1
|
Biswas MS, Roy SK, Hasan R, PK MMU. The crucial role of the cerebellum in autism spectrum disorder: Neuroimaging, neurobiological, and anatomical insights. Health Sci Rep 2024; 7:e2233. [PMID: 38966075 PMCID: PMC11222293 DOI: 10.1002/hsr2.2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
Background and Aims Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and challenges. While ASD is primarily associated with atypical social and communicative behaviors, increasing research has pointed towards the involvement of various brain regions, including the cerebellum. This review article aims to provide a comprehensive overview of the role of cerebellar lobules in ASD, highlighting recent findings and potential therapeutic implications. Methods Using published articles found in PubMed, Scopus, and Google Scholar, we extracted pertinent data to complete this review work. We have searched for terms including anatomical insights, neuroimaging, neurobiological, and autism spectrum disorder. Results The intricate relationship between the cerebellum and other brain regions linked to ASD has been highlighted by neurobiological research, which has shown abnormalities in neurotransmitter systems and cerebellar circuitry. The relevance of the cerebellum in the pathophysiology of ASD has been further highlighted by anatomical studies that have revealed evidence of cerebellar abnormalities, including changes in volume, morphology, and connectivity. Conclusion Thorough knowledge of the cerebellum's function in ASD may lead to new understandings of the underlying mechanisms of the condition and make it easier to create interventions and treatments that are more specifically targeted at treating cerebellar dysfunction in ASD patients.
Collapse
Affiliation(s)
- Mohammad Shahangir Biswas
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
- Department of Public HealthDaffodil International UniversityDhakaBangladesh
| | - Suronjit Kumar Roy
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
| | - Rubait Hasan
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
| | - Md Moyen Uddin PK
- Institute of Biological ScienceRajshahi UniversityMotihar, RajshahiBangladesh
| |
Collapse
|
2
|
Moussa-Tooks AB, Liu J, Armstrong K, Rogers B, Woodward ND, Heckers S. Cerebellar Effects on Abnormal Psychomotor Function Are Mediated by Processing Speed in Psychosis Spectrum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1215-1220. [PMID: 37540311 DOI: 10.1007/s12311-023-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Psychomotor disturbance has been identified as a key feature of psychotic disorders, with motor signs observed in upwards of 66% of unmedicated, first-episode patients. Aberrations in the cerebellum have been directly linked to sensorimotor processing deficits including processing speed, which may underly psychomotor disturbance in psychosis, though these brain-behavior-symptom relationships are unclear, in part due to within-diagnosis heterogeneity across these levels of analysis. In 339 psychosis patients (242 schizophrenia-spectrum, 97 bipolar with psychotic features) and 217 controls, we evaluated the relationship between cerebellar grey matter volume in the Yeo sensorimotor network and psychomotor disturbance (mannerisms and posturing, retardation, excitement of the Positive and Negative Syndrome Scale [PANSS]), as mediated by processing speed (assessed via the SCIP). Models included intracranial volume, age, sex, and chlorpromazine equivalents as covariates. We observed significant mediation by processing speed, with a small positive effect of the cerebellum on processing speed (ß = 0.172, p = 0.029, d = 0.24) and a medium negative effect of processing speed on psychomotor disturbance (ß = -0.254, p < 0.001, d = 0.60), with acceptable specificity and sensitivity suggesting this model is robust against unmeasured confounding. The current findings suggest a critical role of cerebellar circuitry in a well-established sensorimotor aberration in psychosis (processing speed) and the presentation of related psychomotor phenotypes within psychosis. Establishing such relationships is critical for intervention research, such as TMS. Future work will employ more dimensional measures of psychomotor disturbance and cognitive processes to capture normative and aberrant brain-behavior-symptom relationships and may also determine the magnitude of these relationships within subtypes of psychosis (e.g., disorganized behavior, catatonia).
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA.
| | - Jinyuan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Baxter Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| |
Collapse
|
3
|
Herrejon IA, Jackson TB, Hicks TH, Bernard JA. Functional Connectivity Differences in Distinct Dentato-Cortical Networks in Alzheimer's Disease and Mild Cognitive Impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578249. [PMID: 38352603 PMCID: PMC10862898 DOI: 10.1101/2024.02.02.578249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recent research has implicated the cerebellum in Alzheimer's disease (AD), and cerebrocerebellar network connectivity is emerging as a possible contributor to symptom severity. The cerebellar dentate nucleus (DN) has parallel motor and non-motor sub-regions that project to motor and frontal regions of the cerebral cortex, respectively. These distinct dentato-cortical networks have been delineated in the non-human primate and human brain. Importantly, cerebellar regions prone to atrophy in AD are functionally connected to atrophied regions of the cerebral cortex, suggesting that dysfunction perhaps occurs at a network level. Investigating functional connectivity (FC) alterations of the DN is a crucial step in understanding the cerebellum in AD and in mild cognitive impairment (MCI). Inclusion of this latter group stands to provide insights into cerebellar contributions prior to diagnosis of AD. The present study investigated FC differences in dorsal (dDN) and ventral (vDN) DN networks in MCI and AD relative to cognitively normal participants (CN) and relationships between FC and behavior. Our results showed patterns indicating both higher and lower functional connectivity in both dDN and vDN in AD compared to CN. However, connectivity in the AD group was lower when compared to MCI. We argue that these findings suggest that the patterns of higher FC in AD may act as a compensatory mechanism. Additionally, we found associations between the individual networks and behavior. There were significant interactions between dDN connectivity and motor symptoms. However, both DN seeds were associated with cognitive task performance. Together, these results indicate that cerebellar DN networks are impacted in AD, and this may impact behavior. In concert with the growing body of literature implicating the cerebellum in AD, our work further underscores the importance of investigations of this region. We speculate that much like in psychiatric diseases such as schizophrenia, cerebellar dysfunction results in negative impacts on thought and the organization therein. Further, this is consistent with recent arguments that the cerebellum provides crucial scaffolding for cognitive function in aging. Together, our findings stand to inform future clinical work in the diagnosis and understanding of this disease.
Collapse
Affiliation(s)
- Ivan A. Herrejon
- Department of Psychological and Brain Sciences Texas A&M University
| | - T. Bryan Jackson
- Department of Psychological and Brain Sciences Texas A&M University
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center
| | - Tracey H. Hicks
- Department of Psychological and Brain Sciences Texas A&M University
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences Texas A&M University
- Texas A&M Institute for Neuroscience Texas A&M University
| | | |
Collapse
|
4
|
Gangl N, Conring F, Federspiel A, Wiest R, Walther S, Stegmayer K. Resting-state perfusion in motor and fronto-limbic areas is linked to diminished expression of emotion and speech in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:51. [PMID: 37573445 PMCID: PMC10423240 DOI: 10.1038/s41537-023-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Negative symptoms (NS) are a core component of schizophrenia affecting community functioning and quality of life. We tested neural correlates of NS considering NS factors and consensus subdomains. We assessed NS using the Clinical Assessment Interview for Negative Symptoms and the Scale for Assessment of Negative Symptoms. Arterial spin labeling was applied to measure resting-state cerebral blood flow (rCBF) in 47 schizophrenia patients and 44 healthy controls. Multiple regression analyses calculated the relationship between rCBF and NS severity. We found an association between diminished expression (DE) and brain perfusion within the cerebellar anterior lobe and vermis, and the pre-, and supplementary motor area. Blunted affect was linked to fusiform gyrus and alogia to fronto-striatal rCBF. In contrast, motivation and pleasure was not associated with rCBF. These results highlight the key role of motor areas for DE. Considering NS factors and consensus subdomains may help identifying specific pathophysiological pathways of NS.
Collapse
Affiliation(s)
- Nicole Gangl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland.
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
5
|
Falakshahi H, Rokham H, Miller R, Liu J, Calhoun VD. Network Differential in Gaussian Graphical Models from Multimodal Neuroimaging Data . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083176 DOI: 10.1109/embc40787.2023.10340856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Multimodal brain network analysis has the potential to provide insights into the mechanisms of brain disorders. Most previous studies have analyzed either unimodal brain graphs or focused on local/global graphic metrics with little consideration of details of disrupted paths in the patient group. As we show, the combination of multimodal brain graphs and disrupted path-based analysis can be highly illuminating to recognize path-based disease biomarkers. In this study, we first propose a way to estimate multimodal brain graphs using static functional network connectivity (sFNC) and gray matter features using a Gaussian graphical model of schizophrenia versus controls. Next, applying the graph theory approach we identify disconnectors or connectors in the patient group graph that create additional paths or cause absent paths compared to the control graph. Results showed several edges in the schizophrenia group graph that trigger missing or additional paths. Identified edges associated with these disrupted paths were identified both within and between dFNC and gray matter which highlights the importance of considering multimodal studies and moving beyond pairwise edges to provide a more comprehensive understanding of brain disorders.Clinical Relevance- We identified a path-based biomarker in schizophrenia, by imitating the structure of paths in a multimodal (sMIR+fMRI) brain graph of the control group. Identified cross-modal edges associated with disrupted paths were related to the middle temporal gyrus and cerebellar regions.
Collapse
|
6
|
Cundari M, Vestberg S, Gustafsson P, Gorcenco S, Rasmussen A. Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia. Front Syst Neurosci 2023; 17:1168666. [PMID: 37415926 PMCID: PMC10321758 DOI: 10.3389/fnsys.2023.1168666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
The cerebellum plays a major role in balance, motor control and sensorimotor integration, but also in cognition, language, and emotional regulation. Several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), as well as neurological diseases such as spinocerebellar ataxia type 3 (SCA3) are associated with differences in cerebellar function. Morphological abnormalities in different cerebellar subregions produce distinct behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. The specific contribution of the cerebellum to typical development may therefore involve the optimization of the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains. Here, we review cerebellar structural and functional differences between healthy and patients with ADHD, ASD, and SCA3, and explore how disruption of cerebellar networks affects the neurocognitive functions in these conditions. We discuss how cerebellar computations contribute to performance on cognitive and motor tasks and how cerebellar signals are interfaced with signals from other brain regions during normal and dysfunctional behavior. We conclude that the cerebellum plays a role in many cognitive functions. Still, more clinical studies with the support of neuroimaging are needed to clarify the cerebellum's role in normal and dysfunctional behavior and cognitive functioning.
Collapse
Affiliation(s)
- Maurizio Cundari
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Susanna Vestberg
- Department of Psychology, Faculty of Social Science, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Sorina Gorcenco
- Department for Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Ota T, Kikuchi Y, Amiya I, Ohno-Shosaku T, Koike Y, Yoneda M. Evaluation of motor learning in predictable loading task using a force sense presentation device. Exp Brain Res 2022; 240:3305-3314. [DOI: 10.1007/s00221-022-06500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
8
|
Lv D, Ou Y, Chen Y, Ding Z, Ma J, Zhan C, Yang R, Shang T, Zhang G, Bai X, Sun Z, Xiao J, Wang X, Guo W, Li P. Anatomical distance affects functional connectivity at rest in medicine-free obsessive-compulsive disorder. BMC Psychiatry 2022; 22:462. [PMID: 36221076 PMCID: PMC9555180 DOI: 10.1186/s12888-022-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/27/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Brain functional abnormalities at rest have been observed in obsessive-compulsive disorder (OCD). However, whether and how anatomical distance influences functional connectivity (FC) at rest is ambiguous in OCD. METHODS Using resting-state functional magnetic resonance imaging data, we calculated the FC of each voxel in the whole-brain and divided FC into short- and long-range FCs in 40 medicine-free patients with OCD and 40 healthy controls (HCs). A support vector machine (SVM) was used to determine whether the altered short- and long-range FCs could be utilized to distinguish OCD from HCs. RESULTS Patients had lower short-range positive FC (spFC) and long-range positive FC (lpFC) in the left precentral/postcentral gyrus (t = -5.57 and -5.43; P < 0.05, GRF corrected) and higher lpFC in the right thalamus/caudate, left thalamus, left inferior parietal lobule (IPL) and left cerebellum CrusI/VI (t = 4.59, 4.61, 4.41, and 5.93; P < 0.05, GRF corrected). Furthermore, lower spFC in the left precentral/postcentral gyrus might be used to distinguish OCD from HCs with an accuracy of 80.77%, a specificity of 81.58%, and a sensitivity of 80.00%. CONCLUSION These findings highlight that anatomical distance has an effect on the whole-brain FC patterns at rest in OCD. Meanwhile, lower spFC in the left precentral/postcentral gyrus might be applied in distinguishing OCD from HCs.
Collapse
Affiliation(s)
- Dan Lv
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yangpan Ou
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunhui Chen
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Zhenning Ding
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Ru Yang
- grid.452708.c0000 0004 1803 0208Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tinghuizi Shang
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Guangfeng Zhang
- grid.412613.30000 0004 1808 3289Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaoyu Bai
- grid.454868.30000 0004 1797 8574CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhenghai Sun
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Jian Xiao
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Xiaoping Wang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
9
|
Moussa-Tooks AB, Rogers BP, Huang AS, Sheffield JM, Heckers S, Woodward ND. Cerebellar Structure and Cognitive Ability in Psychosis. Biol Psychiatry 2022; 92:385-395. [PMID: 35680432 PMCID: PMC9378489 DOI: 10.1016/j.biopsych.2022.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysconnectivity theories, combined with advances in fundamental cognitive neuroscience, have led to increased interest in characterizing cerebellar abnormalities in psychosis. Smaller cerebellar gray matter volume has been found in schizophrenia spectrum disorders. However, the course of these deficits across illness stage, specificity to schizophrenia (vs. psychosis more broadly), and relationship to clinical phenotypes, primarily cognitive impairment, remain unclear. METHODS The Spatially Unbiased Infratentorial toolbox, a gold standard for analyzing human neuroimaging data of the cerebellum, was used to quantify cerebellar volumes and conduct voxel-based morphometry on structural magnetic resonance images obtained from 574 individuals (249 schizophrenia spectrum, 108 bipolar with psychotic features, 217 nonpsychiatric control). Analyses examining diagnosis (schizophrenia spectrum, bipolar disorder), illness stage (early, chronic), and cognitive effects on cerebellum structure in psychosis were performed. RESULTS Cerebellar structure in psychosis did not differ significantly from healthy participants, regardless of diagnosis and illness stage (effect size = 0.01-0.14). In contrast, low premorbid cognitive functioning was associated with smaller whole and regional cerebellum volumes, including cognitive (lobules VI and VII, Crus I, frontoparietal and attention networks) and motor (lobules I-IV, V, and X; somatomotor network) regions in psychosis (effect size = 0.36-0.60). These effects were not present in psychosis cohorts with average estimated premorbid cognition. CONCLUSIONS Cerebellar structural abnormalities in psychosis are related to lower premorbid cognitive functioning implicating early antecedents, atypical neurodevelopment, or both in cerebellar dysfunction. Future research focused on identifying the impact of early-life risk factors for psychosis on the development of the cerebellum and cognition is warranted.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
10
|
Asimakidou E, Job X, Kilteni K. The positive dimension of schizotypy is associated with a reduced attenuation and precision of self-generated touch. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:57. [PMID: 35854009 PMCID: PMC9261081 DOI: 10.1038/s41537-022-00264-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
The brain predicts the sensory consequences of our movements and uses these predictions to attenuate the perception of self-generated sensations. Accordingly, self-generated touch feels weaker than an externally generated touch of identical intensity. In schizophrenia, this somatosensory attenuation is substantially reduced, suggesting that patients with positive symptoms fail to accurately predict and process self-generated touch. If an impaired prediction underlies the positive symptoms of schizophrenia, then a similar impairment should exist in healthy nonclinical individuals with high positive schizotypal traits. One hundred healthy participants (53 female), assessed for schizotypal traits, underwent a well-established psychophysics force discrimination task to quantify how they perceived self-generated and externally generated touch. The perceived intensity of tactile stimuli delivered to their left index finger (magnitude) and the ability to discriminate the stimuli (precision) was measured. We observed that higher positive schizotypal traits were associated with reduced somatosensory attenuation and poorer somatosensory precision of self-generated touch, both when treating schizotypy as a continuous or categorical variable. These effects were specific to positive schizotypy and were not observed for the negative or disorganized dimensions of schizotypy. The results suggest that positive schizotypal traits are associated with a reduced ability to predict and process self-generated touch. Given that the positive dimension of schizotypy represents the analogue of positive psychotic symptoms of schizophrenia, deficits in processing self-generated tactile information could indicate increased liability to schizophrenia.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Xavier Job
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Konstantina Kilteni
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden.
| |
Collapse
|
11
|
Damme KSF, Park JS, Walther S, Vargas T, Shankman SA, Mittal VA. Depression and Psychosis Risk Shared Vulnerability for Motor Signs Across Development, Symptom Dimensions, and Familial Risk. Schizophr Bull 2022; 48:752-762. [PMID: 35554607 PMCID: PMC9212095 DOI: 10.1093/schbul/sbab133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Motor abnormalities are strong transdiagnostic indicators of psychopathology risk that reflect emerging neural network abnormalities. Indeed, motor signs, such as motor slowing and agitation, are widely recognized as core features of both psychosis and depression. However, it is unclear whether these reflect shared or distinct etiology. METHODS A sample of 11 878 adolescents completed self-reported clinical measures of rated psychotic-like experiences (PLEs) and depression. Familial risk for psychopathology and the presence of motor signs were drawn from parental reports, including developmental motor delays (eg, sitting, walking), and adolescent motor signs (eg, dyscoordination, psychomotor retardation, and psychomotor agitation). Finally, motor network connectivity in theoretically relevant networks (cortico-striatal, cortico-thalamic, and cortico-cerebellar) were related to symptoms and familial risk for psychopathology. RESULTS Developmental motor delays related to increased PLEs, increased depression symptoms, and greater familial risk. Familial risk for both PLEs and depression showed higher rates of developmental motor delays than all other groups. Adolescent motor signs, however, showed unique patterns of relationships to symptoms and familial risk such that dyscoordination reflected risk for PLEs, both psychomotor agitation and retardation reflected depression risk, and psychomotor agitation reflected transdiagnostic risk. Cortico-striatal connectivity was related to depression and PLEs, but cortico-cerebellar connectivity was linked to PLEs only. CONCLUSIONS Motor signs may be a transdiagnostic marker of vulnerability for psychopathology. Early developmental motor delays could belie pluripotent, familial risk features. Unique items, eg, dyscoordination specifically related to PLEs, possibly reflecting processes inherent in distinct emerging forms of psychopathology.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston/Chicago, IL, USA
| | - Jadyn S Park
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
| | - Sebastian Walther
- University Hospital of Psychiatry, Translational Research Center, University of Bern, Bern, Switzerland
| | - Teresa Vargas
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston/Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
| | | | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston/Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Ferroni F, Ardizzi M, Magnani F, Ferri F, Langiulli N, Rastelli F, Lucarini V, Giustozzi F, Volpe R, Marchesi C, Tonna M, Gallese V. Tool-use Extends Peripersonal Space Boundaries in Schizophrenic Patients. Schizophr Bull 2022; 48:1085-1093. [PMID: 35708490 PMCID: PMC9434469 DOI: 10.1093/schbul/sbac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND HYPOTHESIS A primary disruption of the bodily self is considered a core feature of schizophrenia (SCZ). The "disembodied" self might be underpinned by inefficient body-related multisensory integration processes, normally occurring in the peripersonal space (PPS), a plastic sector of space surrounding the body whose extent is altered in SCZ. Although PPS is a malleable interface marking the perceptual border between self and others, no study has addressed the potential alteration of its plasticity in SCZ. We investigated the plasticity of PPS in SCZ patients after a motor training with a tool in the far space. STUDY DESIGN Twenty-seven SCZ patients and 32 healthy controls (HC) underwent an audio-tactile task to estimate PPS boundary before (Session 1) and after (Session 3) the tool-use. Parameters of PPS, including the size and the slope of the psychometric function describing audio-tactile RTs as a function of the audio-tactile distances, were estimated. STUDY RESULTS Results confirm a narrow PPS extent in SCZ. Surprisingly, we found PPS expansion in both groups, thus showing for the first time a preserved PPS plasticity in SCZ. Patients experienced a weaker differentiation from others, as indicated by a shallower PPS slope at Session 1 that correlated positively with negative symptoms. However, at Session 3, patients marked their bodily boundary in a steeper way, suggesting a sharper demarcation of PPS boundaries after the action with the tool. CONCLUSIONS These findings highlight the importance of investigating the multisensory and motor roots of self-disorders, paving the way for future body-centred rehabilitation interventions that could improve patients' altered body boundary.
Collapse
Affiliation(s)
- Francesca Ferroni
- To whom correspondence should be addressed; Via Volturno, 39/E, 43121, Parma, Italy; tel: +39-0521-903873, fax: +39-0521-903879, e-mail:
| | - Martina Ardizzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Francesca Magnani
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti, Italy
| | - Nunzio Langiulli
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Francesca Rastelli
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Valeria Lucarini
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERMU1266, Paris, France
| | - Francesca Giustozzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Roberto Volpe
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Carlo Marchesi
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Matteo Tonna
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy,Department of Mental Health, Local Health Service, Parma, Italy
| | - Vittorio Gallese
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Walia P, Ghosh A, Singh S, Dutta A. Portable Neuroimaging-Guided Noninvasive Brain Stimulation of the Cortico-Cerebello-Thalamo-Cortical Loop—Hypothesis and Theory in Cannabis Use Disorder. Brain Sci 2022; 12:brainsci12040445. [PMID: 35447977 PMCID: PMC9027826 DOI: 10.3390/brainsci12040445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Maladaptive neuroplasticity-related learned response in substance use disorder (SUD) can be ameliorated using noninvasive brain stimulation (NIBS); however, inter-individual variability needs to be addressed for clinical translation. Objective: Our first objective was to develop a hypothesis for NIBS for learned response in SUD based on a competing neurobehavioral decision systems model. The next objective was to develop the theory by conducting a computational simulation of NIBS of the cortico-cerebello-thalamo-cortical (CCTC) loop in cannabis use disorder (CUD)-related dysfunctional “cue-reactivity”—a construct closely related to “craving”—that is a core symptom. Our third objective was to test the feasibility of a neuroimaging-guided rational NIBS approach in healthy humans. Methods: “Cue-reactivity” can be measured using behavioral paradigms and portable neuroimaging, including functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG) metrics of sensorimotor gating. Therefore, we conducted a computational simulation of NIBS, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) of the cerebellar cortex and deep cerebellar nuclei (DCN) of the CCTC loop for its postulated effects on fNIRS and EEG metrics. We also developed a rational neuroimaging-guided NIBS approach for the cerebellar lobule (VII) and prefrontal cortex based on a healthy human study. Results: Simulation of cerebellar tDCS induced gamma oscillations in the cerebral cortex, while transcranial temporal interference stimulation induced a gamma-to-beta frequency shift. A preliminary healthy human study (N = 10) found that 2 mA cerebellar tDCS evoked similar oxyhemoglobin (HbO) response in the range of 5 × 10−6 M across the cerebellum and PFC brain regions (α = 0.01); however, infra-slow (0.01–0.10 Hz) prefrontal cortex HbO-driven phase–amplitude-coupled (PAC; 4 Hz, ±2 mA (max)) cerebellar tACS evoked HbO levels in the range of 10−7 M that were statistically different (α = 0.01) across these brain regions. Conclusion: Our healthy human study showed the feasibility of fNIRS of cerebellum and PFC and closed-loop fNIRS-driven ctACS at 4 Hz, which may facilitate cerebellar cognitive function via the frontoparietal network. Future work needs to combine fNIRS with EEG for multi-modal imaging for closed-loop NIBS during operant conditioning.
Collapse
Affiliation(s)
- Pushpinder Walia
- Neuroengineering and Informatics for Rehabilitation Laboratory, University at Buffalo, Buffalo, NY 14228, USA;
| | - Abhishek Ghosh
- Postgraduate Institute of Medical Education & Research, Chandigarh 700020, India; (A.G.); (S.S.)
| | - Shubhmohan Singh
- Postgraduate Institute of Medical Education & Research, Chandigarh 700020, India; (A.G.); (S.S.)
| | - Anirban Dutta
- Neuroengineering and Informatics for Rehabilitation Laboratory, University at Buffalo, Buffalo, NY 14228, USA;
- Correspondence:
| |
Collapse
|
14
|
Hua JPY, Abram SV, Ford JM. Cerebellar stimulation in schizophrenia: A systematic review of the evidence and an overview of the methods. Front Psychiatry 2022; 13:1069488. [PMID: 36620688 PMCID: PMC9815121 DOI: 10.3389/fpsyt.2022.1069488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cerebellar structural and functional abnormalities underlie widespread deficits in clinical, cognitive, and motor functioning that are observed in schizophrenia. Consequently, the cerebellum is a promising target for novel schizophrenia treatments. Here we conducted an updated systematic review examining the literature on cerebellar stimulation efficacy and tolerability for mitigating symptoms of schizophrenia. We discuss the purported mechanisms of cerebellar stimulation, current methods for implementing stimulation, and future directions of cerebellar stimulation for intervention development with this population. METHODS Two independent authors identified 20 published studies (7 randomized controlled trials, 7 open-label studies, 1 pilot study, 4 case reports, 1 preclinical study) that describe the effects of cerebellar circuitry modulation in patients with schizophrenia or animal models of psychosis. Published studies up to October 11, 2022 were identified from a search within PubMed, Scopus, and PsycInfo. RESULTS Most studies stimulating the cerebellum used transcranial magnetic stimulation or transcranial direct-current stimulation, specifically targeting the cerebellar vermis/midline. Accounting for levels of methodological rigor across studies, these studies detected post-cerebellar modulation in schizophrenia as indicated by the alleviation of certain clinical symptoms (mainly negative and depressive symptoms), as well as increased frontal-cerebellar connectivity and augmentation of canonical neuro-oscillations known to be abnormal in schizophrenia. In contrast to a prior review, we did not find consistent evidence for cognitive improvements following cerebellar modulation stimulation. Modern cerebellar stimulation methods appear tolerable for individuals with schizophrenia, with only mild and temporary side effects. CONCLUSION Cerebellar stimulation is a promising intervention for individuals with schizophrenia that may be more relevant to some symptom domains than others. Initial results highlight the need for continued research using more methodologically rigorous designs, such as additional longitudinal and randomized controlled trials. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022346667].
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States.,San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Samantha V Abram
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
16
|
Hirjak D, Meyer-Lindenberg A, Sambataro F, Fritze S, Kukovic J, Kubera KM, Wolf RC. Progress in sensorimotor neuroscience of schizophrenia spectrum disorders: Lessons learned and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110370. [PMID: 34087392 DOI: 10.1016/j.pnpbp.2021.110370] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
The number of neuroimaging studies on movement disorders, sensorimotor, and psychomotor functioning in schizophrenia spectrum disorders (SSD) has steadily increased over the last two decades. Accelerated by the addition of the "sensorimotor domain" to the Research Domain Criteria (RDoC) framework in January 2019, neuroscience research on the role of sensorimotor dysfunction in SSD has gained greater scientific and clinical relevance. To draw attention to recent rapid progress in the field, we performed a triennial systematic review (PubMed search from January 1st, 2018 through December 31st, 2020), in which we highlight recent neuroimaging findings and discuss methodological pitfalls as well as challenges for future research. The identified magnetic resonance imaging (MRI) studies suggest that sensorimotor abnormalities in SSD are related to cerebello-thalamo-cortico-cerebellar network dysfunction. Longitudinal and interventional studies highlight the translational potential of the sensorimotor domain as putative biomarkers for treatment response and as targets for non-invasive neurostimulation techniques in SSD.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Katharina M Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Sambataro F, Hirjak D, Fritze S, Kubera KM, Northoff G, Calhoun VD, Meyer‐Lindenberg A, Wolf RC. Intrinsic neural network dynamics in catatonia. Hum Brain Mapp 2021; 42:6087-6098. [PMID: 34585808 PMCID: PMC8596986 DOI: 10.1002/hbm.25671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Catatonia is a transnosologic psychomotor syndrome with high prevalence in schizophrenia spectrum disorders (SSD). There is mounting neuroimaging evidence that catatonia is associated with aberrant frontoparietal, thalamic and cerebellar regions. Large-scale brain network dynamics in catatonia have not been investigated so far. In this study, resting-state fMRI data from 58 right-handed SSD patients were considered. Catatonic symptoms were examined on the Northoff Catatonia Rating Scale (NCRS). Group spatial independent component analysis was carried out with a multiple analysis of covariance (MANCOVA) approach to estimate and test the underlying intrinsic components (ICs) in SSD patients with (NCRS total score ≥ 3; n = 30) and without (NCRS total score = 0; n = 28) catatonia. Functional network connectivity (FNC) during rest was calculated between pairs of ICs and transient changes in connectivity were estimated using sliding windowing and clustering (to capture both static and dynamic FNC). Catatonic patients showed increased static FNC in cerebellar networks along with decreased low frequency oscillations in basal ganglia (BG) networks. Catatonic patients had reduced state changes and dwelled more in a state characterized by high within-network correlation of the sensorimotor, visual, and default-mode network with respect to noncatatonic patients. Finally, in catatonic patients according to DSM-IV-TR (n = 44), there was a significant correlation between increased within FNC in cortico-striatal state and NCRS motor scores. The data support a neuromechanistic model of catatonia that emphasizes a key role of disrupted sensorimotor network control during distinct functional states.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Neuroscience (DNS)University of PadovaPadovaItaly
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Katharina M. Kubera
- Center for Psychosocial Medicine, Department of General PsychiatryHeidelberg UniversityGermany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health ResearchUniversity of OttawaOttawaOntarioCanada
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgia
| | - Andreas Meyer‐Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Robert C. Wolf
- Center for Psychosocial Medicine, Department of General PsychiatryHeidelberg UniversityGermany
| |
Collapse
|
18
|
Pieters LE, Nadesalingam N, Walther S, van Harten PN. A systematic review of the prognostic value of motor abnormalities on clinical outcome in psychosis. Neurosci Biobehav Rev 2021; 132:691-705. [PMID: 34813828 DOI: 10.1016/j.neubiorev.2021.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia spectrum disorders have heterogeneous outcomes and currently no marker predicts the course of illness. Motor abnormalities (MAs) are inherent to psychosis, the risk of psychosis, symptom severity, and brain alterations. However, the prognostic value of MAs is still unresolved. Here, we provide a systematic review of longitudinal studies on the prognostic role of MAs spanning individuals at clinical high risk for psychosis (CHR), patients with first-episode psychosis (FEP), and chronic schizophrenia. We included 68 studies for a total of 23,630 subjects that assessed neurological soft signs (NSS), hypo- or hyperkinetic movement disorders and/or catatonia as a prognostic factor on clinical and functional outcomes. We found increased levels of MAs, in particular NSS, parkinsonism, and dyskinesia, were related to deteriorating symptomatic and poor functional outcome over time. Collectively, the findings emphasize the clinical, prognostic and scientific relevance of MA assessment and detection in individuals with or at risk of psychosis. In the future, instrumental measures of MA are expected to further augment detection, early intervention and treatment strategies in psychosis.
Collapse
Affiliation(s)
- Lydia E Pieters
- Psychiatric Center GGz Centraal, Amersfoort, Research Department, Postbus 3051, 3800 DB Amersfoort, The Netherlands; Department of Psychiatry, School for Mental Health and Neuroscience, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, CH-3000 Bern 60, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, CH-3000 Bern 60, Switzerland
| | - Peter N van Harten
- Psychiatric Center GGz Centraal, Amersfoort, Research Department, Postbus 3051, 3800 DB Amersfoort, The Netherlands; Department of Psychiatry, School for Mental Health and Neuroscience, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
19
|
Yamada K, Watanabe M, Suzuki K, Suzuki Y. Cerebellar Volumes Associate with Behavioral Phenotypes in Prader-Willi Syndrome. THE CEREBELLUM 2021; 19:778-787. [PMID: 32661798 PMCID: PMC7588377 DOI: 10.1007/s12311-020-01163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate lobule-specific cerebellar structural alterations relevant to clinical behavioral characteristics of Prader-Willi syndrome (PWS). We performed a case-control study of 21 Japanese individuals with PWS (age; median 21.0, range 13–50 years, 14 males, 7 females) and 40 age- and sex-matched healthy controls with typical development. Participants underwent 3-Tesla magnetic resonance imaging. Three-dimensional T1-weighted images were assessed for cerebellar lobular volume and adjusted for total intracerebellar volume (TIV) using a spatially unbiased atlas template to give a relative volume ratio. A region of interest analysis included the deep cerebellar nuclei. A correlation analysis was performed between the volumetric data and the clinical behavioral scores derived from the standard questionnaires (hyperphagia, autism, obsession, and maladaptive index) for global intelligence assessment in paired subgroups. In individuals with PWS, TIV was significantly reduced compared with that of controls (p < 0.05, family-wise error corrected; mean [standard deviation], 1014.1 [93.0] mm3). Decreased relative lobular volume ratios were observed in posterior inferior lobules with age, sex, and TIV as covariates (Crus I, Crus II, lobules VIIb, VIIIa, VIIIb, and IX). However, increased ratios were found in the dentate nuclei bilaterally in individuals with PWS (p < 0.01); the mean (standard deviation) × 10−3 was as follows: left, 1.58 (0.26); right, 1.67 (0.30). The altered lobular volume ratios showed negative correlations with hyperphagic and autistic characteristics and positive correlations with obsessive and intellectual characteristics. This study provides the first objective evidence of topographic patterns of volume differences in cerebellar structures consistent with clinical behavioral characteristics in individuals with PWS and strongly suggests a cerebellar contribution to altered functional brain connectivity in PWS.
Collapse
Affiliation(s)
- Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan.
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Kiyotaka Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| |
Collapse
|
20
|
Why is there symptom coupling of psychological and motor changes in psychomotor mechanisms? Insights from the brain's topography. Mol Psychiatry 2021; 26:3669-3671. [PMID: 33203994 DOI: 10.1038/s41380-020-00945-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023]
|
21
|
[The sensorimotor domain in the research domain criteria system: progress and perspectives]. DER NERVENARZT 2021; 92:915-924. [PMID: 34115150 DOI: 10.1007/s00115-021-01144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Over the past three decades research interest in hypokinetic, hyperkinetic, sensorimotor and psychomotor abnormalities in mental disorders has steadily increased. This development has led to an increasing number of scientific initiatives that have not only highlighted the clinical need for early detection of extrapyramidal motor symptoms, tardive dyskinesia and catatonia but also provided numerous neurobiological findings and clinically relevant results based on the pathology of the sensorimotor system in patients with mental disorders. In view of these developments in January 2019 the National Institute of Mental Health (NIMH) research domain criteria (RDoC) initiative introduced a sixth domain called the sensorimotor domain to address deficits in the sensorimotor system and associated behavioral abnormalities. To draw attention to the rapid progress just since the introduction of the sensorimotor domain, a 2-year (1 January 2019-18 February 2021) systematic review is presented highlighting recent neuroimaging findings and discussing challenges for future research. In summary, aberrant sensorimotor processing in mental disorders is associated with dysfunction of the cerebello-thalamo-motor cortex network, which interacts with (social)cognitive and affective systems. Initial longitudinal and interventional studies highlight the translational potential of the sensorimotor domain.
Collapse
|
22
|
Osborne KJ, Damme KS, Gupta T, Dean DJ, Bernard JA, Mittal VA. Timing dysfunction and cerebellar resting state functional connectivity abnormalities in youth at clinical high-risk for psychosis. Psychol Med 2021; 51:1289-1298. [PMID: 32008594 PMCID: PMC9754787 DOI: 10.1017/s0033291719004161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Consistent with pathophysiological models of psychosis, temporal disturbances in schizophrenia spectrum populations may reflect abnormal cortical (e.g. prefrontal cortex) and subcortical (e.g. striatum) cerebellar connectivity. However, few studies have examined associations between cerebellar connectivity and timing dysfunction in psychosis populations, and none have been conducted in youth at clinical high-risk (CHR) for psychosis. Thus, it is currently unknown if impairments in temporal processes are present in CHR youth or how they may be associated with cerebellar connectivity and worsening of symptoms. METHODS A total of 108 (56 CHR/52 controls) youth were administered an auditory temporal bisection task along with a resting state imaging scan to examine cerebellar resting state connectivity. Positive and negative symptoms at baseline and 12 months later were also quantified. RESULTS Controlling for alcohol and cannabis use, CHR youth exhibited poorer temporal accuracy compared to controls, and temporal accuracy deficits were associated with abnormal connectivity between the bilateral anterior cerebellum and a right caudate/nucleus accumbens striatal cluster. Poor temporal accuracy accounted for 11% of the variance in worsening of negative symptoms over 12 months. CONCLUSIONS Behavioral findings suggest CHR youth perceive durations of auditory tones as shortened compared to objective time, which may indicate a slower internal clock. Poorer temporal accuracy in CHR youth was associated with abnormalities in brain regions involved in an important cerebellar network implicated in prominent pathophysiological models of psychosis. Lastly, temporal accuracy was associated with worsening of negative symptoms across 12 months, suggesting temporal dysfunction may be sensitive to illness progression.
Collapse
Affiliation(s)
- K. Juston Osborne
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | | | - Tina Gupta
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Derek J. Dean
- University of Colorado Boulder, Department of Psychology, Boulder, CO, USA
| | - Jessica A. Bernard
- Texas A & M University, Department of Psychology, College Station, TX, USA
| | - Vijay A. Mittal
- Northwestern University, Department of Psychology, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
23
|
Soares IFZ, Ciarlariello VB, Feder D, Carvalho AADS. Cognitive dysfunction and psychosis: expanding the phenotype of SPG7. Neurocase 2021; 27:253-258. [PMID: 34003721 DOI: 10.1080/13554794.2021.1927114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Spastic paraplegia type 7 (SPG7) is one of the most common forms of autosomal recessive hereditary spastic paraplegia, which can lead to a hybrid spastic-ataxic phenotype. Recently, novel complicated forms of SPG7, including cognitive and social impairment phenotypes, have been reported. We present a SPG7 case with two pathogenic variants in compound heterozygosity in the SPG7 gene, featuring a cerebellar cognitive affective syndrome with psychosis not yet described in the literature.
Collapse
Affiliation(s)
| | | | - David Feder
- Department of Neurosciences, Centro Universitário FMABC, Santo Andre, São Paulo, Brazil
| | | |
Collapse
|
24
|
McKenna MC, Chipika RH, Li Hi Shing S, Christidi F, Lope J, Doherty MA, Hengeveld JC, Vajda A, McLaughlin RL, Hardiman O, Hutchinson S, Bede P. Infratentorial pathology in frontotemporal dementia: cerebellar grey and white matter alterations in FTD phenotypes. J Neurol 2021; 268:4687-4697. [PMID: 33983551 PMCID: PMC8563547 DOI: 10.1007/s00415-021-10575-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The contribution of cerebellar pathology to cognitive and behavioural manifestations is increasingly recognised, but the cerebellar profiles of FTD phenotypes are relatively poorly characterised. A prospective, single-centre imaging study has been undertaken with a high-resolution structural and diffusion tensor protocol to systematically evaluate cerebellar grey and white matter alterations in behavioural-variant FTD(bvFTD), non-fluent variant primary progressive aphasia(nfvPPA), semantic-variant primary progressive aphasia(svPPA), C9orf72-positive ALS-FTD(C9 + ALSFTD) and C9orf72-negative ALS-FTD(C9-ALSFTD). Cerebellar cortical thickness and complementary morphometric analyses were carried out to appraise atrophy patterns controlling for demographic variables. White matter integrity was assessed in a study-specific white matter skeleton, evaluating three diffusivity metrics: fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). Significant cortical thickness reductions were identified in: lobule VII and crus I in bvFTD; lobule VI VII, crus I and II in nfvPPA; and lobule VII, crus I and II in svPPA; lobule IV, VI, VII and Crus I and II in C9 + ALSFTD. Morphometry revealed volume reductions in lobule V in all groups; in addition to lobule VIII in C9 + ALSFTD; lobule VI, VIII and vermis in C9-ALSFTD; lobule V, VII and vermis in bvFTD; and lobule V, VI, VIII and vermis in nfvPPA. Widespread white matter alterations were demonstrated by significant fractional anisotropy, axial diffusivity and radial diffusivity changes in each FTD phenotype that were more focal in those with C9 + ALSFTD and svPPA. Our findings indicate that FTD subtypes are associated with phenotype-specific cerebellar signatures with the selective involvement of specific lobules instead of global cerebellar atrophy.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Peter Bede, Room 5.43, Pearse Street, Dublin 2, Ireland. .,Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
25
|
Damme KSF, Sloan RP, Bartels MN, Ozsan A, Ospina LH, Kimhy D, Mittal VA. Psychosis risk individuals show poor fitness and discrepancies with objective and subjective measures. Sci Rep 2021; 11:9851. [PMID: 33972634 PMCID: PMC8110757 DOI: 10.1038/s41598-021-89301-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Exercise is a promising intervention for individuals at clinical high-risk for psychosis (CHR). However, these youth may not be reliable reporters on fitness. There have been no investigations that utilized objective fitness assessment in this population. The present study objectively characterizes the level of fitness in CHR youth, compares the accuracy of self-report measures to objective fitness indices, and explores clinical factors that may influence the accuracy of self-reported measures of fitness. Forty CHR individuals completed an exercise survey and objective indices of fitness (i.e., VO2max and BMI). Forty healthy volunteers completed objective indices of fitness and a structured clinical interview ruling out the presence of psychiatric illness. CHR youth showed greater BMI and lowered VO2max compared to healthy volunteers. In the CHR group, self-report items (perceived fitness) did not reflect objective indices of fitness, whereas specific exercise behaviors (intensity of exercise) showed stronger correlations with objective fitness measurements. Exploratory analyses suggested that symptoms (grandiosity and avolition) related to errors in self-perception. Results indicate that CHR individuals are less fit than controls as indexed by objective measures of fitness and that it is important to consider unique population clinical characteristics when employing self-report data.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, Northwestern University, 2029 Sheridan Rd., Evanston, IL, 60208, USA.
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston/Chicago, IL, USA.
| | - Richard P Sloan
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Matthew N Bartels
- Department of Rehabilitation Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Rehabilitation Medicine, Montefiore Medical Center, New York, NY, USA
| | - Alara Ozsan
- Department of Psychology, Northwestern University, 2029 Sheridan Rd., Evanston, IL, 60208, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
| | - Luz H Ospina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Kimhy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- MIRECC, The James J. Peters VA Medical Center, Bronx, NY, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, 2029 Sheridan Rd., Evanston, IL, 60208, USA
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston/Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
26
|
Comprehensive characterization of motor and coordination functions in three adolescent wild-type mouse strains. Sci Rep 2021; 11:6497. [PMID: 33753800 PMCID: PMC7985312 DOI: 10.1038/s41598-021-85858-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropsychiatric disorders are often associated with motor and coordination abnormalities that have important implications on the etiology, pathophysiology, and management of these disorders. Although the onset of many neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and attention-deficit hyperactivity disorder emerges mainly during infancy and adolescence, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, possibly missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we examined which behavioral tests assessing both motor and coordination functions can be performed in mice at two different adolescent stages. As strain and sex affect mouse behavior, our experiments covered both male and female mice of three inbred wild-type strains, C57BL/6N, DBA/2, and FVB/N. Adolescent mice of both postnatal days (P)22-30 and P32-40 developmental stages were capable of mastering common motor and coordination tests. However, results differed significantly between strains and sexes. Moreover, the 10-day interval between the two tested cohorts uncovered a strong difference in the behavioral results, confirming the significant impact of maturation on behavioral patterns. Interestingly, the results of distinct behavioral experiments were directly correlated with the weight of mice, which may explain the lack of reproducibility of some behavioral results in genetically-modified mice. Our study paves the way for better reproducibility of behavioral tests by addressing the effect of the developmental stage, strain, sex, and weight of mice on achieving the face validity of neuropsychiatric disorder-associated motor dysfunctions.
Collapse
|
27
|
Kent JS, Kim DJ, Newman SD, Bolbecker AR, O'Donnell BF, Hetrick WP. Investigating cerebellar neural function in schizophrenia using delay eyeblink conditioning: A pilot fMRI study. Psychiatry Res Neuroimaging 2020; 304:111133. [PMID: 32805441 PMCID: PMC9680991 DOI: 10.1016/j.pscychresns.2020.111133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
Abstract
There is accruing evidence of cerebellar abnormalities in individuals with schizophrenia as measured by performance on a variety of tasks believed to be dependent on cerebellar integrity, including delay eyeblink conditioning. There is also evidence of cerebellar dysfunction on a neural level in schizophrenia from both task-based and resting state neuroimaging studies, however few studies have examined cerebellar neural function while the cerebellum is directly recruited in individuals with schizophrenia. In the current pilot study, we examined neural activity during an explicitly cerebellar task in individuals with schizophrenia or schizoaffective disorder and non-psychiatric controls. Participants underwent delay eyeblink conditioning during fMRI. Results indicated eyeblink conditioning impairment in patients as evidenced by a group by time interaction for conditioned responses. A significant cluster of cerebellar activation was present in controls but not patients during the first half of conditioning; there were no significant differences in activation between groups. An ROI analysis focused on the cerebellum in patients revealed two significant clusters that were inversely associated with negative symptom severity. These results are broadly consistent with the theory of cognitive dysmetria, wherein cerebellar abnormalities are theorized to contribute to motor as well as cognitive and affective disturbances in schizophrenia.
Collapse
Affiliation(s)
- Jerillyn S Kent
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, 2450 Riverside Ave, Minneapolis, MN 55454, USA.
| | - Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sharlene D Newman
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
28
|
Spiteri M, Guillemaut JY, Windridge D, Avula S, Kumar R, Lewis E. Fully-Automated Identification of Imaging Biomarkers for Post-Operative Cerebellar Mutism Syndrome Using Longitudinal Paediatric MRI. Neuroinformatics 2020; 18:151-162. [PMID: 31254271 PMCID: PMC6981105 DOI: 10.1007/s12021-019-09427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-operative cerebellar mutism syndrome (POPCMS) in children is a post- surgical complication which occurs following the resection of tumors within the brain stem and cerebellum. High resolution brain magnetic resonance (MR) images acquired at multiple time points across a patient’s treatment allow the quantification of localized changes caused by the progression of this syndrome. However, MR images are not necessarily acquired at regular intervals throughout treatment and are often not volumetric. This restricts the analysis to 2D space and causes difficulty in intra- and inter-subject comparison. To address these challenges, we have developed an automated image processing and analysis pipeline. Multi-slice 2D MR image slices are interpolated in space and time to produce a 4D volumetric MR image dataset providing a longitudinal representation of the cerebellum and brain stem at specific time points across treatment. The deformations within the brain over time are represented using a novel metric known as the Jacobian of deformations determinant. This metric, together with the changing grey-level intensity of areas within the brain over time, are analyzed using machine learning techniques in order to identify biomarkers that correspond with the development of POPCMS following tumor resection. This study makes use of a fully automated approach which is not hypothesis-driven. As a result, we were able to automatically detect six potential biomarkers that are related to the development of POPCMS following tumor resection in the posterior fossa.
Collapse
Affiliation(s)
- Michaela Spiteri
- Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, GU27XH, UK.
| | - Jean-Yves Guillemaut
- Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, GU27XH, UK
| | - David Windridge
- Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, GU27XH, UK
| | - Shivaram Avula
- Alder Hey Children's NHS Trust, E Prescot Rd, Liverpool, L14 5AB, UK
| | - Ram Kumar
- Alder Hey Children's NHS Trust, E Prescot Rd, Liverpool, L14 5AB, UK
| | - Emma Lewis
- Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, GU27XH, UK
| |
Collapse
|
29
|
Wang YM, Yang ZY, Wang Y, Wang YY, Cai XL, Zhang RT, Hu HX, Cheung EFC, Chan RCK. Grey matter volume and structural covariance associated with schizotypy. Schizophr Res 2020; 224:88-94. [PMID: 33046333 DOI: 10.1016/j.schres.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/16/2020] [Accepted: 09/24/2020] [Indexed: 02/09/2023]
Abstract
In this study, we applied brain grey matter volume and structural covariance methods on T1 weighted images to delineate potential structural brain changes in individuals with high schizotypy, who were defined as healthy individuals scoring in the top tenth percentile of the Schizotypal Personality Questionnaire (SPQ). Eighty-seven college students with high schizotypy and 122 controls were recruited in China. Differences in grey matter volume and volume covariance between the two groups, and correlations of grey matter volume with SPQ scores in the high schizotypy group were examined. We found that individuals with high schizotypy had decreased grey matter volume at the left medial superior frontal gyrus (medsFG) extending towards the superior frontal gyrus, decreased structural covariance within the right medsFG, between the right superior frontal gyrus (sFG), the right superior temporal gyrus and the right anterior insula; and increased structural covariance between the caudate and the right inferior temporal gyrus. Correlation analysis revealed that grey matter volume of the left middle temporal pole and the right sFG correlated positively with the SPQ total scores, volume of the bilateral cerebellum 9 sub-region correlated negatively with the SPQ cognitive-perceptual sub-scale scores, volume of the bilateral striatum correlated positively with the SPQ interpersonal sub-scale scores, and volume of the bilateral superior temporal pole correlated positively with the SPQ disorganization sub-scale scores in the high schizotypy group. These results highlight important grey matter structural changes in the medsFG in individuals with high schizotypy.
Collapse
Affiliation(s)
- Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, PR China; Sino-Danish Center for Education and Research, Beijing 100190, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhou-Ya Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yan-Yu Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Department of Psychology, Weifang Medical University, Shandong Province, PR China
| | - Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, PR China; Sino-Danish Center for Education and Research, Beijing 100190, PR China
| | - Rui-Ting Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Hui-Xin Hu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, PR China; Sino-Danish Center for Education and Research, Beijing 100190, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
30
|
Walther S, van Harten PN, Waddington JL, Cuesta MJ, Peralta V, Dupin L, Foucher JR, Sambataro F, Morrens M, Kubera KM, Pieters LE, Stegmayer K, Strik W, Wolf RC, Hirjak D. Movement disorder and sensorimotor abnormalities in schizophrenia and other psychoses - European consensus on assessment and perspectives. Eur Neuropsychopharmacol 2020; 38:25-39. [PMID: 32713718 DOI: 10.1016/j.euroneuro.2020.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Over the last three decades, movement disorder as well as sensorimotor and psychomotor functioning in schizophrenia (SZ) and other psychoses has gained greater scientific and clinical relevance as an intrinsic component of the disease process of psychotic illness; this extends to early psychosis prediction, early detection of motor side effects of antipsychotic medication, clinical outcome monitoring, treatment of psychomotor syndromes (e.g. catatonia), and identification of new targets for non-invasive brain stimulation. In 2017, a systematic cooperation between working groups interested in movement disorder and sensorimotor/psychomotor functioning in psychoses was initiated across European universities. As a first step, the members of this group would like to introduce and define the theoretical aspects of the sensorimotor domain in SZ and other psychoses. This consensus paper is based on a synthesis of scientific evidence, good clinical practice and expert opinions that were discussed during recent conferences hosted by national and international psychiatric associations. While reviewing and discussing the recent theoretical and experimental work on neural mechanisms and clinical implications of sensorimotor behavior, we here seek to define the key principles and elements of research on movement disorder and sensorimotor/psychomotor functioning in psychotic illness. Finally, the members of this European group anticipate that this consensus paper will stimulate further multimodal and prospective studies on hypo- and hyperkinetic movement disorders and sensorimotor/psychomotor functioning in SZ and other psychotic disorders.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Peter N van Harten
- Psychiatric Center GGz Centraal, Amersfoort, The Netherlands; Department of Psychiatry, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Spain. Instituto de Investigación Sanitaria de Navarra (IdisNa), Spain
| | - Victor Peralta
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain, Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Lucile Dupin
- Institut de Psychiatrie et Neurosciences de Paris, INSERM U1266, Université de Paris, Paris, France
| | - Jack R Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Manuel Morrens
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Lydia E Pieters
- Psychiatric Center GGz Centraal, Amersfoort, The Netherlands; Department of Psychiatry, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - R Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
31
|
Straub KT, Hua JPY, Karcher NR, Kerns JG. Psychosis risk is associated with decreased white matter integrity in limbic network corticostriatal tracts. Psychiatry Res Neuroimaging 2020; 301:111089. [PMID: 32442837 PMCID: PMC7293570 DOI: 10.1016/j.pscychresns.2020.111089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It is thought that altered connectivity between the striatum and the cortex could contribute to psychosis. However, whether psychosis risk is associated with altered white matter connectivity between the striatum and any cortical region is still unclear. Further, no previous study has directly examined whether psychosis risk is associated with altered striatal connectivity with specific cortical networks. The current study examined the integrity of corticostriatal white matter tracts in psychosis risk (n=18) and in non-psychosis risk comparison participants (n=19). We used probabilistic tractography to identify white matter tracts connecting each of four different striatal subregions with their most functionally connected cortical network: limbic, default mode, frontoparietal, and motor networks. We then compared groups on fractional anisotropy in these four tracts. Psychosis risk was associated with decreased fractional anisotropy in white matter tracts connecting the limbic striatum with the limbic cortical network, especially in an anterior right external capsule segment and in tracts specifically connected to the right prefrontal cortex. In contrast, psychosis risk was not associated with decreased white matter integrity in other corticostriatal tracts. Hence, the current research suggests that psychosis risk is especially associated with decreased corticostriatal white matter integrity involved in processing emotional and personally relevant information.
Collapse
Affiliation(s)
- Kelsey T Straub
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jessica P Y Hua
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nicole R Karcher
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John G Kerns
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
32
|
Wolf RC, Rashidi M, Fritze S, Kubera KM, Northoff G, Sambataro F, Calhoun VD, Geiger LS, Tost H, Hirjak D. A Neural Signature of Parkinsonism in Patients With Schizophrenia Spectrum Disorders: A Multimodal MRI Study Using Parallel ICA. Schizophr Bull 2020; 46:999-1008. [PMID: 32162660 PMCID: PMC7345812 DOI: 10.1093/schbul/sbaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Motor abnormalities in schizophrenia spectrum disorders (SSD) have increasingly attracted scientific interest in the past years. However, the neural mechanisms underlying parkinsonism in SSD are unclear. The present multimodal magnetic resonance imaging (MRI) study examined SSD patients with and without parkinsonism, as defined by a Simpson and Angus Scale (SAS) total score of ≥4 (SAS group, n = 22) or <4 (non-SAS group, n = 22). Parallel independent component analysis (p-ICA) was used to examine the covarying components among gray matter volume maps computed from structural MRI (sMRI) and fractional amplitude of low-frequency fluctuations (fALFF) maps computed from resting-state functional MRI (rs-fMRI) patient data. We found a significant correlation (P = .020, false discovery rate [FDR] corrected) between an sMRI component and an rs-fMRI component, which also significantly differed between the SAS and non-SAS group (P = .042, z = -2.04). The rs-fMRI component comprised the cortical sensorimotor network, and the sMRI component included predominantly a frontothalamic/cerebellar network. Across the patient sample, correlations adjusted for the Positive and Negative Syndrome Scale (PANSS) total scores showed a significant relationship between tremor score and loadings of the cortical sensorimotor network, as well as between glabella-salivation score, frontothalamic/cerebellar and cortical sensorimotor network loadings. These data provide novel insights into neural mechanisms of parkinsonism in SSD. Aberrant bottom-up modulation of cortical motor regions may account for these specific motor symptoms, at least in patients with SSD.
Collapse
Affiliation(s)
- Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Mahmoud Rashidi
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,To whom correspondence should be addressed; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, D-68159 Mannheim, Germany; tel: +49-621-1703-0, fax: +49-621-1703-2305, e-mail:
| |
Collapse
|
33
|
Reis-de-Oliveira G, Zuccoli GS, Fioramonte M, Schimitt A, Falkai P, Almeida V, Martins-de-Souza D. Digging deeper in the proteome of different regions from schizophrenia brains. J Proteomics 2020; 223:103814. [PMID: 32389842 DOI: 10.1016/j.jprot.2020.103814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a psychiatric disorder that affects 21 million people worldwide. Despite several studies having been shown that some brain regions may play a critical role in the pathophysiology of schizophrenia, the molecular basis to explain this diversity is still lacking. The cerebellum (CER), caudate nucleus (CAU), and posterior cingulate cortex (PCC) are areas associated with negative and cognitive symptoms in schizophrenia. In this study, we performed shotgun proteomics of the aforementioned brain regions, collected postmortem from patients with schizophrenia and compared with the mentally healthy group. In addition, we performed a proteomic analysis of nuclear and mitochondrial fractions of these same regions. Our results presented 106, 727 and 135 differentially regulated proteins in the CAU, PCC, and CER, respectively. Pathway enrichment analysis revealed dysfunctions associated with synaptic processes in the CAU, transport in the CER, and in energy metabolism in the PCC. In all brain areas, we found that proteins related to oligodendrocytes and the metabolic processes were dysregulated in schizophrenia. SIGNIFICANCE: Schizophrenia is a complex and heterogeneous psychiatric disorder. Despite much research having been done to increase the knowledge about the role of each region in the pathophysiology of this disorder, the molecular mechanisms underlying it are still lacking. We performed shotgun proteomics in the postmortem cerebellum (CER), caudate nucleus (CAU) and posterior cingulate cortex (PCC) from patients with schizophrenia and compared with healthy controls. Our findings suggest that each aforementioned region presents dysregulations in specific molecular pathways, such as energy metabolism in the PCC, transport in the CER, and synaptic process in the CAU. Additionally, these areas presented dysfunctions in oligodendrocytes and metabolic processes. Our results may highlight future directions for the development of novel clinical approaches for specific therapeutic targets.
Collapse
Affiliation(s)
- G Reis-de-Oliveira
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - G S Zuccoli
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - M Fioramonte
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - A Schimitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - P Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany
| | - V Almeida
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - D Martins-de-Souza
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
34
|
Kim D, Moussa‐Tooks AB, Bolbecker AR, Apthorp D, Newman SD, O'Donnell BF, Hetrick WP. Cerebellar-cortical dysconnectivity in resting-state associated with sensorimotor tasks in schizophrenia. Hum Brain Mapp 2020; 41:3119-3132. [PMID: 32250008 PMCID: PMC7336143 DOI: 10.1002/hbm.25002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Abnormalities of cerebellar function have been implicated in the pathophysiology of schizophrenia. Since the cerebellum has afferent and efferent projections to diverse brain regions, abnormalities in cerebellar lobules could affect functional connectivity with multiple functional systems in the brain. Prior studies, however, have not examined the relationship of individual cerebellar lobules with motor and nonmotor resting‐state functional networks. We evaluated these relationships using resting‐state fMRI in 30 patients with a schizophrenia‐spectrum disorder and 37 healthy comparison participants. For connectivity analyses, the cerebellum was parcellated into 18 lobular and vermal regions, and functional connectivity of each lobule to 10 major functional networks in the cerebrum was evaluated. The relationship between functional connectivity measures and behavioral performance on sensorimotor tasks (i.e., finger‐tapping and postural sway) was also examined. We found cerebellar–cortical hyperconnectivity in schizophrenia, which was predominantly associated with Crus I, Crus II, lobule IX, and lobule X. Specifically, abnormal cerebellar connectivity was found to the cerebral ventral attention, motor, and auditory networks. This cerebellar–cortical connectivity in the resting‐state was differentially associated with sensorimotor task‐based behavioral measures in schizophrenia and healthy comparison participants—that is, dissociation with motor network and association with nonmotor network in schizophrenia. These findings suggest that functional association between individual cerebellar lobules and the ventral attentional, motor, and auditory networks is particularly affected in schizophrenia. They are also consistent with dysconnectivity models of schizophrenia suggesting cerebellar contributions to a broad range of sensorimotor and cognitive operations.
Collapse
Affiliation(s)
- Dae‐Jin Kim
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Alexandra B. Moussa‐Tooks
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceIndiana UniversityBloomingtonIndianaUSA
| | - Amanda R. Bolbecker
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Deborah Apthorp
- School of Psychology, Faculty of Medicine and HealthUniversity of New EnglandArmidaleNew South WalesAustralia
- Research School of Computer Science, College of Engineering and Computer ScienceAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Sharlene D. Newman
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceIndiana UniversityBloomingtonIndianaUSA
| | - Brian F. O'Donnell
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceIndiana UniversityBloomingtonIndianaUSA
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - William P. Hetrick
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Program in NeuroscienceIndiana UniversityBloomingtonIndianaUSA
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
35
|
Sha Z, Edmiston EK, Versace A, Fournier JC, Graur S, Greenberg T, Lima Santos JP, Chase HW, Stiffler RS, Bonar L, Hudak R, Yendiki A, Greenberg BD, Rasmussen S, Liu H, Quirk G, Haber S, Phillips ML. Functional Disruption of Cerebello-thalamo-cortical Networks in Obsessive-Compulsive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:438-447. [PMID: 32033923 PMCID: PMC7150632 DOI: 10.1016/j.bpsc.2019.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive, compulsive behaviors. Neuroimaging studies have implicated altered connectivity among the functional networks of the cerebral cortex in the pathophysiology of OCD. However, there has been no comprehensive investigation of the cross-talk between the cerebellum and functional networks in the cerebral cortex. METHODS This functional neuroimaging study was completed by 44 adult participants with OCD and 43 healthy control participants. We performed large-scale data-driven brain network analysis to identify functional connectivity patterns using resting-state functional magnetic resonance imaging data. RESULTS Participants with OCD showed lower functional connectivity within the somatomotor network and greater functional connectivity among the somatomotor network, cerebellum, and subcortical network (e.g., thalamus and pallidum; all p < .005). Network-based statistics analyses demonstrated one component comprising connectivity within the somatomotor network that showed lower connectivity and a second component comprising connectivity among the somatomotor network, and motor regions in particular, and the cerebellum that showed greater connectivity in participants with OCD relative to healthy control participants. In participants with OCD, abnormal connectivity across both network-based statistics-derived components positively correlated with OCD symptom severity (p = .006). CONCLUSIONS To our knowledge, this study is the first comprehensive investigation of large-scale network alteration across the cerebral cortex, subcortical regions, and cerebellum in OCD. Our findings highlight a critical role of the cerebellum in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - E Kale Edmiston
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jay C Fournier
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simona Graur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tsafrir Greenberg
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Henry W Chase
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert Hudak
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Steven Rasmussen
- Department of Psychiatry and Human Behavior, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gregory Quirk
- Department of Psychiatry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; Department of Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Suzanne Haber
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Detecting motor slowing in clinical high risk for psychosis in a computerized finger tapping model. Eur Arch Psychiatry Clin Neurosci 2020; 270:393-397. [PMID: 31432263 PMCID: PMC7031007 DOI: 10.1007/s00406-019-01059-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Finger tapping is sensitive to motor slowing and emerging symptoms in individuals at clinical high risk for psychosis (CHR). A sensitive, computerized finger tapping task would be beneficial in early psychosis screening batteries. The study included 41 CHR and 32 healthy volunteers, who completed a computerized finger tapping task and clinical interviews. This computerized finger tapping task was sensitive to slowing in the CHR group compared to healthy volunteers, and as expected negative but not positive symptoms related to motor slowing. Computerized finger tapping tasks may be an easily dispersible tool for early symptom detection battery relevant to emerging negative symptoms.
Collapse
|
37
|
Wang SM, Ouyang WC, Wu MY, Kuo LC. Relationship between motor function and psychotic symptomatology in young-adult patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2020; 270:373-382. [PMID: 30976916 DOI: 10.1007/s00406-019-01004-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/21/2019] [Indexed: 12/29/2022]
Abstract
Motor abnormalities have been indicated to be a core manifestation of schizophrenia and not just motor side-effects of antipsychotics. However, little is known about whether all of the complete motor function, including fine motor function, muscle strength, and balance is linked to psychotic symptoms. Therefore, this study was to investigate association between complete motor function and psychotic symptoms in young-adult schizophrenia patients who had no extrapyramidal motor symptoms, which were assessed using the Extrapyramidal Symptom Rating Scale. Seventy schizophrenia patients were recruited. Fine motor function, muscle strength, and balance were assessed using The McCarron Assessment of Neuromuscular Development. Psychotic symptoms were assessed using the Positive and Negative Syndrome Scale. Given gender differences in muscle power, the correlation between muscle strength and psychotic symptoms was analyzed by gender separately. Partial correlation controlling for effects of the chlorpromazine equivalent dosage of antipsychotics was conducted. Better fine motor function was correlated with less-severe negative symptoms (r = - 0.49, p < 0.001) in the total sample. In men, better muscle strength was correlated with more severe positive symptoms and less-severe negative symptoms (r = 0.41, p = 0.008; r = - 0.55, p < 0.001). The link between motor function and psychotic symptoms may support the cerebellar and basal ganglia hypotheses of schizophrenia, proposing that diverse schizophrenia symptoms may share the same neural deficiency, that is, dysfunction of cerebellum or basal ganglia. Considering the moderate-to-strong association between muscle strength and psychotic symptoms, muscle strength might be a powerful physical predictor of psychotic progression.
Collapse
Affiliation(s)
- Shu-Mei Wang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wen-Chen Ouyang
- Department of Geriatric Psychiatry, Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan.,Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yi Wu
- Graduate Institute of Counseling Psychology and Rehabilitation Counseling, College of Education, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
38
|
Roh HW, Hong CH, Lim HK, Chang KJ, Kim H, Kim NR, Choi JW, Lee KS, Cho SM, Park B, Son SJ. A 12-week multidomain intervention for late-life depression: a community-based randomized controlled trial. J Affect Disord 2020; 263:437-444. [PMID: 31969275 DOI: 10.1016/j.jad.2019.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Given that current unimodal strategies for treating late-life depression are insufficient, the awareness of the necessity and importance of multidomain intervention has increased. We assessed the efficacy of multidomain intervention in reducing symptoms of late-life depression. METHODS This was a 12-week community-based randomized controlled trial in 78 older adults diagnosed with major depressive disorder. Participants were randomly assigned to the multidomain intervention or supportive therapy group. We provided four home visits and 12 telephone calls over 12 weeks. Four therapeutic approaches (physical activity, healthy diet, social activity, and brief cognitive restructuring) were incorporated into the multidomain intervention. The primary outcome was the change in depressive symptoms, as measured by the Montgomery-Asberg Depression Rating Scale (MADRS). Secondarily, we investigated changes in resting-state functional connectivity. RESULTS The MADRS total score was reduced more in the multidomain intervention group than in the supportive therapy group during the 12 weeks (intervention × time interaction, P = =0.007). After correction for multiple comparisons, the multidomain intervention group exhibited a lower MADRS total score at week 12 (score difference 5.117; P = =0.029). At follow-up, the multidomain intervention group also exhibited less functional connectivity between the posterior cingulate cortex and left inferior parietal lobule within the default mode network (FDR < 0.1). LIMITATIONS Caution is needed in the interpretation of the results, considering the small sample size and high percentage of female participants. CONCLUSIONS A 12-week multidomain intervention resulted in a greater reduction of depressive symptoms among the elderly with major depressive disorder than their counterparts who received supportive therapy.
Collapse
Affiliation(s)
- Hyun Woong Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Yeouido St. Mary's Hospital, Seoul, Republic of Korea
| | - Ki Jung Chang
- Department of Psychiatry, Ajou Good Hospital, Suwon, Republic of Korea
| | - Haena Kim
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Na-Rae Kim
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA University School of Medicine, CHA Bundang Medical Center, Bundang, Republic of Korea
| | - Sun-Mi Cho
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea; Office of Biostatistics, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
39
|
Fritze S, Sambataro F, Kubera KM, Bertolino AL, Topor CE, Wolf RC, Hirjak D. Neurological soft signs in schizophrenia spectrum disorders are not confounded by current antipsychotic dosage. Eur Neuropsychopharmacol 2020; 31:47-57. [PMID: 31780303 DOI: 10.1016/j.euroneuro.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Neurological soft signs (NSS) have garnered increasing attention in psychiatric research on motor abnormalities in schizophrenia spectrum disorders (SSD). However, it remains unclear whether the assessment of NSS severity could have been confounded by current antipsychotic dosage. In this study, we recruited 105 patients with SSD that underwent a comprehensive motor assessment evaluating NSS and extrapyramidal motor symptoms (EPMS) by means of standardized instruments. Current antipsychotic dosage equivalence estimates were determined by the classical mean dose method (doses equivalent to 1 mg/d olanzapine). We used multiple regression analyses to describe the relationship between NSS, EPMS and antipsychotic medication. In line with our expectations, current antipsychotic dosage had no significant effects on NSS total score (p = 0.27), abnormal involuntary movements (p = 0.17), akathisia (p = 0.32) and parkinsonism (p = 0.26). Further, NSS total score had a significant effect on akathisia (p = 0.003) and parkinsonism (p = 0.0001, Bonferroni corr.), but only marginal effect on abnormal involuntary movements (p = 0.08). Our results support the notion that NSS are not significantly modulated by current antipsychotic dosage in SSD. The associations between NSS, akathisia and parkinsonism, as revealed by this study, support the genuine rather than medication-dependent origin of particular motor abnormalities in SSD.
Collapse
Affiliation(s)
- Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Alina L Bertolino
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cristina E Topor
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
40
|
Adolescent trajectories of fine motor and coordination skills and risk for schizophrenia. Schizophr Res 2020; 215:263-269. [PMID: 31672386 DOI: 10.1016/j.schres.2019.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/09/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
Abstract
Premorbid motor dysfunction is one of the earliest of developmental antecedents identified among individuals who develop schizophrenia in adulthood. However, among individuals with schizophrenia, premorbid motor dysfunction is not apparent at all stages of childhood development and may reduce with increasing age. Currently, little is known about the trajectories of motor development during adolescence among youth at-risk for the disorder. One hundred and one participants were assessed repeatedly, at approximately 24-month intervals (time 1, aged 9-12 years; time 2, 11-14 years; and time 3, 13-16 years), on the Purdue Pegboard assessment, comprising four subtests: Dominant Hand (DH), Non-Dominant Hand (NDH), Both Hands (BH), and Assembly. Fine motor and coordination skills development between ages 9-16 years was compared between youth characterised by a triad of developmental antecedents of schizophrenia (ASz, N = 32); youth with at least one affected relative with schizophrenia/schizoaffective disorder (FHx; N = 26); and typically developing youth without antecedents or family history (TD, N = 43). Longitudinal mixed models for repeated measures indicated significant motor skills improvements with age in TD youth on the Assembly subtest only. Relative to TD youth, we found evidence for developmental deficits (i.e., dysfunction that emerged early and remained stable) among ASz youth on DH and BH subtests, and among FHx youth on the Assembly subtest. ASz youth were characterised by a developmental delay on the Assembly subtest (i.e., initial performance decrement in middle childhood that caught up with peers' performance during adolescence). These divergences from normative motor development may reflect differences in structural and functional neural correlates.
Collapse
|
41
|
Ristanovic I, Juston Osborne K, Vargas T, Gupta T, Mittal VA. Postural Control and Verbal and Visual Working Memory Correlates in Nonclinical Psychosis. Neuropsychobiology 2020; 79:293-300. [PMID: 30909277 PMCID: PMC6761054 DOI: 10.1159/000498921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/13/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Motor and cognitive abnormalities are well documented in psychosis spectrum disorders. Evidence suggests these deficits could be pronounced because of disruptions in the cerebellar-thalamic-cortical-cerebellar (CTCC) circuit, a network thought to be heavily implicated in motor and higher cognitive functioning. Although significant research has been done on this topic in individuals with schizophrenia and those at a clinical high risk for psychosis, much less is known about deficits at the lower end of the spectrum. METHODS In this study, we extended the understanding of motor abnormalities across the psychosis continuum by examining postural sway deficits in the nonclinical psychosis (NCP) population. Furthermore, we linked these deficits to verbal and visual working memory. High-NCP (n = 37) and low-NCP control (n = 31) participants completed an instrumental balance task, highly sensitive to subtle variations in postural sway, along with a brief working memory battery. RESULTS We found that high-NCP participants presented with increased postural sway area (i.e., worse postural control) relative to low-NCP controls on a difficult condition (with limited proprioceptive cues), but not on an easier condition. Furthermore, results indicated that the sway area was correlated with poorer performance on working memory tasks in the high-NCP group. CONCLUSION These findings suggest that CTCC circuit abnormalities are present across the lower end of the psychosis spectrum and that they may be contributing to a range of motor and cognitive behaviors seen in the population. However, evidence suggests that the signs are subtle, and that sensitive assessment devices and challenging conditions may be necessary for detection.
Collapse
Affiliation(s)
- Ivanka Ristanovic
- Department of Psychology, Northwestern University, Evanston, Illinois, USA,
| | - K. Juston Osborne
- Northwestern University, Department of Psychology, Evanston, IL, 60208
| | - Teresa Vargas
- Northwestern University, Department of Psychology, Evanston, IL, 60208
| | - Tina Gupta
- Northwestern University, Department of Psychology, Evanston, IL, 60208
| | - Vijay A. Mittal
- Northwestern University, Department of Psychology, Evanston, IL, 60208,Northwestern University, Department of Psychiatry, Chicago, IL, 60611,Norhtwestern University, Institute for Policy Research, Evanston, IL, 60208
| |
Collapse
|
42
|
Erdem EU, Akbas E, Ünver B. Pilates-Based Training for Postural Stability in Patients with Schizophrenia. EXERCISE MEDICINE 2019. [DOI: 10.26644/em.2019.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Pudas J, Björnholm L, Nikkinen J, Veijola J. Cerebellar white matter in young adults with a familial risk for psychosis. Psychiatry Res Neuroimaging 2019; 287:41-48. [PMID: 30952031 DOI: 10.1016/j.pscychresns.2019.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/20/2022]
Affiliation(s)
- Juho Pudas
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland.
| | - Lassi Björnholm
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland
| | - Juha Nikkinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Radiotherapy, Oulu University Hospital, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Juha Veijola
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland
| |
Collapse
|
44
|
Gallardo-Ruiz R, Crespo-Facorro B, Setién-Suero E, Tordesillas-Gutierrez D. Long-Term Grey Matter Changes in First Episode Psychosis: A Systematic Review. Psychiatry Investig 2019; 16:336-345. [PMID: 31132837 PMCID: PMC6539265 DOI: 10.30773/pi.2019.02.10.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/21/2018] [Accepted: 02/10/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To determine possible progressive changes of the grey matter at the first stages of the schizophrenia spectrum disorders, and to determine what regions are involved in these changes. METHODS We searched the literature concerning studies on longitudinal changes in grey matter in first-episode psychosis using magnetic resonance imaging, especially studies with an interval between scans of more than a year. Only articles published before 2018 were searched. We selected 19 magnetic resonance imaging longitudinal studies that used different neuroimaging analysis techniques to study changes in cerebral grey matter in a group of patients with a first episode of psychosis. RESULTS Patients with first episode of psychosis showed a decrease over time in cortical grey matter compared with a group of control subjects in frontal, temporal (specifically in superior regions), parietal, and subcortical regions. In addition to the above, studies indicate that patients showed a grey matter decrease in cerebellum and lateral ventricles volume. CONCLUSION The results suggest a decrease in grey matter in the years after the first episode of psychosis. Furthermore, the results of the studies showed consistency, regardless of the methods used in their analyses, as well as the time intervals between image collections.
Collapse
Affiliation(s)
- Ruth Gallardo-Ruiz
- Neuroimaging Unit, Technological Facilities,Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Diana Tordesillas-Gutierrez
- Neuroimaging Unit, Technological Facilities,Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
45
|
Ding Y, Ou Y, Pan P, Shan X, Chen J, Liu F, Zhao J, Guo W. Cerebellar structural and functional abnormalities in first-episode and drug-naive patients with schizophrenia: A meta-analysis. Psychiatry Res Neuroimaging 2019; 283:24-33. [PMID: 30500474 DOI: 10.1016/j.pscychresns.2018.11.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/21/2018] [Accepted: 11/21/2018] [Indexed: 01/25/2023]
Abstract
Schizophrenia (SZ) is a mental disorder that involves cerebral and cerebellar abnormalities. The cerebellum plays an indispensable role in the pathophysiology of SZ. However, individual studies pertaining to the structural and resting-state functional cerebellar abnormalities in patients with SZ have been inconsistent. To make a relatively robust conclusion with little interference, such as different disease episode times and antipsychotic treatment, we conducted this meta-analysis as a first attempt to comprehensively analyze and combine studies of voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF), and functional connectivity strength (FCS) in first-episode and drug-naive SZ patients, employing the Seed-based d Mapping (SDM) method. Thirteen VBM studies, eight ALFF studies, and three FCS studies involving 783 patients and 704 matched healthy controls were included. Our results showed the presence of structural and functional abnormalities within the cerebellar regions, including most superior/anterior cerebellum (lobule III-V or VI) and posterior/inferior cerebellum (lobule VIII) related to motor function, and posterior cerebellum (lobule VIIa, Crus I, and II) associated with cognition and emotion, and such anomalies might be related to illness duration and clinical symptom severity.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital. Tianjin 300000, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University. Changsha, Hunan 410011, China.
| |
Collapse
|
46
|
Bovio PP, Franz H, Heidrich S, Rauleac T, Kilpert F, Manke T, Vogel T. Differential Methylation of H3K79 Reveals DOT1L Target Genes and Function in the Cerebellum In Vivo. Mol Neurobiol 2018; 56:4273-4287. [PMID: 30302725 PMCID: PMC6505521 DOI: 10.1007/s12035-018-1377-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
The disruptor of telomeric silencing 1-like (DOT1L) mediates methylation of histone H3 at position lysine 79 (H3K79). Conditional knockout of Dot1l in mouse cerebellar granule cells (Dot1l-cKOAtoh1) led to a smaller external granular layer with fewer precursors of granule neurons. Dot1l-cKOAtoh1 mice had impaired proliferation and differentiation of granular progenitors, which resulted in a smaller cerebellum. Mutant mice showed mild ataxia in motor behavior tests. In contrast, Purkinje cell-specific conditional knockout mice showed no obvious phenotype. Genome-wide transcription analysis of Dot1l-cKOAtoh1 cerebella using microarrays revealed changes in genes that function in cell cycle, cell migration, axon guidance, and metabolism. To identify direct DOT1L target genes, we used genome-wide profiling of H3K79me2 and transcriptional analysis. Analysis of differentially methylated regions (DR) and differentially expressed genes (DE) revealed in total 12 putative DOT1L target genes in Dot1l-cKOAtoh1 affecting signaling (Tnfaip8l3, B3galt5), transcription (Otx1), cell migration and axon guidance (Sema4a, Sema5a, Robo1), cholesterol and lipid metabolism (Lss, Cyp51), cell cycle (Cdkn1a), calcium-dependent cell-adhesion or exocytosis (Pcdh17, Cadps2), and unknown function (Fam174b). Dysregulated expression of these target genes might be implicated in the ataxia phenotype observed in Dot1l-cKOAtoh1.
Collapse
Affiliation(s)
- Patrick Piero Bovio
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Henriette Franz
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Stefanie Heidrich
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Tudor Rauleac
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Fabian Kilpert
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
47
|
Gupta T, Dean DJ, Kelley NJ, Bernard JA, Ristanovic I, Mittal VA. Cerebellar Transcranial Direct Current Stimulation Improves Procedural Learning in Nonclinical Psychosis: A Double-Blind Crossover Study. Schizophr Bull 2018; 44:1373-1380. [PMID: 29301026 PMCID: PMC6192475 DOI: 10.1093/schbul/sbx179] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present double-blind crossover study examines the effects of cerebellar transcranial direct current stimulation (tDCS) in controls and in an analogue population to psychosis: individuals reporting elevated symptoms of nonclinical psychosis (NCP). A total of 18 controls and 24 NCP individuals were randomized into conditions consisting of 25 minutes of anodal (active) or sham cerebellar tDCS. Following this, both groups completed a pursuit rotor task designed to measure procedural learning performance. Participants then returned 1-week later and received the corresponding condition (either active or sham) and repeated the pursuit rotor task. Results indicate that in the sham condition, control participants showed significantly greater rates of motor learning when compared with the NCP group. In the active condition, the NCP group exhibited significant improvements in the rate of motor learning and performed at a level that was comparable to controls; these data support the link between cerebellar dysfunction and motor learning. Taken together, tDCS may be a promising treatment mechanism for patient populations and a useful experimental approach in elucidating our understanding of psychosis.
Collapse
Affiliation(s)
- Tina Gupta
- Department of Psychology, Northwestern University, Evanston, IL,To whom correspondence should be addressed; Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, IL 60208, US; tel: 847-467-5907, fax: 847-467-5707, e-mail:
| | - Derek J Dean
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO,Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | | | - Jessica A Bernard
- Department of Psychology, Texas A&M University, College Station, TX,Institute for Neuroscience, Texas A&M University, College Station, TX
| | | | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL,Department of Psychiatry, Northwestern University, Evanston, ILs,Institute of Policy Research, Northwestern University, Evanston, IL,Department of Medical Social Sciences, Northwestern University, Evanston, IL,Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, IL
| |
Collapse
|
48
|
Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 95:315-335. [PMID: 30236781 DOI: 10.1016/j.neubiorev.2018.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Although genuine motor abnormalities (GMA) are frequently found in schizophrenia, they are also considered as an intrinsic feature of bipolar, obsessive-compulsive, and neurodevelopmental disorders with early onset such as autism, ADHD, and Tourette syndrome. Such transnosological observations strongly suggest a common neural pathophysiology. This systematic review highlights the evidence on GMA and their neuroanatomical substrates in bipolar, obsessive-compulsive, and neurodevelopmental disorders. The data lends support for a common pattern contributing to GMA expression in these diseases that seems to be related to cerebello-thalamo-cortical, fronto-parietal, and cortico-subcortical motor circuit dysfunction. The identified studies provide first evidence for a motor network dysfunction as a correlate of early neurodevelopmental deviance prior to clinical symptom expression. There are also first hints for a developmental risk factor model of these mental disorders. An in-depth analysis of motor networks and related patho-(physiological) mechanisms will not only help promoting Research Domain Criteria (RDoC) Motor System construct, but also facilitate the development of novel psychopharmacological models, as well as the identification of neurobiologically plausible target sites for non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
49
|
Guo W, Zhang F, Liu F, Chen J, Wu R, Chen DQ, Zhang Z, Zhai J, Zhao J. Cerebellar abnormalities in first-episode, drug-naive schizophrenia at rest. Psychiatry Res Neuroimaging 2018; 276:73-79. [PMID: 29628269 DOI: 10.1016/j.pscychresns.2018.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
The cerebellum plays a crucial role in higher cortical functions through a cerebellar-cerebral circuit. However, the specific mechanisms through which the cerebellum contributes to the neurobiology of schizophrenia remain unclear. Forty-nine first-episode, drug-naive patients with schizophrenia and 50 healthy controls underwent structural and resting-state functional magnetic resonance imaging (rs-fMRI). The MRI data were analyzed using voxel-based morphometry, amplitude of low-frequency fluctuations (ALFF), cerebellum homogeneity (CH), and seed-based functional connectivity (FC). Patients with schizophrenia did not have anatomical and CH alterations in the cerebellum compared with healthy controls. However, they exhibited decreased ALFF in the right Crus I and abnormal cerebellar FC with brain regions within the dorsal attention network, default-mode network, and ventral attention network. The findings indicate that cerebellar abnormalities in first-episode schizophrenia are mainly in the cerebellar-cerebral connectivities, which may contribute to the neurobiology of schizophrenia.
Collapse
Affiliation(s)
- Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Fengyu Zhang
- The Global Clinical and Translational Research Institute, Bethesda, MD, USA
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Danny Q Chen
- The Lieber Institute for Brain Development at Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zhikun Zhang
- Mental Health Center of the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
50
|
Wilquin H, Delevoye-Turrell Y, Dione M, Giersch A. Motor Synchronization in Patients With Schizophrenia: Preserved Time Representation With Abnormalities in Predictive Timing. Front Hum Neurosci 2018; 12:193. [PMID: 29867416 PMCID: PMC5965021 DOI: 10.3389/fnhum.2018.00193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: Basic temporal dysfunctions have been described in patients with schizophrenia, which may impact their ability to connect and synchronize with the outer world. The present study was conducted with the aim to distinguish between interval timing and synchronization difficulties and more generally the spatial-temporal organization disturbances for voluntary actions. A new sensorimotor synchronization task was developed to test these abilities. Method: Twenty-four chronic schizophrenia patients matched with 27 controls performed a spatial-tapping task in which finger taps were to be produced in synchrony with a regular metronome to six visual targets presented around a virtual circle on a tactile screen. Isochronous (time intervals of 500 ms) and non-isochronous auditory sequences (alternated time intervals of 300/600 ms) were presented. The capacity to produce time intervals accurately versus the ability to synchronize own actions (tap) with external events (tone) were measured. Results: Patients with schizophrenia were able to produce the tapping patterns of both isochronous and non-isochronous auditory sequences as accurately as controls producing inter-response intervals close to the expected interval of 500 and 900 ms, respectively. However, the synchronization performances revealed significantly more positive asynchrony means (but similar variances) in the patient group than in the control group for both types of auditory sequences. Conclusion: The patterns of results suggest that patients with schizophrenia are able to perceive and produce both simple and complex sequences of time intervals but are impaired in the ability to synchronize their actions with external events. These findings suggest a specific deficit in predictive timing, which may be at the core of early symptoms previously described in schizophrenia.
Collapse
Affiliation(s)
- Hélène Wilquin
- Aix Marseille Univ, Laboratory of Clinical Psychology, Psychopathology and Psychoanalysis, Aix-en-Provence, France
| | - Yvonne Delevoye-Turrell
- SCALab, UMR 9193 – National Center for Scientific Research, University of Lille, Villeneuve d’Ascq, France
| | - Mariama Dione
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Giersch
- INSERM U1114, Department of Psychiatry, Federation of Translational Medicine of Strasbourg, Strasbourg University Hospital, Strasbourg, France
| |
Collapse
|