1
|
Zhang C, Xu C, Yan H, Liang J, Li X, Tang C, Yu Y, Xie G, Guo W. Correlations between alterations in global brain functional connectivity in patients with major depressive disorder and their genetic characteristics. World J Biol Psychiatry 2024; 25:560-570. [PMID: 39412289 DOI: 10.1080/15622975.2024.2412651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024]
Abstract
This study aims to elucidate the neuroimaging changes associated with major depressive disorder (MDD) and their relationship with genetic characteristics. We conducted a global-brain functional connectivity (GFC) and genetic-neuroimaging correlation analysis on 42 MDD patients and 42 healthy controls (HCs), exploring the correlation between GFC abnormalities and clinical variables. Results showed that compared to HCs, MDD patients had significantly decreased GFC values in the bilateral posterior cingulate cortex/precuneus and increased GFC values in the left and right cerebellum Crus I/II. Additionally, a negative correlation was observed between the GFC values of the left cerebellum Crus I/II and subjective support scores, as well as social support revalued scale total scores. We identified genes associated with GFC changes in MDD, which are enriched in biological processes such as synaptic transmission and ion transport. Our findings indicate the presence of abnormal GFC values in severe depression, complementing the pathological research on the condition. Furthermore, this study provides preliminary evidence for the correlation between social support levels and brain functional connectivity, offering insights into the potential association between GFC changes and gene expression in MDD patients.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Chaohua Tang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Yang Yu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Tanigawa M, Liu M, Sekiguchi M, Goda K, Kato C, Ono T, Uesaka N. Nasal obstruction during development leads to defective synapse elimination, hypersynchrony, and impaired cerebellar function. Commun Biol 2024; 7:1381. [PMID: 39443666 PMCID: PMC11500345 DOI: 10.1038/s42003-024-07095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Nasal respiratory disorders are linked to craniofacial anomalies and systemic dysfunctions. However, the implications of nasal respiratory disorders on brain development and their subsequent impact on brain functionalization remain largely unknown. Here, we describe that nasal obstruction from postnatal developmental stages in mice precipitates deficits in cerebellum-associated behaviors and compromised refinement and maturation of neural circuits in the cerebellum. We show that mice with nasal obstruction during developmental phases exhibit marked impairments in motor function and exhibit increased immobility time in forced swimming test. Additionally, we identified critical periods during which nasal respiration is essential for optimizing motor function and preserving mental health. Our study also reveals that nasal obstruction in mice disrupts the typical developmental process of synapse elimination in the cerebellum and hinders the normal transition of activity patterns in cerebellar Purkinje cell populations during development. Through comparing activity patterns in mouse models subjected to nasal obstruction at various stages, we suggest that the maturation of specific activity pattern among Purkinje cell populations is fundamental to the functional integrity of the cerebellum. Our findings highlight the indispensable role of adequate nasal respiration during development for the establishment and functional integrity of neural circuits, thereby significantly affecting brain function.
Collapse
Affiliation(s)
- Moe Tanigawa
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mengke Liu
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mariko Sekiguchi
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kyosuke Goda
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Zhu H, Tong X, Carlisle NB, Xie H, Keller CJ, Oathes DJ, Nemeroff CB, Fonzo GA, Zhang Y. Contrastive Functional Connectivity Defines Neurophysiology-informed Symptom Dimensions in Major Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616707. [PMID: 39416217 PMCID: PMC11482755 DOI: 10.1101/2024.10.04.616707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Major depressive disorder (MDD) is a prevalent psychiatric disorder characterized by substantial clinical and neurobiological heterogeneity. Conventional studies that solely focus on clinical symptoms or neuroimaging metrics often fail to capture the intricate relationship between these modalities, limiting their ability to disentangle the complexity in MDD. Moreover, patient neuroimaging data typically contains normal sources of variance shared with healthy controls, which can obscure disorder-specific variance and complicate the delineation of disease heterogeneity. Methods We employed contrastive principal component analysis to extract disorder-specific variations in fMRI-based resting-state functional connectivity (RSFC) by contrasting MDD patients (N=233) with age-matched healthy controls (N=285). We then applied sparse canonical correlation analysis to identify latent dimensions in the disorder variations by linking the extracted contrastive connectivity features to clinical symptoms in MDD patients. Results Two significant and generalizable dimensions linking distinct brain circuits and clinical profiles were discovered. The first dimension, associated with an apparent "internalizing-externalizing" symptom dimension, was characterized by self-connections within the visual network and also associated with choice reaction times of cognitive tasks. The second dimension, associated with personality facets such as extraversion and conscientiousness typically inversely associated with depression symptoms, is primarily driven by self-connections within the dorsal attention network. This "depression-protective personality" dimension is also associated with multiple cognitive task performances related to psychomotor slowing and cognitive control. Conclusions Our contrastive RSFC-based dimensional approach offers a new avenue to dissect clinical heterogeneity underlying MDD. By identifying two stable, neurophysiology-informed symptom dimensions in MDD patients, our findings may enhance disease mechanism insights and facilitate precision phenotyping, thus advancing the development of targeted therapeutics for precision mental health.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Xiaoyu Tong
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
| | - Corey J. Keller
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Desmond J. Oathes
- Center for Brain Imaging and Stimulation, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles B. Nemeroff
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Gregory A. Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
4
|
Machaj W, Podgórski P, Maciaszek J, Piotrowski P, Szcześniak D, Korbecki A, Rymaszewska J, Zimny A. Evaluation of Intra- and Inter-Network Connectivity within Major Brain Networks in Drug-Resistant Depression Using rs-fMRI. J Clin Med 2024; 13:5507. [PMID: 39336994 PMCID: PMC11431996 DOI: 10.3390/jcm13185507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Major Depressive Disorder (MDD) is a significant challenge in modern medicine due to its unclear underlying causes. Brain network dysfunction is believed to play a key role in its pathophysiology. Resting-state functional MRI (rs-fMRI), a neuroimaging technique, enables the in vivo assessment of functional connectivity (FC) between brain regions, offering insights into these network dysfunctions. The aim of this study was to evaluate abnormalities in FC within major brain networks in patients with drug-resistant MDD. Methods: The study group consisted of 26 patients with drug-resistant MDD and an age-matched control group (CG) of 26 healthy subjects. The rs-fMRI studies were performed on a 3T MR scanner (Philips, Ingenia) using a 32-channel head and neck coil. Imaging data were statistically analyzed, focusing on the intra- and inter-network FC of the following networks: default mode (DMN), sensorimotor (SMN), visual (VN), salience (SN), cerebellar (CN), dorsal attention (DAN), language (LN), and frontoparietal (FPN). Results: In patients with MDD, the intra-network analysis showed significantly decreased FC between nodes within VN compared to CG. In contrast, the inter-network analysis showed significantly increased FC between nodes from VN and SN or VN and DAN compared to CG. Decreased FC was found between SN and CN or SN and FPN as well as VN and DAN nodes compared to CG. Conclusions: Patients with MDD showed significant abnormalities in resting-state cortical activity, mainly regarding inter-network functional connectivity. These results contribute to the knowledge on the pathomechanism of MDD and may also be useful for developing new treatments.
Collapse
Affiliation(s)
- Weronika Machaj
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Przemysław Podgórski
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Julian Maciaszek
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland
| | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland
| | - Adrian Korbecki
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland
- Department of Clinical Neuroscience, Faculty of Medicine, Wroclaw University of Science and Technology, WUST Hoene-Wrońskiego 13c, 50-372 Wroclaw, Poland
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Sun H, Cui H, Sun Q, Li Y, Bai T, Wang K, Zhang J, Tian Y, Wang J. Individual large-scale functional network mapping for major depressive disorder with electroconvulsive therapy. J Affect Disord 2024; 360:116-125. [PMID: 38821362 DOI: 10.1016/j.jad.2024.05.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Personalized functional connectivity mapping has been demonstrated to be promising in identifying underlying neurophysiological basis for brain disorders and treatment effects. Electroconvulsive therapy (ECT) has been proved to be an effective treatment for major depressive disorder (MDD) while its active mechanisms remain unclear. Here, 46 MDD patients before and after ECT as well as 46 demographically matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. A spatially regularized form of non-negative matrix factorization (NMF) was used to accurately identify functional networks (FNs) in individuals to map individual-level static and dynamic functional network connectivity (FNC) to reveal the underlying neurophysiological basis of therepetical effects of ECT for MDD. Moreover, these static and dynamic FNCs were used as features to predict the clinical treatment outcomes for MDD patients. We found that ECT could modulate both static and dynamic large-scale FNCs at individual level in MDD patients, and dynamic FNCs were closely associated with depression and anxiety symptoms. Importantly, we found that individual FNCs, particularly the individual dynamic FNCs could better predict the treatment outcomes of ECT suggesting that dynamic functional connectivity analysis may be better to link brain functional characteristics with clinical symptoms and treatment outcomes. Taken together, our findings provide new evidence for the active mechanisms and biomarkers for ECT to improve diagnostic accuracy and to guide individual treatment selection for MDD patients.
Collapse
Affiliation(s)
- Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongjie Cui
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Qinyao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Yuanyuan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Tongjian Bai
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230022, China
| | - Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yanghua Tian
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230022, China.
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China.
| |
Collapse
|
6
|
Sun J, Sun K, Chen L, Li X, Xu K, Guo C, Ma Y, Cao J, Zhang G, Hong Y, Wang Z, Gao S, Luo Y, Chen Q, Ye W, Yu X, Xiao X, Rong P, Yu C, Fang J. A predictive study of the efficacy of transcutaneous auricular vagus nerve stimulation in the treatment of major depressive disorder: An fMRI-based machine learning analysis. Asian J Psychiatr 2024; 98:104079. [PMID: 38838458 DOI: 10.1016/j.ajp.2024.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND In order to improve taVNS efficacy, the usage of fMRI to explore the predictive neuroimaging markers would be beneficial for screening the appropriate MDD population before treatment. METHODS A total of 86 MDD patients were recruited in this study, and all subjects were conducted with the clinical scales and resting-state functional magnetic resonance imaging (fMRI) scan before and after 8 weeks' taVNS treatment. A two-stage feature selection strategy combining Machine Learning and Statistical was used to screen out the critical brain functional connections (FC) that were significantly associated with efficacy prediction, then the efficacy prediction model was constructed for taVNS treating MDD. Finally, the model was validated by separated the responding and non-responding patients. RESULTS This study showed that taVNS produced promising clinical efficacy in the treatment of mild and moderate MDD. Eleven FCs were selected out and were found to be associated with the cortico-striatal-pallidum-thalamic loop, the hippocampus and cerebellum and the HAMD-17 scores. The prediction model was created based on these FCs for the efficacy prediction of taVNS treatment. The R-square of the conducted regression model for predicting HAMD-17 reduction rate is 0.44, and the AUC for classifying the responding and non-responding patients is 0.856. CONCLUSION The study demonstrates the validity and feasibility of combining neuroimaging and machine learning techniques to predict the efficacy of taVNS on MDD, and provides an effective solution for personalized and precise treatment for MDD.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing 101300, China
| | - Kai Sun
- College of Artificial Intelligence and Big Data for Medical Sciences & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250021, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Bao'an Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province 518133, China
| | - Xiaojiao Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ke Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guolei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shanshan Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingyan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weiyi Ye
- College of Artificial Intelligence and Big Data for Medical Sciences & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250021, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Peijing Rong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Changbin Yu
- College of Artificial Intelligence and Big Data for Medical Sciences & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250021, China.
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
7
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
8
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos‐Petropulu A, Al‐Sharif N, Leaver AM, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Modulation of habenular and nucleus accumbens functional connectivity by ketamine in major depression. Brain Behav 2024; 14:e3511. [PMID: 38894648 PMCID: PMC11187958 DOI: 10.1002/brb3.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 04/13/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is associated with dysfunctional reward processing, which involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Since ketamine elicits rapid antidepressant and antianhedonic effects in MDD, this study sought to investigate how serial ketamine infusion (SKI) treatment modulates static and dynamic functional connectivity (FC) in Hb and NAc functional networks. METHODS MDD participants (n = 58, mean age = 40.7 years, female = 28) received four ketamine infusions (0.5 mg/kg) 2-3 times weekly. Resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments were collected at baseline and 24 h post-SKI. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Changes in FC pre-to-post SKI, and correlations with changes with mood and anhedonia were examined. Comparisons of FC between patients and healthy controls (HC) at baseline (n = 55, mean age = 32.6, female = 31), and between HC assessed twice (n = 16) were conducted as follow-up analyses. RESULTS Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in mood ratings. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. No differences were observed between HC at baseline or over time. CONCLUSION Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions in MDD. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Joana R. Loureiro
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ashish K. Sahib
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Noor Al‐Sharif
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Amber M. Leaver
- Department of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| | - Benjamin Wade
- Division of Neuropsychiatry and NeuromodulationMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Shantanu Joshi
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Roger P. Woods
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Katherine L. Narr
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Gan L, Wang L, Liu H, Wang G. Based on neural network cascade abnormal texture information dissemination of classification of patients with schizophrenia and depression. Brain Res 2024; 1830:148819. [PMID: 38403037 DOI: 10.1016/j.brainres.2024.148819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
This study used MRI brain image segmentation to identify novel magnetic resonance imaging (MRI) biomarkers to distinguish patients with schizophrenia (SCZ), major depressive disorder (MD), and healthy control (HC). Brain texture measurements, including entropy and contrast, were calculated to capture variability in adjacent MRI voxel intensity. These measures are then applied to group classification in deep learning techniques and combined with hierarchical correlations to locate results. Texture feature maps were extracted from segmented brain MRI scans of 141 patients with schizophrenia (SCZ), 103 patients with major depressive disorder (MD) and 238 healthy controls (HC). Gray scale coassociation matrix (GLCM) is a monomer matrix calculated in a voxel cube. Deep learning methods were evaluated to determine the application capability of texture feature mapping in binary classification (SCZ vs. HC, MD vs. HC, SCZ vs. MD). The method is implemented by repeated nesting and cross-validation for feature selection. Regions that show the highest correlation (positive or negative). In this study, the authors successfully classified SCZ, MD and HC. This suggests that texture analysis can be used as an effective feature extraction method to distinguish different disease states. Compared with other methods, texture analysis can capture richer image information and improve classification accuracy in some cases. The classification accuracy of SCZ and HC, MD and HC, SCZ and MD reached 84.6%, 86.4% and 76.21%, respectively. Among them, SCZ and HC are the most significant features with high sensitivity and specificity.
Collapse
Affiliation(s)
- Linfeng Gan
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| | - Linfeng Wang
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hu Liu
- Peking University Health Science Center, Institute of Medical Technology, Beijing 100069, China.
| | - Gang Wang
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
10
|
Wang X, Luo P, Zhang L, Sun J, Cao J, Lei Z, Yang H, Lv X, Liu J, Yao X, Li S, Fang J. Altered functional brain activity in first-episode major depressive disorder treated with electro-acupuncture: A resting-state functional magnetic resonance imaging study. Heliyon 2024; 10:e29613. [PMID: 38681626 PMCID: PMC11053281 DOI: 10.1016/j.heliyon.2024.e29613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Background Previous studies have found electroacupuncture could improve the clinical symptoms of first-episode major depressive disorder (MDD), but the exact neural mechanism of action needs to be further elucidated. Methods Twenty-eight first-episode MDD patients were randomly divided into 14 electro-acupuncture stimulation (EAS) groups and 14 sham-acupuncture stimulation (SAS) groups, and clinical symptoms were assessed and functional magnetic resonance imaging (fMRI) scans were done in both groups. Amplitude of low-frequency fluctuations (ALFF) was used to observe the changes between the pre-treatment and post-treatment in the two groups, and the altered brain areas were selected as region of interest (ROI) to observe the FC changes. Meanwhile, the correlation between the altered clinical symptoms and the altered ALFF and FC of brain regions in the two groups was analyzed. Results The EAS significantly decreased the HAMD-24 and HAMA-14 scores of MDD than SAS group. The imaging results revealed that both groups were able to increase the ALFF of the left middle temporal gyrus and the left cerebellar posterior lobe. When using the left middle temporal gyrus and the left posterior cerebellar lobe as ROIs, EAS group increased the FC between the left middle temporal gyrus with the left superior frontal gyrus, the left middle frontal gyrus, and the left hippocampus, and decreased the FC between the left posterior cerebellar lobe and the left calcarine gyrus, while SAS group only increased the FC between the left middle temporal gyrus with the left superior frontal gyrus. The alternations in clinical symptoms after EAS treatment were positively correlated with the altered ALFF values in the left middle temporal gyrus and the altered FC values in the left middle temporal gyrus and the left middle frontal gyrus. Conclusion EA demonstrates modulation of functional activity in the default mode network (DMN), sensorimotor network (SMN), cognitive control network (CCN), limbic system, and visual network (VN) for the treatment of the first-episode MDD. Our findings contribute to the neuroimaging evidence for the efficacy of EAS.
Collapse
Affiliation(s)
- XiaoLing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiFei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiuDong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Lei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XueYu Lv
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoYan Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ShanShan Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiLiang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
12
|
Vike NL, Bari S, Kim BW, Katsaggelos AK, Blood AJ, Breiter HC. Characterizing major depressive disorder and substance use disorder using heatmaps and variable interactions: The utility of operant behavior and brain structure relationships. PLoS One 2024; 19:e0299528. [PMID: 38466739 PMCID: PMC10927130 DOI: 10.1371/journal.pone.0299528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Rates of depression and addiction have risen drastically over the past decade, but the lack of integrative techniques remains a barrier to accurate diagnoses of these mental illnesses. Changes in reward/aversion behavior and corresponding brain structures have been identified in those with major depressive disorder (MDD) and cocaine-dependence polysubstance abuse disorder (CD). Assessment of statistical interactions between computational behavior and brain structure may quantitatively segregate MDD and CD. METHODS Here, 111 participants [40 controls (CTRL), 25 MDD, 46 CD] underwent structural brain MRI and completed an operant keypress task to produce computational judgment metrics. Three analyses were performed: (1) linear regression to evaluate groupwise (CTRL v. MDD v. CD) differences in structure-behavior associations, (2) qualitative and quantitative heatmap assessment of structure-behavior association patterns, and (3) the k-nearest neighbor machine learning approach using brain structure and keypress variable inputs to discriminate groups. RESULTS This study yielded three primary findings. First, CTRL, MDD, and CD participants had distinct structure-behavior linear relationships, with only 7.8% of associations overlapping between any two groups. Second, the three groups had statistically distinct slopes and qualitatively distinct association patterns. Third, a machine learning approach could discriminate between CTRL and CD, but not MDD participants. CONCLUSIONS These findings demonstrate that variable interactions between computational behavior and brain structure, and the patterns of these interactions, segregate MDD and CD. This work raises the hypothesis that analysis of interactions between operant tasks and structural neuroimaging might aide in the objective classification of MDD, CD and other mental health conditions.
Collapse
Affiliation(s)
- Nicole L. Vike
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sumra Bari
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Byoung Woo Kim
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Aggelos K. Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Computer Science, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Northwestern University, Chicago, Illinois, United States of America
| | - Anne J. Blood
- Department of Psychiatry, Mood and Motor Control Laboratory (MAML), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry, Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital and Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Hans C. Breiter
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Psychiatry, Mood and Motor Control Laboratory (MAML), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry, Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital and Harvard School of Medicine, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | |
Collapse
|
13
|
Lin J, Xiao Y, Yao C, Sun L, Wang P, Deng Y, Pu J, Xue SW. Linking inter-subject variability of cerebellar functional connectome to clinical symptoms in major depressive disorder. J Psychiatr Res 2024; 171:9-16. [PMID: 38219285 DOI: 10.1016/j.jpsychires.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder with remarkable inter-subject variability in clinical manifestations. Neuroimaging changes of the cerebellum have been recently proposed as a way to characterize MDD-related brain disruptions and might further explain various clinical symptoms. However, the cerebellar contributions to MDD clinical heterogeneity remain largely unknown. The analyzed data consisted of 251 MDD patients and 235 matching healthy controls (HC). The inter-subject variability of functional connectomes (IVFC) was estimated via Pearson's correlation analysis between each pair of the cerebellar and cerebral regions based on resting-state functional magnetic resonance imaging (rs-fMRI). A partial least squares (PLS) regression analysis was performed to determine the potential dimension linking the IVFC to clinical symptom measures. The results indicated that similar spatial distribution patterns of the cerebellar IVFC were observed between MDD and HC, but the MDD group exhibited abnormal IVFC alterations in the bilateral Cerebelum_4_5, bilateral Cerebelum_6, Vermis_1_2 and Vermis_8. The PLS model revealed that the IVFC pattern in the left Cerebelum_6 was significantly associated with three HAMD-17 items including the work and activities, psychomotor retardation, and depressed mood. These findings provided new evidence for the cerebellar changes in MDD. Specifically, we found that the altered inter-subject variability measurements correlated with clinical manifestations of this illness. Elucidating this variability could prove helpful for the evaluation of MDD heterogeneity as well as for understanding its pathophysiological mechanism.
Collapse
Affiliation(s)
- Jia Lin
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yang Xiao
- Peking University Sixth Hospital, Peking University, Beijing, PR China
| | - Chi Yao
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Li Sun
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Peng Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yanxin Deng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Jiayong Pu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
14
|
Yoshii T, Oishi N, Sotozono Y, Watanabe A, Sakai Y, Yamada S, Matsuda KI, Kido M, Ikoma K, Tanaka M, Narumoto J. Validation of Wistar-Kyoto rats kept in solitary housing as an animal model for depression using voxel-based morphometry. Sci Rep 2024; 14:3601. [PMID: 38351316 PMCID: PMC10864298 DOI: 10.1038/s41598-024-53103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Major depressive disorder is a common psychiatric condition often resistant to medication. The Wistar-Kyoto (WKY) rat has been suggested as an animal model of depression; however, it is still challenging to translate results from animal models into humans. Solitary housing is a mild stress paradigm that can simulate the environment of depressive patients with limited social activity due to symptoms. We used voxel-based morphometry to associate the solitary-housed WKY (sWKY) rat model with data from previous human studies and validated our results with behavioural studies. As a result, atrophy in sWKY rats was detected in the ventral hippocampus, caudate putamen, lateral septum, cerebellar vermis, and cerebellar nuclei (p < 0.05, corrected for family-wise error rate). Locomotor behaviour was negatively correlated with habenula volume and positively correlated with atrophy of the cerebellar vermis. In addition, sWKY rats showed depletion of sucrose consumption not after reward habituation but without reward habituation. Although the application of sWKY rats in a study of anhedonia might be limited, we observed some similarities between the regions of brain atrophy in sWKY rats and humans with depression, supporting the translation of sWKY rat studies to humans.
Collapse
Affiliation(s)
- Takanobu Yoshii
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Johyo, Kyoto, 610-0113, Japan.
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yasutaka Sotozono
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Sakai
- Department of Neural Computation for Decision-Making, ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masamitsu Kido
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
15
|
An Z, Tang K, Xie Y, Tong C, Liu J, Tao Q, Feng Y. Aberrant resting-state co-activation network dynamics in major depressive disorder. Transl Psychiatry 2024; 14:1. [PMID: 38172115 PMCID: PMC10764934 DOI: 10.1038/s41398-023-02722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Major depressive disorder (MDD) is a globally prevalent and highly disabling disease characterized by dysfunction of large-scale brain networks. Previous studies have found that static functional connectivity is not sufficient to reflect the complicated and time-varying properties of the brain. The underlying dynamic interactions between brain functional networks of MDD remain largely unknown, and it is also unclear whether neuroimaging-based dynamic properties are sufficiently robust to discriminate individuals with MDD from healthy controls since the diagnosis of MDD mainly depends on symptom-based criteria evaluated by clinical observation. Resting-state functional magnetic resonance imaging (fMRI) data of 221 MDD patients and 215 healthy controls were shared by REST-meta-MDD consortium. We investigated the spatial-temporal dynamics of MDD using co-activation pattern analysis and made individual diagnoses using support vector machine (SVM). We found that MDD patients exhibited aberrant dynamic properties (such as dwell time, occurrence rate, transition probability, and entropy of Markov trajectories) in some transient networks including subcortical network (SCN), activated default mode network (DMN), de-activated SCN-cerebellum network, a joint network, activated attention network (ATN), and de-activated DMN-ATN, where some dynamic properties were indicative of depressive symptoms. The trajectories of other networks to deactivated DMN-ATN were more accessible in MDD patients. Subgroup analyses also showed subtle dynamic changes in first-episode drug-naïve (FEDN) MDD patients. Finally, SVM achieved preferable accuracies of 84.69%, 76.77%, and 88.10% in discriminating patients with MDD, FEDN MDD, and recurrent MDD from healthy controls with their dynamic metrics. Our findings reveal that MDD is characterized by aberrant dynamic fluctuations of brain network and the feasibility of discriminating MDD patients using dynamic properties, which provide novel insights into the neural mechanism of MDD.
Collapse
Affiliation(s)
- Ziqi An
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Kai Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yuanyao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Chuanjun Tong
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiaming Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Quan Tao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Cardoner N, Andero R, Cano M, Marin-Blasco I, Porta-Casteràs D, Serra-Blasco M, Via E, Vicent-Gil M, Portella MJ. Impact of Stress on Brain Morphology: Insights into Structural Biomarkers of Stress-related Disorders. Curr Neuropharmacol 2024; 22:935-962. [PMID: 37403395 PMCID: PMC10845094 DOI: 10.2174/1570159x21666230703091435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 07/06/2023] Open
Abstract
Exposure to acute and chronic stress has a broad range of structural effects on the brain. The brain areas commonly targeted in the stress response models include the hippocampus, the amygdala, and the prefrontal cortex. Studies in patients suffering from the so-called stress-related disorders -embracing post-traumatic stress, major depressive and anxiety disorders- have fairly replicated animal models of stress response -particularly the neuroendocrine and the inflammatory models- by finding alterations in different brain areas, even in the early neurodevelopment. Therefore, this narrative review aims to provide an overview of structural neuroimaging findings and to discuss how these studies have contributed to our knowledge of variability in response to stress and the ulterior development of stress-related disorders. There are a gross number of studies available but neuroimaging research of stress-related disorders as a single category is still in its infancy. Although the available studies point at particular brain circuitries involved in stress and emotion regulation, the pathophysiology of these abnormalities -involving genetics, epigenetics and molecular pathways-, their relation to intraindividual stress responses -including personality characteristics, self-perception of stress conditions…-, and their potential involvement as biomarkers in diagnosis, treatment prescription and prognosis are discussed.
Collapse
Affiliation(s)
- Narcís Cardoner
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raül Andero
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marta Cano
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Marin-Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Porta-Casteràs
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Serra-Blasco
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Programa eHealth ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain
| | - Esther Via
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Muriel Vicent-Gil
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maria J. Portella
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Runyan A, Cassani A, Reyna L, Walsh EC, Hoks RM, Birn RM, Abercrombie HC, Philippi CL. Effects of Cortisol Administration on Resting-State Functional Connectivity in Women with Depression. Psychiatry Res Neuroimaging 2024; 337:111760. [PMID: 38039780 PMCID: PMC10843737 DOI: 10.1016/j.pscychresns.2023.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Previous resting-state functional connectivity (rsFC) research has identified several brain networks impacted by depression and cortisol, including default mode (DMN), frontoparietal (FPN), and salience networks (SN). In the present study, we examined the effects of cortisol administration on rsFC of these networks in individuals varying in depression history and severity. We collected resting-state fMRI scans and self-reported depression symptom severity for 74 women with and without a history of depression after cortisol and placebo administration using a double-blind, crossover design. We conducted seed-based rsFC analyses for DMN, FPN, and SN seeds to examine rsFC changes after cortisol vs. placebo administration in relation to depression history group and severity. Results revealed a main effect of depression group, with lower left amygdala (SN)-middle temporal gyrus connectivity in women with a history of depression. Cortisol administration increased insula (SN)-inferior frontal gyrus and superior temporal gyrus connectivity. We also found that greater depression severity was associated with increased PCC (DMN)-cerebellum connectivity after cortisol. These results did not survive Bonferroni correction for seed ROIs and should be interpreted with caution. Our findings indicate that acute cortisol elevation may normalize aberrant connectivity of DMN and SN regions, which could help inform clinical treatments for depression.
Collapse
Affiliation(s)
- Adam Runyan
- Department of Psychological Sciences, University of Central Missouri, 116 West S. St., Warrensburg, MO 64093, USA
| | - Alexis Cassani
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Leah Reyna
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
| | - Heather C Abercrombie
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA.
| |
Collapse
|
18
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
19
|
Healey K, Waters RC, Knight SG, Wandling GM, Hall NI, Jones BN, Shobande MJ, Melton JG, Pandey SC, Scott Swartzwelder H, Maldonado-Devincci AM. Adolescent intermittent ethanol exposure alters adult exploratory and affective behaviors, and cerebellar Grin2b expression in C57BL/6J mice. Drug Alcohol Depend 2023; 253:111026. [PMID: 38006668 PMCID: PMC10990063 DOI: 10.1016/j.drugalcdep.2023.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/17/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein (FMR1), glutamate receptors (Grin2a, Grin2b and Grm5) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2b (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2b expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE.
Collapse
Affiliation(s)
- Kati Healey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Renee C Waters
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, United States
| | - Sherilynn G Knight
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States
| | - Nzia I Hall
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; University of North Carolina at Chapel Hill School of Medicine, NC 27516, United States
| | - Brooke N Jones
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Mariah J Shobande
- Department of Chemical, Biological and Bioengineering, College of Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Jaela G Melton
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Antoniette M Maldonado-Devincci
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States.
| |
Collapse
|
20
|
Zhao P, Wang X, Wang Q, Yan R, Chattun MR, Yao Z, Lu Q. Altered fractional amplitude of low-frequency fluctuations in the superior temporal gyrus: a resting-state fMRI study in anxious depression. BMC Psychiatry 2023; 23:847. [PMID: 37974113 PMCID: PMC10655435 DOI: 10.1186/s12888-023-05364-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Anxious depression, which is a common subtype of major depressive disorder, has distinct clinical features from nonanxious depression. However, little is known about the neurobiological characteristics of anxious depression. In this study, we explored resting-state regional brain activity changes between anxious depression and nonanxious depression. METHOD Resting-state functional magnetic resonance (rs-fMRI) imaging data were collected from 60 patients with anxious depression, 38 patients with nonanxious depression, and 60 matched healthy controls (HCs). One-way analysis of variance was performed to compare the whole-brain fractional amplitude of low-frequency fluctuation (fALFF) in the three groups. The correlation between the fALFF values and the clinical measures was examined. RESULTS Compared with those of HCs, the fALFF values in the left superior temporal gyrus (STG) in patients with anxious depression were significantly increased, while the fALFF values in the left middle temporal gyrus (MTG), left STG, and right STG in patients with nonanxious depression were significantly increased. Patients with anxious depression showed reduced fALFF values in the right STG compared with patients with nonanxious depression (p < 0.001, corrected). Within the anxious depression group, fALFF value in the right STG was positively correlated with the cognitive disturbance score (r = 0.36, p = 0.005 corrected). CONCLUSION The bilateral STG and left MTG, which are related to the default mode network, appear to be key brain regions in nonanxious depression, while the right STG plays an essential role in the neuropathological mechanism of anxious depression.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medical Psychology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China
| | - Qiang Wang
- Department of Medical Psychology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
21
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
22
|
Chessa E, Piga M, Perra A, Pintus E, Porcu M, Serafini C, Congia M, Angioni MM, Naitza MR, Floris A, Mathieu A, Saba L, Carta MG, Cauli A. Effect of anti-P ribosomal and anti-NR2 antibodies on depression and cognitive processes in SLE: an integrated clinical and functional MRI study. Lupus Sci Med 2023; 10:e001005. [PMID: 37918951 PMCID: PMC10626760 DOI: 10.1136/lupus-2023-001005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES To explore the effects of anti-ribosomal P protein (anti-P) and anti-N-methyl-D-aspartic acid receptor subunit 2 (anti-NR2) autoantibodies on depression and cognitive dysfunction and their relationships with functional brain connectivity in SLE. METHODS This cross-sectional study included adult patients who fulfilled the American College of Rheumatology/European Alliance of Associations for Rheumatology 2019 SLE criteria. Anti-P and anti-NR2 were quantified using ELISA. A 1-hour battery of neuropsychological testing interpreted by a neuropsychologist explored depressive symptoms (Center for Epidemiologic Studies Depression Scale, CES-D), cognitive domains and quality of life (SF-12). Resting-state functional connectivity (rs-fc) MRI analysis was performed within 1 month, and region-of-interest to region-of-interest (ROI-to-ROI) analyses with the graph theory were performed. RESULTS Thirty-three patients with SLE (9% male) were enrolled, mean age (SD) of 43.5 (14) years and median disease duration of 10.4 years (2.9-25.4). Anti-P was positive in 6 (18.2%) and anti-NR2 in 14 (42.4%) patients. Depressive symptoms were found in 14 (42.4%) patients using the CES-D (range 0-51). After correction for age, disease duration, disease activity and white matter lesion load, the CES-D score was independently associated with anti-P serum level (β=0.32; p=0.049) and prednisone daily dose (β=0.38; p=0.023). Nineteen patients (57.6%) showed at least a cognitive test alteration, but no significant association with autoantibodies was found. The rs-fc MRI analysis revealed an independent association between the anti-P serum levels and many altered brain ROI properties but no anti-NR2 and prednisone effects on the cerebral network. CONCLUSIONS Anti-P was associated with brain network perturbation, which may be responsible for depressive symptoms in patients with SLE.
Collapse
Affiliation(s)
| | - Matteo Piga
- Rheumatology Unit, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Perra
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Pintus
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Michele Porcu
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Cristina Serafini
- Rheumatology Unit, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Maria Maddalena Angioni
- Rheumatology Unit, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Micaela Rita Naitza
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alberto Floris
- Rheumatology Unit, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Radiology Department, AOU Cagliari, Cagliari, Italy
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Rheumatology Unit, AOU Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Stanca S, Rossetti M, Bongioanni P. The Cerebellum's Role in Affective Disorders: The Onset of Its Social Dimension. Metabolites 2023; 13:1113. [PMID: 37999209 PMCID: PMC10672979 DOI: 10.3390/metabo13111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are the most frequent mental disorders whose indeterminate etiopathogenesis spurs to explore new aetiologic scenarios. In light of the neuropsychiatric symptoms characterizing Cerebellar Cognitive Affective Syndrome (CCAS), the objective of this narrative review is to analyze the involvement of the cerebellum (Cbm) in the onset of these conditions. It aims at detecting the repercussions of the Cbm activities on mood disorders based on its functional subdivision in vestibulocerebellum (vCbm), pontocerebellum (pCbm) and spinocerebellum (sCbm). Despite the Cbm having been, for decades, associated with somato-motor functions, the described intercellular pathways, without forgiving the molecular impairment and the alteration in the volumetric relationships, make the Cbm a new important therapeutic target for MDD and BD. Given that numerous studies have showed its activation during mnestic activities and socio-emotional events, this review highlights in the Cbm, in which the altered external space perception (vCbm) is strictly linked to the cognitive-limbic Cbm (pCbm and sCbm), a crucial role in the MDD and BD pathogenesis. Finally, by the analysis of the cerebellar activity, this study aims at underlying not only the Cbm involvement in affective disorders, but also its role in social relationship building.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
24
|
Wu GR, Baeken C. Precision targeting in prediction for rTMS clinical outcome in depression: what about sgACC lateralization, metabolic connectivity, and the potential role of the cerebellum? Eur Arch Psychiatry Clin Neurosci 2023; 273:1443-1450. [PMID: 37329365 DOI: 10.1007/s00406-023-01637-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/03/2023] [Indexed: 06/19/2023]
Abstract
Predicting clinical response to repetitive transcranial magnetic stimulation (rTMS) in medication-resistant depression (MRD) has gained great importance in recent years. Mainly, the right subgenual anterior cingulate cortex (sgACC) functional connectivity has been put forward as biomarker in relation to rTMS clinical outcome. Even though the left and right sgACC may have different neurobiological functions, little is known about the possible lateralized predictive role of the sgACC in rTMS clinical outcome. In 43 right-handed antidepressant-free MRD patients, we applied a searchlight-based interregional covariance connectivity approach using the baseline 18FDG-PET scan-collected from two previous high-frequency (HF)-rTMS treatment studies delivering stimulation to the left dorsolateral prefrontal cortex (DLPFC)-and investigated whether unilateral or bilateral sgACC glucose metabolism at baseline would result in different predictive metabolic connectivity patterns. Regardless of sgACC lateralization, the weaker the sgACC seed-based baseline metabolic functional connections with the (left anterior) cerebellar areas, the significantly better the clinical outcome. However, the seed diameter seems to be crucial. Similar significant findings on sgACC metabolic connectivity with the left anterior cerebellum, also unrelated to sgACC lateralization, in relation to clinical outcome were observed when using the HCPex atlas. Although we could not substantiate that specifically right sgACC metabolic connectivity would predict HF-rTMS clinical outcome, our findings suggest considering the entire sgACC in functional connectivity predictions. Given that the interregional covariance connectivity results were significant only when using the Beck Depression Inventory (BDI-II) and not with the Hamilton Depression Rating Scale (HDRS), our sgACC metabolic connectivity observations also suggest the possible involvement of the (left) anterior cerebellum involved in higher-order cognitive processing as part of this predictive value.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- School of Psychology, Jiangxi Normal University, Nanchang, China.
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
25
|
Dai P, Zhou X, Xiong T, Ou Y, Chen Z, Zou B, Li W, Huang Z. Altered Effective Connectivity Among the Cerebellum and Cerebrum in Patients with Major Depressive Disorder Using Multisite Resting-State fMRI. CEREBELLUM (LONDON, ENGLAND) 2023; 22:781-789. [PMID: 35933493 DOI: 10.1007/s12311-022-01454-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Major depressive disorder (MDD) is a serious and widespread psychiatric disorder. Previous studies mainly focused on cerebrum functional connectivity, and the sample size was relatively small. However, functional connectivity is undirected. And, there is increasing evidence that the cerebellum is also involved in emotion and cognitive processing and makes outstanding contributions to the symptomology and pathology of depression. Therefore, we used a large sample size of resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate the altered effective connectivity (EC) among the cerebellum and other cerebral cortex in patients with MDD. Here, from the perspective of data-driven analysis, we used two different atlases to divide the whole brain into different regions and analyzed the alterations of EC and EC networks in the MDD group compared with healthy controls group (HCs). The results showed that compared with HCs, there were significantly altered EC in the cerebellum-neocortex and cerebellum-basal ganglia circuits in MDD patients, which implied that the cerebellum may be a potential biomarker of depressive disorders. And, the alterations of EC brain networks in MDD patients may provide new insights into the pathophysiological mechanisms of depression.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.
| | - Xiaoyan Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Tong Xiong
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yilin Ou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Weihui Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Li K, Lu X, Xiao C, Zheng K, Sun J, Dong Q, Wang M, Zhang L, Liu B, Liu J, Zhang Y, Guo H, Zhao F, Ju Y, Li L. Aberrant Resting-State Functional Connectivity in MDD and the Antidepressant Treatment Effect-A 6-Month Follow-Up Study. Brain Sci 2023; 13:brainsci13050705. [PMID: 37239177 DOI: 10.3390/brainsci13050705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The mechanism by which antidepressants normalizing aberrant resting-state functional connectivity (rsFC) in patients with major depressive disorder (MDD) is still a matter of debate. The current study aimed to investigate aberrant rsFC and whether antidepressants would restore the aberrant rsFC in patients with MDD. METHODS A total of 196 patients with MDD and 143 healthy controls (HCs) received the resting-state functional magnetic resonance imaging and clinical assessments at baseline. Patients with MDD received antidepressant treatment after baseline assessment and were re-scanned at the 6-month follow-up. Network-based statistics were employed to identify aberrant rsFC and rsFC changes in patients with MDD and to compare the rsFC differences between remitters and non-remitters. RESULTS We identified a significantly decreased sub-network and a significantly increased sub-network in MDD at baseline. Approximately half of the aberrant rsFC remained significantly different from HCs after 6-month treatment. Significant overlaps were found between baseline reduced sub-network and follow-up increased sub-network, and between baseline increased sub-network and follow-up decreased sub-network. Besides, rsFC at baseline and rsFC changes between baseline and follow-up in remitters were not different from non-remitters. CONCLUSIONS Most aberrant rsFC in patients with MDD showed state-independence. Although antidepressants may modulate aberrant rsFC, they may not specifically target these aberrations to achieve therapeutic effects, with only a few having been directly linked to treatment efficacy.
Collapse
Affiliation(s)
- Kangning Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xiaowen Lu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chuman Xiao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Kangning Zheng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jinrong Sun
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Qiangli Dong
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Mi Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Liang Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bangshan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yan Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Futao Zhao
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Yumeng Ju
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
27
|
Wang X, Xia J, Wang W, Lu J, Liu Q, Fan J, Soondrum T, Yu Q, Tan C, Zhu X. Disrupted functional connectivity of the cerebellum with default mode and frontoparietal networks in young adults with major depressive disorder. Psychiatry Res 2023; 324:115192. [PMID: 37054552 DOI: 10.1016/j.psychres.2023.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Cerebellar dysconnectivity has repeatedly been documented in major depressive disorder (MDD). The cerebellum is composed of multiple functionally distinct subunits, and whether those subunits show similar or distinct dysconnectivity patterns with the cerebrum in MDD, is still unclear and needs to be further clarified. In this study, 91 MDD patients (23 male and 68 female) and 59 demographically matched healthy controls (22 male and 37 female) were enrolled to explore the cerebellar-cerebral dysconnectivity pattern in MDD by using the cutting-edge cerebellar partition atlas. Results showed that MDD patients exhibit decreased cerebellar connectivity with cerebral regions of default mode (DMN), frontoparietal networks (FPN), and visual areas. The dysconnectivity pattern was statistically similar across cerebellar subunits, with no significant diagnosis-by-subunit interactions. Correlation analyzes showed that cerebellar-dorsal lateral prefrontal cortex (DLPFC) connectivity is significantly correlated with anhedonia in MDD patients. Such dysconnectivity pattern was not affected by sex, which, however, should be further replicated in larger samples. These findings suggest a generalized disrupted cerebellar-cerebral connectivity pattern in MDD across all cerebellar subunits, which partially accounts for depressive symptoms in MDD, thus highlighting the pivotal role of the disrupted connectivity of cerebellum with DMN and FPN in the neuropathology of depression.
Collapse
Affiliation(s)
- Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Jie Xia
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Weiyan Wang
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingjie Lu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Qian Liu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Tamini Soondrum
- Association Alzheimer of Mauritius, Old Moka Road, Belle Rose, Quatre Bornes, Mauritius
| | - Quanhao Yu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China.
| |
Collapse
|
28
|
Hosoki M, Bruckert L, Borchers LR, Marchman VA, Travis KE, Feldman HM. Associations of Behavioral Problems and White Matter Properties of the Cerebellar Peduncles in Boys and Girls Born Full Term and Preterm. CEREBELLUM (LONDON, ENGLAND) 2023; 22:163-172. [PMID: 35138604 PMCID: PMC9360188 DOI: 10.1007/s12311-022-01375-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
Abstract
Accumulating evidence suggests that the role of cerebellum includes regulation of behaviors; cerebellar impairment may lead to behavioral problems. Behavioral problems differ by sex: internalizing problems are more common in girls, externalizing problems in boys. Behavioral problems are also elevated in children born preterm (PT) compared to children born full term (FT). The current study examined internalizing and externalizing problems in 8-year-old children in relation to sex, birth-group, fractional anisotropy (FA) of the three cerebellar peduncles (superior, middle, and inferior), and interactions among these predictor variables. Participants (N = 78) were 44 boys (28 PT) and 34 girls (15 PT). We assessed behavioral problems via standardized parent reports and FA of the cerebellar peduncles using deterministic tractography. Internalizing problems were higher in children born PT compared to children born FT (p = .032); the interaction of sex and birth-group was significant (p = .044). When considering the contribution of the mean-tract FA of cerebellar peduncles to behavioral problems, there was a significant interaction of sex and mean-tract FA of the inferior cerebellar peduncle (ICP) with internalizing problems; the slope was negative in girls (p = .020) but not in boys. In boys, internalizing problems were only associated with mean-tract FA ICP in those born preterm (p = .010). We found no other significant associations contributing to internalizing or externalizing problems. Thus, we found sexual dimorphism and birth-group differences in the association of white matter metrics of the ICP and internalizing problems in school-aged children. The findings inform theories of the origins of internalizing behavioral problems in middle childhood and may suggest approaches to treatment at school age.
Collapse
Affiliation(s)
- Machiko Hosoki
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | - Lisa Bruckert
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | | | | | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA.
| |
Collapse
|
29
|
Yan H, Han Y, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Common and exclusive spontaneous neural activity patterns underlying pure generalized anxiety disorder and comorbid generalized anxiety disorder and depression. J Affect Disord 2023; 331:82-91. [PMID: 36958484 DOI: 10.1016/j.jad.2023.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND This study aimed to identify common and exclusive neural substrates underlying pure generalized anxiety disorder (GAD, G0) and comorbid GAD and depression (G1), assess whether they could assist in diagnosis and prediction of treatment response, and determine whether comorbid depression in GAD patients would change their neural plasticity. METHODS A longitudinal study was conducted, involving 98 patients (40 in the G0 group and 58 in the G1 group) and 54 healthy controls (HCs). The fractional amplitude of low-frequency fluctuations (fALFF), support vector machine, and support vector regression were employed. RESULTS The shared neural underpinnings across the two subtypes of GAD were hyperactivity in the right cerebellar Crus II and inferior temporal gyrus and hypoactivity in the right postcentral gyrus. The G1 group showed hypoactivity in the frontal gyrus, compared with HCs, and hyperactivity in the middle temporal gyrus, compared with the G0 group or HCs. These alterations could aid in diagnosis and the prediction of treatment response with high accuracy. After treatment, both the G1 and G0 groups showed higher fALFF than those before treatment but were located in different brain regions. LIMITATIONS The study was performed in a single center and subjects showed a fairly homogeneous ethnicity. CONCLUSIONS Common and exclusive neural substrates underlying the two subtypes of GAD were identified, which could assist in diagnosis and the prediction of treatment response. Pharmacotherapy for the two subtypes of GAD recruited different pathways, suggesting that comorbid depression in GAD patients would change their neural plasticity.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yiding Han
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
30
|
Cerebello-cerebral Functional Connectivity Networks in Major Depressive Disorder: a CAN-BIND-1 Study Report. CEREBELLUM (LONDON, ENGLAND) 2023; 22:26-36. [PMID: 35023065 DOI: 10.1007/s12311-021-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 02/01/2023]
Abstract
Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI1 corresponded to default mode network (DMN)/inattentive processing; ROI2 corresponded to attentional networks, including frontoparietal, dorsal attention, and ventral attention; ROI3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI1) and significantly elevated RsFc between the cerebellar ROI1 and bilateral angular gyrus at a voxel threshold (p < 0.001, two-tailed) and at a cluster level (p < 0.05, FDR-corrected). Group differences were non-significant for ROI2 and ROI3. These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies. ClinicalTrials.gov TRN: NCT01655706; Date of Registration: August 2nd, 2012.
Collapse
|
31
|
Reitano MR, Guidetti M, Maiorana NV, De Sandi A, Carusi F, Rosci C, Ruggiero F, Poletti B, Ticozzi N, Mameli F, Barbieri S, Silani V, Priori A, Ferrucci R. The Effects of a New Integrated and Multidisciplinary Cognitive Rehabilitation Program Based on Mindfulness and Reminiscence Therapy in Patients with Parkinson's Disease and Mild Cognitive Impairment: A Pilot Study. Brain Sci 2023; 13:201. [PMID: 36831744 PMCID: PMC9954653 DOI: 10.3390/brainsci13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Background: Mindfulness trainings have shown promising results as treatment for behavioural symptoms in several pathologies. In addition, mindfulness protocols induced an improvement in memory and attention. Therefore, mindfulness could be an effective intervention for patients affected by Parkinson's disease (PD) and mild cognitive impairment (MCI), who are characterized by both behavioural and cognitive dysfunctions. Methods: We assessed differences in Montreal Cognitive Assessment (MoCA) scores and in Beck Depression Inventory II (BDI-II) scores in patients affected by PD and MCI enrolled in two different rehabilitation programs (an experimental vs. an usual structured program for cognitive rehabilitation). Participants in the experimental group (MILC-tr) underwent innovative rehabilitation program involving mindfulness and reminiscence activities. Assessments were performed before (T0) and at the end of the rehabilitation program (T1). Results: Friedman test showed a significant improvement between timepoints in MoCA global score (x2 = 4.000, p = 0.046), MoCA memory sub-scale score (x2 = 4.571, p = 0.033), and BDI-II cognitive and affective factors (x2 = 4.000, p = 0.046) only for patients in MILC-tr group. Mann-Whitney test showed a significant difference between group comparing differences in Δ scores between T0 and T1 in the MoCA memory sub-scale score (U = 190.50, p = 0.035). Conclusions: Mindfulness-based rehabilitation programs could be effective in patients affected by PD and MCI.
Collapse
Affiliation(s)
- Maria Rita Reitano
- ASST Santi Paolo e Carlo, San Paolo University Hospital, 20142 Milan, Italy
| | - Matteo Guidetti
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Natale Vincenzo Maiorana
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Angelica De Sandi
- ASST Santi Paolo e Carlo, San Paolo University Hospital, 20142 Milan, Italy
| | - Fabrizio Carusi
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Chiara Rosci
- ASST Santi Paolo e Carlo, San Paolo University Hospital, 20142 Milan, Italy
| | - Fabiana Ruggiero
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, 20122 Milan, Italy
| | - Francesca Mameli
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sergio Barbieri
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, 20122 Milan, Italy
| | - Alberto Priori
- ASST Santi Paolo e Carlo, San Paolo University Hospital, 20142 Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Roberta Ferrucci
- ASST Santi Paolo e Carlo, San Paolo University Hospital, 20142 Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
32
|
Sun J, Ma Y, Guo C, Du Z, Chen L, Wang Z, Li X, Xu K, Luo Y, Hong Y, Yu X, Xiao X, Fang J, Lu J. Distinct patterns of functional brain network integration between treatment-resistant depression and non treatment-resistant depression: A resting-state functional magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110621. [PMID: 36031163 DOI: 10.1016/j.pnpbp.2022.110621] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previous neuroimaging has paid little attention to the differences in brain network integration between patients with treatment-resistant depression(TRD) and non-TRD (nTRD), and the relationship between their impaired brain network integration and clinical symptoms has not been elucidated. METHOD Eighty one major depressive disorder (MDD) patients (40 in TRD, 41 in nTRD) and 40 healthy controls (HCs) were enrolled for the functional magnetic resonance imaging (fMRI) scans. A seed-based functional connectivity (FC) method was used to investigate the brain network abnormalities of default mode network (DMN), affective network (AN), salience network (SN) and cognitive control network (CCN) for the MDD. Finally, the correlation was analyzed between the abnormal FCs and 17-item Hamilton Rating Scale for Depression scale (HAMD-17) scores. RESULTS Compared with the HC group, the FCs in DMN, AN, SN, CCN were altered in both the TRD and nTRD groups. Compared with the nTRD group, FC alterations in the AN and CCN were more abnormal in the TRD group, and the FC alterations were generally decreased at the SN in the TRD group. In addition, the FC values of right dorsolateral prefrontal cortices and left caudate nucleus in the TRD group and the FC values of right subgenual anterior cingulate cortex and left middle temporal gyrus in the nTRD group were positively correlated with HAMD-17 scale scores. CONCLUSIONS Abnormal FCs are present in four brain networks (DMN, AN, SN, CCN) in both the TRD and nTRD groups. Except of DMN, FCs in AN, SN and CCN maybe underlay the neurobiological mechanism in differentiating TRD from nTRD.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700 Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Xiaojiao Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Ke Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, 100026 Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, 100026 Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China.
| | - Jie Lu
- Xuanwu Hospital, Capital Medical University, 100053 Beijing, China.
| |
Collapse
|
33
|
Chin PW, Augustine GJ. The cerebellum and anxiety. Front Cell Neurosci 2023; 17:1130505. [PMID: 36909285 PMCID: PMC9992220 DOI: 10.3389/fncel.2023.1130505] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Although the cerebellum is traditionally known for its role in motor functions, recent evidence points toward the additional involvement of the cerebellum in an array of non-motor functions. One such non-motor function is anxiety behavior: a series of recent studies now implicate the cerebellum in anxiety. Here, we review evidence regarding the possible role of the cerebellum in anxiety-ranging from clinical studies to experimental manipulation of neural activity-that collectively points toward a role for the cerebellum, and possibly a specific topographical locus within the cerebellum, as one of the orchestrators of anxiety responses.
Collapse
Affiliation(s)
- Pei Wern Chin
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
34
|
Dysfunction of the Lenticular Nucleus Is Associated with Dystonia in Wilson's Disease. Brain Sci 2022; 13:brainsci13010007. [PMID: 36671989 PMCID: PMC9856696 DOI: 10.3390/brainsci13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Dysfunction of the lenticular nucleus is thought to contribute to neurological symptoms in Wilson's disease (WD). However, very little is known about whether and how the lenticular nucleus influences dystonia by interacting with the cerebral cortex and cerebellum. To solve this problem, we recruited 37 WD patients (20 men; age, 23.95 ± 6.95 years; age range, 12-37 years) and 37 age- and sex-matched healthy controls (HCs) (25 men; age, 25.19 ± 1.88 years; age range, 20-30 years), and each subject underwent resting-state functional magnetic resonance imaging (RS-fMRI) scans. The muscle biomechanical parameters and Unified Wilson Disease Rating Scale (UWDRS) were used to evaluate the level of dystonia and clinical representations, respectively. The lenticular nucleus, including the putamen and globus pallidus, was divided into 12 subregions according to dorsal, ventral, anterior and posterior localization and seed-based functional connectivity (FC) was calculated for each subregion. The relationships between FC changes in the lenticular nucleus with muscle tension levels and clinical representations were further investigated by correlation analysis. Dystonia was diagnosed by comparing all WD muscle biomechanical parameters with healthy controls (HCs). Compared with HCs, FC decreased from all subregions in the putamen except the right ventral posterior part to the middle cingulate cortex (MCC) and decreased FC of all subregions in the putamen except the left ventral anterior part to the cerebellum was observed in patients with WD. Patients with WD also showed decreased FC of the left globus pallidus primarily distributed in the MCC and cerebellum and illustrated decreased FC from the right globus pallidus to the cerebellum. FC from the putamen to the MCC was significantly correlated with psychiatric symptoms. FC from the putamen to the cerebellum was significantly correlated with muscle tension and neurological symptoms. Additionally, the FC from the globus pallidus to the cerebellum was also associated with muscle tension. Together, these findings highlight that lenticular nucleus-cerebellum circuits may serve as neural biomarkers of dystonia and provide implications for the neural mechanisms underlying dystonia in WD.
Collapse
|
35
|
Abnormal dynamic functional network connectivity in first-episode, drug-naïve patients with major depressive disorder. J Affect Disord 2022; 319:336-343. [PMID: 36084757 DOI: 10.1016/j.jad.2022.08.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/25/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Dynamic functional network connectivity (dFNC) could capture temporal features of spontaneous brain activity during MRI scanning, and it might be a powerful tool to examine functional brain network alters in major depressive disorder (MDD). Therefore, this study investigated the changes in temporal properties of dFNC of first-episode, drug-naïve patients with MDD. A total of 48 first-episode, drug-naïve MDD patients and 46 age- and gender-matched healthy controls were recruited in this study. Sliding windows were implied to construct dFNC. We assessed the relationships between altered dFNC temporal properties and depressive symptoms. Receiver operating characteristic (ROC) curve analyses were used to examine the diagnostic performance of these altered temporal properties. The results showed that patients with MDD have more occurrences and spent more time in a weak connection state, but with fewer occurrences and shorter dwell time in a strong connection state. Importantly, the fractional time and mean dwell time of state 2 was negatively correlated with Hamilton Depression Rating Scale (HDRS) scores. ROC curve analysis demonstrated that these temporal properties have great identified power including the fractional time and mean dwell time in state 2, and the AUC is 0.872, 0.837, respectively. The AUC of the combination of fractional time and mean dwell time in state 2 with age, gender is 0.881. Our results indicated the temporal properties of dFNC are altered in first-episode, drug-naïve patients with MDD, and these changes' properties could serve as a potential biomarker in MDD.
Collapse
|
36
|
Sun J, Du Z, Ma Y, Guo C, Gao S, Luo Y, Chen Q, Hong Y, Xiao X, Yu X, Fang J. Characterization of Resting-State Striatal Differences in First-Episode Depression and Recurrent Depression. Brain Sci 2022; 12:brainsci12121603. [PMID: 36552063 PMCID: PMC9776048 DOI: 10.3390/brainsci12121603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
The presence of reward deficits in major depressive disorder is associated with abnormal striatal function. However, differences in striatal whole-brain functional between recurrent depressive episode (RDE) and first-episode depression (FDE) have not been elucidated. Thirty-three patients with RDE, 27 with FDE, and 35 healthy controls (HCs) were recruited for this study. A seed-based functional connectivity (FC) method was used to analyze abnormalities in six predefined striatal subregion circuits among the three groups of subjects and to further explore the correlation between abnormal FC and clinical symptoms. The results revealed that compared with the FDE group, the RDE group showed higher FC of the striatal subregion with the left middle occipital gyrus, left orbital area of the middle frontal gyrus, and bilateral posterior cerebellar gyrus, while showing lower FC of the striatal subregion with the right thalamus, left inferior parietal lobule, left middle cingulate gyrus, right angular gyrus, right cerebellum anterior lobe, and right caudate nucleus. In the RDE group, the HAMD-17 scores were positively correlated with the FC between the left dorsal rostral putamen and the left cerebellum posterior lobe. This study provides new insights into understanding the specificity of striatal circuits in the RDE group.
Collapse
Affiliation(s)
- Jifei Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yue Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chunlei Guo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shanshan Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yi Luo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingyan Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Hong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Jiliang Fang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Correspondence: ; Tel.: +86-010-88001493
| |
Collapse
|
37
|
Combined HTR1A/1B methylation and human functional connectome to recognize patients with MDD. Psychiatry Res 2022; 317:114842. [PMID: 36150307 DOI: 10.1016/j.psychres.2022.114842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study aimed to use a machine-learning method to identify HTR1A/1B methylation and resting-state functional connectivity (rsFC) related to the diagnosis of MDD, then try to build classification models for MDD diagnosis based on the identified features. METHODS Peripheral blood samples were collected from all recruited participants, and part of the participants underwent the resting-state fMRI scan. Features including HTR1A/1B methylation and rsFC were calculated. Then, the initial feature sets of epigenetics and neuroimaging were separately input into an all-relevant feature selection to generate significant discriminative power for MDD diagnosis. Random forest classifiers were constructed and evaluated based on identified features. In addition, the SHapley Additive exPlanations (SHAP) method was adapted to interpret the diagnostic model. RESULTS A combination of selected HTR1A/1B methylation and rsFC feature sets achieved better performance than using either one alone - a distinction between MDD and healthy control groups was achieved at 81.78% classification accuracy and 0.8948 AUC. CONCLUSION A high classification accuracy can be achieved by combining multidimensional information from epigenetics and cerebral radiomic features in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD and further exploring the pathogenesis of MDD.
Collapse
|
38
|
Sahib AK, Loureiro JR, Vasavada M, Anderson C, Kubicki A, Wade B, Joshi SH, Woods RP, Congdon E, Espinoza R, Narr KL. Modulation of the functional connectome in major depressive disorder by ketamine therapy. Psychol Med 2022; 52:2596-2605. [PMID: 33267926 PMCID: PMC9647551 DOI: 10.1017/s0033291720004560] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized. METHODS Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD). MDD patients (N = 61, mean age = 38, 19 women) completed baseline resting-state (RS) functional magnetic resonance imaging and depression symptom scales. Of these patients, n = 48 and n = 51, completed the same assessments 24 h after receiving one and four 0.5 mg/kg intravenous ketamine infusions. Healthy controls (HC) (n = 40, 24 women) completed baseline assessments with no intervention. Analysis of RS FC addressed effects of diagnosis, time, and remitter status. RESULTS Significant differences (p < 0.05, corrected) in RS FC were observed between HC and MDD at baseline in the somatomotor network and between association and default mode networks. These disruptions in FC in MDD patients trended toward control patterns with ketamine treatment. Furthermore, following serial ketamine infusions, significant decreases in FC were observed between the cerebellum and salience network (SN) (p < 0.05, corrected). Patient remitters showed increased FC between the cerebellum and the striatum prior to treatment that decreased following treatment, whereas non-remitters showed the opposite pattern. CONCLUSION Results support that ketamine treatment leads to neurofunctional plasticity between distinct neural networks that are shown as disrupted in MDD patients. Cortico-striatal-cerebellar loops that encompass the SN could be a potential biomarker for ketamine treatment.
Collapse
Affiliation(s)
- Ashish K. Sahib
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Joana R. Loureiro
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Megha Vasavada
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Anderson
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Antoni Kubicki
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin Wade
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Shantanu H. Joshi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P. Woods
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Eliza Congdon
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
39
|
Pessin S, Walsh EC, Hoks RM, Birn RM, Abercrombie HC, Philippi CL. Resting-state neural signal variability in women with depressive disorders. Behav Brain Res 2022; 433:113999. [PMID: 35811000 PMCID: PMC9559753 DOI: 10.1016/j.bbr.2022.113999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Aberrant activity and connectivity in default mode (DMN), frontoparietal (FPN), and salience (SN) network regions is well-documented in depression. Recent neuroimaging research suggests that altered variability in the blood oxygen level-dependent (BOLD) signal may disrupt normal network integration and be an important novel predictor of psychopathology. However, no studies have yet determined the relationship between resting-state BOLD signal variability and depressive disorders nor applied BOLD signal variability features to the classification of depression history using machine learning (ML). We collected resting-state fMRI data for 79 women with different depression histories: no history, past history, and current depressive disorder. We tested voxelwise differences in BOLD signal variability related to depression group and severity. We also investigated whether BOLD signal variability of DMN, FPN, and SN regions could predict depression history group using a supervised random forest ML model. Results indicated that individuals with any history of depression had significantly decreased BOLD signal variability in the left and right cerebellum and right parietal cortex (pFWE <0.05). Furthermore, greater depression severity was also associated with reduced BOLD signal variability in the cerebellum. A random forest model classified participant depression history with 74% accuracy, with the ventral anterior cingulate cortex of the DMN as the most important variable in the model. These findings provide novel support for resting-state BOLD signal variability as a marker of neural dysfunction in depression and implicate decreased neural signal variability in the pathophysiology of depression.
Collapse
Affiliation(s)
- Sally Pessin
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, WI 53719, USA
| | - Heather C Abercrombie
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA.
| |
Collapse
|
40
|
Leaver AM, Espinoza R, Wade B, Narr KL. Parsing the Network Mechanisms of Electroconvulsive Therapy. Biol Psychiatry 2022; 92:193-203. [PMID: 35120710 PMCID: PMC9196257 DOI: 10.1016/j.biopsych.2021.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the oldest and most effective forms of neurostimulation, wherein electrical current is used to elicit brief, generalized seizures under general anesthesia. When electrodes are positioned to target frontotemporal cortex, ECT is arguably the most effective treatment for severe major depression, with response rates and times superior to other available antidepressant therapies. Neuroimaging research has been pivotal in improving the field's mechanistic understanding of ECT, with a growing number of magnetic resonance imaging studies demonstrating hippocampal plasticity after ECT, in line with evidence of upregulated neurotrophic processes in the hippocampus in animal models. However, the precise roles of the hippocampus and other brain regions in antidepressant response to ECT remain unclear. Seizure physiology may also play a role in antidepressant response to ECT, as indicated by early positron emission tomography, single-photon emission computed tomography, and electroencephalography research and corroborated by recent magnetic resonance imaging studies. In this review, we discuss the evidence supporting neuroplasticity in the hippocampus and other brain regions during and after ECT, and their associations with antidepressant response. We also offer a mechanistic, circuit-level model that proposes that core mechanisms of antidepressant response to ECT involve thalamocortical and cerebellar networks that are active during seizure generalization and termination over repeated ECT sessions, and their interactions with corticolimbic circuits that are dysfunctional prior to treatment and targeted with the electrical stimulus.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| | - Randall Espinoza
- Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin Wade
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
41
|
Han H, Xu M, Wen L, Chen J, Liu Q, Wang J, Li MD, Yang Z. Identification of a Novel Functional Non-synonymous Single Nucleotide Polymorphism in Frizzled Class Receptor 6 Gene for Involvement in Depressive Symptoms. Front Mol Neurosci 2022; 15:882396. [PMID: 35875672 PMCID: PMC9302575 DOI: 10.3389/fnmol.2022.882396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
Although numerous susceptibility loci for depression have been identified in recent years, their biological function and molecular mechanism remain largely unknown. By using an exome-wide association study for depressive symptoms assessed by the Center for Epidemiological Studies Depression (CES-D) score, we discovered a novel missense single nucleotide polymorphism (SNP), rs61753730 (Q152E), located in the fourth exon of the frizzled class receptor 6 gene (FZD6), which is a potential causal variant and is significantly associated with the CES-D score. Computer-based in silico analysis revealed that the protein configuration and stability, as well as the secondary structure of FZD6 differed greatly between the wild-type (WT) and Q152E mutant. We further found that rs61753730 significantly affected the luciferase activity and expression of FZD6 in an allele-specific way. Finally, we generated Fzd6-knockin (Fzd6-KI) mice with rs61753730 mutation using the CRISPR/Cas9 genome editing system and found that these mice presented greater immobility in the forced swimming test, less preference for sucrose in the sucrose preference test, as well as decreased center entries, center time, and distance traveled in the open filed test compared with WT mice after exposed to chronic social defeat stress. These results indicate the involvement of rs61753730 in depression. Taken together, our findings demonstrate that SNP rs61753730 is a novel functional variant and plays an important role in depressive symptoms.
Collapse
Affiliation(s)
- Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- Department of Medical Engineering, Tianjin Medical University, Tianjin, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
- *Correspondence: Ming D. Li,
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhongli Yang,
| |
Collapse
|
42
|
Ding Y, Ou Y, Yan H, Fu X, Yan M, Li H, Liu F, Guo W. Disrupted Cerebellar-Default Mode Network Functional Connectivity in Major Depressive Disorder With Gastrointestinal Symptoms. Front Cell Neurosci 2022; 16:833592. [PMID: 35308120 PMCID: PMC8927069 DOI: 10.3389/fncel.2022.833592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Gastrointestinal (GI) symptoms are one of the common somatic symptoms presented in patients with major depressive disorder (MDD). Higher frequency of GI symptoms and higher GI symptom burden were linked to greater depression severity and increased risk of suicide ideation. However, few studies have explored the underlying mechanisms of GI symptoms in MDD. Based on previous studies, the cerebellar-DMN circuits may play a potentially critical role in GI symptoms comorbid with depression. Fifty-two first-episode drug-naive patients with MDD (35 with GI symptoms and 17 without GI symptoms) and 28 matched healthy controls were recruited in the current study and underwent resting-state functional magnetic resonance imaging scan. Cerebellar seed-based functional connectivity maps were established. Relative to depressed patients without GI symptoms, significantly increased cerebellar-anterior default mode network (DMN) connectivities were found in those with GI symptoms. Both increased and decreased functional connectivities were found between cerebellum and posterior DMN in patients with GI symptoms compared with those without GI symptoms and healthy controls. Moreover, the right Crus I - right superior temporal gyrus connectivity value was related to severity of GI symptoms and depression in all patients with MDD. The support vector machine analysis demonstrated a satisfactory classification accuracy (89%) of the disrupted cerebellar-DMN connectivities for correctly identifying MDD patients with GI symptoms. These results revealed the possible neural mechanisms for the involvement of cerebellar-DMN circuits in GI symptoms co-occurred with MDD.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoya Fu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Meiqi Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Children’s Psychological Development and Brain Cognitive Science, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenbin Guo,
| |
Collapse
|
43
|
Baek SJ, Park JS, Kim J, Yamamoto Y, Tanaka-Yamamoto K. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. eLife 2022; 11:72981. [PMID: 35156922 PMCID: PMC8843095 DOI: 10.7554/elife.72981] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Although cerebellar alterations have been implicated in stress symptoms, the exact contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the development of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility in the tail suspension test or forced swimming test, which were triggered by chronic stress application. The combination of adeno-associated virus-based circuit mapping and electrophysiological recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic activation of these neurons alone triggered behavioral changes that were comparable with the depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-projecting cerebellar neurons proactively regulate the development of depression-like behavior, raising the possibility that cerebellum may be an effective target for the prevention of depressive disorders in human.
Collapse
Affiliation(s)
- Soo Ji Baek
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Sung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
44
|
Kieseppä T, Mäntylä R, Luoma K, Rikandi E, Jylhä P, Isometsä E. White Matter Hyperintensities after Five-Year Follow-Up and a Cross-Sectional FA Decrease in Bipolar I and Major Depressive Patients. Neuropsychobiology 2022; 81:39-50. [PMID: 34130283 DOI: 10.1159/000516234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION An increase in brain white matter hyperintensities (WMHs) and a decrease in white matter fractional anisotrophy (FA) have been detected in bipolar I (BPI), II (BPII), and major depressive disorder (MDD) patients. Their relationship, and differences in diagnostic groups are obscure. Longitudinal studies are rare. OBJECTIVE After 5-year follow-up, we evaluated WMHs in BPI, BPII, and MDD patients as compared with controls, and studied the effects of clinical variables. We also explored the associations of clinical variables with cross-sectional whole brain FA. METHODS Eight BPI, 8 BPII, 6 MDD patients, and 19 controls participated in magnetic resonance imaging at baseline and follow-up. Diffusion weighted imaging was included at follow-up. WMHs were rated by the Coffey scale, and a tract-based spatial statistics method was used for diffusion data. The general linear model, ANOVA, Fisher's exact, Wilcoxon sign, and Kruskal-Wallis tests were used for statistical analyses. RESULTS Periventricular WMHs were increased in BPI patients (p = 0.047) and associated with the duration of disorder and lifetime occurrence of substance use disorder (p = 0.018). FA decrease was found in the corpus callosum of BPI patients (p < 0.01). MDD patients showed FA decrease in the right cerebellar middle peduncle (RCMP) (p < 0.01). In BPI patients, the duration of disorder associated with FA increase in RCMP (p < 0.05). No FA decrease was detected in patients with WMHs as compared with those without. CONCLUSIONS Preceding illness burden associated modestly with WMHs, and FA increase in RCMP in BPI patients. MDD patients had FA decrease in RCMP. No association with FA decrease and WMHs was found.
Collapse
Affiliation(s)
- Tuula Kieseppä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finnish Institute for Health and Welfare, Public Health and Welfare, Mental Health, Helsinki, Finland
| | - Riitta Mäntylä
- Department of Radiology, HUS Medical Imaging Center, Hyvinkää Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katariina Luoma
- Department of Radiology, HUS Medical Imaging Center, Meilahti Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eva Rikandi
- Finnish Institute for Health and Welfare, Public Health and Welfare, Mental Health, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Pekka Jylhä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finnish Institute for Health and Welfare, Public Health and Welfare, Mental Health, Helsinki, Finland
| | - Erkki Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finnish Institute for Health and Welfare, Public Health and Welfare, Mental Health, Helsinki, Finland
| |
Collapse
|
45
|
Wei L, Weng T, Dong H, Baeken C, Jiang T, Wu GR. The cortico-basal-cerebellar neurocircuit is linked to personality trait of novelty seeking. Neuroscience 2022; 488:96-101. [DOI: 10.1016/j.neuroscience.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
|
46
|
Thorne BN, Ellenbroek BA, Day DJ. The serotonin reuptake transporter modulates mitochondrial copy number and mitochondrial respiratory complex gene expression in the frontal cortex and cerebellum in a sexually dimorphic manner. J Neurosci Res 2022; 100:869-879. [PMID: 35043462 DOI: 10.1002/jnr.25010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/05/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric and neurodevelopmental disorders such as major depressive disorder (MDD) and autism spectrum disorder (ASD) are complex conditions attributed to both genetic and environmental factors. There is a growing body of evidence showing that serotonergic signaling and mitochondrial dysfunction contribute to the pathophysiology of these disorders and are linked as signaling through specific serotonin (5-HT) receptors drives mitochondrial biogenesis. The serotonin transporter (SERT) is important in these disorders as it regulates synaptic serotonin and therapeutically is the target of selective serotonin reuptake inhibitors which are a major class of anti-depressant drug. Human allelic variants of the serotonin transporter-linked polymorphic region (5-HTTLPR) such as the S/S variant, are associated with reduced SERT expression and increased susceptibility for developing neuropsychiatric disorders. Using a rat model that is haploinsufficient for SERT and displays reduced SERT expression similar to the human S/S variant, we demonstrate that reduced SERT expression modulates mitochondrial copy number and expression of respiratory chain electron transfer components in the brain. In the frontal cortex, genotype-related trends were opposing for males and females, such that reduced SERT expression led to increased expression of the Complex I subunit mt-Nd1 in males but reduced expression in females. Our findings suggest that SERT expression and serotonergic signaling have a role in regulating mitochondrial biogenesis and adenosine triphosphate (ATP) production in the brain. We speculate that the sexual dimorphism in mitochondrial abundance and gene expression contributes to the sex bias found in the incidence of neuropsychiatric disorders such as MDD and ASD.
Collapse
Affiliation(s)
- Bryony N Thorne
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington Faculty of Science, Wellington, New Zealand
| | - Darren J Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
47
|
Lin L, Herselman MF, Zhou XF, Bobrovskaya L. Effects of corticosterone on BDNF expression and mood behaviours in mice. Physiol Behav 2022; 247:113721. [DOI: 10.1016/j.physbeh.2022.113721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 01/15/2023]
|
48
|
Sun J, Ma Y, Chen L, Wang Z, Guo C, Luo Y, Gao D, Li X, Xu K, Hong Y, Hou X, Tian J, Yu X, Wang H, Fang J, Xiao X. Altered Brain Function in Treatment-Resistant and Non-treatment-resistant Depression Patients: A Resting-State Functional Magnetic Resonance Imaging Study. Front Psychiatry 2022; 13:904139. [PMID: 35935411 PMCID: PMC9352890 DOI: 10.3389/fpsyt.2022.904139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE In this study, we used amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) to observe differences in local brain functional activity and its characteristics in patients with treatment-resistant depression (TRD) and non-treatment-resistant depression (nTRD), and to explore the correlation between areas of abnormal brain functional activity and clinical symptoms. METHOD Thirty-seven patients with TRD, 36 patients with nTRD, and 35 healthy controls (HCs) were included in resting-state fMRI scans. ALFF and ReHo were used for image analysis and further correlation between abnormal brain regions and clinical symptoms were analyzed. RESULTS ANOVA revealed that the significantly different brain regions of ALFF and ReHo among the three groups were mainly concentrated in the frontal and temporal lobes. Compared with the nTRD group, the TRD group had decreased ALFF in the left/right inferior frontal triangular gyrus, left middle temporal gyrus, left cuneus and bilateral posterior lobes of the cerebellum, and increased ALFF in the left middle frontal gyrus and right superior temporal gyrus, and the TRD group had decreased ReHo in the left/right inferior frontal triangular gyrus, left middle temporal gyrus, and increased ReHo in the right superior frontal gyrus. Compared with the HC group, the TRD group had decreased ALFF/ReHo in both the right inferior frontal triangular gyrus and the left middle temporal gyrus. Pearson correlation analysis showed that both ALFF and ReHo values in these abnormal brain regions were positively correlated with HAMD-17 scores (P < 0.05). CONCLUSION Although the clinical symptoms were similar in the TRD and nTRD groups, abnormal neurological functional activity were present in some of the same brain regions. Compared with the nTRD group, ALFF and ReHo showed a wider range of brain area alterations and more complex neuropathological mechanisms in the TRD group, especially in the inferior frontal triangular gyrus of the frontal lobe and the middle temporal gyrus of the temporal lobe.
Collapse
Affiliation(s)
- Jifei Sun
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Ma
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi Wang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojiao Li
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Xu
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Department of Psychiatric, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jing Tian
- Department of Psychiatric, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Yu
- Department of Psychiatric, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Hongxing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Xiao
- Department of Psychiatric, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| |
Collapse
|
49
|
Guo X, Wang W, Kang L, Shu C, Bai H, Tu N, Bu L, Gao Y, Wang G, Liu Z. Abnormal degree centrality in first-episode medication-free adolescent depression at rest: A functional magnetic resonance imaging study and support vector machine analysis. Front Psychiatry 2022; 13:926292. [PMID: 36245889 PMCID: PMC9556654 DOI: 10.3389/fpsyt.2022.926292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Depression in adolescents is more heterogeneous and less often diagnosed than depression in adults. At present, reliable approaches to differentiating between adolescents who are and are not affected by depression are lacking. This study was designed to assess voxel-level whole-brain functional connectivity changes associated with adolescent depression in an effort to define an imaging-based biomarker associated with this condition. MATERIALS AND METHODS In total, 71 adolescents affected by major depressive disorder (MDD) and 71 age-, sex-, and education level-matched healthy controls were subjected to resting-state functional magnetic resonance imaging (rs-fMRI) based analyses of brain voxel-wise degree centrality (DC), with a support vector machine (SVM) being used for pattern classification analyses. RESULTS DC patterns derived from 16-min rs-fMRI analyses were able to effectively differentiate between adolescent MDD patients and healthy controls with 95.1% accuracy (136/143), and with respective sensitivity and specificity values of 92.1% (70/76) and 98.5% (66/67) based upon DC abnormalities detected in the right cerebellum. Specifically, increased DC was evident in the bilateral insula and left lingual area of MDD patients, together with reductions in the DC values in the right cerebellum and bilateral superior parietal lobe. DC values were not significantly correlated with disease severity or duration in these patients following correction for multiple comparisons. CONCLUSION These results suggest that whole-brain network centrality abnormalities may be present in many brain regions in adolescent depression patients. Accordingly, these DC maps may hold value as candidate neuroimaging biomarkers capable of differentiating between adolescents who are and are not affected by MDD, although further validation of these results will be critical.
Collapse
Affiliation(s)
- Xin Guo
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, United Kingdom
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanpin Bai
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning Tu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihong Bu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
50
|
Jung JY, Cho SE, Kim N, Kang CK, Kang SG. Decreased resting-state functional connectivity of the habenula-cerebellar in a major depressive disorder. Front Psychiatry 2022; 13:925823. [PMID: 36147982 PMCID: PMC9485485 DOI: 10.3389/fpsyt.2022.925823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In animal experiments, the habenula and septal nuclei are known as the key brain areas of depression. However, there are few magnetic resonance imaging (MRI) studies on the functional connectivity between these areas and the subcortical areas in humans with major depression. We aimed to investigate the difference in resting-state functional connectivity (RSFC) among the major regions of interest (ROI) in the subcortical areas, including both the habenula and septal nuclei. METHODS We performed the seed-to-voxel analysis to investigate the RSFC between both the habenula and septal nucleus, as well as other subcortical regions. Furthermore, ROI-to-ROI analysis was performed among the combinations of ROI pairs in the subcortical areas. RESULTS The seed-to-voxel analysis showed a lower RSFC between the left habenula and the cerebellum in major depressive disorder (MDD) than in healthy controls (HCs). As a result of ROI-to-ROI analysis in subcortical areas, a total of 31 pairs of FCs in the MDD group showed a lower RSFC than in the HCs group. CONCLUSION This study revealed a lower RSFC between the left habenula and cerebellum in patients with MDD and reduced RSFC among numerous subcortical areas. These new findings on the neural circuitry of MDD might contribute to an in-depth understanding of depression.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Department of Health Science, Gachon University Graduate School, Incheon, South Korea
| | - Seo-Eun Cho
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Nambeom Kim
- Department of Biomedical Engineering Research Center, Gachon University, Incheon, South Korea
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon, South Korea
| | - Seung-Gul Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|