1
|
Liu L, Xie J, Chang J, Liu Z, Sun T, Qiao H, Liang G, Guo W. H-Net: Heterogeneous Neural Network for Multi-Classification of Neuropsychiatric Disorders. IEEE J Biomed Health Inform 2024; 28:5509-5518. [PMID: 38829757 DOI: 10.1109/jbhi.2024.3405941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Clinical studies have proved that both structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) are implicitly associated with neuropsychiatric disorders (NDs), and integrating multi-modal to the binary classification of NDs has been thoroughly explored. However, accurately classifying multiple classes of NDs remains a challenge due to the complexity of disease subclass. In our study, we develop a heterogeneous neural network (H-Net) that integrates sMRI and fMRI modes for classifying multi-class NDs. To account for the differences between the two modes, H-Net adopts a heterogeneous neural network strategy to extract information from each mode. Specifically, H-Net includes an multi-layer perceptron based (MLP-based) encoder, a graph attention network based (GAT-based) encoder, and a cross-modality transformer block. The MLP-based and GAT-based encoders extract semantic features from sMRI and features from fMRI, respectively, while the cross-modality transformer block models the attention of two types of features. In H-Net, the proposed MLP-mixer block and cross-modality alignment are powerful tools for improving the multi-classification performance of NDs. H-Net is validate on the public dataset (CNP), where H-Net achieves 90% classification accuracy in diagnosing multi-class NDs. Furthermore, we demonstrate the complementarity of the two MRI modalities in improving the identification of multi-class NDs. Both visual and statistical analyses show the differences between ND subclasses.
Collapse
|
2
|
Liang L, Heinrichs RW, Liddle PF, Jeon P, Théberge J, Palaniyappan L. Cortical impoverishment in a stable subgroup of schizophrenia: Validation across various stages of psychosis. Schizophr Res 2024; 264:567-577. [PMID: 35644706 DOI: 10.1016/j.schres.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cortical thinning is a well-known feature in schizophrenia. The considerable variation in the spatial distribution of thickness changes has been used to parse heterogeneity. A 'cortical impoverishment' subgroup with a generalized reduction in thickness has been reported. However, it is unclear if this subgroup is recoverable irrespective of illness stage, and if it relates to the glutamate hypothesis of schizophrenia. METHODS We applied hierarchical cluster analysis to cortical thickness data from magnetic resonance imaging scans of three datasets in different stages of psychosis (n = 288; 160 patients; 128 healthy controls) and studied the cognitive and symptom profiles of the observed subgroups. In one of the samples, we also studied the subgroup differences in 7-Tesla magnetic resonance spectroscopy glutamate concentration in the dorsal anterior cingulate cortex. RESULTS Our consensus-based clustering procedure consistently produced 2 subgroups of participants. Patients accounted for 75%-100% of participants in one subgroup that was characterized by significantly lower cortical thickness. Both subgroups were equally symptomatic in clinically unstable stages, but cortical impoverishment indicated a higher symptom burden in a clinically stable sample and higher glutamate levels in the first-episode sample. There were no subgroup differences in cognitive and functional outcome profiles or antipsychotic exposure across all stages. CONCLUSIONS Cortical thinning does not vary with functioning or cognitive impairment, but it is more prevalent among patients, especially those with glutamate excess in early stages and higher residual symptom burden at later stages, providing an important mechanistic clue to one of the several possible pathways to the illness.
Collapse
Affiliation(s)
- Liangbing Liang
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada
| | | | - Peter F Liddle
- Institute of Mental Health, Division of Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Crown LM, Featherstone RE, Sobell JL, Parekh K, Siegel SJ. The Use of Event-Related Potentials in the Study of Schizophrenia: An Overview. ADVANCES IN NEUROBIOLOGY 2024; 40:285-319. [PMID: 39562449 DOI: 10.1007/978-3-031-69491-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Event-related potentials (ERPs) are small voltage changes in the brain that reliably occur in response to auditory or visual stimuli. ERPs have been extensively studied in both humans and animals to identify biomarkers, test pharmacological agents, and generate testable hypotheses about the physiological and genetic basis of schizophrenia. In this chapter, we discuss how ERPs are generated and recorded as well as review canonical ERP components in the context of schizophrenia research in humans. We then discuss what is known about rodent homologs of these components and how they are altered in common pharmacologic and genetic manipulations used in preclinical schizophrenia research. This chapter will also explore the relationship of ERPs to leading hypotheses about the pathophysiology of schizophrenia. We conclude with an evaluation of both the utility and limitations of ERPs in schizophrenia research and offer recommendations of future directions that may be beneficial to the field.
Collapse
Affiliation(s)
- Lindsey M Crown
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert E Featherstone
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Janet L Sobell
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krishna Parekh
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Parsaei M, Taghavizanjani F, Cattarinussi G, Moghaddam HS, Di Camillo F, Akhondzadeh S, Sambataro F, Brambilla P, Delvecchio G. Classification of suicidality by training supervised machine learning models with brain MRI findings: A systematic review. J Affect Disord 2023; 340:766-791. [PMID: 37567348 DOI: 10.1016/j.jad.2023.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Suicide is a global public health issue causing around 700,000 deaths worldwide each year. Therefore, identifying suicidal thoughts and behaviors in patients can help lower the suicide-related mortality rate. This review aimed to investigate the feasibility of suicidality identification by applying supervised Machine Learning (ML) methods to Magnetic Resonance Imaging (MRI) data. METHODS We conducted a systematic search on PubMed, Scopus, and Web of Science to identify studies examining suicidality by applying ML methods to MRI features. Also, the Prediction Model Risk of Bias Assessment Tool (PROBAST) was employed for the quality assessment. RESULTS 23 studies met the inclusion criteria. Of these, 20 developed prediction models without external validation and 3 developed prediction models with external validation. The performance of ML models varied among the reviewed studies, with the highest reported values of accuracies and Area Under the Curve (AUC) ranging from 51.7 % to 100 % and 0.52 to 1, respectively. Over half of the studies that reported accuracy (12/21) or AUC (13/16) achieved values of ≥0.8. Our comparative analysis indicated that deep learning exhibited the highest predictive performance compared to other ML models. The most commonly identified discriminative imaging features were resting-state functional connectivity and grey matter volume within prefrontal-limbic structures. LIMITATIONS Small sample sizes, lack of external validation, heterogeneous study designs, and ML model development. CONCLUSIONS Most of the studies developed ML models capable of ML-based suicide identification, although ML models' predictive performance varied across the reviewed studies. Thus, further well-designed is necessary to uncover the true potential of different ML models in this field.
Collapse
Affiliation(s)
| | | | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Hossein Sanjari Moghaddam
- School of Medicine, Tehran University of Medical Science, Tehran, Iran; Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fabio Di Camillo
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Shahin Akhondzadeh
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
5
|
Levman J, Jennings M, Rouse E, Berger D, Kabaria P, Nangaku M, Gondra I, Takahashi E. A morphological study of schizophrenia with magnetic resonance imaging, advanced analytics, and machine learning. Front Neurosci 2022; 16:926426. [PMID: 36046472 PMCID: PMC9420897 DOI: 10.3389/fnins.2022.926426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
We have performed a morphological analysis of patients with schizophrenia and compared them with healthy controls. Our analysis includes the use of publicly available automated extraction tools to assess regional cortical thickness (inclusive of within region cortical thickness variability) from structural magnetic resonance imaging (MRI), to characterize group-wise abnormalities associated with schizophrenia based on a publicly available dataset. We have also performed a correlation analysis between the automatically extracted biomarkers and a variety of patient clinical variables available. Finally, we also present the results of a machine learning analysis. Results demonstrate regional cortical thickness abnormalities in schizophrenia. We observed a correlation (rho = 0.474) between patients’ depression and the average cortical thickness of the right medial orbitofrontal cortex. Our leading machine learning technology evaluated was the support vector machine with stepwise feature selection, yielding a sensitivity of 92% and a specificity of 74%, based on regional brain measurements, including from the insula, superior frontal, caudate, calcarine sulcus, gyrus rectus, and rostral middle frontal regions. These results imply that advanced analytic techniques combining MRI with automated biomarker extraction can be helpful in characterizing patients with schizophrenia.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
- Center for Clinical Research, Nova Scotia Health Authority - Research, Innovation and Discovery, Halifax, NS, Canada
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA, United States
- *Correspondence: Jacob Levman,
| | - Maxwell Jennings
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
- Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Ethan Rouse
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Derek Berger
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Priya Kabaria
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masahito Nangaku
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Iker Gondra
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Emi Takahashi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Improved Multiclassification of Schizophrenia Based on Xgboost and Information Fusion for Small Datasets. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1581958. [PMID: 35903435 PMCID: PMC9325343 DOI: 10.1155/2022/1581958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 12/03/2022]
Abstract
To improve the performance in multiclass classification for small datasets, a new approach for schizophrenic classification is proposed in the present study. Firstly, the Xgboost classifier is introduced to discriminate the two subtypes of schizophrenia from health controls by analyzing the functional magnetic resonance imaging (fMRI) data, while the gray matter volume (GMV) and amplitude of low-frequency fluctuations (ALFF) are extracted as the features of classifiers. Then, the D-S combination rule of evidence is used to achieve fusion to determine the basic probability assignment based on the output of different classifiers. Finally, the algorithm is applied to classify 38 healthy controls, 16 deficit schizophrenic patients, and 31 nondeficit schizophrenic patients. 10-folds cross-validation method is used to assess classification performance. The results show the proposed algorithm with a sensitivity of 73.89%, which is higher than other classification algorithms, such as supported vector machine (SVM), logistic regression (LR), K-nearest neighbor (KNN) algorithm, random forest (RF), BP neural network (NN), classification and regression tree (CART), naive Bayes classifier (NB), extreme gradient boosting (Xgboost), and deep neural network (DNN). The accuracy of the fusion algorithm is higher than that of classifier based on the GMV or ALFF in the small datasets. The accuracy rate of the improved multiclassification method based on Xgboost and fusion algorithm is higher than that of other machine learning methods, which can further assist the diagnosis of clinical schizophrenia.
Collapse
|
7
|
Wang J, Ke P, Zang J, Wu F, Wu K. Discriminative Analysis of Schizophrenia Patients Using Topological Properties of Structural and Functional Brain Networks: A Multimodal Magnetic Resonance Imaging Study. Front Neurosci 2022; 15:785595. [PMID: 35087373 PMCID: PMC8787107 DOI: 10.3389/fnins.2021.785595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Interest in the application of machine learning (ML) techniques to multimodal magnetic resonance imaging (MRI) data for the diagnosis of schizophrenia (SZ) at the individual level is growing. However, a few studies have applied the features of structural and functional brain networks derived from multimodal MRI data to the discriminative analysis of SZ patients at different clinical stages. In this study, 205 normal controls (NCs), 61 first-episode drug-naive SZ (FESZ) patients, and 79 chronic SZ (CSZ) patients were recruited. We acquired their structural MRI, diffusion tensor imaging, and resting-state functional MRI data and constructed brain networks for each participant, including the gray matter network (GMN), white matter network (WMN), and functional brain network (FBN). We then calculated 3 nodal properties for each brain network, including degree centrality, nodal efficiency, and betweenness centrality. Two classifications (SZ vs. NC and FESZ vs. CSZ) were performed using five ML algorithms. We found that the SVM classifier with the input features of the combination of nodal properties of both the GMN and FBN achieved the best performance to discriminate SZ patients from NCs [accuracy, 81.2%; area under the receiver operating characteristic curve (AUC), 85.2%; p < 0.05]. Moreover, the SVM classifier with the input features of the combination of the nodal properties of both the GMN and WMN achieved the best performance to discriminate FESZ from CSZ patients (accuracy, 86.2%; AUC, 92.3%; p < 0.05). Furthermore, the brain areas in the subcortical/cerebellum network and the frontoparietal network showed significant importance in both classifications. Together, our findings provide new insights to understand the neuropathology of SZ and further highlight the potential advantages of multimodal network properties for identifying SZ patients at different clinical stages.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Engineering, Guangzhou Xinhua University, Guangzhou, China
| | - Pengfei Ke
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jinyu Zang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Fengchun Wu,
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Kai Wu,
| |
Collapse
|
8
|
Mental Health Prediction Using Machine Learning: Taxonomy, Applications, and Challenges. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING 2022. [DOI: 10.1155/2022/9970363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The increase of mental health problems and the need for effective medical health care have led to an investigation of machine learning that can be applied in mental health problems. This paper presents a recent systematic review of machine learning approaches in predicting mental health problems. Furthermore, we will discuss the challenges, limitations, and future directions for the application of machine learning in the mental health field. We collect research articles and studies that are related to the machine learning approaches in predicting mental health problems by searching reliable databases. Moreover, we adhere to the PRISMA methodology in conducting this systematic review. We include a total of 30 research articles in this review after the screening and identification processes. Then, we categorize the collected research articles based on the mental health problems such as schizophrenia, bipolar disorder, anxiety and depression, posttraumatic stress disorder, and mental health problems among children. Discussing the findings, we reflect on the challenges and limitations faced by the researchers on machine learning in mental health problems. Additionally, we provide concrete recommendations on the potential future research and development of applying machine learning in the mental health field.
Collapse
|
9
|
Wen Y, Zhou C, Chen L, Deng Y, Cleusix M, Jenni R, Conus P, Do KQ, Xin L. Bridging structural MRI with cognitive function for individual level classification of early psychosis via deep learning. Front Psychiatry 2022; 13:1075564. [PMID: 36704734 PMCID: PMC9871589 DOI: 10.3389/fpsyt.2022.1075564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Recent efforts have been made to apply machine learning and deep learning approaches to the automated classification of schizophrenia using structural magnetic resonance imaging (sMRI) at the individual level. However, these approaches are less accurate on early psychosis (EP) since there are mild structural brain changes at early stage. As cognitive impairments is one main feature in psychosis, in this study we apply a multi-task deep learning framework using sMRI with inclusion of cognitive assessment to facilitate the classification of patients with EP from healthy individuals. METHOD Unlike previous studies, we used sMRI as the direct input to perform EP classifications and cognitive estimations. The proposed deep learning model does not require time-consuming volumetric or surface based analysis and can provide additionally cognition predictions. Experiments were conducted on an in-house data set with 77 subjects and a public ABCD HCP-EP data set with 164 subjects. RESULTS We achieved 74.9 ± 4.3% five-fold cross-validated accuracy and an area under the curve of 71.1 ± 4.1% on EP classification with the inclusion of cognitive estimations. DISCUSSION We reveal the feasibility of automated cognitive estimation using sMRI by deep learning models, and also demonstrate the implicit adoption of cognitive measures as additional information to facilitate EP classifications from healthy controls.
Collapse
Affiliation(s)
- Yang Wen
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Chuan Zhou
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China
| | - Leiting Chen
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China
| | - Yu Deng
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Martine Cleusix
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Solanes A, Radua J. Advances in Using MRI to Estimate the Risk of Future Outcomes in Mental Health - Are We Getting There? Front Psychiatry 2022; 13:fpsyt-13-826111. [PMID: 35492715 PMCID: PMC9039205 DOI: 10.3389/fpsyt.2022.826111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aleix Solanes
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Early Psychosis: Interventions and Clinical-detection Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Clinical Neuroscience, Stockholm Health Care Services, Stockholm County Council, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Eitel F, Albrecht JP, Weygandt M, Paul F, Ritter K. Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data. Sci Rep 2021; 11:24447. [PMID: 34961762 PMCID: PMC8712523 DOI: 10.1038/s41598-021-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Convolutional neural networks (CNNs)-as a type of deep learning-have been specifically designed for highly heterogeneous data, such as natural images. Neuroimaging data, however, is comparably homogeneous due to (1) the uniform structure of the brain and (2) additional efforts to spatially normalize the data to a standard template using linear and non-linear transformations. To harness spatial homogeneity of neuroimaging data, we suggest here a new CNN architecture that combines the idea of hierarchical abstraction in CNNs with a prior on the spatial homogeneity of neuroimaging data. Whereas early layers are trained globally using standard convolutional layers, we introduce patch individual filters (PIF) for higher, more abstract layers. By learning filters in individual latent space patches without sharing weights, PIF layers can learn abstract features faster and specific to regions. We thoroughly evaluated PIF layers for three different tasks and data sets, namely sex classification on UK Biobank data, Alzheimer's disease detection on ADNI data and multiple sclerosis detection on private hospital data, and compared it with two baseline models, a standard CNN and a patch-based CNN. We obtained two main results: First, CNNs using PIF layers converge consistently faster, measured in run time in seconds and number of iterations than both baseline models. Second, both the standard CNN and the PIF model outperformed the patch-based CNN in terms of balanced accuracy and receiver operating characteristic area under the curve (ROC AUC) with a maximal balanced accuracy (ROC AUC) of 94.21% (99.10%) for the sex classification task (PIF model), and 81.24% and 80.48% (88.89% and 87.35%) respectively for the Alzheimer's disease and multiple sclerosis detection tasks (standard CNN model). In conclusion, we demonstrated that CNNs using PIF layers result in faster convergence while obtaining the same predictive performance as a standard CNN. To the best of our knowledge, this is the first study that introduces a prior in form of an inductive bias to harness spatial homogeneity of neuroimaging data.
Collapse
Affiliation(s)
- Fabian Eitel
- Department of Psychiatry and Neurosciences | CCM, Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany
- Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, 10117, Berlin, Germany
| | - Jan Philipp Albrecht
- Department of Psychiatry and Neurosciences | CCM, Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany
- Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Weygandt
- Department of Neurology, NeuroCure Clinical Research Center, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany
| | - Friedemann Paul
- Department of Neurology, NeuroCure Clinical Research Center, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
| | - Kerstin Ritter
- Department of Psychiatry and Neurosciences | CCM, Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.
- Bernstein Center for Computational Neuroscience, 10117, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Machine Learning in Neuro-Oncology, Epilepsy, Alzheimer's Disease, and Schizophrenia. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:349-361. [PMID: 34862559 DOI: 10.1007/978-3-030-85292-4_39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Applications of machine learning (ML) in translational medicine include therapeutic drug creation, diagnostic development, surgical planning, outcome prediction, and intraoperative assistance. Opportunities in the neurosciences are rich given advancement in our understanding of the brain, expanding indications for intervention, and diagnostic challenges often characterized by multiple clinical and environmental factors. We present a review of ML in neuro-oncology, epilepsy, Alzheimer's disease, and schizophrenia to highlight recent progression in these field, optimizing machine learning capabilities in their current forms. Supervised learning models appear to be the most commonly incorporated algorithm models for machine learning across the reviewed neuroscience disciplines with primary aim of diagnosis. Accuracy ranges are high from 63% to 99% across all algorithms investigated. Machine learning contributions to neurosurgery, neurology, psychiatry, and the clinical and basic science neurosciences may enhance current medical best practices while also broadening our understanding of dynamic neural networks and the brain.
Collapse
|
13
|
Macpherson T, Churchland A, Sejnowski T, DiCarlo J, Kamitani Y, Takahashi H, Hikida T. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Netw 2021; 144:603-613. [PMID: 34649035 DOI: 10.1016/j.neunet.2021.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Neuroscience and artificial intelligence (AI) share a long history of collaboration. Advances in neuroscience, alongside huge leaps in computer processing power over the last few decades, have given rise to a new generation of in silico neural networks inspired by the architecture of the brain. These AI systems are now capable of many of the advanced perceptual and cognitive abilities of biological systems, including object recognition and decision making. Moreover, AI is now increasingly being employed as a tool for neuroscience research and is transforming our understanding of brain functions. In particular, deep learning has been used to model how convolutional layers and recurrent connections in the brain's cerebral cortex control important functions, including visual processing, memory, and motor control. Excitingly, the use of neuroscience-inspired AI also holds great promise for understanding how changes in brain networks result in psychopathologies, and could even be utilized in treatment regimes. Here we discuss recent advancements in four areas in which the relationship between neuroscience and AI has led to major advancements in the field; (1) AI models of working memory, (2) AI visual processing, (3) AI analysis of big neuroscience datasets, and (4) computational psychiatry.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Anne Churchland
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, NY, USA
| | - Terry Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, CA, USA; Division of Biological Sciences, University of California San Diego, CA, USA
| | - James DiCarlo
- Brain and Cognitive Sciences, Massachusetts Institute of Technology, MA, USA
| | - Yukiyasu Kamitani
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, Kyoto, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
14
|
Bi XA, Zhou W, Li L, Xing Z. Detecting Risk Gene and Pathogenic Brain Region in EMCI Using a Novel GERF Algorithm Based on Brain Imaging and Genetic Data. IEEE J Biomed Health Inform 2021; 25:3019-3028. [PMID: 33750717 DOI: 10.1109/jbhi.2021.3067798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fusion analysis of disease-related multi-modal data is becoming increasingly important to illuminate the pathogenesis of complex brain diseases. However, owing to the small amount and high dimension of multi-modal data, current machine learning methods do not fully achieve the high veracity and reliability of fusion feature selection. In this paper, we propose a genetic-evolutionary random forest (GERF) algorithm to discover the risk genes and disease-related brain regions of early mild cognitive impairment (EMCI) based on the genetic data and resting-state functional magnetic resonance imaging (rs-fMRI) data. Classical correlation analysis method is used to explore the association between brain regions and genes, and fusion features are constructed. The genetic-evolutionary idea is introduced to enhance the classification performance, and to extract the optimal features effectively. The proposed GERF algorithm is evaluated by the public Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the results show that the algorithm achieves satisfactory classification accuracy in small sample learning. Moreover, we compare the GERF algorithm with other methods to prove its superiority. Furthermore, we propose the overall framework of detecting pathogenic factors, which can be accurately and efficiently applied to the multi-modal data analysis of EMCI and be able to extend to other diseases. This work provides a novel insight for early diagnosis and clinicopathologic analysis of EMCI, which facilitates clinical medicine to control further deterioration of diseases and is good for the accurate electric shock using transcranial magnetic stimulation.
Collapse
|
15
|
Zang J, Huang Y, Kong L, Lei B, Ke P, Li H, Zhou J, Xiong D, Li G, Chen J, Li X, Xiang Z, Ning Y, Wu F, Wu K. Effects of Brain Atlases and Machine Learning Methods on the Discrimination of Schizophrenia Patients: A Multimodal MRI Study. Front Neurosci 2021; 15:697168. [PMID: 34385901 PMCID: PMC8353157 DOI: 10.3389/fnins.2021.697168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Recently, machine learning techniques have been widely applied in discriminative studies of schizophrenia (SZ) patients with multimodal magnetic resonance imaging (MRI); however, the effects of brain atlases and machine learning methods remain largely unknown. In this study, we collected MRI data for 61 first-episode SZ patients (FESZ), 79 chronic SZ patients (CSZ) and 205 normal controls (NC) and calculated 4 MRI measurements, including regional gray matter volume (GMV), regional homogeneity (ReHo), amplitude of low-frequency fluctuation and degree centrality. We systematically analyzed the performance of two classifications (SZ vs NC; FESZ vs CSZ) based on the combinations of three brain atlases, five classifiers, two cross validation methods and 3 dimensionality reduction algorithms. Our results showed that the groupwise whole-brain atlas with 268 ROIs outperformed the other two brain atlases. In addition, the leave-one-out cross validation was the best cross validation method to select the best hyperparameter set, but the classification performances by different classifiers and dimensionality reduction algorithms were quite similar. Importantly, the contributions of input features to both classifications were higher with the GMV and ReHo features of brain regions in the prefrontal and temporal gyri. Furthermore, an ensemble learning method was performed to establish an integrated model, in which classification performance was improved. Taken together, these findings indicated the effects of these factors in constructing effective classifiers for psychiatric diseases and showed that the integrated model has the potential to improve the clinical diagnosis and treatment evaluation of SZ.
Collapse
Affiliation(s)
- Jinyu Zang
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yuanyuan Huang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Bingye Lei
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Pengfei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Hehua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Guixiang Li
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Zhiming Xiang
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- Department of Radiology, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - Yuping Ning
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Levman J, Jennings M, Kabaria P, Rouse E, Nangaku M, Berger D, Gondra I, Takahashi E, Tyrrell P. Hold-out validation for the assessment of stability and reliability of multivariable regression demonstrated with magnetic resonance imaging of patients with schizophrenia. Int J Dev Neurosci 2021; 81:655-662. [PMID: 34308560 DOI: 10.1002/jdn.10144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022] Open
Abstract
Neuroscience studies are very often tasked with identifying measurable differences between two groups of subjects, typically one group with a pathological condition and one group representing control subjects. It is often expected that the measurements acquired for comparing groups are also affected by a variety of additional patient characteristics such as sex, age, and comorbidities. Multivariable regression (MVR) is a statistical analysis technique commonly employed in neuroscience studies to "control for" or "adjust for" secondary effects (such as sex, age, and comorbidities) in order to ensure that the main study findings are focused on actual differences between the groups of interest associated with the condition under investigation. It is common practice in the neuroscience literature to utilize MVR to control for secondary effects; however, at present, it is not typically possible to assess whether the MVR adjustments correct for more error than they introduce. In common neuroscience practice, MVR models are not validated and no attempt to characterize deficiencies in the MVR model is made. In this article, we demonstrate how standard hold-out validation techniques (commonly used in machine learning analyses) that involve repeatedly randomly dividing datasets into training and testing samples can be adapted to the assessment of stability and reliability of MVR models with a publicly available neurological magnetic resonance imaging (MRI) dataset of patients with schizophrenia. Results demonstrate that MVR can introduce measurement error up to 30.06% and, on average across all considered measurements, introduce 9.84% error on this dataset. When hold-out validated MVR does not agree with the results of the standard use of MVR, the use of MVR in the given application is unstable. Thus, this paper helps evaluate the extent to which the simplistic use of MVR introduces study error in neuroscientific analyses with an analysis of patients with schizophrenia.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada.,Canada Research Chair in Bioinformatics, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Maxwell Jennings
- Department of Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada.,Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Priya Kabaria
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ethan Rouse
- Department of Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Masahito Nangaku
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek Berger
- Department of Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Iker Gondra
- Department of Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Emi Takahashi
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pascal Tyrrell
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Lai JW, Ang CKE, Acharya UR, Cheong KH. Schizophrenia: A Survey of Artificial Intelligence Techniques Applied to Detection and Classification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6099. [PMID: 34198829 PMCID: PMC8201065 DOI: 10.3390/ijerph18116099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Artificial Intelligence in healthcare employs machine learning algorithms to emulate human cognition in the analysis of complicated or large sets of data. Specifically, artificial intelligence taps on the ability of computer algorithms and software with allowable thresholds to make deterministic approximate conclusions. In comparison to traditional technologies in healthcare, artificial intelligence enhances the process of data analysis without the need for human input, producing nearly equally reliable, well defined output. Schizophrenia is a chronic mental health condition that affects millions worldwide, with impairment in thinking and behaviour that may be significantly disabling to daily living. Multiple artificial intelligence and machine learning algorithms have been utilized to analyze the different components of schizophrenia, such as in prediction of disease, and assessment of current prevention methods. These are carried out in hope of assisting with diagnosis and provision of viable options for individuals affected. In this paper, we review the progress of the use of artificial intelligence in schizophrenia.
Collapse
Affiliation(s)
- Joel Weijia Lai
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
| | - Candice Ke En Ang
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
- MOH Holdings Pte Ltd, 1 Maritime Square, Singapore 099253, Singapore
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore;
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Clementi 599491, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Kang Hao Cheong
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
| |
Collapse
|
18
|
Eitel F, Schulz MA, Seiler M, Walter H, Ritter K. Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Exp Neurol 2021; 339:113608. [PMID: 33513353 DOI: 10.1016/j.expneurol.2021.113608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
By promising more accurate diagnostics and individual treatment recommendations, deep neural networks and in particular convolutional neural networks have advanced to a powerful tool in medical imaging. Here, we first give an introduction into methodological key concepts and resulting methodological promises including representation and transfer learning, as well as modelling domain-specific priors. After reviewing recent applications within neuroimaging-based psychiatric research, such as the diagnosis of psychiatric diseases, delineation of disease subtypes, normative modeling, and the development of neuroimaging biomarkers, we discuss current challenges. This includes for example the difficulty of training models on small, heterogeneous and biased data sets, the lack of validity of clinical labels, algorithmic bias, and the influence of confounding variables.
Collapse
Affiliation(s)
- Fabian Eitel
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Marc-André Schulz
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Moritz Seiler
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Kerstin Ritter
- Charité - Universitätsmedizin Berlin, Corporate Member Of Freie Universität Berlin, Humboldt-Universität zu Berlin; Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany.
| |
Collapse
|
19
|
Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwabara H, Gonoi W, Aoki Y, Takao H, Natsubori T, Iwashiro N, Kasai K, Kano Y, Abe O, Yamasue H, Koike S. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry 2020; 10:278. [PMID: 32801298 PMCID: PMC7429957 DOI: 10.1038/s41398-020-00965-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
Neuropsychiatric disorders are diagnosed based on behavioral criteria, which makes the diagnosis challenging. Objective biomarkers such as neuroimaging are needed, and when coupled with machine learning, can assist the diagnostic decision and increase its reliability. Sixty-four schizophrenia, 36 autism spectrum disorder (ASD), and 106 typically developing individuals were analyzed. FreeSurfer was used to obtain the data from the participant's brain scans. Six classifiers were utilized to classify the subjects. Subsequently, 26 ultra-high risk for psychosis (UHR) and 17 first-episode psychosis (FEP) subjects were run through the trained classifiers. Lastly, the classifiers' output of the patient groups was correlated with their clinical severity. All six classifiers performed relatively well to distinguish the subject groups, especially support vector machine (SVM) and Logistic regression (LR). Cortical thickness and subcortical volume feature groups were most useful for the classification. LR and SVM were highly consistent with clinical indices of ASD. When UHR and FEP groups were run with the trained classifiers, majority of the cases were classified as schizophrenia, none as ASD. Overall, SVM and LR were the best performing classifiers. Cortical thickness and subcortical volume were most useful for the classification, compared to surface area. LR, SVM, and DT's output were clinically informative. The trained classifiers were able to help predict the diagnostic category of both UHR and FEP Individuals.
Collapse
Affiliation(s)
- Walid Yassin
- grid.26999.3d0000 0001 2151 536XDepartment of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Hironori Nakatani
- grid.265061.60000 0001 1516 6626Department of Information Media Technology, School of Information and Telecommunication Engineering, Tokai University, Tokyo, 108-8619 Japan
| | - Yinghan Zhu
- grid.26999.3d0000 0001 2151 536XCenter for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| | - Masaki Kojima
- grid.26999.3d0000 0001 2151 536XDepartment of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Keiho Owada
- grid.26999.3d0000 0001 2151 536XDepartment of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Hitoshi Kuwabara
- grid.505613.4Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, 431-3192 Japan
| | - Wataru Gonoi
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Yuta Aoki
- grid.410714.70000 0000 8864 3422Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Hidemasa Takao
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Tatsunobu Natsubori
- grid.26999.3d0000 0001 2151 536XDepartment of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Norichika Iwashiro
- grid.26999.3d0000 0001 2151 536XDepartment of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Kiyoto Kasai
- grid.26999.3d0000 0001 2151 536XDepartment of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo, 113-8654 Japan
| | - Yukiko Kano
- grid.26999.3d0000 0001 2151 536XDepartment of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Osamu Abe
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, 431-3192, Japan.
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan. .,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, 153-8902, Japan. .,Center for Integrative Science of Human Behavior, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
20
|
Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp 2020; 41:3468-3535. [PMID: 32374075 PMCID: PMC7375108 DOI: 10.1002/hbm.25013] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Neuroimaging-based approaches have been extensively applied to study mental illness in recent years and have deepened our understanding of both cognitively healthy and disordered brain structure and function. Recent advancements in machine learning techniques have shown promising outcomes for individualized prediction and characterization of patients with psychiatric disorders. Studies have utilized features from a variety of neuroimaging modalities, including structural, functional, and diffusion magnetic resonance imaging data, as well as jointly estimated features from multiple modalities, to assess patients with heterogeneous mental disorders, such as schizophrenia and autism. We use the term "predictome" to describe the use of multivariate brain network features from one or more neuroimaging modalities to predict mental illness. In the predictome, multiple brain network-based features (either from the same modality or multiple modalities) are incorporated into a predictive model to jointly estimate features that are unique to a disorder and predict subjects accordingly. To date, more than 650 studies have been published on subject-level prediction focusing on psychiatric disorders. We have surveyed about 250 studies including schizophrenia, major depression, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, obsessive-compulsive disorder, social anxiety disorder, posttraumatic stress disorder, and substance dependence. In this review, we present a comprehensive review of recent neuroimaging-based predictomic approaches, current trends, and common shortcomings and share our vision for future directions.
Collapse
Affiliation(s)
- Barnaly Rashid
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Vince Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
21
|
A Systematic Characterization of Structural Brain Changes in Schizophrenia. Neurosci Bull 2020; 36:1107-1122. [PMID: 32495122 DOI: 10.1007/s12264-020-00520-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia, such as voxel-based morphometry (VBM), tensor-based morphometry (TBM), and projection-based thickness (PBT), is important for understanding the brain pathology in schizophrenia and for developing effective biomarkers for a diagnosis of schizophrenia. However, such studies are still lacking. Here, we performed VBM, TBM, and PBT analyses on T1-weighted brain MR images acquired from 116 patients with schizophrenia and 116 healthy controls. We found that, although all methods detected wide-spread structural changes, different methods captured different information - only 10.35% of the grey matter changes in cortex were detected by all three methods, and VBM only detected 11.36% of the white matter changes detected by TBM. Further, pattern classification between patients and controls revealed that combining different measures improved the classification accuracy (81.9%), indicating that fusion of different structural measures serves as a better neuroimaging marker for the objective diagnosis of schizophrenia.
Collapse
|
22
|
Gómez-Verdejo V, Parrado-Hernández E, Tohka J. Sign-Consistency Based Variable Importance for Machine Learning in Brain Imaging. Neuroinformatics 2020; 17:593-609. [PMID: 30919255 PMCID: PMC6841656 DOI: 10.1007/s12021-019-9415-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An important problem that hinders the use of supervised classification algorithms for brain imaging is that the number of variables per single subject far exceeds the number of training subjects available. Deriving multivariate measures of variable importance becomes a challenge in such scenarios. This paper proposes a new measure of variable importance termed sign-consistency bagging (SCB). The SCB captures variable importance by analyzing the sign consistency of the corresponding weights in an ensemble of linear support vector machine (SVM) classifiers. Further, the SCB variable importances are enhanced by means of transductive conformal analysis. This extra step is important when the data can be assumed to be heterogeneous. Finally, the proposal of these SCB variable importance measures is completed with the derivation of a parametric hypothesis test of variable importance. The new importance measures were compared with a t-test based univariate and an SVM-based multivariate variable importances using anatomical and functional magnetic resonance imaging data. The obtained results demonstrated that the new SCB based importance measures were superior to the compared methods in terms of reproducibility and classification accuracy.
Collapse
Affiliation(s)
- Vanessa Gómez-Verdejo
- Department of Signal Processing and Communications, Universidad Carlos III de Madrid, Leganés, Spain
| | - Emilio Parrado-Hernández
- Department of Signal Processing and Communications, Universidad Carlos III de Madrid, Leganés, Spain
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
23
|
Ioakeimidis V, Haenschel C, Yarrow K, Kyriakopoulos M, Dima D. A Meta-analysis of Structural and Functional Brain Abnormalities in Early-Onset Schizophrenia. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Early-onset schizophrenia (EOS) patients demonstrate brain changes that are similar to severe cases of adult-onset schizophrenia. Neuroimaging research in EOS is limited due to the rarity of the disorder. The present meta-analysis aims to consolidate MRI and functional MRI findings in EOS. Seven voxel-based morphometry (VBM) and 8 functional MRI studies met the inclusion criteria, reporting whole-brain analyses of EOS vs healthy controls. Activation likelihood estimation (ALE) was conducted to identify aberrant anatomical or functional clusters across the included studies. Separate ALE analyses were performed, first for all task-dependent studies (Cognition ALE) and then only for working memory ones (WM ALE). The VBM ALE revealed no significant clusters for gray matter volume reductions in EOS. Significant hypoactivations peaking in the right anterior cingulate cortex (rACC) and the right temporoparietal junction (rTPJ) were detected in the Cognition ALE. In the WM ALE, consistent hypoactivations were found in the left precuneus (lPreC), the right inferior parietal lobule (rIPL) and the rTPJ. These hypoactivated areas show strong associations with language, memory, attention, spatial, and social cognition. The functional co-activated networks of each suprathreshold ALE cluster, identified using the BrainMap database, revealed a core co-activation network with similar topography to the salience network. Our results add support to posterior parietal, ACC and rTPJ dysfunction in EOS, areas implicated in the cognitive impairments characterizing EOS. The salience network lies at the core of these cognitive processes, co-activating with the hypoactivating regions, and thus highlighting the importance of salience dysfunction in EOS.
Collapse
Affiliation(s)
- Vasileios Ioakeimidis
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Corinna Haenschel
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Kielan Yarrow
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Marinos Kyriakopoulos
- National and Specialist Acorn Lodge Inpatient Children Unit, South London & Maudsley NHS Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
24
|
Multimodal neuroimaging-based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques. NEUROIMAGE-CLINICAL 2020; 26:102238. [PMID: 32182578 PMCID: PMC7076568 DOI: 10.1016/j.nicl.2020.102238] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and heterogeneous neurodevelopmental disorder, which is diagnosed using subjective symptom reports. Machine learning classifiers have been utilized to assist in the development of neuroimaging-based biomarkers for objective diagnosis of ADHD. However, existing basic model-based studies in ADHD report suboptimal classification performances and inconclusive results, mainly due to the limited flexibility for each type of basic classifier to appropriately handle multi-dimensional source features with varying properties. This study applied ensemble learning techniques (ELTs), a meta-algorithm that combine several basic machine learning models into one predictive model in order to decrease variance, bias, or improve predictions, in multimodal neuroimaging data collected from 72 young adults, including 36 probands (18 remitters and 18 persisters of childhood ADHD) and 36 group-matched controls. All currently available optimization strategies for ELTs (i.e., voting, bagging, boosting and stacking techniques) were tested in a pool of semifinal classification results generated by seven basic classifiers. The high-dimensional neuroimaging features for classification included regional cortical gray matter (GM) thickness and surface area, GM volume of subcortical structures, volume and fractional anisotropy of major white matter fiber tracts, pair-wise regional connectivity and global/nodal topological properties of the functional brain network for cue-evoked attention process. As a result, the bagging-based ELT with the base model of support vector machine achieved the best results, with significant improvement of the area under the receiver of operating characteristic curve (0.89 for ADHD vs. controls and 0.9 for ADHD persisters vs. remitters). Features of nodal efficiency in right inferior frontal gyrus, right middle frontal (MFG)-inferior parietal (IPL) functional connectivity, and right amygdala volume significantly contributed to accurate discrimination between ADHD probands and controls; higher nodal efficiency of right MFG greatly contributed to inattentive and hyperactive/impulsive symptom remission, while higher right MFG-IPL functional connectivity strongly linked to symptom persistence in adults with childhood ADHD. Considering their improved robustness than the commonly implemented basic classifiers, findings suggest that ELTs may have the potential to identify more reliable neurobiological markers for neurodevelopmental disorders.
Collapse
|
25
|
Jo YT, Joo SW, Shon SH, Kim H, Kim Y, Lee J. Diagnosing schizophrenia with network analysis and a machine learning method. Int J Methods Psychiatr Res 2020; 29:e1818. [PMID: 32022360 PMCID: PMC7051840 DOI: 10.1002/mpr.1818] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Schizophrenia is a chronic and debilitating neuropsychiatric disorder. It has been suggested that impaired brain connectivity underlies the pathophysiology of schizophrenia. Network analysis has thus recently emerged in the field of schizophrenia research. METHODS We investigated 48 schizophrenia patients and 24 healthy controls using network analysis and a machine learning method. A number of global and nodal network properties were estimated from graphs that were reconstructed using probabilistic brain tractography. These network properties were then compared between groups and used for machine learning to classify schizophrenia patients and healthy controls. RESULTS In classifying schizophrenia patients and healthy controls via network properties, the support vector machine, random forest, naïve Bayes, and gradient boosting machine learning models showed an encouraging level of performance. The overall connectivity was revealed as the most significant contributing feature to this classification among the global network properties. Among the nodal network properties, although the relative importance of each region of interest was not identical, there were still some patterns. CONCLUSION In conclusion, the possibility exists to classify schizophrenia patients and healthy controls using network properties, and we have found that there is a provisional pattern of involved brain regions among patients with schizophrenia.
Collapse
Affiliation(s)
- Young Tak Jo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Woo Joo
- Medical Corps, 1st fleet, Republic of Korea Navy, Donghae, Korea
| | - Seung-Hyun Shon
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Harin Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yangsik Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
O’Brien R, Ishwaran H. A Random Forests Quantile Classifier for Class Imbalanced Data. PATTERN RECOGNITION 2019; 90:232-249. [PMID: 30765897 PMCID: PMC6370055 DOI: 10.1016/j.patcog.2019.01.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Extending previous work on quantile classifiers (q-classifiers) we propose the q*-classifier for the class imbalance problem. The classifier assigns a sample to the minority class if the minority class conditional probability exceeds 0 < q* < 1, where q* equals the unconditional probability of observing a minority class sample. The motivation for q*-classification stems from a density-based approach and leads to the useful property that the q*-classifier maximizes the sum of the true positive and true negative rates. Moreover, because the procedure can be equivalently expressed as a cost-weighted Bayes classifier, it also minimizes weighted risk. Because of this dual optimization, the q*-classifier can achieve near zero risk in imbalance problems, while simultaneously optimizing true positive and true negative rates. We use random forests to apply q*-classification. This new method which we call RFQ is shown to outperform or is competitive with existing techniques with respect to tt-mean performance and variable selection. Extensions to the multiclass imbalanced setting are also considered.
Collapse
Affiliation(s)
- Robert O’Brien
- Division of Biostatistics, University of Miami, Miami, FL 33136, USA
| | - Hemant Ishwaran
- Division of Biostatistics, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
27
|
Cho G, Yim J, Choi Y, Ko J, Lee SH. Review of Machine Learning Algorithms for Diagnosing Mental Illness. Psychiatry Investig 2019; 16:262-269. [PMID: 30947496 PMCID: PMC6504772 DOI: 10.30773/pi.2018.12.21.2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/21/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Enhanced technology in computer and internet has driven scale and quality of data to be improved in various areas including healthcare sectors. Machine Learning (ML) has played a pivotal role in efficiently analyzing those big data, but a general misunderstanding of ML algorithms still exists in applying them (e.g., ML techniques can settle a problem of small sample size, or deep learning is the ML algorithm). This paper reviewed the research of diagnosing mental illness using ML algorithm and suggests how ML techniques can be employed and worked in practice. METHODS Researches about mental illness diagnostic using ML techniques were carefully reviewed. Five traditional ML algorithms-Support Vector Machines (SVM), Gradient Boosting Machine (GBM), Random Forest, Naïve Bayes, and K-Nearest Neighborhood (KNN)-frequently used for mental health area researches were systematically organized and summarized. RESULTS Based on literature review, it turned out that Support Vector Machines (SVM), Gradient Boosting Machine (GBM), Random Forest, Naïve Bayes, and K-Nearest Neighborhood (KNN) were frequently employed in mental health area, but many researchers did not clarify the reason for using their ML algorithm though every ML algorithm has its own advantages. In addition, there were several studies to apply ML algorithms without fully understanding the data characteristics. CONCLUSION Researchers using ML algorithms should be aware of the properties of their ML algorithms and the limitation of the results they obtained under restricted data conditions. This paper provides useful information of the properties and limitation of each ML algorithm in the practice of mental health.
Collapse
Affiliation(s)
- Gyeongcheol Cho
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Jinyeong Yim
- Georgia Institute of Technology, North Avenue, Atlanta, USA
| | - Younyoung Choi
- Department of Adolescent Psychology, Hanyang Cyber University, Seoul, Republic of Korea
| | - Jungmin Ko
- Department of Mathematics Education, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seoung-Hwan Lee
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| |
Collapse
|
28
|
de Filippis R, Carbone EA, Gaetano R, Bruni A, Pugliese V, Segura-Garcia C, De Fazio P. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr Dis Treat 2019; 15:1605-1627. [PMID: 31354276 PMCID: PMC6590624 DOI: 10.2147/ndt.s202418] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Diagnosis of schizophrenia (SCZ) is made exclusively clinically, since specific biomarkers that can predict the disease accurately remain unknown. Machine learning (ML) represents a promising approach that could support clinicians in the diagnosis of mental disorders. OBJECTIVES A systematic review, according to the PRISMA statement, was conducted to evaluate its accuracy to distinguish SCZ patients from healthy controls. METHODS We systematically searched PubMed, Embase, MEDLINE, PsychINFO and the Cochrane Library through December 2018 using generic terms for ML techniques and SCZ without language or time restriction. Thirty-five studies were included in this review: eight of them used structural neuroimaging, twenty-six used functional neuroimaging and one both, with a minimum accuracy >60% (most of them 75-90%). Sensitivity, Specificity and accuracy were extracted from each publication or obtained directly from authors. RESULTS Support vector machine, the most frequent technique, if associated with other ML techniques achieved accuracy close to 100%. The prefrontal and temporal cortices appeared to be the most useful brain regions for the diagnosis of SCZ. ML analysis can efficiently detect significantly altered brain connectivity in patients with SCZ (eg, default mode network, visual network, sensorimotor network, frontoparietal network and salience network). CONCLUSION The greater accuracy demonstrated by these predictive models and the new models resulting from the integration of multiple ML techniques will be increasingly decisive for early diagnosis and evaluation of the treatment response and to establish the prognosis of patients with SCZ. To achieve a real benefit for patients, the future challenge is to reach an accurate diagnosis not only through clinical evaluation but also with the aid of ML algorithms.
Collapse
Affiliation(s)
- Renato de Filippis
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Elvira Anna Carbone
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Raffaele Gaetano
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Antonella Bruni
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Valentina Pugliese
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
29
|
Kamal H, Lopez V, Sheth SA. Machine Learning in Acute Ischemic Stroke Neuroimaging. Front Neurol 2018; 9:945. [PMID: 30467491 PMCID: PMC6236025 DOI: 10.3389/fneur.2018.00945] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023] Open
Abstract
Machine Learning (ML) through pattern recognition algorithms is currently becoming an essential aid for the diagnosis, treatment, and prediction of complications and patient outcomes in a number of neurological diseases. The evaluation and treatment of Acute Ischemic Stroke (AIS) have experienced a significant advancement over the past few years, increasingly requiring the use of neuroimaging for decision-making. In this review, we offer an insight into the recent developments and applications of ML in neuroimaging focusing on acute ischemic stroke.
Collapse
Affiliation(s)
- Haris Kamal
- Department of Neurology, University of Texas at Houston Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
30
|
Lee J, Chon MW, Kim H, Rathi Y, Bouix S, Shenton ME, Kubicki M. Diagnostic value of structural and diffusion imaging measures in schizophrenia. NEUROIMAGE-CLINICAL 2018; 18:467-474. [PMID: 29876254 PMCID: PMC5987843 DOI: 10.1016/j.nicl.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022]
Abstract
Objectives Many studies have attempted to discriminate patients with schizophrenia from healthy controls by machine learning using structural or functional MRI. We included both structural and diffusion MRI (dMRI) and performed random forest (RF) and support vector machine (SVM) in this study. Methods We evaluated the performance of classifying schizophrenia using RF method and SVM with 504 features (volume and/or fractional anisotropy and trace) from 184 brain regions. We enrolled 47 patients and 23 age- and sex-matched healthy controls and resampled our data into a balanced dataset using a Synthetic Minority Oversampling Technique method. We randomly permuted the classification of all participants as a patient or healthy control 100 times and ran the RF and SVM with leave one out cross validation for each permutation. We then compared the sensitivity and specificity of the original dataset and the permuted dataset. Results Classification using RF with 504 features showed a significantly higher rate of performance compared to classification by chance: sensitivity (87.6% vs. 47.0%) and specificity (95.9 vs. 48.4%) performed by RF, sensitivity (89.5% vs. 48.0%) and specificity (94.5% vs. 47.1%) performed by SVM. Conclusions Machine learning using RF and SVM with both volume and diffusion measures can discriminate patients with schizophrenia with a high degree of performance. Further replications are required.
Collapse
Affiliation(s)
- Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Myong-Wuk Chon
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Harin Kim
- Department of psychiatry, Korean Armed Forces Capital Hospital, Bundang-gu, Republic of Korea
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Wu F, Zhang Y, Yang Y, Lu X, Fang Z, Huang J, Kong L, Chen J, Ning Y, Li X, Wu K. Structural and functional brain abnormalities in drug-naive, first-episode, and chronic patients with schizophrenia: a multimodal MRI study. Neuropsychiatr Dis Treat 2018; 14:2889-2904. [PMID: 30464473 PMCID: PMC6214581 DOI: 10.2147/ndt.s174356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Structural and functional brain abnormalities in schizophrenia (SZ) have been widely reported. However, a few studies have investigated both structural and functional characteristics in SZ patients at different stages to understand the neuropathology of SZ. METHODS In this study, we recruited 44 first-episode drug-naive SZ (FESZ) patients, 44 medicated chronic SZ (CSZ) patients, and 56 normal controls (NCs) and acquired their structural and resting-state functional magnetic resonance imaging (MRI). We then made group comparisons on structural and functional characteristics, including regional gray matter volume (GMV), regional homogeneity, amplitude of low-frequency fluctuation, and degree centrality. A linear support vector machine (SVM) combined with a recursive feature elimination (RFE) algorithm was implemented to discriminate three groups. RESULTS Our results indicated that the regional GMV was significantly decreased in patients compared with that in NCs; CSZ patients have more diffused GMV decreases primarily involved in the frontal and temporal lobes when compared with FESZ patients. Both FESZ and CSZ patients showed significant functional alterations compared with NCs; when compared with FESZ patients, CSZ patients showed significant reductions in functional characteristics in several brain regions associated with auditory, visual processing, and sensorimotor functions. Moreover, a linear SVM combined with a RFE algorithm was implemented to discriminate three groups. The accuracies of the three classifiers were 79.80%, 83.16%, and 81.71%, respectively. The performance of classifiers in this study with multimodal MRI was better than that of previous discriminative analyses of SZ patients with single-modal MRI. CONCLUSION Our findings bring new insights into the understanding of the neuropathology of SZ and contribute to stage-specific biomarkers in diagnosis and interventions of SZ.
Collapse
Affiliation(s)
- Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China, .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China, ,
| | - Yue Zhang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China, , .,Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China,
| | - Yongzhe Yang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China, , .,Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China, .,School of Medicine, South China University of Technology (SCUT), Guangzhou, China
| | - Xiaobing Lu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China, .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China, ,
| | - Ziyan Fang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China,
| | - Jianwei Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China,
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China,
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China, .,National Engineering Research Center for Healthcare Devices, Guangzhou, China,
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China, .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China, ,
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA.,Department of Electric and Computer Engineering, New Jersey Institute of Technology, NJ, USA
| | - Kai Wu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China, , .,Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China, .,Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China, .,National Engineering Research Center for Healthcare Devices, Guangzhou, China, .,Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan,
| |
Collapse
|
32
|
Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, Alnæs D, Douaud G, Duff E, Djurovic S, Melle I, Ueland T, Agartz I, Andreassen OA, Westlye LT. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. NEUROIMAGE-CLINICAL 2017; 15:719-731. [PMID: 28702349 PMCID: PMC5491456 DOI: 10.1016/j.nicl.2017.06.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/28/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
The brain underpinnings of schizophrenia and bipolar disorders are multidimensional, reflecting complex pathological processes and causal pathways, requiring multivariate techniques to disentangle. Furthermore, little is known about the complementary clinical value of brain structural phenotypes when combined with data on cognitive performance and genetic risk. Using data-driven fusion of cortical thickness, surface area, and gray matter density maps (GMD), we found six biologically meaningful patterns showing strong group effects, including four statistically independent multimodal patterns reflecting co-occurring alterations in thickness and GMD in patients, over and above two other independent patterns of widespread thickness and area reduction. Case-control classification using cognitive scores alone revealed high accuracy, and adding imaging features or polygenic risk scores increased performance, suggesting their complementary predictive value with cognitive scores being the most sensitive features. Multivariate pattern analyses reveal distinct patterns of brain morphology in mental disorders, provide insights on the relative importance between brain structure, cognitive and polygenetic risk score in classification of patients, and demonstrate the importance of multivariate approaches in studying the pathophysiological substrate of these complex disorders. Linked ICA showed six independent multivariate morphology patterns sensitive to SZ. Machine learning used to compare brain structure, cognitive and genetic scores. Cognition showed highest prediction of SZ, boosted by brain structure or genetics.
Collapse
Affiliation(s)
- Nhat Trung Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Christine Lycke Brandt
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Gwenaëlle Douaud
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Eugene Duff
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torill Ueland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 2017; 145:137-165. [PMID: 27012503 PMCID: PMC5031516 DOI: 10.1016/j.neuroimage.2016.02.079] [Citation(s) in RCA: 529] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.
Collapse
Affiliation(s)
- Mohammad R Arbabshirani
- The Mind Research Network, Albuquerque, NM 87106, USA; Geisinger Health System, Danville, PA 17822, USA
| | - Sergey Plis
- The Mind Research Network, Albuquerque, NM 87106, USA
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM 87106, USA; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA; Department of ECE, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
34
|
van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2016; 13:361-369. [PMID: 28070484 PMCID: PMC5219634 DOI: 10.1016/j.nicl.2016.10.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 01/17/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A group of 135 ALS patients was included from whom high-resolution diffusion-weighted and T1-weighted images were acquired at the first visit to the outpatient clinic. Next, each of the patients was monitored carefully and survival time to death was recorded. Patients were labeled as short, medium or long survivors, based on their recorded time to death as measured from the time of disease onset. In the deep learning procedure, the total group of 135 patients was split into a training set for deep learning (n = 83 patients), a validation set (n = 20) and an independent evaluation set (n = 32) to evaluate the performance of the obtained deep learning networks. Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep learning based on MRI predicted 62.5% correctly using structural connectivity and 62.5% using brain morphology data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS, demonstrating the advantage of deep learning in disease prognostication.
Collapse
Affiliation(s)
- Hannelore K van der Burgh
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Ruben Schmidt
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Marcel A de Reus
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| | - Martijn P van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
| |
Collapse
|
35
|
Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, Yao Y, Du X, Li C, Wu L, Zhong X, Zhou Y, Fan N, Zheng Y, Xiong D, Peng H, Escudero J, Huang B, Li X, Ning Y, Wu K. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 2016; 95:e3973. [PMID: 27472673 PMCID: PMC5265810 DOI: 10.1097/md.0000000000003973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.
Collapse
Affiliation(s)
- Xiaobing Lu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Yongzhe Yang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Fengchun Wu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Minjian Gao
- School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yong Xu
- School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yue Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yongcheng Yao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Xin Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Chengwei Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Lei Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Xiaomei Zhong
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Yanling Zhou
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Ni Fan
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Yingjun Zheng
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Hongjun Peng
- Department of Clinical Psychology, Guangzhou Brain Hospital (GBH)/ (Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Javier Escudero
- Institute for Digital Communications, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Biao Huang
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, US
- Department of Electric and Computer Engineering, New Jersey Institute of Technology, NJ, US
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, US
| | - Yuping Ning
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Kai Wu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Levman J, Takahashi E. Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders. Neuroimage Clin 2015; 9:532-44. [PMID: 26640765 PMCID: PMC4625213 DOI: 10.1016/j.nicl.2015.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/15/2023]
Abstract
Multivariate analysis (MVA) is a class of statistical and pattern recognition methods that involve the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of medical neuroimaging-related challenges including identifying variables associated with a measure of clinical importance (i.e. patient outcome), creating diagnostic tests, assisting in characterizing developmental disorders, understanding disease etiology, development and progression, assisting in treatment monitoring and much more. Compared to adults, imaging of developing immature brains has attracted less attention from MVA researchers. However, remarkable MVA research growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to neurodevelopmental disorders in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of the brain. The goal of this manuscript is to provide a concise review of the state of the scientific literature on studies employing brain MRI and MVA in a pre-adult population. Neurological developmental disorders addressed in the MVA research contained in this review include autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia and more. While the results of this review demonstrate considerable interest from the scientific community in applications of MVA technologies in pediatric/neonatal/fetal brain MRI, the field is still young and considerable research growth remains ahead of us.
Collapse
Affiliation(s)
- Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street #456, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street #456, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
37
|
Facial, vocal and cross-modal emotion processing in early-onset schizophrenia spectrum disorders. Schizophr Res 2015; 168:252-9. [PMID: 26297473 DOI: 10.1016/j.schres.2015.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 11/22/2022]
Abstract
Recognition of emotional expressions plays an essential role in children's healthy development. Anomalies in these skills may result in empathy deficits, social interaction difficulties and premorbid emotional problems in children and adolescents with schizophrenia. Twenty-six subjects with early onset schizophrenia spectrum (EOSS) disorders and twenty-eight matched healthy controls (HC) were instructed to identify five basic emotions and a neutral expression. The assessment entailed presenting visual, auditory and congruent cross-modal stimuli. Using a generalized linear mixed model, we found no significant association for handedness, age or gender. However, significant associations emerged for emotion type, perception modality, and group. EOSS patients performed worse than HC in uni- and cross-modal emotional tasks with a specific negative emotion processing impairment pattern. There was no relationship between emotion identification scores and positive or negative symptoms, self-reported empathy traits or a positive history of developmental disorders. However, we found a significant association between emotional identification scores and nonverbal communication impairments. We conclude that cumulative dysfunctions in both nonverbal communication and emotion processing contribute to the social vulnerability and morbidity found in youths who display EOSS disorder.
Collapse
|
38
|
Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev 2015; 57:328-49. [PMID: 26254595 DOI: 10.1016/j.neubiorev.2015.08.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 12/19/2022]
Abstract
Psychiatric disorders are increasingly being recognised as having a biological basis, but their diagnosis is made exclusively behaviourally. A promising approach for 'biomarker' discovery has been based on pattern recognition methods applied to neuroimaging data, which could yield clinical utility in future. In this review we survey the literature on pattern recognition for making diagnostic predictions in psychiatric disorders, and evaluate progress made in translating such findings towards clinical application. We evaluate studies on many criteria, including data modalities used, the types of features extracted and algorithm applied. We identify problems common to many studies, such as a relatively small sample size and a primary focus on estimating generalisability within a single study. Furthermore, we highlight challenges that are not widely acknowledged in the field including the importance of accommodating disease prevalence, the necessity of more extensive validation using large carefully acquired samples, the need for methodological innovations to improve accuracy and to discriminate between multiple disorders simultaneously. Finally, we identify specific clinical contexts in which pattern recognition can add value in the short to medium term.
Collapse
Affiliation(s)
- Thomas Wolfers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Neuroimaging, Institute of Psychiatry, King's College London, LondonUnited Kingdom
| |
Collapse
|
39
|
Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology 2015; 40:1742-51. [PMID: 25601228 PMCID: PMC4915258 DOI: 10.1038/npp.2015.22] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 01/08/2023]
Abstract
Multivariate pattern recognition approaches have recently facilitated the search for reliable neuroimaging-based biomarkers in psychiatric disorders such as schizophrenia. By taking into account the multivariate nature of brain functional and structural changes as well as their distributed localization across the whole brain, they overcome drawbacks of traditional univariate approaches. To evaluate the overall reliability of neuroimaging-based biomarkers, we conducted a comprehensive literature search to identify all studies that used multivariate pattern recognition to identify patterns of brain alterations that differentiate patients with schizophrenia from healthy controls. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across studies as well as to assess the robustness to potentially confounding variables. In the total sample of n=38 studies (1602 patients and 1637 healthy controls), patients were differentiated from controls with a sensitivity of 80.3% (95% CI: 76.7-83.5%) and a specificity of 80.3% (95% CI: 76.9-83.3%). Analysis of neuroimaging modality indicated higher sensitivity (84.46%, 95% CI: 79.9-88.2%) and similar specificity (76.9%, 95% CI: 71.3-81.6%) of rsfMRI studies as compared with structural MRI studies (sensitivity: 76.4%, 95% CI: 71.9-80.4%, specificity of 79.0%, 95% CI: 74.6-82.8%). Moderator analysis identified significant effects of age (p=0.029), imaging modality (p=0.019), and disease stage (p=0.025) on sensitivity as well as of positive-to-negative symptom ratio (p=0.022) and antipsychotic medication (p=0.016) on specificity. Our results underline the utility of multivariate pattern recognition approaches for the identification of reliable neuroimaging-based biomarkers. Despite the clinical heterogeneity of the schizophrenia phenotype, brain functional and structural alterations differentiate schizophrenic patients from healthy controls with 80% sensitivity and specificity.
Collapse
|
40
|
Laton J, Van Schependom J, Gielen J, Decoster J, Moons T, De Keyser J, De Hert M, Nagels G. Single-subject classification of schizophrenia patients based on a combination of oddball and mismatch evoked potential paradigms. J Neurol Sci 2014; 347:262-7. [PMID: 25454645 DOI: 10.1016/j.jns.2014.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The diagnostic process for schizophrenia is mainly clinical and has to be performed by an experienced psychiatrist, relying primarily on clinical signs and symptoms. Current neurophysiological measurements can distinguish groups of healthy controls and groups of schizophrenia patients. Individual classification based on neurophysiological measurements mostly shows moderate accuracy. We wanted to examine whether it is possible to distinguish controls and patients individually with a good accuracy. To this end we used a combination of features extracted from the auditory and visual P300 paradigms and the mismatch negativity paradigm. METHODS We selected 54 patients and 54 controls, matched for age and gender, from the data available at the UPC Kortenberg. The EEG-data were high- and low-pass filtered, epoched and averaged. Features (latencies and amplitudes of component peaks) were extracted from the averaged signals. The resulting dataset was used to train and test classification algorithms. First on separate paradigms and then on all combinations, we applied Naïve Bayes, Support Vector Machine and Decision Tree, with two of its improvements: Adaboost and Random Forest. RESULTS For at least two classifiers the performance increased significantly by combining paradigms compared to single paradigms. The classification accuracy increased from at best 79.8% when trained on features from single paradigms, to 84.7% when trained on features from all three paradigms. CONCLUSION A combination of features originating from three evoked potential paradigms allowed us to accurately classify individual subjects as either control or patient. Classification accuracy was mostly above 80% for the machine learners evaluated in this study and close to 85% at best.
Collapse
Affiliation(s)
- Jorne Laton
- Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.
| | - Jeroen Van Schependom
- Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium; Faculté de Psychologie et des Sciences de l'Education, Université de Mons, Place du Parc 20, 7000 Mons, Belgium.
| | - Jeroen Gielen
- Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.
| | - Jeroen Decoster
- UPC KU Leuven - Campus Kortenberg, Department of Neurosciences, KU Leuven, Leuvensesteenweg 517, 3070 Kortenberg, Belgium.
| | - Tim Moons
- UPC KU Leuven - Campus Kortenberg, Department of Neurosciences, KU Leuven, Leuvensesteenweg 517, 3070 Kortenberg, Belgium.
| | - Jacques De Keyser
- Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.
| | - Marc De Hert
- UPC KU Leuven - Campus Kortenberg, Department of Neurosciences, KU Leuven, Leuvensesteenweg 517, 3070 Kortenberg, Belgium.
| | - Guy Nagels
- Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium; Faculté de Psychologie et des Sciences de l'Education, Université de Mons, Place du Parc 20, 7000 Mons, Belgium; UPC KU Leuven - Campus Kortenberg, Department of Neurosciences, KU Leuven, Leuvensesteenweg 517, 3070 Kortenberg, Belgium; National MS Center Melsbroek, Vanheylenstraat 16, 1820 Melsbroek, Belgium.
| |
Collapse
|
41
|
Greenstein D, Kataria R, Gochman P, Dasgupta A, Malley JD, Rapoport J, Gogtay N. Looking for childhood-onset schizophrenia: diagnostic algorithms for classifying children and adolescents with psychosis. J Child Adolesc Psychopharmacol 2014; 24:366-73. [PMID: 25019955 PMCID: PMC4162429 DOI: 10.1089/cap.2013.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Among children <13 years of age with persistent psychosis and contemporaneous decline in functioning, it is often difficult to determine if the diagnosis of childhood onset schizophrenia (COS) is warranted. Despite decades of experience, we have up to a 44% false positive screening diagnosis rate among patients identified as having probable or possible COS; final diagnoses are made following inpatient hospitalization and medication washout. Because our lengthy medication-free observation is not feasible in clinical practice, we constructed diagnostic classifiers using screening data to assist clinicians practicing in the community or academic centers. METHODS We used cross-validation, logistic regression, receiver operating characteristic (ROC) analysis, and random forest to determine the best algorithm for classifying COS (n=85) versus histories of psychosis and impaired functioning in children and adolescents who, at screening, were considered likely to have COS, but who did not meet diagnostic criteria for schizophrenia after medication washout and inpatient observation (n=53). We used demographics, clinical history measures, intelligence quotient (IQ) and screening rating scales, and number of typical and atypical antipsychotic medications as our predictors. RESULTS Logistic regression models using nine, four, and two predictors performed well with positive predictive values>90%, overall accuracy>77%, and areas under the curve (AUCs)>86%. CONCLUSIONS COS can be distinguished from alternate disorders with psychosis in children and adolescents; greater levels of positive and negative symptoms and lower levels of depression combine to make COS more likely. We include a worksheet so that clinicians in the community and academic centers can predict the probability that a young patient may be schizophrenic, using only two ratings.
Collapse
Affiliation(s)
- Deanna Greenstein
- Child Psychiatry Branch, National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Rachna Kataria
- Child Psychiatry Branch, National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Peter Gochman
- Child Psychiatry Branch, National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Abhijit Dasgupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, (NIAMS)/NIH, Bethesda, Maryland
| | - James D. Malley
- Center for Information Technology (CIT)/NIH, Bethesda, Maryland
| | - Judith Rapoport
- Child Psychiatry Branch, National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Nitin Gogtay
- Child Psychiatry Branch, National Institute of Mental Health (NIMH)/National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
42
|
[Neuroimaging in psychiatry: multivariate analysis techniques for diagnosis and prognosis]. DER NERVENARZT 2014; 85:714-9. [PMID: 24849118 DOI: 10.1007/s00115-014-4022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Multiple studies successfully applied multivariate analysis to neuroimaging data demonstrating the potential utility of neuroimaging for clinical diagnostic and prognostic purposes. OBJECTIVES Summary of the current state of research regarding the application of neuroimaging in the field of psychiatry. MATERIAL AND METHODS Literature review of current studies. RESULTS Results of current studies indicate the potential application of neuroimaging data across various diagnoses, such as depression, schizophrenia, bipolar disorder and dementia. Potential applications include disease classification, differential diagnosis and prediction of disease course. CONCLUSION The results of the studies are heterogeneous although some studies report promising findings. Further multicentre studies are needed with clearly specified patient populations to systematically investigate the potential utility of neuroimaging for the clinical routine.
Collapse
|
43
|
Baribeau DA, Anagnostou E. A comparison of neuroimaging findings in childhood onset schizophrenia and autism spectrum disorder: a review of the literature. Front Psychiatry 2013; 4:175. [PMID: 24391605 PMCID: PMC3869044 DOI: 10.3389/fpsyt.2013.00175] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) and childhood onset schizophrenia (COS) are pediatric neurodevelopmental disorders associated with significant morbidity. Both conditions are thought to share an underlying genetic architecture. A comparison of neuroimaging findings across ASD and COS with a focus on altered neurodevelopmental trajectories can shed light on potential clinical biomarkers and may highlight an underlying etiopathogenesis. METHODS A comprehensive review of the medical literature was conducted to summarize neuroimaging data with respect to both conditions in terms of structural imaging (including volumetric analysis, cortical thickness and morphology, and region of interest studies), white matter analysis (include volumetric analysis and diffusion tensor imaging) and functional connectivity. RESULTS In ASD, a pattern of early brain overgrowth in the first few years of life is followed by dysmaturation in adolescence. Functional analyses have suggested impaired long-range connectivity as well as increased local and/or subcortical connectivity in this condition. In COS, deficits in cerebral volume, cortical thickness, and white matter maturation seem most pronounced in childhood and adolescence, and may level off in adulthood. Deficits in local connectivity, with increased long-range connectivity have been proposed, in keeping with exaggerated cortical thinning. CONCLUSION The neuroimaging literature supports a neurodevelopmental origin of both ASD and COS and provides evidence for dynamic changes in both conditions that vary across space and time in the developing brain. Looking forward, imaging studies which capture the early post natal period, which are longitudinal and prospective, and which maximize the signal to noise ratio across heterogeneous conditions will be required to translate research findings into a clinical environment.
Collapse
Affiliation(s)
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
44
|
Zarogianni E, Moorhead TW, Lawrie SM. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin 2013; 3:279-89. [PMID: 24273713 PMCID: PMC3814947 DOI: 10.1016/j.nicl.2013.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022]
Abstract
Standard univariate analyses of brain imaging data have revealed a host of structural and functional brain alterations in schizophrenia. However, these analyses typically involve examining each voxel separately and making inferences at group-level, thus limiting clinical translation of their findings. Taking into account the fact that brain alterations in schizophrenia expand over a widely distributed network of brain regions, univariate analysis methods may not be the most suited choice for imaging data analysis. To address these limitations, the neuroimaging community has turned to machine learning methods both because of their ability to examine voxels jointly and their potential for making inferences at a single-subject level. This article provides a critical overview of the current and foreseeable applications of machine learning, in identifying imaging-based biomarkers that could be used for the diagnosis, early detection and treatment response of schizophrenia, and could, thus, be of high clinical relevance. We discuss promising future research directions and the main difficulties facing machine learning researchers as far as their potential translation into clinical practice is concerned.
Collapse
Affiliation(s)
- Eleni Zarogianni
- Division of Psychiatry, School of Clinical Sciences, University of Edinburgh, The Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, Scotland, UK
| | | | | |
Collapse
|
45
|
Iwabuchi SJ, Liddle PF, Palaniyappan L. Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging. Front Psychiatry 2013; 4:95. [PMID: 24009589 PMCID: PMC3756305 DOI: 10.3389/fpsyt.2013.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/15/2013] [Indexed: 11/15/2022] Open
Abstract
Machine-learning approaches are becoming commonplace in the neuroimaging literature as potential diagnostic and prognostic tools for the study of clinical populations. However, very few studies provide clinically informative measures to aid in decision-making and resource allocation. Head-to-head comparison of neuroimaging-based multivariate classifiers is an essential first step to promote translation of these tools to clinical practice. We systematically evaluated the classifier performance using back-to-back structural MRI in two field strengths (3- and 7-T) to discriminate patients with schizophrenia (n = 19) from healthy controls (n = 20). Gray matter (GM) and white matter images were used as inputs into a support vector machine to classify patients and control subjects. Seven Tesla classifiers outperformed the 3-T classifiers with accuracy reaching as high as 77% for the 7-T GM classifier compared to 66.6% for the 3-T GM classifier. Furthermore, diagnostic odds ratio (a measure that is not affected by variations in sample characteristics) and number needed to predict (a measure based on Bayesian certainty of a test result) indicated superior performance of the 7-T classifiers, whereby for each correct diagnosis made, the number of patients that need to be examined using the 7-T GM classifier was one less than the number that need to be examined if a different classifier was used. Using a hypothetical example, we highlight how these findings could have significant implications for clinical decision-making. We encourage the reporting of measures proposed here in future studies utilizing machine-learning approaches. This will not only promote the search for an optimum diagnostic tool but also aid in the translation of neuroimaging to clinical use.
Collapse
Affiliation(s)
- Sarina J. Iwabuchi
- Division of Psychiatry, Centre for Translational Neuroimaging in Mental Health, University of Nottingham, Nottingham, UK
| | - Peter F. Liddle
- Division of Psychiatry, Centre for Translational Neuroimaging in Mental Health, University of Nottingham, Nottingham, UK
| | - Lena Palaniyappan
- Division of Psychiatry, Centre for Translational Neuroimaging in Mental Health, University of Nottingham, Nottingham, UK
- Nottinghamshire Healthcare NHS Trust, Nottingham, UK
| |
Collapse
|
46
|
Examining similarity structure: multidimensional scaling and related approaches in neuroimaging. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:796183. [PMID: 23662162 PMCID: PMC3639644 DOI: 10.1155/2013/796183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/19/2013] [Indexed: 11/25/2022]
Abstract
This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis methods.
Collapse
|