in PSZ.
Collapse
Affiliation(s)
- Victor J Pokorny
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, MN, USA.,
| | - Scott R Sponheim
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, MN, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| |
Collapse
|
9
|
Altered visual cortex excitability in premenstrual dysphoric disorder: Evidence from magnetoencephalographic gamma oscillations and perceptual suppression. PLoS One 2022; 17:e0279868. [PMID: 36584199 PMCID: PMC9803314 DOI: 10.1371/journal.pone.0279868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by extreme mood shifts during the luteal phase of the menstrual cycle (MC) due to abnormal sensitivity to neurosteroids and unbalanced neural excitation/inhibition (E/I) ratio. We hypothesized that in women with PMDD in the luteal phase, these factors would alter the frequency of magnetoencephalographic visual gamma oscillations, affect modulation of their power by excitatory drive, and decrease perceptual spatial suppression. Women with PMDD and control women were examined twice-during the follicular and luteal phases of their MC. We recorded visual gamma response (GR) while modulating the excitatory drive by increasing the drift rate of the high-contrast grating (static, 'slow', 'medium', and 'fast'). Contrary to our expectations, GR frequency was not affected in women with PMDD in either phase of the MC. GR power suppression, which is normally associated with a switch from the 'optimal' for GR slow drift rate to the medium drift rate, was reduced in women with PMDD and was the only GR parameter that distinguished them from control participants specifically in the luteal phase and predicted severity of their premenstrual symptoms. Over and above the atypical luteal GR suppression, in both phases of the MC women with PMDD had abnormally strong GR facilitation caused by a switch from the 'suboptimal' static to the 'optimal' slow drift rate. Perceptual spatial suppression did not differ between the groups but decreased from the follicular to the luteal phase only in PMDD women. The atypical modulation of GR power suggests that neuronal excitability in the visual cortex is constitutively elevated in PMDD and that this E/I imbalance is further exacerbated during the luteal phase. However, the unaltered GR frequency does not support the hypothesis of inhibitory neuron dysfunction in PMDD.
Collapse
|
10
|
Schach S, Surges R, Helmstaedter C. Visual surround suppression in people with epilepsy correlates with attentional-executive functioning, but not with epilepsy or seizure types. Epilepsy Behav 2021; 121:108080. [PMID: 34062447 DOI: 10.1016/j.yebeh.2021.108080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Following reports that an index of visual surround suppression (SI) may serve as a biomarker for an imbalance of cortical excitation and inhibition in different psychiatric and neurological disorders including epilepsy, we evaluated whether SI is associated with seizure susceptibility, seizure spread, and inhibitory effects of antiseizure medication (ASM). METHODS In this prospective controlled study, we examined SI with a motion discrimination task in people with genetic generalized epilepsy (GGE) and focal epilepsy with and without focal to bilateral tonic-clonic seizures. Cofactors such as GABAergic ASM, attentional-executive functioning, and depression were taken into account. RESULTS Data of 45 patients were included in the final analysis. Suppression index was not related to epilepsy or seizure type, GABAergic ASM treatment or mood. However, SI correlated with attentional-executive functioning (r = 0.32), which in turn was associated with ASM load (r = -0.38). Repeated task administration (N = 7) proved a high stability over a one-week interval (rtt = 0.89). CONCLUSIONS Our results do not support the hypothesis that SI is a reliable biomarker for mechanisms related to inhibition of seizure spread or seizure frequency, i.e., it does not seem to reflect inhibitory capacities in epilepsy. Likewise, SI did not differentiate GGE from focal epilepsy, nor was it influenced by ASM load or mode of action. Thus, in epilepsy, no added value of including SI to routine diagnostics can be concluded.
Collapse
Affiliation(s)
- Sophia Schach
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christoph Helmstaedter
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
11
|
Schielke A, Krekelberg B. N-methyl d-aspartate receptor hypofunction reduces visual contextual integration. J Vis 2021; 21:9. [PMID: 34128974 PMCID: PMC8212430 DOI: 10.1167/jov.21.6.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual cognition is finely tuned to the elements in a scene but also relies on contextual integration to improve visual detection and discrimination. This integration is impaired in patients with schizophrenia. Studying impairments in contextual integration may lead to biomarkers of schizophrenia, tools to monitor disease progression, and, in animal models, insight into the underlying neural deficits. We developed a nonhuman primate model to test the hypothesis that hypofunction of the N-methyl d-aspartate receptor (NMDAR) impairs contextual integration. Two male rhesus macaques (Macaca mulatta) were trained to indicate which of two patterns on the screen had the highest contrast. One of these patterns appeared in isolation, and the other was surrounded by a high-contrast pattern. In humans, this high-contrast context is known to lead to an underestimation of contrast. This so-called Chubb illusion is thought to result from surround suppression, a key contextual integration mechanism. To test the involvement of NMDAR in this process, we compared animals' perceptual bias with and without intramuscular injections of a subanesthetic dose of the NMDAR antagonist ketamine. In the absence of ketamine, the animals reported a Chubb illusion - matching reports in healthy humans. Hence, monkeys - just like humans - perform visual contextual integration. This reaffirms the importance of nonhuman primates to help understand visual cognition. Injection of ketamine significantly reduced the strength of the illusion and thus impaired contextual integration. This supports the hypothesis that NMDAR hypofunction plays a causal role in specific behavioral impairments observed in schizophrenia.
Collapse
Affiliation(s)
- Alexander Schielke
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.,Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, NJ, USA.,
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.,
| |
Collapse
|
12
|
Jagtap AR, Brascamp JW. Does Cortical Inhibition Explain the Correlation Between Bistable Perception Paradigms? Iperception 2021; 12:20416695211020018. [PMID: 34104385 PMCID: PMC8161874 DOI: 10.1177/20416695211020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
When observers view a perceptually bistable stimulus, their perception changes stochastically. Various studies have shown across-observer correlations in the percept durations for different bistable stimuli including binocular rivalry stimuli and bistable moving plaids. Previous work on binocular rivalry posits that neural inhibition in the visual hierarchy is a factor involved in the perceptual fluctuations in that paradigm. Here, in order to investigate whether between-observer variability in cortical inhibition underlies correlated percept durations between binocular rivalry and bistable moving plaid perception, we used center-surround suppression as a behavioral measure of cortical inhibition. We recruited 217 participants in a test battery that included bistable perception paradigms as well as a center-surround suppression paradigm. While we were able to successfully replicate the correlations between binocular rivalry and bistable moving plaid perception, we did not find a correlation between center-surround suppression strength and percept durations for any form of bistable perception. Moreover, the results from a mediation analysis indicate that center-surround suppression is not the mediating factor in the correlation between binocular rivalry and bistable moving plaids. These results do not support the idea that cortical inhibition can explain the between-observer correlation in mean percept duration between binocular rivalry and bistable moving plaid perception.
Collapse
Affiliation(s)
- Abhilasha R. Jagtap
- Department of Psychology, Michigan State University, East Lansing, United States
| | - Jan W. Brascamp
- Department of Psychology, Michigan State University, East Lansing, United States
| |
Collapse
|
13
|
Thakkar KN, Ghermezi L, Silverstein SM, Slate R, Yao B, Achtyes ED, Brascamp JW. Stronger tilt aftereffects in persons with schizophrenia. JOURNAL OF ABNORMAL PSYCHOLOGY 2020; 130:186-197. [PMID: 33301337 DOI: 10.1037/abn0000653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Individuals with schizophrenia may fail to appropriately use temporal context and apply past environmental regularities to the interpretation of incoming sensory information. Here we use the visual system as a test bed for investigating how prior experience shapes perception in individuals with schizophrenia. Specifically, we use visual aftereffects, illusory percepts resulting from prior exposure to visual input, to measure the influence of prior events on current processing. At a neural level, visual aftereffects arise due to attenuation in the responses of neurons that code the features of the prior stimulus (neuronal adaptation) and subsequent disinhibition of neurons signaling activity at the opposite end of the feature dimension. In the current study, we measured tilt aftereffects and negative afterimages, 2 types of aftereffects that reflect, respectively, adaptation of cortical orientation-coding neurons and adaptation of subcortical and retinal luminance-coding cells in persons with schizophrenia (PSZ; n = 36) and demographically matched healthy controls (HC; n = 22). We observed stronger tilt aftereffects in PSZ compared to HC, but no difference in negative afterimages. Stronger tilt aftereffects were related to more severe negative symptoms. These data suggest oversensitivity to recent regularities, in the form of stronger visual adaptation, at cortical, but not subcortical, levels in schizophrenia. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
14
|
Second-order visual sensitivity in the aging population. Aging Clin Exp Res 2019; 31:705-716. [PMID: 30168100 DOI: 10.1007/s40520-018-1018-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Most visual and cognitive functions are affected by aging over the lifespan. In this study, our aim was to investigate the loss in sensitivity to different classes of second-order stimuli-a class of stimuli supposed to be mainly processed in extrastriate cortex-in the aging population. These stimuli will then allow one to identify specific cortical deficit independently of visibility losses in upstream parts of the visual pathway. For this purpose, we measured the sensitivity to first-order stimuli and second-order stimuli: orientation-modulated, motion-modulated or contrast-modulated as a function of spatial frequency in 50 aged participants. Overall, we observed a sensitivity loss for all classes of stimuli, but this loss differentially affects the three classes of second-order stimuli tested. It involves all modulation spatial frequencies in the case of motion modulation, but just high modulation spatial frequencies in the case of contrast- and orientation modulations. These observations imply that aging selectively affects the sensitivity to second-order stimuli depending on their type. Since there is evidence that these different second-order stimuli are processed in different regions of extrastriate cortex, this result may suggest that some visual cortical areas are more susceptible to aging effects than others.
Collapse
|
15
|
Ichinose M, Park S. Mechanisms Underlying Visuospatial Working Memory Impairments in Schizophrenia. Curr Top Behav Neurosci 2019; 41:345-367. [PMID: 31407240 DOI: 10.1007/7854_2019_99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Working memory deficits are observed in the vast majority of individuals diagnosed with schizophrenia and those at risk for the disorder. Working memory impairments are present during the prodromal stage and persist throughout the course of schizophrenia. Given the importance of cognition in functional outcome, working memory deficits are an important therapeutic target for schizophrenia. This chapter examines mechanisms underlying working memory deficits in schizophrenia, focusing on the roles of perception and attention in the encoding process. Lastly, we present a comprehensive discussion of neural oscillation and internal noise in the context of the etiology of working memory deficits in schizophrenia and introduce noninvasive treatment strategies that could improve encoding processes.
Collapse
Affiliation(s)
- Megan Ichinose
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Pan J, Zhou Y, Xiang Y, Yu J. Retinal nerve fiber layer thickness changes in Schizophrenia: A meta-analysis of case-control studies. Psychiatry Res 2018; 270:786-791. [PMID: 30551326 DOI: 10.1016/j.psychres.2018.10.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 01/11/2023]
Abstract
Studies using optical coherence tomography (OCT) to compare retinal nerve fiber layer thickness in subjects with schizophrenia and healthy controls have yielded inconsistent results. We aimed to compare changes in retinal nerve fiber layer thickness in schizophrenia and healthy controls via a meta-analysis. Relevant studies were selected via an electronic search of the Cochrane Controlled Trials Register, Pubmed, and Embase. All included studies measured average and 4-quadrant (temporal, superior, nasal, and inferior) retinal nerve fiber layer thickness via OCT. Statistical analysis was performed using RevMan 5.0 software. Seven case-control studies involving collective totals of 245 eyes in patients with schizophrenia and 220 eyes in healthy controls were ultimately included in this meta-analysis. Statistical analysis revealed that average retinal nerve fiber layer thickness in patients with schizophrenia was significantly reduced compared to that of healthy controls. Additionally, retinal nerve fiber layer thickness in the inferior quadrant, nasal quadrant, and temporal quadrant differed significantly between the two groups, while differences in the superior quadrant did not. In view of these results, we suggest that peripapillary retinal nerve fiber layer thickness as measured by OCT may be a useful tool for the diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Junru Pan
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Hubei Province, Wuhan 430014, China
| | - Yuanyuan Zhou
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Hubei Province, Wuhan 430014, China
| | - Yi Xiang
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Hubei Province, Wuhan 430014, China
| | - Jiguo Yu
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Hubei Province, Wuhan 430014, China.
| |
Collapse
|
17
|
Arranz-Paraíso S, Serrano-Pedraza I. Testing the link between visual suppression and intelligence. PLoS One 2018; 13:e0200151. [PMID: 29979774 PMCID: PMC6034845 DOI: 10.1371/journal.pone.0200151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
The impairment to discriminate the motion direction of a large high contrast stimulus or to detect a stimulus surrounded by another one is called visual suppression and is the result of the normal function of our visual inhibitory mechanisms. Recently, Melnick et al. (2013), using a motion discrimination task, showed that intelligence strongly correlates with visual suppression (r = 0.71). Cook et al. (2016) also showed a strong link between contrast surround suppression and IQ (r = 0.87), this time using a contrast matching task. Our aim is to test this link using two different visual suppression tasks: a motion discrimination task and a contrast detection task. Fifty volunteers took part in the experiments. Using Bayesian staircases, we measured duration thresholds in the motion experiment and contrast thresholds in the spatial experiment. Although we found a much weaker effect, our results from the motion experiment still replicate previous results supporting the link between motion surround suppression and IQ (r = 0.43). However, our results from the spatial experiment do not support the link between contrast surround suppression and IQ (r = -0.09). Methodological differences between this study and previous studies which could explain these discrepancies are discussed.
Collapse
Affiliation(s)
| | - Ignacio Serrano-Pedraza
- Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
McKendrick AM, Chan YM, Nguyen BN. Spatial vision in older adults: perceptual changes and neural bases. Ophthalmic Physiol Opt 2018; 38:363-375. [PMID: 29774576 DOI: 10.1111/opo.12565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The number of older adults is rapidly increasing internationally, leading to a significant increase in research on how healthy ageing impacts vision. Most clinical assessments of spatial vision involve simple detection (letter acuity, grating contrast sensitivity, perimetry). However, most natural visual environments are more spatially complicated, requiring contrast discrimination, and the delineation of object boundaries and contours, which are typically present on non-uniform backgrounds. In this review we discuss recent research that reports on the effects of normal ageing on these more complex visual functions, specifically in the context of recent neurophysiological studies. RECENT FINDINGS Recent research has concentrated on understanding the effects of healthy ageing on neural responses within the visual pathway in animal models. Such neurophysiological research has led to numerous, subsequently tested, hypotheses regarding the likely impact of healthy human ageing on specific aspects of spatial vision. SUMMARY Healthy normal ageing impacts significantly on spatial visual information processing from the retina through to visual cortex. Some human data validates that obtained from studies of animal physiology, however some findings indicate that rethinking of presumed neural substrates is required. Notably, not all spatial visual processes are altered by age. Healthy normal ageing impacts significantly on some spatial visual processes (in particular centre-surround tasks), but leaves contrast discrimination, contrast adaptation, and orientation discrimination relatively intact. The study of older adult vision contributes to knowledge of the brain mechanisms altered by the ageing process, can provide practical information regarding visual environments that older adults may find challenging, and may lead to new methods of assessing visual performance in clinical environments.
Collapse
Affiliation(s)
- Allison M McKendrick
- Department of Optometry & Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Yu Man Chan
- Department of Optometry & Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Bao N Nguyen
- Department of Optometry & Vision Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Yazdani P, Read JCA, Whittaker RG, Trevelyan AJ. Assessment of epilepsy using noninvasive visual psychophysics tests of surround suppression. Physiol Rep 2017; 5:5/5/e13079. [PMID: 28275107 PMCID: PMC5350158 DOI: 10.14814/phy2.13079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Powerful endogenous inhibitory mechanisms are thought to restrict the spread of epileptic discharges in cortical networks. Similar inhibitory mechanisms also influence physiological processing. We reasoned, therefore, that useful information about the quality of inhibitory restraint in individuals with epilepsy may be gleaned from psychophysical assays of these physiological processes. We derived a psychophysical measure of cortical inhibition, the motion surround suppression index (SSI), in 54 patients with epilepsy and 146 control subjects. Multivariate regression analyses showed that SSI was predicted strongly by age and seizure type, but not by seizure frequency. Specifically, we found that patients with exclusively focal epilepsy, and no history of generalization, showed significantly stronger cortical inhibition as measured by the SSI compared to all other groups, including controls. In contrast, patients with focal seizures evolving into generalized seizures, and patients with generalized genetic epilepsy, showed similar levels of cortical inhibition to controls. The presumptive focus, when one could be identified, was rarely found in visual cortex, meaning that the relationship with the epilepsy subtype is likely to reflect some global difference in inhibition in these subjects. This is the first reported instance of raised SSI in any patient cohort, and appears to differentiate between patients with respect to the likelihood of their experiencing generalization of their seizures. These results suggest that such simple psychophysical assays may provide useful aids to clinical management, particularly at the time of diagnosis.
Collapse
Affiliation(s)
- Partow Yazdani
- Institute of Neuroscience, Medical School Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Jenny C A Read
- Institute of Neuroscience, Medical School Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Roger G Whittaker
- Institute of Neuroscience, Medical School Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Batista-Brito R, Vinck M, Ferguson KA, Chang JT, Laubender D, Lur G, Mossner JM, Hernandez VG, Ramakrishnan C, Deisseroth K, Higley MJ, Cardin JA. Developmental Dysfunction of VIP Interneurons Impairs Cortical Circuits. Neuron 2017; 95:884-895.e9. [PMID: 28817803 DOI: 10.1016/j.neuron.2017.07.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023]
Abstract
GABAergic interneurons play important roles in cortical circuit development. However, there are multiple populations of interneurons and their respective developmental contributions remain poorly explored. Neuregulin 1 (NRG1) and its interneuron-specific receptor ERBB4 are critical genes for interneuron maturation. Using a conditional ErbB4 deletion, we tested the role of vasoactive intestinal peptide (VIP)-expressing interneurons in the postnatal maturation of cortical circuits in vivo. ErbB4 removal from VIP interneurons during development leads to changes in their activity, along with severe dysregulation of cortical temporal organization and state dependence. These alterations emerge during adolescence, and mature animals in which VIP interneurons lack ErbB4 exhibit reduced cortical responses to sensory stimuli and impaired sensory learning. Our data support a key role for VIP interneurons in cortical circuit development and suggest a possible contribution to pathophysiology in neurodevelopmental disorders. These findings provide a new perspective on the role of GABAergic interneuron diversity in cortical development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Martin Vinck
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Katie A Ferguson
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Jeremy T Chang
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - David Laubender
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Gyorgy Lur
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - James M Mossner
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Victoria G Hernandez
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; HHMI, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael J Higley
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Jessica A Cardin
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA.
| |
Collapse
|
21
|
Mannion DJ, Donkin C, Whitford TJ. No apparent influence of psychometrically-defined schizotypy on orientation-dependent contextual modulation of visual contrast detection. PeerJ 2017; 5:e2921. [PMID: 28149692 PMCID: PMC5267566 DOI: 10.7717/peerj.2921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/18/2016] [Indexed: 12/12/2022] Open
Abstract
We investigated the relationship between psychometrically-defined schizotypy and the ability to detect a visual target pattern. Target detection is typically impaired by a surrounding pattern (context) with an orientation that is parallel to the target, relative to a surrounding pattern with an orientation that is orthogonal to the target (orientation-dependent contextual modulation). Based on reports that this effect is reduced in those with schizophrenia, we hypothesised that there would be a negative relationship between the relative score on psychometrically-defined schizotypy and the relative effect of orientation-dependent contextual modulation. We measured visual contrast detection thresholds and scores on the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE) from a non-clinical sample (N = 100). Contrary to our hypothesis, we find an absence of a monotonic relationship between the relative magnitude of orientation-dependent contextual modulation of visual contrast detection and the relative score on any of the subscales of the O-LIFE. The apparent difference of this result with previous reports on those with schizophrenia suggests that orientation-dependent contextual modulation may be an informative condition in which schizophrenia and psychometrically-defined schizotypy are dissociated. However, further research is also required to clarify the strength of orientation-dependent contextual modulation in those with schizophrenia.
Collapse
|
22
|
Nguyen BN, McKendrick AM. Visual Contextual Effects of Orientation, Contrast, Flicker, and Luminance: All Are Affected by Normal Aging. Front Aging Neurosci 2016; 8:79. [PMID: 27148047 PMCID: PMC4834301 DOI: 10.3389/fnagi.2016.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/29/2016] [Indexed: 11/23/2022] Open
Abstract
The perception of a visual stimulus can be markedly altered by spatial interactions between the stimulus and its surround. For example, a grating stimulus appears lower in contrast when surrounded by a similar pattern of higher contrast: a phenomenon known as surround suppression of perceived contrast. Such center–surround interactions in visual perception are numerous and arise from both cortical and pre-cortical neural circuitry. For example, perceptual surround suppression of luminance and flicker are predominantly mediated pre-cortically, whereas contrast and orientation suppression have strong cortical contributions. Here, we compare the perception of older and younger observers on a battery of tasks designed to assess such visual contextual effects. For all visual dimensions tested (luminance, flicker, contrast, and orientation), on average the older adults showed greater suppression of central targets than the younger adult group. The increase in suppression was consistent in magnitude across all tasks, suggesting that normal aging produces a generalized, non-specific alteration to contextual processing in vision.
Collapse
Affiliation(s)
- Bao N Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville VIC, Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville VIC, Australia
| |
Collapse
|
23
|
Turkozer HB, Pamir Z, Boyaci H. Contrast Affects fMRI Activity in Middle Temporal Cortex Related to Center-Surround Interaction in Motion Perception. Front Psychol 2016; 7:454. [PMID: 27065922 PMCID: PMC4811923 DOI: 10.3389/fpsyg.2016.00454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
As the size of a high contrast drifting Gabor patch increases, perceiving its direction of motion becomes harder. However, the same behavioral effect is not observed for a low contrast Gabor patch. Neuronal mechanisms underlying this size–contrast interaction are not well understood. Here using psychophysical methods and functional magnetic resonance imaging (fMRI), we investigated the neural correlates of this behavioral effect. In the behavioral experiments, motion direction discrimination thresholds were assessed for drifting Gabor patches with different sizes and contrasts. Thresholds increased significantly as the size of the stimulus increased for high contrast (65%) but did not change for low contrast (2%) stimuli. In the fMRI experiment, cortical activity was recorded while observers viewed drifting Gabor patches with different contrasts and sizes. We found that the activity in middle temporal (MT) area increased with size at low contrast, but did not change at high contrast. Taken together, our results show that MT activity reflects the size–contrast interaction in motion perception.
Collapse
Affiliation(s)
- Halide B Turkozer
- National Magnetic Resonance Research Center, Bilkent UniversityAnkara, Turkey; Department of Psychiatry, Marmara UniversityIstanbul, Turkey
| | - Zahide Pamir
- National Magnetic Resonance Research Center, Bilkent UniversityAnkara, Turkey; Neuroscience Graduate Program, Bilkent UniversityAnkara, Turkey
| | - Huseyin Boyaci
- National Magnetic Resonance Research Center, Bilkent UniversityAnkara, Turkey; Neuroscience Graduate Program, Bilkent UniversityAnkara, Turkey; Department of Psychology, Bilkent UniversityAnkara, Turkey; Department of Psychology, Justus Liebig University GiessenGiessen, Germany
| |
Collapse
|
24
|
Güell F, Bernácer J. Anatomical constitution of sense organs as a marker of mental disorders. Front Behav Neurosci 2015; 9:59. [PMID: 25805979 PMCID: PMC4354419 DOI: 10.3389/fnbeh.2015.00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/22/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Francisco Güell
- Mind-Brain Group, Institute for Culture and Society, University of Navarra Pamplona, Spain
| | - Javier Bernácer
- Mind-Brain Group, Institute for Culture and Society, University of Navarra Pamplona, Spain
| |
Collapse
|
25
|
Serrano-Pedraza I, Romero-Ferreiro V, Read JCA, Diéguez-Risco T, Bagney A, Caballero-González M, Rodríguez-Torresano J, Rodriguez-Jimenez R. Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. Front Psychol 2014; 5:1431. [PMID: 25540631 PMCID: PMC4261701 DOI: 10.3389/fpsyg.2014.01431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/23/2014] [Indexed: 01/05/2023] Open
Abstract
Visual perception in schizophrenia is attracting a broad interest given the deep knowledge that we have about the visual system in healthy populations. One example is the class of effects known collectively as visual surround suppression. For example, the visibility of a grating located in the visual periphery is impaired by the presence of a surrounding grating of the same spatial frequency and orientation. Previous studies have suggested abnormal visual surround suppression in patients with schizophrenia. Given that schizophrenia patients have cortical alterations including hypofunction of NMDA receptors and reduced concentration of GABA neurotransmitter, which affect lateral inhibitory connections, then they should be relatively better than controls at detecting visual stimuli that are usually suppressed. We tested this hypothesis by measuring contrast detection thresholds using a new stimulus configuration. We tested two groups: 21 schizophrenia patients and 24 healthy subjects. Thresholds were obtained using Bayesian staircases in a four-alternative forced-choice detection task where the target was a grating within a 3∘ Butterworth window that appeared in one of four possible positions at 5∘ eccentricity. We compared three conditions, (a) target with no-surround, (b) target embedded within a surrounding grating of 20∘ diameter and 25% contrast with same spatial frequency and orthogonal orientation, and (c) target embedded within a surrounding grating with parallel (same) orientation. Previous results with healthy populations have shown that contrast thresholds are lower for orthogonal and no-surround (NS) conditions than for parallel surround (PS). The log-ratios between parallel and NS thresholds are used as an index quantifying visual surround suppression. Patients performed poorly compared to controls in the NS and orthogonal-surround conditions. However, they performed as well as controls when the surround was parallel, resulting in significantly lower suppression indices in patients. To examine whether the difference in suppression was driven by the lower NS thresholds for controls, we examined a matched subgroup of controls and patients, selected to have similar thresholds in the NS condition. Patients performed significantly better in the PS condition than controls. This analysis therefore indicates that a PS raised contrast thresholds less in patients than in controls. Our results support the hypothesis that inhibitory connections in early visual cortex are impaired in schizophrenia patients.
Collapse
Affiliation(s)
- Ignacio Serrano-Pedraza
- Departmento de Psicología Básica I (Procesos Básicos), Complutense University of MadridMadrid, Spain
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
- *Correspondence: Ignacio Serrano-Pedraza, Departmento de Psicología Básica I (Procesos Básicos), Complutense University of Madrid, Madrid 28223, Spain e-mail:
| | - Verónica Romero-Ferreiro
- Departmento de Psicología Básica I (Procesos Básicos), Complutense University of MadridMadrid, Spain
| | - Jenny C. A. Read
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| | - Teresa Diéguez-Risco
- Departmento de Psicología Básica I (Procesos Básicos), Complutense University of MadridMadrid, Spain
| | - Alexandra Bagney
- Department of Psychiatry, Instituto de Investigación Hospital 12 de Octubre (i+12)Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid, Spain
| | | | | | - Roberto Rodriguez-Jimenez
- Department of Psychiatry, Instituto de Investigación Hospital 12 de Octubre (i+12)Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid, Spain
| |
Collapse
|