1
|
Vāvere AL, Ghosh A, Amador Diaz V, Clay AJ, Hall PM, Neumann KD. Automated radiosynthesis of [ 18F]DPA-714 on a commercially available IBA Synthera®. Appl Radiat Isot 2024; 207:111257. [PMID: 38461627 PMCID: PMC10984111 DOI: 10.1016/j.apradiso.2024.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
The goal of this work was to develop a reliable method to produce the well-validated microglial activation PET tracer, [18F]DPA-714, routinely for clinical and preclinical research using an IBA Synthera®. Optimization of literature methods included reduced precursor mass and use of TBA HCO3 as the phase transfer agent in place of Kryptofix® 222 in a 65-min synthesis with an average activity yield of 24.6 ± 3.8% (n = 5). Successful quality control testing and process validation results are reported.
Collapse
Affiliation(s)
- Amy L Vāvere
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Arijit Ghosh
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victor Amador Diaz
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allison J Clay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter M Hall
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kiel D Neumann
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
Zhang W, Rutlin J, Eisenstein SA, Wang Y, Barch DM, Hershey T, Bogdan R, Bijsterbosch JD. Neuroinflammation in the Amygdala Is Associated With Recent Depressive Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:967-975. [PMID: 37164312 DOI: 10.1016/j.bpsc.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Converging evidence suggests that elevated inflammation may contribute to depression. Yet, the link between peripheral inflammation and neuroinflammation in depression is unclear. Here, using data from the UK Biobank, we estimated associations among depression, C-reactive protein (CRP) as a measure of peripheral inflammation, and neuroinflammation as indexed by diffusion basis spectral imaging-based restricted fraction (DBSI-RF). METHODS DBSI-RF was derived from diffusion-weighted imaging data (N = 11,512) for whole-brain gray matter (global-RF), and regions of interest in the bilateral amygdala (amygdala-RF) and hippocampus (hippocampus-RF), and CRP was estimated from blood (serum) samples. Self-reported recent depression symptoms were measured using a 4-item assessment. Linear regressions were used to estimate associations between CRP and DBSI-RFs with depression while adjusting for the following covariates: age, sex, body mass index, smoking, drinking, and medical conditions. RESULTS Elevated CRP was associated with higher depression symptoms (β = 0.04, false discovery rate-corrected p < .005) and reduced global-RF (β = -0.03, false discovery rate-corrected p < .001). Higher amygdala-RF was associated with elevated depression-an effect resilient to added covariates and CRP (β = 0.02, false discovery rate-corrected p < .05). Interestingly, this association was stronger in individuals with a lifetime history of depression (β = 0.07, p < .005) than in those without (β = 0.03, p < .05). Associations between global-RF or hippocampus-RF with depression were not significant, and no DBSI-RF indices indirectly linked CRP with depression (i.e., mediation effect). CONCLUSIONS Peripheral inflammation and DBSI-RF neuroinflammation in the amygdala are independently associated with depression, consistent with animal studies suggesting distinct pathways of peripheral inflammation and neuroinflammation in the pathophysiology of depression and with investigations highlighting the role of the amygdala in stress-induced inflammation and depression.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Sarah A Eisenstein
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri; Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri.
| | - Janine D Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Peyronneau MA, Kuhnast B, Nguyen DL, Jego B, Sayet G, Caillé F, Lavisse S, Gervais P, Stankoff B, Sarazin M, Remy P, Bouilleret V, Leroy C, Bottlaender M. [ 18F]DPA-714: Effect of co-medications, age, sex, BMI and TSPO polymorphism on the human plasma input function. Eur J Nucl Med Mol Imaging 2023; 50:3251-3264. [PMID: 37291448 DOI: 10.1007/s00259-023-06286-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE We aimed to assess the effect of concomitant medication, age, sex, body mass index and 18-kDa translocator protein (TSPO) binding affinity status on the metabolism and plasma pharmacokinetics of [18F]DPA-714 and their influence on the plasma input function in a large cohort of 201 subjects who underwent brain and whole-body PET imaging to investigate the role of neuroinflammation in neurological diseases. METHODS The non-metabolized fraction of [18F]DPA-714 was estimated in venous plasma of 138 patients and 63 healthy controls (HCs; including additional arterial sampling in 16 subjects) during the 90 min brain PET acquisition using a direct solid-phase extraction method. The mean fraction between 70 and 90 min post-injection ([18F]DPA-71470-90) and corresponding normalized plasma concentration (SUV70-90) were correlated with all factors using a multiple linear regression model. Differences between groups (arterial vs venous measurements; HCs vs patients; high- (HAB), mixed- (MAB) and low-affinity binders (LAB); subjects with vs without co-medications, females vs males were also assessed using the non-parametric Mann-Whitney or Kruskal-Wallis ANOVA tests. Finally, the impact of co-medications on the brain uptake of [18F]DPA-714 at equilibrium was investigated. RESULTS As no significant differences were observed between arterial and venous [18F]DPA-71470-90 and SUV70-90, venous plasma was used for correlations. [18F]DPA-71470-90 was not significantly different between patients and HCS (59.7 ± 12.3% vs 60.2 ± 12.9%) despite high interindividual variability. However, 47 subjects exhibiting a huge increase or decrease of [18F]DPA-71470-90 (up to 88% or down to 23%) and SUV70-90 values (2-threefold) were found to receive co-medications identified as inhibitors or inducers of CYP3A4, known to catalyse [18F]DPA-714 metabolism. Comparison between cortex-to-plasma ratios using individual input function (VTIND) or population-based input function derived from untreated HCs (VTPBIF) indicated that non-considering the individual metabolism rate led to a bias of about 30% in VT values. Multiple linear regression model analysis of subjects free of these co-medications suggested significant correlations between [18F]DPA-71470-90 and age, BMI and sex while TSPO polymorphism did not influence the metabolism of the radiotracer. [18F]DPA-714 metabolism fell with age and BMI and was significantly faster in females than in males. Whole-body PET/CT exhibited a high uptake of the tracer in TSPO-rich organs (heart wall, spleen, kidneys…) and those involved in metabolism and excretion pathways (liver, gallbladder) in HAB and MAB with a strong decrease in LAB (-89% and -85%) resulting in tracer accumulation in plasma (4.5 and 3.3-fold increase). CONCLUSION Any co-medication that inhibits or induces CYP3A4 as well as TSPO genetic status, age, BMI and sex mostly contribute to interindividual variations of the radiotracer metabolism and/or concentration that may affect the input function of [18F]DPA-714 and consequently its human brain and peripheral uptake. TRIAL REGISTRATION INFLAPARK, NCT02319382, registered December 18, 2014, retrospectively registered; IMABIO 3, NCT01775696, registered January 25, 2013, retrospectively registered; INFLASEP, NCT02305264, registered December 2, 2014, retrospectively registered; EPI-TEP, EudraCT 2017-003381-27, registered September 24, 2018.
Collapse
Affiliation(s)
- M A Peyronneau
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France.
| | - B Kuhnast
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - D-L Nguyen
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Jego
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - G Sayet
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - F Caillé
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - S Lavisse
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
| | - P Gervais
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Stankoff
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de La Moelle Epinière, Hôpital de La Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - M Sarazin
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurologie de La Mémoire Et du Langage, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - P Remy
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
- Centre Expert Parkinson, Neurologie, Hôpital Henri Mondor, AP-HP, F-94010, Créteil, France
- Université Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010, Créteil, France
- Département d'Etudes Cognitives, École Normale Supérieure, Université PSL, F-75005, Paris, France
| | - V Bouilleret
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurophysiologie Clinique et d'Epileptologie, Hôpital Bicêtre, AP-HP, Université Paris Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - C Leroy
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - M Bottlaender
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Université Paris Saclay, UNIACT, Neurospin, CEA, Gif-Sur-Yvette, F-91190, France
| |
Collapse
|
4
|
Xian X, Cai LL, Li Y, Wang RC, Xu YH, Chen YJ, Xie YH, Zhu XL, Li YF. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression. J Nanobiotechnology 2022; 20:122. [PMID: 35264203 PMCID: PMC8905830 DOI: 10.1186/s12951-022-01332-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Neuroinflammation is an important component mechanism in the development of depression. Exosomal transfer of MDD-associated microRNAs (miRNAs) from neurons to microglia might exacerbate neuronal cell inflammatory injury. Results By sequence identification, we found significantly higher miR-9-5p expression levels in serum exosomes from MDD patients than healthy control (HC) subjects. Then, in cultured cell model, we observed that BV2 microglial cells internalized PC12 neuron cell-derived exosomes while successfully transferring miR-9-5p. MiR-9-5p promoted M1 polarization in microglia and led to over releasing of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which exacerbated neurological damage. Furthermore, we identified suppressor of cytokine signaling 2 (SOCS2) as a direct target of miR-9-5p. Overexpression of miR-9-5p suppressed SOCS2 expression and reactivated SOCS2-repressed Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathways. Consistently, we confirmed that adeno-associated virus (AAV)-mediated overexpression of miR-9-5p polarized microglia toward the M1 phenotype and exacerbated depressive symptoms in chronic unpredictable mild stress (CUMS) mouse mode. Conclusion MiR-9-5p was transferred from neurons to microglia in an exosomal way, leading to M1 polarization of microglia and further neuronal injury. The expression and secretion of miR-9-5p might be novel therapeutic targets for MDD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01332-w.
Collapse
Affiliation(s)
- Xian Xian
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Li-Li Cai
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Yang Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Ran-Chao Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Yu-Hao Xu
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Ya-Jie Chen
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Yu-Hang Xie
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Xiao-Lan Zhu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang, 212001, Jiangsu, China.
| | - Yue-Feng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China. .,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
5
|
Abstract
ABSTRACT Inflammatory phenomena are found in many psychiatric disorders-notably, depression, schizophrenia, and posttraumatic stress disorder. Inflammation has been linked to severity and treatment resistance, and may both contribute to, and result from, the pathophysiology of some psychiatric illnesses. Emerging research suggests that inflammation may contribute to symptom domains of reward, motor processing, and threat reactivity across different psychiatric diagnoses. Reward-processing deficits contribute to motivational impairments in depression and schizophrenia, and motor-processing deficits contribute to psychomotor slowing in both depression and schizophrenia. A number of experimental models and clinical trials suggest that inflammation produces deficits in reward and motor processing through common pathways connecting the cortex and the striatum, which includes the nucleus accumbens, caudate nucleus, and putamen.The observed effects of inflammation on psychiatric disorders may cut across traditional conceptualizations of psychiatric diagnoses. Further study may lead to targeted immunomodulating treatments that address difficult-to-treat symptoms in a number of psychiatric disorders. In this review, we use a Research Domain Criteria framework to discuss proposed mechanisms for inflammation and its effects on the domains of reward processing, psychomotor slowing, and threat reactivity. We also discuss data that support contributing roles of metabolic dysregulation and sex differences on the behavioral outcomes of inflammation. Finally, we discuss ways that future studies can help disentangle this complex topic to yield fruitful results that will help advance the field of psychoneuroimmunology.
Collapse
Affiliation(s)
- David S Thylur
- From the Department of Psychiatry and Behavioral Sciences, Emory University
| | | |
Collapse
|
6
|
Dąbrowska E, Galińska-Skok B, Waszkiewicz N. Depressive and Neurocognitive Disorders in the Context of the Inflammatory Background of COVID-19. Life (Basel) 2021; 11:1056. [PMID: 34685427 PMCID: PMC8541562 DOI: 10.3390/life11101056] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
The dysfunctional effects of the coronavirus disease 2019 (COVID-19) infection on the nervous system are established. The manifestation of neuropsychiatric symptoms during and after infection is influenced by the neuroinvasive and neurotrophic properties of SARS-CoV-2 as well as strong inflammation characterised by a specific "cytokine storm". Research suggests that a strong immune response to a SARS-CoV-2 infection and psychological stressors related to the pandemic may cause chronic inflammatory processes in the body with elevated levels of inflammatory markers contributing to the intensification of neurodegenerative processes. It is suggested that neuroinflammation and associated central nervous system changes may significantly contribute to the etiopathogenesis of depressive disorders. In addition, symptoms after a COVID-19 infection may persist for up to several weeks after an acute infection as a post-COVID-19 syndrome. Moreover, previous knowledge indicates that among SSRI (selective serotonin reuptake inhibitor) group antidepressants, fluoxetine is a promising drug against COVID-19. In conclusion, further research, observation and broadening of the knowledge of the pathomechanism of a SARS-CoV-2 infection and the impact on potential complications are necessary. It is essential to continue research in order to assess the long-term neuropsychiatric effects in COVID-19 patients and to find new therapeutic strategies.
Collapse
Affiliation(s)
- Eliza Dąbrowska
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (B.G.-S.); (N.W.)
| | | | | |
Collapse
|
7
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
M1/M2 polarization in major depressive disorder: Disentangling state from trait effects in an individualized cell-culture-based approach. Brain Behav Immun 2021; 94:185-195. [PMID: 33607231 DOI: 10.1016/j.bbi.2021.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates the specific involvement of inflammatory processes in major depressive disorder (MDD), particularly affecting innate immunity. Most immune alterations have so far been determined based on plasma or cerebrospinal fluid cytokine levels. To precisely characterize putative innate immune-mediated mechanisms in MDD pathogenesis, we sought to disentangle "state" from "trait" effects in a patient-specific cell model by quantifying the impact of patient-derived autologous sera (AS) on patient-specific monocyte-derived macrophages (Mo-MФs) polarization in vitro. Mo-MФs were generated from 28 patients with moderate to severe MDD and 28 age-, sex-, smoking status- and BMI-matched healthy controls (HC). Cells were treated either with AS or fetal calf serum (FCS) and polarized into M1 (LPS), M2 (IL-10, IL-4, TGF-β) or M0 (unstimulated) macrophages. Polarization capacity was quantified by means of specific M1 (CCR7, CD86, CXCL10, IL-12p70, TNF-α, IL-6, IL-1β, IL-12p40, IL-23, IP-10) and M2 (CD206, IL-10, TARC, IL-1RA) markers. Compared to HC, significantly increased M1-polarization was observed for MDD patients in the presence of FCS, however, polarization in AS enriched media determined an increased M2-polarization in patients. Moreover, female MDD patients exhibited increased M1- and decreased M2-polarization in both conditions compared to male MDD patients. Our data suggests that Mo-MФs derived from patients with MDD exhibit facilitated M1-polarization under traditional cell culture conditions and an increased potential for M2-polarization when cultured in AS. Striking inter-individual variation and pronounced gender effects highlight the potential utility of our personalized cell model-based approach to aid diagnostic and therapeutic decisions.
Collapse
|
9
|
Guo ZP, Sörös P, Zhang ZQ, Yang MH, Liao D, Liu CH. Use of Transcutaneous Auricular Vagus Nerve Stimulation as an Adjuvant Therapy for the Depressive Symptoms of COVID-19: A Literature Review. Front Psychiatry 2021; 12:765106. [PMID: 34975571 PMCID: PMC8714783 DOI: 10.3389/fpsyt.2021.765106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) comprises more than just severe acute respiratory syndrome. It also interacts with the cardiovascular, nervous, renal, and immune systems at multiple levels, increasing morbidity in patients with underlying cardiometabolic conditions and inducing myocardial injury or dysfunction. Transcutaneous auricular vagus nerve stimulation (taVNS), which is derived from auricular acupuncture, has become a popular therapy that is increasingly accessible to the general public in modern China. Here, we begin by outlining the historical background of taVNS, and then describe important links between dysfunction in proinflammatory cytokine release and related multiorgan damage in COVID-19. Furthermore, we emphasize the important relationships between proinflammatory cytokines and depressive symptoms. Finally, we discuss how taVNS improves immune function via the cholinergic anti-inflammatory pathway and modulates brain circuits via the hypothalamic-pituitary-adrenal axis, making taVNS an important treatment for depressive symptoms on post-COVID-19 sequelae. Our review suggests that the link between anti-inflammatory processes and brain circuits could be a potential target for treating COVID-19-related multiorgan damage, as well as depressive symptoms using taVNS.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dan Liao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
García Bueno B, MacDowell K, Madrigal J, Leza J. Neuroinflammation and depression. THE NEUROSCIENCE OF DEPRESSION 2021:131-142. [DOI: 10.1016/b978-0-12-817933-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Yrondi A, Nemmi F, Billoux S, Giron A, Sporer M, Taib S, Salles J, Pierre D, Thalamas C, Schmitt L, Péran P, Arbus C. Significant Decrease in Hippocampus and Amygdala Mean Diffusivity in Treatment-Resistant Depression Patients Who Respond to Electroconvulsive Therapy. Front Psychiatry 2019; 10:694. [PMID: 31607967 PMCID: PMC6761799 DOI: 10.3389/fpsyt.2019.00694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: The hippocampus plays a key role in depressive disorder, and the amygdala is involved in depressive disorder through the key role that it plays in emotional regulation. Electroconvulsive therapy (ECT) may alter the microstructure of these two regions. Since mean diffusivity (MD), is known to be an indirect marker of microstructural integrity and can be derived from diffusion tensor imaging (DTI) scans, we aim to test the hypothesis that treatment-resistant depression (TRD) patients undergoing bilateral (BL) ECT exhibit a decrease of MD in their hippocampus and amygdala. Methods: Patients, between 50 and 70 years of age, diagnosed with TRD were recruited from the University Hospital of Toulouse and assessed clinically (Hamilton Depression Rating Scale, HAM-D) and by DTI scans at three time points: baseline, V2 (during treatment), and V3 within 1 week of completing ECT. Results: We included 15 patients, who were all responders. The left and right hippocampi and the left amygdala showed a significant decrease in MD at V3, compared to baseline [respectively: β = -2.78, t = -1.97, p = 0.04; β = -2.56, t = -2, p = 0.04; β = -2.5, t = -2.3, p = 0.04, false discovery rate (FDR) corrected]. MD did not decrease in the right amygdala. Only the left amygdala was significantly associated with a reduction in HAM-D (ρ = 0.55, p = 0.049, FDR corrected). Conclusion: MD is an indirect microstructural integrity marker, which decreases in the hippocampus and the left amygdala, during BL ECT in TRD populations. This could be interpreted as a normalization of microstructural integrity in these structures.
Collapse
Affiliation(s)
- Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Sophie Billoux
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Service de médicine légale, CHU Toulouse, Toulouse, France
| | - Aurélie Giron
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Service de Psychiatrie et de Psychologie Médicale, CHU de Toulouse, Hospital Purpan, Toulouse, France
| | - Marie Sporer
- Service de Psychiatrie et de Psychologie Médicale, CHU de Toulouse, Hospital Purpan, Toulouse, France
| | - Simon Taib
- Service de Psychiatrie et de Psychologie Médicale, CHU Toulouse, Hospital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Juliette Salles
- Service de Psychiatrie et de Psychologie Médicale, CHU de Toulouse, Hospital Purpan, Toulouse, France
| | - Damien Pierre
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, Toulouse, France
| | - Claire Thalamas
- CIC 1436, Service de Pharmacologie Clinique, CHU de Toulouse, INSERM, Université de Toulouse, UPS, Toulouse, France
| | - Laurent Schmitt
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Christophe Arbus
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
12
|
Culmsee C, Michels S, Scheu S, Arolt V, Dannlowski U, Alferink J. Mitochondria, Microglia, and the Immune System-How Are They Linked in Affective Disorders? Front Psychiatry 2018; 9:739. [PMID: 30687139 PMCID: PMC6333629 DOI: 10.3389/fpsyt.2018.00739] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a severe mood disorder and frequently associated with alterations of the immune system characterized by enhanced levels of circulating pro-inflammatory cytokines and microglia activation in the brain. Increasing evidence suggests that dysfunction of mitochondria may play a key role in the pathogenesis of MDD. Mitochondria are regulators of numerous cellular functions including energy metabolism, maintenance of redox and calcium homeostasis, and cell death and therefore modulate many facets of the innate immune response. In depression-like behavior of rodents, mitochondrial perturbation and release of mitochondrial components have been shown to boost cytokine production and neuroinflammation. On the other hand, pro-inflammatory cytokines may influence mitochondrial functions such as oxidative phosphorylation, production of adenosine triphosphate, and reactive oxygen species, thereby aggravating inflammation. There is strong interest in a better understanding of immunometabolic pathways in MDD that may serve as diagnostic markers and therapeutic targets. Here, we review the interaction between mitochondrial metabolism and innate immunity in the pathophysiology of MDD. We specifically focus on immunometabolic processes that govern microglial and peripheral myeloid cell functions, both cellular components involved in neuroinflammation in depression-like behavior. We finally discuss microglial polarization and associated metabolic states in depression-associated behavior and in MDD.
Collapse
Affiliation(s)
- Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior - CMBB, Marburg, Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior - CMBB, Marburg, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Judith Alferink
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany.,Cells in Motion, Cluster of Excellence, University of Münster, Münster, Germany
| |
Collapse
|