1
|
Dahan E, Pergamenshik L, Taub T, Vovk A, Manier J, Avneri R, Lax E. Poly ADP-ribosylation regulates Arc expression and promotes adaptive stress-coping. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06744-8. [PMID: 39808339 DOI: 10.1007/s00213-025-06744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
RATIONALE Rapid adaptation to stressful events is essential for survival and requires acute stress response and stress-coping strategy. However, the molecular mechanisms that govern this coping strategy have yet to be fully discovered. OBJECTIVES This study aims to investigate the effects of poly ADP-ribosylation (PARylation) on stress-coping strategies following acute stress and to identify the target genes influenced by Parp1-induced histone PARylation. METHODS Mice were subjected to a forced swim test, a well-established acute stress paradigm, to evaluate cortical PARylation and assess the expression of activity-dependent genes. The pharmacological inhibition of Parp1 was conducted using ABT888 (Veliparib) to determine its effects on stress-coping behavior and related molecular changes. RESULTS The forced swim test increased cortical PARylation and upregulated the expression of activity-dependent genes. Systemic inhibition of Parp1 with ABT888 led to impaired stress-coping behavior, evidenced by a reduced immobility response during a subsequent forced swim test done 24 hours later. This impairment was associated with decreased chromatin PARylation and histone H4 acetylation at the Arc promoter and reduced Arc expression observed one hour after Parp1 inhibition. CONCLUSION Our findings indicate that chromatin PARylation at the Arc promoters regulates histone H4 acetylation and Arc gene expression, and a subsequent impact on successful stress-coping behavior in response to acute stress.
Collapse
Affiliation(s)
- Eliyahu Dahan
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Tze'ela Taub
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Arthur Vovk
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jade Manier
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Raphael Avneri
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
2
|
Morè L, Privitera L, Lopes M, Arthur JSC, Lauterborn JC, Corrêa SAL, Frenguelli BG. MSK1 is required for the experience- and ampakine-dependent enhancement of spatial reference memory and reversal learning and for the induction of Arc and BDNF. Neuropharmacology 2024; 261:110110. [PMID: 39128584 DOI: 10.1016/j.neuropharm.2024.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
There is considerable interest in the development of nootropics, pharmacological agents that can improve cognition across a range of both cognitive modalities and cognitive disabilities. One class of cognitive enhancers, the ampakines, has attracted particular attention by virtue of improving cognition associated with animal models of neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as in age-related cognitive impairment. Ampakines elevate CNS levels of BDNF, and it is through this elevation that their beneficial actions are believed to occur. However, what transduces the elevation of BDNF into long-lasting cognitive enhancement is not known. We have previously shown that MSK1, by virtue of its ability to regulate gene transcription, converts the elevation of BDNF associated with environmental enrichment into molecular, synaptic, cognitive and genomic adaptations that underlie enrichment-induced enhanced synaptic plasticity and learning and memory, a property that MSK1 retains across the lifespan. To establish whether MSK1 similarly converts ampakine-induced elevations of BDNF into cognitive enhancement we tested an ampakine (CX929) in male WT mice and in male mice in which the kinase activity of MSK1 was inactivated. We found that MSK1 is required for the ampakine-dependent improvement in spatial reference memory and cognitive flexibility, and for the elevations of BDNF and the plasticity-related protein Arc associated with ampakines and experience. These observations implicate MSK1 as a key enabler of the beneficial effects of ampakines on cognitive function, and furthermore identify MSK1 as a hub for BDNF-elevating nootropic strategies.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Marcia Lopes
- Bradford School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Julie C Lauterborn
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - Sonia A L Corrêa
- Bradford School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK; Department of Life Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | | |
Collapse
|
3
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Aguilar-Delgadillo A, Cruz-Mendoza F, Luquin-de Andais teh S, Ruvalcaba-Delgadillo Y, Jáuregui-Huerta F. Stress-induced c-fos expression in the medial prefrontal cortex differentially affects the main residing cell phenotypes. Heliyon 2024; 10:e39325. [PMID: 39498004 PMCID: PMC11532284 DOI: 10.1016/j.heliyon.2024.e39325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Stress poses a challenge to the body's equilibrium and triggers a series of responses that enable organisms to adapt to stressful stimuli. The medial prefrontal cortex (mPFC), particularly in acute stress conditions, undergoes significant physiological changes to cope with the demands associated with cellular activation. The proto-oncogene c-fos and its protein product c-Fos have long been utilized to investigate the effects of external factors on the central nervous system (CNS). While c-Fos expression has traditionally been attributed to neurons, emerging evidence suggests its potential expression in glial cells. In this study, our main objective was to explore the expression of c-Fos in glial cells and examine how acute stress influences these activity patterns. We conducted our experiments on male Wistar rats, subjecting them to acute stress and sacrificing them 2 h after the stressor initiation. Using double-labelling fluorescent immunohistochemistry targeting c-Fos, along with markers such as GFAP, Iba-1, Olig2, NG2, and NeuN, we analyzed 35 μm brain slices obtained from the mPFC. Our findings compellingly demonstrate that c-Fos expression extends beyond neurons and is present in astrocytes, oligodendrocytes, microglia, and NG2 cells-the diverse population of glial cells. Moreover, we observed distinct regulation of c-Fos expression in response to stress across different subregions of the mPFC. These results emphasize the importance of considering glial cells and their perspective in studies investigating brain activity, highlighting c-Fos as a response marker in glial cells. By shedding light on the differential regulation of c-Fos expression in response to stress, our study contributes to the understanding of glial cell involvement in stress-related processes. This underscores the significance of including glial cells in investigations of brain activity and expands our knowledge of c-Fos as a potential marker for glial cell responses.
Collapse
Affiliation(s)
| | - Fernando Cruz-Mendoza
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
| | | | | | - Fernando Jáuregui-Huerta
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
5
|
Bavencoffe A, Zhu MY, Neerukonda SV, Johnson KN, Dessauer CW, Walters ET. Induction of long-term hyperexcitability by memory-related cAMP signaling in isolated nociceptor cell bodies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100166. [PMID: 39399224 PMCID: PMC11470187 DOI: 10.1016/j.ynpai.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") male rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator forskolin induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 h later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and produced trends for reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, or protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. The present results also raise the question of whether reactivation of primed signaling mechanisms by re-exposure to inflammatory mediators linked to cAMP synthesis during subsequent challenges to bodily integrity can "reconsolidate" nociceptor memory, extending the duration of persistent hyperexcitability.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Michael Y. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Sanjay V. Neerukonda
- Medical Scientist Training Program, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
7
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Gaudenzi C, Mifsud KR, Reul JMHM. Insights into isoform-specific mineralocorticoid receptor action in the hippocampus. J Endocrinol 2023; 258:e220293. [PMID: 37235709 PMCID: PMC7616738 DOI: 10.1530/joe-22-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
The mineralocorticoid receptor (MR) plays a critical role in the mammalian brain as a mediator of appropriate cellular and behavioural responses under both baseline and stressful conditions. In the hippocampus, the MR has been implicated in several processes, such as neuronal maintenance, adult neurogenesis, inhibitory control of the hypothalamic-pituitary-adrenal axis, and learning and memory. Because of its high affinity for endogenous glucocorticoid hormones, the MR has long been postulated to mediate tonic actions in the brain, but more recent data have expanded on this view, indicating that the MR elicits dynamic responses as well. The complexity of the diverse molecular, cellular, and physiological functions fulfilled by the human, rat and mouse MR could at least partially be explained by the existence of different isoforms of the receptor. The structural and functional characteristics of these isoforms, however, have remained largely unexplored. The present article will review the current knowledge concerning human, rat, and mouse MR isoforms and evaluate seminal studies concerning the roles of the brain MR, with the intent to shed light on the function of its specific isoforms.
Collapse
Affiliation(s)
- Carolina Gaudenzi
- Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Karen R Mifsud
- Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Cabej NR. On the origin and nature of nongenetic information in eumetazoans. Ann N Y Acad Sci 2023. [PMID: 37154677 DOI: 10.1111/nyas.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nongenetic information implies all the forms of biological information not related to genes and DNA in general. Despite the deep scientific relevance of the concept, we currently lack reliable knowledge about its carriers and origins; hence, we still do not understand its true nature. Given that genes are the targets of nongenetic information, it appears that a parsimonious approach to find the ultimate source of that information is to trace back the sequential steps of the causal chain upstream of the target genes up to the ultimate link as the source of the nongenetic information. From this perspective, I examine seven nongenetically determined phenomena: placement of locus-specific epigenetic marks on DNA and histones, changes in snRNA expression patterns, neural induction of gene expression, site-specific alternative gene splicing, predator-induced morphological changes, and cultural inheritance. Based on the available evidence, I propose a general model of the common neural origin of all these forms of nongenetic information in eumetazoans.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
10
|
Kennedy CL, Price EM, Mifsud KR, Salatino S, Sharma E, Engledow S, Broxholme J, Goss HM, Reul JM. Genomic regulation of Krüppel-like-factor family members by corticosteroid receptors in the rat brain. Neurobiol Stress 2023; 23:100532. [PMID: 36942087 PMCID: PMC10024234 DOI: 10.1016/j.ynstr.2023.100532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) mediate glucocorticoid hormone (GC) action in the hippocampus. These receptors bind to glucocorticoid responsive elements (GREs) within target genes, eliciting transcriptional effects in response to stress and circadian variation. Until recently, little was known about the genome-wide targets of hippocampal MRs and GRs under physiological conditions. Following on from our genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus, we investigated the Krüppel-like factors (KLFs) as targets of MRs and GRs throughout the brain under circadian variation and after acute stress. In particular, Klf2, Klf9 and Klf15 are known to be stress and/or GC responsive and play a role in neurobiological processes including synaptic plasticity and neuronal differentiation. We found increased binding of MR and GR to GREs within Klf2, Klf9 and Klf15 in the hippocampus, amygdala, prefrontal cortex, and neocortex after acute stress and resulting from circadian variation, which was accompanied by upregulation of corresponding hnRNA and mRNA levels. Adrenalectomy abolished transcriptional upregulation of specific Klf genes. These results show that MRs and GRs regulate Klf gene expression throughout the brain following exposure to acute stress or in response to circadian variation, likely alongside other transcription factors.
Collapse
Affiliation(s)
- Clare L.M. Kennedy
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emily M. Price
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Karen R. Mifsud
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Simon Engledow
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Hannah M. Goss
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Johannes M.H.M. Reul
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
- Corresponding author.
| |
Collapse
|
11
|
Yáñez-Gómez F, Ramos-Miguel A, García-Sevilla JA, Manzanares J, Femenía T. Regulation of Cortico-Thalamic JNK1/2 and ERK1/2 MAPKs and Apoptosis-Related Signaling Pathways in PDYN Gene-Deficient Mice Following Acute and Chronic Mild Stress. Int J Mol Sci 2023; 24:ijms24032303. [PMID: 36768626 PMCID: PMC9916432 DOI: 10.3390/ijms24032303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The crosstalk between the opioidergic system and mitogen-activated protein kinases (MAPKs) has a critical role in mediating stress-induced behaviors related to the pathophysiology of anxiety. The present study evaluated the basal status and stress-induced alterations of cortico-thalamic MAPKs and other cell fate-related signaling pathways potentially underlying the anxiogenic endophenotype of PDYN gene-deficient mice. Compared to littermates, PDYN knockout (KO) mice had lower cortical and or thalamic amounts of the phospho-activated MAPKs c-Jun N-terminal kinase (JNK1/2) and extracellular signal-regulated kinase (ERK1/2). Similarly, PDYN-KO animals displayed reduced cortico-thalamic densities of total and phosphorylated (at Ser191) species of the cell fate regulator Fas-associated protein with death domain (FADD) without alterations in the Fas receptor. Exposure to acute restraint and chronic mild stress stimuli induced the robust stimulation of JNK1/2 and ERK1/2 MAPKs, FADD, and Akt-mTOR pathways, without apparent increases in apoptotic rates. Interestingly, PDYN deficiency prevented stress-induced JNK1/2 and FADD but not ERK1/2 or Akt-mTOR hyperactivations. These findings suggest that cortico-thalamic MAPK- and FADD-dependent neuroplasticity might be altered in PDYN-KO mice. In addition, the results also indicate that the PDYN gene (and hence dynorphin release) may be required to stimulate JNK1/2 and FADD (but not ERK1/2 or Akt/mTOR) pathways under environmental stress conditions.
Collapse
Affiliation(s)
- Fernando Yáñez-Gómez
- Laboratorio de Neurofarmacología, IUNICS, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barrio Sarriena S/N, 48940 Leioa, Spain
- BioCruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain
- Correspondence:
| | - Jesús A. García-Sevilla
- Laboratorio de Neurofarmacología, IUNICS, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Teresa Femenía
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
12
|
Vijayalalitha R, Archita T, Juanitaa GR, Jayasuriya R, Amin KN, Ramkumar KM. Role of Long Non-Coding RNA in Regulating ER Stress Response to the Progression of Diabetic Complications. Curr Gene Ther 2023; 23:96-110. [PMID: 35927920 DOI: 10.2174/1566523222666220801141450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Chronic hyperglycemia damages the nerves and blood vessels, culminating in other vascular complications. Such complications enhance cytokine, oxidative and endoplasmic reticulum (ER) stress. ER is the primary organelle where proteins are synthesised and attains confirmatory changes before its site of destination. Perturbation of ER homeostasis activates signaling sensors within its lumen, the unfolded protein response (UPR) that orchestrates ER stress and is extensively studied. Increased ER stress markers are reported in diabetic complications in addition to lncRNA that acts as an upstream marker inducing ER stress response. This review focuses on the mechanisms of lncRNA that regulate ER stress markers, especially during the progression of diabetic complications. Through this systemic review, we showcase the dysfunctional lncRNAs that act as a leading cause of ER stress response to the progression of diabetic complications.
Collapse
Affiliation(s)
- Ramanarayanan Vijayalalitha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Tca Archita
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - George Raj Juanitaa
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Karan Naresh Amin
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
13
|
Caradonna SG, Paul MR, Marrocco J. Evidence for an allostatic epigenetic memory on chromatin footprints after double-hit acute stress. Neurobiol Stress 2022; 20:100475. [PMID: 36032404 PMCID: PMC9400173 DOI: 10.1016/j.ynstr.2022.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Stress induces allostatic responses, whose limits depend on genetic background and the nature of the challenges. Allostatic load reflects the cumulation of these reponses over the course of life. Acute stress is usually associated with adaptive responses, although, depending on the intensity of the stress and individual differences , some may experience maladaptive coping that persists through life and may influence subsequent responses to stressful events, as is the case of post-traumatic stress disorder. We investigated the behavioral traits and epigenetic signatures in a double-hit mouse model of acute stress in which heterotypic stressors (acute swim stress and acute restraint stress) were applied within a 7-day interval period. The ventral hippocampus was isolated to study the footprints of chromatin accessibility driven by exposure to double-hit stress. Using ATAC sequencing to determine regions of open chromatin, we showed that depending on the number of acute stressors, several gene sets related to development, immune function, cell starvation, translation, the cytoskeleton, and DNA modification were reprogrammed in both males and females. Chromatin accessibility for transcription factor binding sites showed that stress altered the accessibility for androgen, glucocorticoid, and mineralocorticoid receptor binding sites (AREs/GREs) at the genome-wide level, with double-hit stressed mice displaying a profile unique from either single hit of acute stress. The investigation of AREs/GREs adjacent to gene coding regions revealed several stress-related genes, including Fkbp5, Zbtb16, and Ddc, whose chromatin accessibility was affected by prior exposure to stress. These data demonstrate that acute stress is not truly acute because it induces allostatic signatures that persist in the epigenome and may manifest when a second challenge hits later in life.
Collapse
Affiliation(s)
| | - Matthew R. Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
- Department of Biology, Touro University, New York, NY, USA
- Corresponding author. Department of Biology, Touro University, New York, NY, USA.
| |
Collapse
|
14
|
Dadgar H, Majidi H, Aghaei S. Biological and Neurobiological Mechanisms of Transcranial Direct Current Stimulation. IRANIAN JOURNAL OF PSYCHIATRY 2022; 17:350-355. [PMID: 36474694 PMCID: PMC9699813 DOI: 10.18502/ijps.v17i3.9735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/02/2021] [Accepted: 03/16/2022] [Indexed: 06/17/2023]
Abstract
Objective: Changes in cortical excitability and neuroplasticity are important parts of the neuropathology and pathophysiology of many neuropsychiatric disorders. Noninvasive brain stimulation is a high-potential therapeutic approach to modify cortical activities. One of the most popular of these techniques is transcranial direct current stimulation (tDCS). However, the biological and neurobiological effects of tDCS should be better clarified to enable its optimal use in clinical and therapeutic practices. In this paper, we summarize the neurophysiological and physiological effects and mechanisms of action of tDCS. Method : An update literature review was conducted on the biological responses of tDCS reported in human, in vitro and in vivo studies, with a focus on cellular cascades related to neuroplasticity, neuronal reorganization and inflammation caused by applied direct current electric fields. Results: The regulatory mechanisms of tDCS on motor and cognitive functions can be described by membrane polarization and transmembrane potential with a main subsequent effect on neurotransmission systems, neuronal excitability, synaptic microenvironment and neuronal connectivity to neuronal reorganization and neurogenesis in association with synaptic plasticity as well as inflammatory processes. In general, the effects of tDCS may include acute- or after-effects and direct or indirect effects and can be examined at different levels including the neurochemical, the neuroelectrical and the brain oscillatory levels. Conclusion: A deep understanding of the molecular and cellular responses to tDCS is very important and crucial. This therapeutic technique can be utilized in various clinical trials with a perspective of being routinely suggested and presented to patients with different pathological conditions influencing the central or peripheral nervous system.
Collapse
Affiliation(s)
- Hooshang Dadgar
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Majidi
- Department of Electrical Engineering, Technical and Vocational University, Tehran, Iran
| | - Setareh Aghaei
- School of Psychology, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| |
Collapse
|
15
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Alvarez De Mon M. Nutrition, Epigenetics, and Major Depressive Disorder: Understanding the Connection. Front Nutr 2022; 9:867150. [PMID: 35662945 PMCID: PMC9158469 DOI: 10.3389/fnut.2022.867150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a complex, multifactorial disorder of rising prevalence and incidence worldwide. Nearly, 280 million of people suffer from this leading cause of disability in the world. Moreover, patients with this condition are frequently co-affected by essential nutrient deficiency. The typical scene with stress and hustle in developed countries tends to be accompanied by eating disorders implying overnutrition from high-carbohydrates and high-fat diets with low micronutrients intake. In fact, currently, coronavirus disease 2019 (COVID-19) pandemic has drawn more attention to this underdiagnosed condition, besides the importance of the nutritional status in shaping immunomodulation, in which minerals, vitamins, or omega 3 polyunsaturated fatty acids (ω-3 PUFA) play an important role. The awareness of nutritional assessment is greater and greater in the patients with depression since antidepressant treatments have such a significant probability of failing. As diet is considered a crucial environmental factor, underlying epigenetic mechanisms that experience an adaptation or consequence on their signaling and expression mechanisms are reviewed. In this study, we included metabolic changes derived from an impairment in cellular processes due to lacking some essential nutrients in diet and therefore in the organism. Finally, aspects related to nutritional interventions and recommendations are also addressed.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Spain
- *Correspondence: Miguel A. Ortega
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Sonia Fernandez-Rojo
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), Alcalá de Henares, Spain
| |
Collapse
|
16
|
Wiley JW, Higgins GA, Hong S. Chronic psychological stress alters gene expression in rat colon epithelial cells promoting chromatin remodeling, barrier dysfunction and inflammation. PeerJ 2022; 10:e13287. [PMID: 35509963 PMCID: PMC9059753 DOI: 10.7717/peerj.13287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic stress is commonly associated with enhanced abdominal pain (visceral hypersensitivity), but the cellular mechanisms underlying how chronic stress induces visceral hypersensitivity are poorly understood. In this study, we examined changes in gene expression in colon epithelial cells from a rat model using RNA-sequencing to examine stress-induced changes to the transcriptome. Following chronic stress, the most significantly up-regulated genes included Atg16l1, Coq10b, Dcaf13, Nat2, Ptbp2, Rras2, Spink4 and down-regulated genes including Abat, Cited2, Cnnm2, Dab2ip, Plekhm1, Scd2, and Tab2. The primary altered biological processes revealed by network enrichment analysis were inflammation/immune response, tissue morphogenesis and development, and nucleosome/chromatin assembly. The most significantly down-regulated process was the digestive system development/function, whereas the most significantly up-regulated processes were inflammatory response, organismal injury, and chromatin remodeling mediated by H3K9 methylation. Furthermore, a subpopulation of stressed rats demonstrated very significantly altered gene expression and transcript isoforms, enriched for the differential expression of genes involved in the inflammatory response, including upregulation of cytokine and chemokine receptor gene expression coupled with downregulation of epithelial adherens and tight junction mRNAs. In summary, these findings support that chronic stress is associated with increased levels of cytokines and chemokines, their downstream signaling pathways coupled to dysregulation of intestinal cell development and function. Epigenetic regulation of chromatin remodeling likely plays a prominent role in this process. Results also suggest that super enhancers play a primary role in chronic stress-associated intestinal barrier dysfunction.
Collapse
Affiliation(s)
- John W. Wiley
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Shuangsong Hong
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| |
Collapse
|
17
|
von Ziegler LM, Floriou-Servou A, Waag R, Das Gupta RR, Sturman O, Gapp K, Maat CA, Kockmann T, Lin HY, Duss SN, Privitera M, Hinte L, von Meyenn F, Zeilhofer HU, Germain PL, Bohacek J. Multiomic profiling of the acute stress response in the mouse hippocampus. Nat Commun 2022; 13:1824. [PMID: 35383160 PMCID: PMC8983670 DOI: 10.1038/s41467-022-29367-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, the underlying molecular cascades are unclear. Here, we use a brief swim exposure to trigger an acute stress response in mice, which transiently increases anxiety, without leading to lasting maladaptive changes. Using multiomic profiling, such as proteomics, phospho-proteomics, bulk mRNA-, single-nuclei mRNA-, small RNA-, and TRAP-sequencing, we characterize the acute stress-induced molecular events in the mouse hippocampus over time. Our results show the complexity and specificity of the response to acute stress, highlighting both the widespread changes in protein phosphorylation and gene transcription, and tightly regulated protein translation. The observed molecular events resolve efficiently within four hours after initiation of stress. We include an interactive app to explore the data, providing a molecular resource that can help us understand how acute stress impacts brain function in response to stress. Acute stress can help individuals to respond to challenging events, although chronic stress leads to maladaptive changes. Here, the authors present a multi omic analysis profiling acute stress-induced changes in the mouse hippocampus, providing a resource for the scientific community.
Collapse
Affiliation(s)
- Lukas M von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Rebecca R Das Gupta
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Katharina Gapp
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christina A Maat
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Han-Yu Lin
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Laura Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Hanns U Zeilhofer
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Laboratory of Statistical Bioinformatics, Department for Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. .,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Faucher P, Huguet C, Mons N, Micheau J. Acute pre-learning stress selectively impairs hippocampus-dependent fear memory consolidation: Behavioral and molecular evidence. Neurobiol Learn Mem 2022; 188:107585. [PMID: 35021061 DOI: 10.1016/j.nlm.2022.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Despite compelling evidence that stress or stress-related hormones influence fear memory consolidation processes, the understanding of molecular mechanisms underlying the effects of stress is still fragmentary. The release of corticosterone in response to pre-learning stress exposure has been demonstrated to modulate positively or negatively memory encoding and/or consolidation according to many variables such as stress intensity, the emotional valence of the learned material or the interval between stressful episode and learning experience. Here, we report that contextual but not cued fear memory consolidation was selectively impaired in male mice exposed to a 50 min-period of restraint stress just before the unpaired fear conditioning session. In addition to behavioral impairment, acute stress down-regulated activated/phosphorylated ERK1/2 (pERK1/2) in dorsal hippocampal area CA1 in mice sacrificed 60 min and 9 h after unpaired conditioning. In lateral amygdala, although acute stress by itself increased the level of pERK1/2 it nevertheless blocked the peak of pERK1/2 that was normally observed 15 min after unpaired conditioning. To examine whether stress-induced corticosterone overflow was responsible of these detrimental effects, the corticosterone synthesis inhibitor, metyrapone, was administered 30 min before stress exposure. Metyrapone abrogated the stress-induced contextual fear memory deficits but did not alleviate the effects of stress on pERK1/2 and its downstream target phosphorylated CREB (pCREB) in hippocampus CA1 and lateral amygdala. Collectively, our observations suggest that consolidation of hippocampus-dependent memory and the associated signaling pathway are particularly sensitive to stress. However, behavioral normalization by preventive metyrapone treatment was not accompanied by renormalization of the canonical signaling pathway. A new avenue would be to consider surrogate mechanisms involving proper metyrapone influence on both nongenomic and genomic actions of glucocorticoid receptors.
Collapse
Affiliation(s)
- Pierre Faucher
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Célia Huguet
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Nicole Mons
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Jacques Micheau
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France.
| |
Collapse
|
19
|
Ventura R, Cabib S, Babicola L, Andolina D, Di Segni M, Orsini C. Interactions Between Experience, Genotype and Sex in the Development of Individual Coping Strategies. Front Behav Neurosci 2022; 15:785739. [PMID: 34987364 PMCID: PMC8721137 DOI: 10.3389/fnbeh.2021.785739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Coping strategies, the first line of defense against adversities, develop through experience. There is consistent evidence that both genotype and sex contribute to the development of dysfunctional coping, leading to maladaptive outcomes of adverse experiences or to adaptive coping that fosters rapid recovery even from severe stress. However, how these factors interact to influence the development of individual coping strategies is just starting to be investigated. In the following review, we will consider evidence that experience, sex, and genotype influence the brain circuits and neurobiological processes involved in coping with adversities and discuss recent results pointing to the specific effects of the interaction between early experiences, genotype, and stress in the development of functional and dysfunctional coping styles.
Collapse
Affiliation(s)
- Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Lucy Babicola
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Di Segni
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristina Orsini
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Mifsud KR, Kennedy CLM, Salatino S, Sharma E, Price EM, Haque SN, Gialeli A, Goss HM, Panchenko PE, Broxholme J, Engledow S, Lockstone H, Cordero Llana O, Reul JMHM. Distinct regulation of hippocampal neuroplasticity and ciliary genes by corticosteroid receptors. Nat Commun 2021; 12:4737. [PMID: 34362910 PMCID: PMC8346558 DOI: 10.1038/s41467-021-24967-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid hormones (GCs) - acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) - are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.
Collapse
Affiliation(s)
- Karen R Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Clare L M Kennedy
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily M Price
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha N Haque
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Andriana Gialeli
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Hannah M Goss
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Polina E Panchenko
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Simon Engledow
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Oscar Cordero Llana
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
21
|
Lawson-Boyd E, Meloni M. Gender Beneath the Skull: Agency, Trauma and Persisting Stereotypes in Neuroepigenetics. Front Hum Neurosci 2021; 15:667896. [PMID: 34211381 PMCID: PMC8239152 DOI: 10.3389/fnhum.2021.667896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetics stands in a complex relationship to issues of sex and gender. As a scientific field, it has been heavily criticized for disproportionately targeting the maternal body and reproducing deterministic views of biological sex (Kenney and Müller, 2017; Lappé, 2018; Richardson et al., 2014). And yet, it also represents the culmination of a long tradition of engaging with developmental biology as a feminist cause, because of the dispersal of the supposed 'master code' of DNA among wider cellular, organismic and ecological contexts (Keller, 1988). In this paper, we explore a number of tensions at the intersection of sex, gender and trauma that are playing out in the emerging area of neuroepigenetics - a relatively new subfield of epigenetics specifically interested in environment-brain relations through epigenetic modifications in neurons. Using qualitative interviews with leading scientists, we explore how trauma is conceptualized in neuroepigenetics, paying attention to its gendered dimensions. We address a number of concerns raised by feminist STS researchers in regard to epigenetics, and illustrate why we believe close engagement with neuroepigenetic claims, and neuroepigenetic researchers themselves, is a crucial step for social scientists interested in questions of embodiment and trauma. We argue this for three reasons: (1) Neuroepigenetic studies are recognizing the agential capacities of biological materials such as genes, neurotransmitters and methyl groups, and how they influence memory formation; (2) Neuroepigenetic conceptions of trauma are yet to be robustly coupled with social and anthropological theories of violence (Eliot, 2021; Nelson, 2021; Walby, 2013); (3) In spite of the gendered assumptions we find in neuroepigenetics, there are fruitful spaces - through collaboration - to be conceptualizing gender beyond culture-biology and nature-nurture binaries (Lock and Nguyen, 2010). To borrow Gravlee's (2009: 51) phrase, we find reason for social scientists to consider how gender is not only constructed, but how it may "become biology" via epigenetic and other biological pathways. Ultimately, we argue that a robust epigenetic methodology is one which values the integrity of expertise outside its own field, and can have an open, not empty mind to cross-disciplinary dialogue.
Collapse
Affiliation(s)
- Elsher Lawson-Boyd
- Alfred Deakin Institute for Citizenship and Globalisation, Deakin University, Burwood, VIC, Australia
| | - Maurizio Meloni
- Alfred Deakin Institute for Citizenship and Globalisation, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
22
|
Bongartz H, Seiß EA, Bock J, Schaper F. Glucocorticoids attenuate interleukin-6-induced c-Fos and Egr1 expression and impair neuritogenesis in PC12 cells. J Neurochem 2021; 157:532-549. [PMID: 33454999 DOI: 10.1111/jnc.15305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/15/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine primarily known for immune regulation. There is also growing evidence that IL-6 triggers neurogenesis and impacts neural development, both life-long occurring processes that can be impaired by early-life and adult stress. Stress induces the release of glucocorticoids by activation of the hypothalamic-pituitary-adrenal (HPA) axis. On the cellular level, glucocorticoids act via the ubiquitously expressed glucocorticoid receptor. Thus, we aimed to elucidate whether glucocorticoids affect IL-6-induced neural development. Here, we show that IL-6 signalling induces neurite outgrowth in adrenal pheochromocytoma PC12 cells in a mitogen-activated protein kinase (MAPK) pathway-dependent manner, since neurite outgrowth was diminished upon Mek-inhibitor treatment. Using quantitative biochemical approaches, such as qRT-PCR analysis of Hyper-IL-6 treated PC12 cells, we show that neurite outgrowth induced by IL-6 signalling is accompanied by early and transient MAPK-dependent mRNA expression of immediate early genes coding for proteins such as early growth response protein 1 (Egr1) and c-Fos. This correlates with reduced proliferation and prolonged G0/G1 cell cycle arrest as determined by monitoring the cellular DNA content using flow cytometry. These results indicate for IL-6 signalling-induced neural differentiation. Interestingly, the glucocorticoid Dexamethasone impairs early IL-6 signalling-induced mRNA expression of c-Fos and Egr1 and restrains neurite outgrowth. Impaired Egr1 and c-Fos expression in neural development is implicated in the aetiology of neuropathologies. Thus, it appears likely that stress-induced release of glucocorticoids, as well as therapeutically administered glucocorticoids, contribute to the development of neuropathologies by reducing the expression of Egr1 and c-Fos, and by restraining IL-6-dependent neural differentiation.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Elena Anne Seiß
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jörg Bock
- Institute of Biology, PG "Epigenetics and Structural Plasticity", Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany.,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
23
|
Shahidpour F, Mehrjerdi FZ, Mozayan MR, Marefati N, Hosseini M. The effects of frankincense extract on depression and anxiety-like behaviors induced by lipopolysaccharide in rats. LEARNING AND MOTIVATION 2021. [DOI: 10.1016/j.lmot.2021.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
PAI-1 protein is a key molecular effector in the transition from normal to PTSD-like fear memory. Mol Psychiatry 2021; 26:4968-4981. [PMID: 33510345 PMCID: PMC8589667 DOI: 10.1038/s41380-021-01024-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Moderate stress increases memory and facilitates adaptation. In contrast, intense stress can induce pathological memories as observed in post-traumatic stress disorders (PTSD). A shift in the balance between the expression of tPA and PAI-1 proteins is responsible for this transition. In conditions of moderate stress, glucocorticoid hormones increase the expression of the tPA protein in the hippocampal brain region which by triggering the Erk1/2MAPK signaling cascade strengthens memory. When stress is particularly intense, very high levels of glucocorticoid hormones then increase the production of PAI-1 protein, which by blocking the activity of tPA induces PTSD-like memories. PAI-1 levels after trauma could be a predictive biomarker of the subsequent appearance of PTSD and pharmacological inhibition of PAI-1 activity a new therapeutic approach to this debilitating condition.
Collapse
|
25
|
Fonseca R, Madeira N, Simoes C. Resilience to fear: The role of individual factors in amygdala response to stressors. Mol Cell Neurosci 2020; 110:103582. [PMID: 33346000 DOI: 10.1016/j.mcn.2020.103582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022] Open
Abstract
Resilience to stress is an adaptive process that varies individually. Resilience refers to the adaptation, or the ability to maintain or regain mental health, despite being subject to adverse situation. Resilience is a dynamic concept that reflects a combination of internal individual factors, including age and gender interacting with external factors such as social, cultural and environmental factors. In the last decade, we have witnessed an increase in the prevalence of anxiety disorders, including post-traumatic stress disorder. Given that stress in unavoidable, it is of great interest to understand the neurophysiological mechanisms of resilience, the individual factors that may contribute to susceptibility and promote efficacious approaches to improve resilience. Here, we address this complex question, attempting at defining clear and operational definitions that may allow us to improve our analysis of behavior incorporating individuality. We examine how individual perception of the stressor can alter the outcome of an adverse situation using as an example, the fear-conditioning paradigm and discuss how individual differences in the reward system can contribute to resilience. Given the central role of the endocannabinoid system in regulating fear responses and anxiety, we discuss the evidence that polymorphisms in several molecules of this signaling system contribute to different anxiety phenotypes. The endocannabinoid system is highly interconnected with the serotoninergic and dopaminergic modulatory systems, contributing to individual differences in stress perception and coping mechanisms. We review how the individual variability in these modulatory systems can be used towards a multivariable assessment of stress risk. Incorporating individuality in our research will allow us to define biomarkers of anxiety disorders as well as assess prognosis, towards a personalized clinical approach to mental health.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal.
| | - Natália Madeira
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| | - Carla Simoes
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| |
Collapse
|
26
|
Bolton JL, Schulmann A, Garcia-Curran MM, Regev L, Chen Y, Kamei N, Shao M, Singh-Taylor A, Jiang S, Noam Y, Molet J, Mortazavi A, Baram TZ. Unexpected Transcriptional Programs Contribute to Hippocampal Memory Deficits and Neuronal Stunting after Early-Life Adversity. Cell Rep 2020; 33:108511. [PMID: 33326786 PMCID: PMC7817243 DOI: 10.1016/j.celrep.2020.108511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/08/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023] Open
Abstract
Early-life adversity (ELA) is associated with lifelong memory deficits, yet the responsible mechanisms remain unclear. We impose ELA by rearing rat pups in simulated poverty, assess hippocampal memory, and probe changes in gene expression, their transcriptional regulation, and the consequent changes in hippocampal neuronal structure. ELA rats have poor hippocampal memory and stunted hippocampal pyramidal neurons associated with ~140 differentially expressed genes. Upstream regulators of the altered genes include glucocorticoid receptor and, unexpectedly, the transcription factor neuron-restrictive silencer factor (NRSF/REST). NRSF contributes critically to the memory deficits because blocking its function transiently following ELA rescues spatial memory and restores the dendritic arborization of hippocampal pyramidal neurons in ELA rats. Blocking NRSF function in vitro augments dendritic complexity of developing hippocampal neurons, suggesting that NRSF represses genes involved in neuronal maturation. These findings establish important, surprising contributions of NRSF to ELA-induced transcriptional programming that disrupts hippocampal maturation and memory function.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Anton Schulmann
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Megan M Garcia-Curran
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Limor Regev
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Noriko Kamei
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Manlin Shao
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Akanksha Singh-Taylor
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Yoav Noam
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Jenny Molet
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697-4475, USA.
| |
Collapse
|
27
|
Wiley JW, Zong Y, Zheng G, Zhu S, Hong S. Histone H3K9 methylation regulates chronic stress and IL-6-induced colon epithelial permeability and visceral pain. Neurogastroenterol Motil 2020; 32:e13941. [PMID: 32743845 PMCID: PMC8007084 DOI: 10.1111/nmo.13941] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic stress is associated with activation of the HPA axis, elevation in pro-inflammatory cytokines, decrease in intestinal epithelial cell tight junction (TJ) proteins, and enhanced visceral pain. It is unknown whether epigenetic regulatory pathways play a role in chronic stress-induced intestinal barrier dysfunction and visceral hyperalgesia. METHODS Young adult male rats were subjected to water avoidance stress ± H3K9 methylation inhibitors or siRNAs. Visceral pain response was assessed. Differentiated Caco-2/BBE cells and human colonoids were treated with cortisol or IL-6 ± antagonists. Expression of TJ, IL-6, and H3K9 methylation status at gene promoters was measured. Transepithelial electrical resistance and FITC-dextran permeability were evaluated. KEY RESULTS Chronic stress induced IL-6 up-regulation prior to a decrease in TJ proteins in the rat colon. The IL-6 level inversely correlated with occludin expression. Treatment with IL-6 decreased occludin and induced visceral hyperalgesia. Chronic stress and IL-6 increased H3K9 methylation and decreased transcriptional GR binding to the occludin gene promoter, leading to down-regulation of protein expression and increase in paracellular permeability. Intrarectal administration of a H3K9 methylation antagonist prevented chronic stress-induced visceral hyperalgesia in the rat. In a human colonoid model, cortisol decreased occludin expression, which was prevented by the GR antagonist RU486, and IL-6 increased H3K9 methylation and decreased TJ protein levels, which were prevented by inhibitors of H3K9 methylation. CONCLUSIONS & INFERENCES Our findings support a novel role for methylation of the repressive histone H3K9 to regulate chronic stress, pro-inflammatory cytokine-mediated reduction in colon TJ protein levels, and increase in paracellular permeability and visceral hyperalgesia.
Collapse
Affiliation(s)
- John W Wiley
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gen Zheng
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuangsong Hong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109 USA
| |
Collapse
|
28
|
McEwan AR, MacKenzie A. Perspective: Quality Versus Quantity; Is It Important to Assess the Role of Enhancers in Complex Disease from an In Vivo Perspective? Int J Mol Sci 2020; 21:E7856. [PMID: 33113946 PMCID: PMC7660172 DOI: 10.3390/ijms21217856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Sequencing of the human genome has permitted the development of genome-wide association studies (GWAS) to analyze the genetics of a number of complex disorders such as depression, anxiety and substance abuse. Thanks to their ability to analyze huge cohort sizes, these studies have successfully identified thousands of loci associated with a broad spectrum of complex diseases. Disconcertingly, the majority of these GWAS hits occur in non-coding regions of the genome, much of which controls the cell-type-specific expression of genes essential to health. In contrast to gene coding sequences, it is a challenge to understand the function of this non-coding regulatory genome using conventional biochemical techniques in cell lines. The current commentary scrutinizes the field of complex genetics from the standpoint of the large-scale whole-genome functional analysis of the promoters and cis-regulatory elements using chromatin markers. We contrast these large scale quantitative techniques against comparative genomics and in vivo analyses including CRISPR/CAS9 genome editing to determine the functional characteristics of these elements and to understand how polymorphic variation and epigenetic changes within these elements might contribute to complex disease and drug response. Most importantly, we suggest that, although the role of chromatin markers will continue to be important in identifying and characterizing enhancers, more emphasis must be placed on their analysis in relevant in-vivo models that take account of the appropriate cell-type-specific roles of these elements. It is hoped that offering these insights might refocus progress in analyzing the data tsunami of non-coding GWAS and whole-genome sequencing "hits" that threatens to overwhelm progress in the field.
Collapse
Affiliation(s)
| | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| |
Collapse
|
29
|
Ruiz-Sánchez E, Pedraza-Chaverri J, Medina-Campos ON, Maldonado PD, Rojas P. S-allyl Cysteine, a Garlic Compound, Produces an Antidepressant-Like Effect and Exhibits Antioxidant Properties in Mice. Brain Sci 2020; 10:brainsci10090592. [PMID: 32859119 PMCID: PMC7564461 DOI: 10.3390/brainsci10090592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is a psychiatric disorder, and oxidative stress is a significant mechanism of damage in this mood disorder. It is characterized by an enhancement of oxidative stress markers and low concentrations of endogenous antioxidants, or antioxidants enzymes. This suggests that antioxidants could have an antidepressant effect. S-allyl cysteine (SAC) is a compound with antioxidant action or free radical scavenger capacity. The purpose of the current research was to evaluate the antidepressant-like effect as well as the antioxidant role of SAC on a preclinical test, using the Porsolt forced swim test (FST). SAC (30, 70, 120, or 250 mg/kg, ip) was administered to male BALB/c mice daily for 17 days, followed by the FST at day 18. Oxidative stress markers (reactive oxygen species, superoxide production, lipid peroxidation, and antioxidant enzymes activities) were analyzed in the midbrain, prefrontal cortex, and hippocampus. SAC (120 mg/kg) attenuated the immobility scores (44%) in the FST, and protection was unrelated to changes in locomotor activity. This antidepressant-like effect was related to decreased oxidative stress, as indicated by lipid peroxidation and manganese-superoxide dismutase (Mn-SOD) activity in the hippocampus. SAC exerts an antidepressant-like effect that correlated, in part, with preventing oxidative damage in hippocampus.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Omar N. Medina-Campos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Perla D. Maldonado
- Laboratory of Cerebral Vascular Pathology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
| | - Patricia Rojas
- Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
- Correspondence: ; Tel.: +52-55-5424-0808
| |
Collapse
|
30
|
Liu XY, Yao B, Hao JR, Jin L, Gao Y, Yang X, Liu L, Sun XY, Sun N, Gao C. IQGAP1/ERK regulates fear memory formation via histone posttranslational modifications induced by HDAC2. Neurobiol Learn Mem 2020; 171:107210. [DOI: 10.1016/j.nlm.2020.107210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
|
31
|
Shaw A, Arnold LD, Privitera L, Whitfield PD, Doherty MK, Morè L. A proteomic signature for CNS adaptations to the valence of environmental stimulation. Behav Brain Res 2020; 383:112515. [PMID: 32006564 DOI: 10.1016/j.bbr.2020.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Environmental Enrichment leads to a significant improvement in long-term performance across a range of cognitive functions in mammals and it has been shown to produce an increased synaptic density and neurogenesis. Nevertheless it is still an open question as to whether some key aspects of spatial learning & memory and procedural learning might be embodied by different molecular pathways to those of social cognition. Associated with synaptic changes and potentially underlying conditions, the Ras-ERK pathway has been proposed to be the primary mediator of in vivo adaptations to environmental enrichment, acting via the downstream Ras-ERK signalling kinase MSK1 and the transcription factor CREB. Herein, we show that valence of environmental stimulation increased social competition and that this is associated with a specific proteomic signature in the frontal lobe but notably not in the hippocampus. Specifically, we show that altering the valence of environmental stimuli affected the level of social competition, with mice from negatively enriched environments winning significantly more encounters-even though mice from positive were bigger and should display dominance. This behavioural phenotype was accompanied by changes in the proteome of the fronto-ventral pole of the brain, with a differential increase in the relative abundance of proteins involved in the mitochondrial metabolic processes of the TCA cycle and respiratory processes. Investigation of this proteomic signature may pave the way for the elucidation of novel pathways underpinning the behavioural changes caused by negative enrichment and further out understanding of conditions whose core feature is increased social competition.
Collapse
Affiliation(s)
- Andrew Shaw
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Luke D Arnold
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, Edinburgh, EH8 9JZ, UK & School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Phillip D Whitfield
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Mary K Doherty
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
32
|
Cabib S, Campus P, Conversi D, Orsini C, Puglisi-Allegra S. Functional and Dysfunctional Neuroplasticity in Learning to Cope with Stress. Brain Sci 2020; 10:E127. [PMID: 32102272 PMCID: PMC7071431 DOI: 10.3390/brainsci10020127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
In this brief review, we present evidence of the primary role of learning-associated plasticity in the development of either adaptive or maladaptive coping strategies. Successful interactions with novel stressors foster plasticity within the neural circuits supporting acquisition, consolidation, retrieval, and extinction of instrumental learning leading to development of a rich repertoire of flexible and context-specific adaptive coping responses, whereas prolonged or repeated exposure to inescapable/uncontrollable stressors fosters dysfunctional plasticity within the learning circuits leading to perseverant and inflexible maladaptive coping strategies. Finally, the results collected using an animal model of genotype-specific coping styles indicate the engagement of different molecular networks and the opposite direction of stress effects (reduced vs. enhanced gene expression) in stressed animals, as well as different behavioral alterations, in line with differences in the symptoms profile associated with post-traumatic stress disorder.
Collapse
Affiliation(s)
- Simona Cabib
- Department of Psychology, University of Rome ‘La Sapienza’, 00185 Rome, Italy; (D.C.); (C.O.); (S.P.-A.)
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paolo Campus
- Department of Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - David Conversi
- Department of Psychology, University of Rome ‘La Sapienza’, 00185 Rome, Italy; (D.C.); (C.O.); (S.P.-A.)
| | - Cristina Orsini
- Department of Psychology, University of Rome ‘La Sapienza’, 00185 Rome, Italy; (D.C.); (C.O.); (S.P.-A.)
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology, University of Rome ‘La Sapienza’, 00185 Rome, Italy; (D.C.); (C.O.); (S.P.-A.)
- IRCCS Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy
| |
Collapse
|
33
|
Kennedy CLM, Carter SD, Mifsud KR, Reul JMHM. Unexpected effects of metyrapone on corticosteroid receptor interaction with the genome and subsequent gene transcription in the hippocampus of male rats. J Neuroendocrinol 2020; 32:e12820. [PMID: 31820828 DOI: 10.1111/jne.12820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 01/17/2023]
Abstract
Glucocorticoid hormones (GCs) play a pivotal role in many stress-related biological processes. In the hippocampus, GCs act through mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) to modify gene transcription. The involvement of GCs in biological processes has been investigated using the corticosterone (CORT)-synthesis blocker metyrapone. How metyrapone affects the action of GC at the genomic level still remains unclear. Therefore, we investigated the effects of this enzyme blocker on plasma CORT levels and hippocampal MR and GR binding to GC responsive elements (GREs) within the GC target genes Fkbp5 (FK506-binding protein 5), Per1 (Period 1) and Sgk1 (Serum- and glucocorticoid-activated kinase 1), as well as the transcriptional responses of these genes under control and acute stress conditions in rats. For comparison, we also investigated these endpoints in rats that had undergone adrenalectomy (ADX). Although metyrapone had no effect on baseline levels of CORT, the drug increased MR and GR to GRE binding within the GC target genes and the transcriptional activity of these genes. As expected, acute forced swim (FS) stress strongly increased plasma CORT levels, hippocampal MR and GR to GRE binding within Fkbp5, Per1 and Sgk1, and the transcriptional activity (mainly hnRNA levels) of these genes. Metyrapone attenuated, but did not abolish, these effects of stress on plasma CORT and MR and GR to GRE binding. The drug effects on FS-induced transcriptional activity were gene-dependent with a reduction seen in Fkbp5 hnRNA (but not Fkbp5 mRNA), an enhancement in Per1 hnRNA (but not Per1 mRNA), and no effect on both Sgk1 hnRNA and mRNA levels. ADX however completely abrogated the effects of FS on plasma CORT, as well as hippocampal MR and GR to GRE binding and transcriptional responses. Thus, in contrast to ADX, metyrapone produced inconsistent effects on GC-sensitive genomic endpoints that question its suitability as a tool in neuroendocrine and other research.
Collapse
Affiliation(s)
- Clare L M Kennedy
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sylvia D Carter
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Karen R Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
34
|
Gulyaeva NV. Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response. BIOCHEMISTRY (MOSCOW) 2019; 84:1306-1328. [PMID: 31760920 DOI: 10.1134/s0006297919110087] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Focal brain injuries (in particular, stroke and traumatic brain injury) induce with high probability the development of delayed (months, years) cognitive and depressive disturbances which are frequently comorbid. The association of these complications with hippocampal alterations (in spite of the lack of a primary injury of this structure), as well as the lack of a clear dependence between the probability of depression and dementia development and primary damage severity and localization served as the basis for a new hypothesis on the distant hippocampal damage as a key link in the pathogenesis of cognitive and psychiatric disturbances. According to this hypothesis, the excess of corticosteroids secreted after a focal brain damage, in particular in patients with abnormal stress-response due to hypothalamic-pituitary-adrenal axis (HPAA) dysfunction, interacts with corticosteroid receptors in the hippocampus inducing signaling pathways which stimulate neuroinflammation and subsequent events including disturbances in neurogenesis and hippocampal neurodegeneration. In this article, the molecular and cellular mechanisms associated with the regulatory role of the HPAA and multiple functions of brain corticosteroid receptors in the hippocampus are analyzed. Functional and structural damage to the hippocampus, a brain region selectively vulnerable to external factors and responding to them by increased cytokine secretion, forms the basis for cognitive function disturbances and psychopathology development. This concept is confirmed by our own experimental data, results of other groups and by prospective clinical studies of post-stroke complications. Clinically relevant biochemical approaches to predict the risks and probability of post-stroke/post-trauma cognitive and depressive disturbances are suggested using the evaluation of biochemical markers of patients' individual stress-response. Pathogenetically justified ways for preventing these consequences of focal brain damage are proposed by targeting key molecular mechanisms underlying hippocampal dysfunction.
Collapse
Affiliation(s)
- N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia. .,Moscow Research and Clinical Center for Neuropsychiatry, Healthcare Department of Moscow, Moscow, 115419, Russia
| |
Collapse
|
35
|
Wu ZX, Cao L, Li XW, Jiang W, Li XY, Xu J, Wang F, Chen GH. Accelerated Deficits of Spatial Learning and Memory Resulting From Prenatal Inflammatory Insult Are Correlated With Abnormal Phosphorylation and Methylation of Histone 3 in CD-1 Mice. Front Aging Neurosci 2019; 11:114. [PMID: 31156421 PMCID: PMC6531990 DOI: 10.3389/fnagi.2019.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Gestational infection causes various neurological deficits in offspring, such as age-related spatial learning and memory (SLM) decline. How inflammation causes age-related SLM dysfunction remains unknown. Previous research has indicated that histone modifications, such as phosphorylation of H3S10 (H3S10p) and trimethylation of H3K9 (H3K9me3) may be involved. In our study, pregnant mice received an intraperitoneal injection of lipopolysaccharide (LPS, 50 or 25 μg/kg) or normal saline during gestational days 15-17. After normal parturition, the offspring were randomly separated into 1-, 6-, 12-, 18-, and 22-month-old groups. SLM performance was assessed using a radial six-arm water maze (RAWM). The hippocampal levels of H3S10p and H3K9me3 were detected using an immunohistochemical method. The results indicated that the offspring had significantly impaired SLM, with decreased H3S10p and increased H3K9me3 levels from 12 months onward. Maternal LPS exposure during late gestation significantly and dose-dependently exacerbated the age-related impairment of SLM, with the decrease in H3S10p and increase in H3K9me3 beginning at 12 months in the offspring. The histone modifications (H3S10p and H3K9me3) were significantly correlated with impairment of SLM. Our findings suggest that prenatal exposure to inflammation could exacerbate age-related impairments of SLM and changes in histone modifications in CD-1 mice from 12 months onward, and SLM impairment might be linked to decreased H3S10p and increased H3K9me3.
Collapse
Affiliation(s)
- Zi-Xing Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Yan Li
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Xu
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
Modelling posttraumatic stress disorders in animals. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:117-133. [PMID: 30468906 DOI: 10.1016/j.pnpbp.2018.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023]
Abstract
Animal models of posttraumatic stress disorder are useful tools to reveal the neurobiological basis of the vulnerability to traumatic events, and to develop new treatment strategies, as well as predicting treatment response contributing to personalized medicine approach. Different models have different construct, face and predictive validity and they model different symptoms of the disease. The most prevalent models are the single prolonged stress, electric foot-shock and predator odor. Freezing as 're-experiencing' in cluster B and startle as 'arousal' in cluster E according to DSM-5 are the most frequently studied parameters; however, several other symptoms related to mood, cognitive and social skills are part of the examinations. Beside behavioral characteristics, symptoms of exaggerated sympathetic activity and hypothalamic-pituitary-adrenocortical axis as well as signs of sleep disturbances are also warranted. Test battery rather than a single test is required to describe a model properly and the results should be interpreted in a comprehensive way, e.g. creating a z-score. Research is shifting to study larger populations and identifying the features of the resilient and vulnerable individuals, which cannot be easily done in humans. Incorporation of the "three hit theory" in animal models may lead to a better animal model of vulnerability and resilience. As women are twice as vulnerable as men, more emphasize should be taken to include female animals. Moreover, hypothesis free testing and big data analysis may help to identify an array of biomarkers instead of a single variable for identification of vulnerability and for the purpose of personalized medicine.
Collapse
|
37
|
Еffects of Antipsychotics on Bone Mineral Density in Schizophrenia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Previous researches have shown that patients with schizophrenia who were using antipsychotics in their treatment developed changes in Bone Mineral Density and body composition, leading to osteoporosis and modifications in weight, skeletal muscle mass index and percent of fat tissue. Results of many studies suggested that the use of antipsychotic causes hyperprolactinemia and consequently lower bone mineral density values were observed. Further, antipsychotics increase food intake and have possible effects on metabolism, causing changes in weight, glucose level and lipid status, all of which can be a risk for developing metabolic syndrome and result in changing of bone mineral density. Antipsychotics change cytokine profi les in patients with schizophrenia and on the other hand the influence of T cells, B cells and inflammatory cytokines on osteoclasts and on osteoblasts was also established. In assessing the effects of antipsychotic on bone metabolism very important is to consider the duration of the treatment and clinical course of the disease, but undeniable effect is careless life style and inadequate physical activity that patients with schizophrenia have. Our attempt is to give an overview of the newest findings in this field, regarding the direct effects of antipsychotics on the bone metabolism, but also through prolactine elevation, metabolic and immune changes. Better understanding of the underlying mechanisms of schizophrenia and changes in bone mineral density could improve our clinical practice: affect to choice of the individually most appropriate antipsychotic, point to the need to monitor possible immunmetabolic changes during the treatment and improvement of the life quality of this vulnerable population.
Collapse
|
38
|
Jeanneteau F, Borie A, Chao MV, Garabedian MJ. Bridging the Gap between Brain-Derived Neurotrophic Factor and Glucocorticoid Effects on Brain Networks. Neuroendocrinology 2019; 109:277-284. [PMID: 30572337 DOI: 10.1159/000496392] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
Behavioral choices made by the brain during stress depend on glucocorticoid and brain-derived neurotrophic factor (BDNF) signaling pathways acting in synchrony in the mesolimbic (reward) and corticolimbic (emotion) neural networks. Deregulated expression of BDNF and glucocorticoid receptors in brain valuation areas may compromise the integration of signals. Glucocorticoid receptor phosphorylation upon BDNF signaling in neurons represents one mechanism underlying the integration of BDNF and glucocorticoid signals that when off balance may lay the foundation of maladaptations to stress. Here, we propose that BDNF signaling conditions glucocorticoid responses impacting neural plasticity in the mesocorticolimbic system. This provides a novel molecular framework for understanding how brain networks use BDNF and glucocorticoid signaling contingencies to forge receptive neuronal fields in temporal domains defined by behavioral experience, and in mood disorders.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France,
| | - Amélie Borie
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
39
|
Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry 2019; 10:118. [PMID: 30914979 PMCID: PMC6421311 DOI: 10.3389/fpsyt.2019.00118] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Early life stressors display a high universal prevalence and constitute a major public health problem. Prolonged psychoneurobiological alterations as sequelae of early life stress (ELS) could represent a developmental risk factor and mediate risk for disease, leading to higher physical and mental morbidity rates in later life. ELS could exert a programming effect on sensitive neuronal brain networks related to the stress response during critical periods of development and thus lead to enduring hyper- or hypo-activation of the stress system and altered glucocorticoid signaling. In addition, alterations in emotional and autonomic reactivity, circadian rhythm disruption, functional and structural changes in the brain, as well as immune and metabolic dysregulation have been lately identified as important risk factors for a chronically impaired homeostatic balance after ELS. Furthermore, human genetic background and epigenetic modifications through stress-related gene expression could interact with these alterations and explain inter-individual variation in vulnerability or resilience to stress. This narrative review presents relevant evidence from mainly human research on the ten most acknowledged neurobiological allostatic pathways exerting enduring adverse effects of ELS even decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep and circadian system, genetics, epigenetics, structural, and functional brain correlates). Although most findings back a causal relation between ELS and psychobiological maladjustment in later life, the precise developmental trajectories and their temporal coincidence has not been elucidated as yet. Future studies should prospectively investigate putative mediators and their temporal sequence, while considering the potentially delayed time-frame for their phenotypical expression. Better screening strategies for ELS are needed for a better individual prevention and treatment.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, United States
| |
Collapse
|
40
|
Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry 2019; 24:1135-1156. [PMID: 30816289 PMCID: PMC6756084 DOI: 10.1038/s41380-018-0272-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Recent years have seen increased interest in psychopathologies related to trauma exposure. Specifically, there has been a growing awareness to posttraumatic stress disorder (PTSD) in part due to terrorism, climate change-associated natural disasters, the global refugee crisis, and increased violence in overpopulated urban areas. However, notwithstanding the increased awareness to the disorder, the increasing number of patients, and the devastating impact on the lives of patients and their families, the efficacy of available treatments remains limited and highly unsatisfactory. A major scientific effort is therefore devoted to unravel the neural mechanisms underlying PTSD with the aim of paving the way to developing novel or improved treatment approaches and drugs to treat PTSD. One of the major scientific tools used to gain insight into understanding physiological and neuronal mechanisms underlying diseases and for treatment development is the use of animal models of human diseases. While much progress has been made using these models in understanding mechanisms of conditioned fear and fear memory, the gained knowledge has not yet led to better treatment options for PTSD patients. This poor translational outcome has already led some scientists and pharmaceutical companies, who do not in general hold opinions against animal models, to propose that those models should be abandoned. Here, we critically examine aspects of animal models of PTSD that may have contributed to the relative lack of translatability, including the focus on the exposure to trauma, overlooking individual and sex differences, and the contribution of risk factors. Based on findings from recent years, we propose research-based modifications that we believe are required in order to overcome some of the shortcomings of previous practice. These modifications include the usage of animal models of PTSD which incorporate risk factors and of the behavioral profiling analysis of individuals in a sample. These modifications are aimed to address factors such as individual predisposition and resilience, thus taking into consideration the fact that only a fraction of individuals exposed to trauma develop PTSD. We suggest that with an appropriate shift of practice, animal models are not only a valuable tool to enhance our understanding of fear and memory processes, but could serve as effective platforms for understanding PTSD, for PTSD drug development and drug testing.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel. .,Psychology Department, University of Haifa, Haifa, Israel.
| | - Oliver Stork
- 0000 0001 1018 4307grid.5807.aDepartment of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany ,grid.452320.2Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
41
|
The critical role of microRNAs in stress response: Therapeutic prospect and limitation. Pharmacol Res 2018; 142:294-302. [PMID: 30553824 DOI: 10.1016/j.phrs.2018.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Stress response refers to the systemic nonspecific response upon exposure to strong stimulation or chronic stress, such as severe trauma, shock, infection, burn, major surgery or improper environment, which disturb organisms and damage their physical and psychological health. However, the pathogenesis of stress induced disorder remains complicated and diverse under different stress exposure. Recently, studies have revealed a specific role of microRNAs (miRNAs) in regulating cellular function under different types of stress, suggesting a significant role in the treatment and prevention of stress-related diseases, such as stress ulcer, posttraumatic stress disorder, stress-induced cardiomyopathy and so on. This paper have reviewed the literature on microRNA related stress diseases in different databases including PubMed, Web of Science, and the MiRbase. It considers only peer-reviewed papers published in English between 2004 and 2018. This review summarizes new advances in principles and mechanisms of miRNAs regulating stress signalling pathway and the role of miRNAs in human stress diseases. This comprehensive review is to provide an integrated account of how different stresses affect miRNAs and how stress-miRNA pathways may, in turn, be linked with disease, which offers some potential strategies for stress disorder treatment. Furthermore, the limitation of current studies and challenges for clinical use are discussed.
Collapse
|
42
|
Zalcman G, Federman N, Romano A. CaMKII Isoforms in Learning and Memory: Localization and Function. Front Mol Neurosci 2018; 11:445. [PMID: 30564099 PMCID: PMC6288437 DOI: 10.3389/fnmol.2018.00445] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key protein kinase in neural plasticity and memory, as have been shown in several studies since the first evidence in long-term potentiation (LTP) 30 years ago. However, most of the studies were focused mainly in one of the four isoforms of this protein kinase, the CaMKIIα. Here we review the characteristics and the role of each of the four isoforms in learning, memory and neural plasticity, considering the well known local role of α and β isoforms in dendritic terminals as well as recent findings about the γ isoform as calcium signals transducers from synapse to nucleus and δ isoform as a kinase required for a more persistent memory trace.
Collapse
Affiliation(s)
- Gisela Zalcman
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Noel Federman
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Arturo Romano
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Floriou-Servou A, von Ziegler L, Stalder L, Sturman O, Privitera M, Rassi A, Cremonesi A, Thöny B, Bohacek J. Distinct Proteomic, Transcriptomic, and Epigenetic Stress Responses in Dorsal and Ventral Hippocampus. Biol Psychiatry 2018; 84:531-541. [PMID: 29605177 DOI: 10.1016/j.biopsych.2018.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acutely stressful experiences can trigger neuropsychiatric disorders and impair cognitive processes by altering hippocampal function. Although the intrinsic organization of the hippocampus is highly conserved throughout its long dorsal-ventral axis, the dorsal (anterior) hippocampus mediates spatial navigation and memory formation, whereas the ventral (posterior) hippocampus is involved in emotion regulation. To understand the molecular consequences of stress, detailed genome-wide screens are necessary and need to distinguish between dorsal and ventral hippocampal regions. While transcriptomic screens have become a mainstay in basic and clinical research, proteomic methods are rapidly evolving and hold even greater promise to reveal biologically and clinically relevant biomarkers. METHODS Here, we provide the first combined transcriptomic (RNA sequencing) and proteomic (sequential window acquisition of all theoretical mass spectra [SWATH-MS]) profiling of dorsal and ventral hippocampus in mice. We used three different acute stressors (novelty, swim, and restraint) to assess the impact of stress on both regions. RESULTS We demonstrated that both hippocampal regions display radically distinct molecular responses and that the ventral hippocampus is particularly sensitive to the effects of stress. Separately analyzing these structures greatly increased the sensitivity to detect stress-induced changes. For example, protein interaction cluster analyses revealed a stress-responsive epigenetic network around histone demethylase Kdm6b restricted to the ventral hippocampus, and acute stress reduced methylation of its enzymatic target H3K27me3. Selective Kdm6b knockdown in the ventral hippocampus led to behavioral hyperactivity/hyperresponsiveness. CONCLUSIONS These findings underscore the importance of considering dorsal and ventral hippocampus separately when conducting high-throughput molecular analyses, which has important implications for fundamental research as well as clinical studies.
Collapse
Affiliation(s)
- Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland; Laboratory of Neuroepigenetics, Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Zurich, Switzerland
| | - Luzia Stalder
- Laboratory of Neuroepigenetics, Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Mifsud KR, Reul JMHM. Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain. Stress 2018; 21:389-402. [PMID: 29614900 DOI: 10.1080/10253890.2018.1456526] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Successful coping with stressful events involves adaptive and cognitive processes in the brain that make the individual more resilient to similar stressors in the future. Stressful events result in the secretion of glucocorticoids (GCs) from the adrenal glands into the blood stream. Early work proved instrumental for developing the concept that these hormones act in the brain to coordinate physiological and behavioral responses to stress through binding to two different GC-binding receptors. Once activated these receptors translocate to the nucleus where they act on target genes to facilitate (or sometimes inhibit) transcription. There are two types of receptors in the brain, the mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). This review summarizes recent work which provides new insights regarding the genomic action of these receptors, both under baseline conditions and following exposure to acute stress. This work is discussed alongside the extensive studies undertaken in this field previously and new, and exciting "big data" studies which have generated a wealth of relevant data. The consequence of these new insights will challenge existing assumptions about the role of MRs and GRs and pave the way for the implementation of novel and improved methodologies to identify the role these corticosteroid receptors have in stress-related behavioral adaptation.
Collapse
Affiliation(s)
- Karen R Mifsud
- a Neuro-Epigenetics Research Group, Bristol Medical School , University of Bristol , Bristol , UK
| | - Johannes M H M Reul
- a Neuro-Epigenetics Research Group, Bristol Medical School , University of Bristol , Bristol , UK
| |
Collapse
|
45
|
Kim GS, Smith AK, Nievergelt CM, Uddin M. Neuroepigenetics of Post-Traumatic Stress Disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:227-253. [PMID: 30072055 PMCID: PMC6474244 DOI: 10.1016/bs.pmbts.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While diagnosis of PTSD is based on behavioral symptom clusters that are most directly associated with brain function, epigenetic studies of PTSD in humans to date have been limited to peripheral tissues. Animal models of PTSD have been key for understanding the epigenetic alterations in the brain most directly relevant to endophenotypes of PTSD, in particular those pertaining to fear memory and stress response. This chapter provides an overview of neuroepigenetic studies based on animal models of PTSD, with an emphasis on the effect of stress on fear memory. Where relevant, we also describe human-based studies with relevance to neuroepigenetic insights gleaned from animal work and suggest promising directions for future studies of PTSD neuroepigenetics in living humans that combine peripheral epigenetic measures with measures of central nervous system activity, structure and function.
Collapse
Affiliation(s)
- Grace S Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Medical Scholars Program, University of Illinois College of Medicine, Urbana, IL, United States
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Monica Uddin
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
46
|
Opposing Roles of Estradiol and Testosterone on Stress-Induced Visceral Hypersensitivity in Rats. THE JOURNAL OF PAIN 2018; 19:764-776. [PMID: 29496640 DOI: 10.1016/j.jpain.2018.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
Chronic stress produces maladaptive pain responses, manifested as alterations in pain processing and exacerbation of chronic pain conditions including irritable bowel syndrome. Female predominance, especially during reproductive years, strongly suggests a role of gonadal hormones. However, gonadal hormone modulation of stress-induced pain hypersensitivity is not well understood. In the present study, we tested the hypothesis that estradiol is pronociceptive and testosterone is antinociceptive in a model of stress-induced visceral hypersensitivity (SIVH) in rats by recording the visceromotor response to colorectal distention after a 3-day forced swim (FS) stress paradigm. FS induced visceral hypersensitivity that persisted at least 2 weeks in female, but only 2 days in male rats. Ovariectomy blocked and orchiectomy facilitated SIVH. Furthermore, estradiol injection in intact male rats increased SIVH and testosterone in intact female rats attenuated SIVH. Western blot analyses indicated estradiol increased excitatory glutamate ionotropic receptor NMDA type subunit 1 expression and decreased inhibitory metabotropic glutamate receptor 2 expression after FS in male thoracolumbar spinal cord. In addition, the presence of estradiol during stress increased spinal brain-derived neurotrophic factor (BDNF) expression independent of sex. In contrast, testosterone blocked the stress-induced increase in BDNF expression in female rats. These data suggest that estradiol facilitates and testosterone attenuates SIVH by modulating spinal excitatory and inhibitory glutamatergic receptor expression. PERSPECTIVE SIVH is more robust in female rats. Estradiol facilitates whereas testosterone dampens the development of SIVH. This could partially explain the greater prevalence of certain chronic visceral pain conditions in women. An increase in spinal BDNF is concomitant with increased stress-induced pain. Pharmaceutical interventions targeting this molecule could provide promising alleviation of SIVH in women.
Collapse
|
47
|
Breen MS, Tylee DS, Maihofer AX, Neylan TC, Mehta D, Binder EB, Chandler SD, Hess JL, Kremen WS, Risbrough VB, Woelk CH, Baker DG, Nievergelt CM, Tsuang MT, Buxbaum JD, Glatt SJ. PTSD Blood Transcriptome Mega-Analysis: Shared Inflammatory Pathways across Biological Sex and Modes of Trauma. Neuropsychopharmacology 2018; 43:469-481. [PMID: 28925389 PMCID: PMC5770765 DOI: 10.1038/npp.2017.220] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/29/2017] [Accepted: 08/29/2017] [Indexed: 01/30/2023]
Abstract
Transcriptome-wide screens of peripheral blood during the onset and development of posttraumatic stress disorder (PTSD) indicate widespread immune dysregulation. However, little is known as to whether biological sex and the type of traumatic event influence shared or distinct biological pathways in PTSD. We performed a combined analysis of five independent PTSD blood transcriptome studies covering seven types of trauma in 229 PTSD and 311 comparison individuals to synthesize the extant data. Analyses by trauma type revealed a clear pattern of PTSD gene expression signatures distinguishing interpersonal (IP)-related traumas from combat-related traumas. Co-expression network analyses integrated all data and identified distinct gene expression perturbations across sex and modes of trauma in PTSD, including one wound-healing module downregulated in men exposed to combat traumas, one IL-12-mediated signaling module upregulated in men exposed to IP-related traumas, and two modules associated with lipid metabolism and mitogen-activated protein kinase activity upregulated in women exposed to IP-related traumas. Remarkably, a high degree of sharing of transcriptional dysregulation across sex and modes of trauma in PTSD was also observed converging on common signaling cascades, including cytokine, innate immune, and type I interferon pathways. Collectively, these findings provide a broad view of immune dysregulation in PTSD and demonstrate inflammatory pathways of molecular convergence and specificity, which may inform mechanisms and diagnostic biomarkers for the disorder.
Collapse
Affiliation(s)
- Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1668, New York, NY 10029, USA, Tel: +1 212 241 0242, Fax: 212 828 4221, E-mail:
| | - Daniel S Tylee
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University, Syracuse, NY, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Thomas C Neylan
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA,San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Divya Mehta
- School of Psychology and Counseling, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon D Chandler
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jonathan L Hess
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University, Syracuse, NY, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA,Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA,Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK,Merck Exploratory Science Center, Merck Research Laboratories, Cambridge, MA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA,Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA,Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA,Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J Glatt
- Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
48
|
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and lethal neurodegenerative diseases seen comorbidly in up to 15% of patients. Despite several decades of research, no effective treatment or disease-modifying strategies have been developed. We now understand more than before about the genetics and biology behind ALS and FTD, but the genetic etiology for the majority of patients is still unknown and the phenotypic variability observed across patients, even those carrying the same mutation, is enigmatic. Additionally, susceptibility factors leading to neuronal vulnerability in specific central nervous system regions involved in disease are yet to be identified. As the inherited but dynamic epigenome acts as a cell-specific interface between the inherited fixed genome and both cell-intrinsic mechanisms and environmental input, adaptive epigenetic changes might contribute to the ALS/FTD aspects we still struggle to comprehend. This chapter summarizes our current understanding of basic epigenetic mechanisms, how they relate to ALS and FTD, and their potential as therapeutic targets. A clear understanding of the biological mechanisms driving these two currently incurable diseases is urgent-well-needed therapeutic strategies need to be developed soon. Disease-specific epigenetic changes have already been observed in patients and these might be central to this endeavor.
Collapse
Affiliation(s)
- Mark T W Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rebecca J Lank
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Veronique V Belzil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Gao J, Cahill CM, Huang X, Roffman JL, Lamon-Fava S, Fava M, Mischoulon D, Rogers JT. S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life. Neurotherapeutics 2018; 15:156-175. [PMID: 29340929 PMCID: PMC5794704 DOI: 10.1007/s13311-017-0593-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S-Adenosyl methionine (SAMe), as a major methyl donor, exerts its influence on central nervous system function through cellular transmethylation pathways, including the methylation of DNA, histones, protein phosphatase 2A, and several catecholamine moieties. Based on available evidence, this review focuses on the lifelong range of severe neuropsychiatric and neurodegenerative diseases and their associated neuropathologies, which have been linked to the deficiency/load of SAMe production or/and the disturbance in transmethylation pathways. Also included in this review are the present-day applications of SAMe in the treatment in these diseases in each age group.
Collapse
Affiliation(s)
- Jin Gao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Clinical Psychology, Qilu Hospital of Shandong University, Qingdao, Shandong Province, China
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Carter SD, Mifsud KR, Reul JMHM. Acute Stress Enhances Epigenetic Modifications But Does Not Affect the Constitutive Binding of pCREB to Immediate-Early Gene Promoters in the Rat Hippocampus. Front Mol Neurosci 2017; 10:416. [PMID: 29311809 PMCID: PMC5742222 DOI: 10.3389/fnmol.2017.00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/30/2017] [Indexed: 01/13/2023] Open
Abstract
The immediate early genes (IEGs) c-Fos and Egr-1 are rapidly and transiently induced in sparse neurons within the hippocampus after exposure to an acute stressor. The induction of these genes is a critical part of the molecular mechanisms underlying successful behavioral adaptation to stress. Our previous work has shown that transcriptional activation of c-Fos and Egr-1 in the hippocampus requires formation of a dual histone mark within their promoter regions, the phosphorylation of serine 10 and acetylation of lysine 9/14 of histone H3. In the present study, using chromatin immuno-precipitation (ChIP), we found that an increase in the formation of H3K9ac-S10p occurs within the c-Fos and Egr-1 promoters after FS stress in vivo and that these histone modifications were located to promoter regions containing cAMP Responsive Elements (CREs), but not in neighboring regions containing only Serum Responsive Elements (SREs). Surprisingly, however, subsequent ChIP analyses showed no changes in the binding of pCREB or CREB-binding protein (CBP) to the CREs after FS. In fact, pCREB binding to the c-Fos and Egr-1 promoters was already highly enriched under baseline conditions and did not increase further after stress. We suggest that constitutive pCREB binding may keep c-Fos and Egr-1 in a poised state for activation. Possibly, the formation of H3K9ac-S10p in the vicinity of CRE sites may participate in unblocking transcriptional elongation through recruitment of additional epigenetic factors.
Collapse
Affiliation(s)
| | | | - Johannes M. H. M. Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|