1
|
Andriola I, Valt C, Marsella V, Palma C, Tavella A, Putignano F, Stolfa G, Fazio L, Rampino A, Pergola G, Bertolino A. Different abnormalities of mismatch negativity in schizophrenia and depression as assessed with magnetoencephalography. J Psychiatr Res 2025; 181:126-133. [PMID: 39612606 DOI: 10.1016/j.jpsychires.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 12/01/2024]
Abstract
Mismatch negativity (MMN) is widely considered a candidate diagnostic biomarker for schizophrenia (SCZ). Although blunted MMN responses have been reliably observed in psychosis, the evidence for MMN deficits in other disorders, such as major depressive disorder (MDD), is mixed. This study explores whether MMN alterations in amplitude or latency are unique to SCZ or extend to non-psychotic MDD patients. Seventeen patients diagnosed with a first MDD episode, 18 with recurrent MDD, 17 with first episode of SCZ spectrum disorder, and 18 with chronic SCZ, along with two groups of age- and sex-matched neurotypical controls (NC, 17 and 18), participated in a passive auditory MMN task during magnetoencephalography (MEG) recording. We examined the magnetic MMN (mMMN) amplitude and latency, exploring potential links between observed MMN alterations and psychotropic medication treatments. The mMMN amplitudes were significantly attenuated in SCZ compared to NC. Although, on average, mMMN amplitudes also appeared to be small in MDD, there was no significant difference between MDD and SCZ or NC. Notably, MDD patients had longer mMMN latencies compared to SCZ and NC, especially those with recurrent MDD. These results remained consistent after controlling for mood stabilizers, antidepressants, or benzodiazepines. These findings show that mMMN amplitude reductions may be more pronounced in psychotic disorders than in depressive disorders, whereas abnormal mMMN latencies may be more specific to MDD, suggesting differential mMMN alterations in SCZ and MDD. Caution is advised regarding mMMN amplitude as a diagnostic biomarker for SCZ, as small reductions also occur in MDD.
Collapse
Affiliation(s)
- Ileana Andriola
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; University Hospital Polyclinic of Bari: Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Christian Valt
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Verdiana Marsella
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Celestino Palma
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Angelantonio Tavella
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; Department of Mental Health, ASL Bari, Bari, Italy
| | - Francesca Putignano
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Stolfa
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Fazio
- Department of Medicine and Surgery - LUM University - Bari, Italy
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; University Hospital Polyclinic of Bari: Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy; University Hospital Polyclinic of Bari: Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy.
| |
Collapse
|
2
|
Hartley ND, Krol A, Choi S, Rome N, Levandowski K, Pasqualoni S, Jones C, Tian J, Lee S, Lee H, Kast R, Feng G, Fu Z. Distinct structural and functional connectivity of genetically segregated thalamoreticular subnetworks. Cell Rep 2024; 43:115037. [PMID: 39630580 DOI: 10.1016/j.celrep.2024.115037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
The thalamic reticular nucleus (TRN), the major inhibitory source of the thalamus, plays essential roles in sensory processing, attention, and cognition. However, our understanding of how TRN circuitry contributes to these diverse functions remains limited, largely due to the lack of genetic tools for selectively targeting TRN neurons with discrete structural and physiological properties. Here, we develop Cre mouse lines targeting two genetically segregated populations of TRN neurons that engage first-order (FO) and higher-order (HO) thalamic nuclei, respectively. In addition to substantially distinct electrophysiological properties, these TRN subnetworks are further distinguished by biases in top-down cortical and bottom-up thalamic inputs, along with significant differences in brain-wide synaptic convergence. Furthermore, we demonstrate that dysfunction of each subnetwork results in distinct cortical electroencephalogram (EEG) and sensory processing deficits commonly observed in neuropsychiatric disorders, underscoring the potential involvement of TRN subnetworks in the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra Krol
- Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nita Rome
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirsten Levandowski
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiawen Tian
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Husang Lee
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Ryan Kast
- Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Leynes PA, Verma Y, Santos A. Separating the FN400 and N400 event-related potential components in masked word priming. Brain Cogn 2024; 182:106226. [PMID: 39442228 DOI: 10.1016/j.bandc.2024.106226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Masked word repetition (priming) increases "old" responses on an episodic recognition test, which has been attributed to more fluent target processing. Such results hinge on comparisons to a control prime that is "fluency-neutral". A common practice is to use unrelated word primes for this purpose when some evidence suggests that they actually decrease target word processing fluency (disfluency). ERP and behavioral measures were collected in three experiments that used non-letter symbols as a fluency-neutral control and match primes to increase processing fluency. Experiment 1 compared unrelated word primes and orthographically dissimilar nonword primes to determine whether these primes cause disfluency. Experiment 2 contrasted orthographically dissimilar and similar nonword primes. Experiment 3 examined semantically related primes to test theoretical predictions derived from Experiments 1 and 2. All three experiments provide evidence that the FN400 and N400 are distinct ERP components because many primes altered only one of the components. Relative to the control condition, match (Exps 1 & 2) and semantic primes selectively affected N400 amplitudes, whereas unrelated word primes and orthographically dissimilar nonword primes selectively affected FN400 amplitudes. The Unexpected Fluency Attribution model (Mecklinger & Bader, 2020) provides a framework for understanding the cognitive processes associated with each ERP component.
Collapse
|
4
|
Zhang J, Ren R, Ding S, Sa Y, Zhang W, Wang W, Wilson G, Ma X, Gong K. Serum metabolic profile evidence for relationship between schizophrenia and depression: An untargeted metabolomics. Biomed Chromatogr 2024; 38:e6029. [PMID: 39434479 DOI: 10.1002/bmc.6029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Given the genetic and clinical overlap observed between schizophrenia and depression, the present study was to identify the similarities and differences in serum metabolic profiles between patients with schizophrenia and depression. Global metabolomics research methods based on UHPLC-QTOF-MS/MS were performed. A total of 113 and 118 differential metabolites were screened and identified in depression and schizophrenia groups, respectively, as compared to health control; among those, 94 differential metabolites were shared by both. Pathway analysis indicated arginine and proline metabolism, alanine, aspartate, and glutamate metabolism were two significant metabolic pathways both in depression and schizophrenia groups as compared with health control groups, respectively. Similarly, 77 differential metabolites were identified between depression and schizophrenia groups, in which, serum N-acetylglutamine and isovalerylglycine levels showed significant differences between patients with depression and schizophrenia with p values less than 0.001 and without significant outliers. Sphingolipid metabolism was identified as a significant metabolic pathway distinguishing between depression and schizophrenia groups based on pathway analysis. Conclusively, common alterations in arginine and proline metabolism, alanine, aspartate, and glutamate metabolism were observed in patients with schizophrenia and depression; whereas differences in serum N-acetylglutamine and isovalerylglycine levels as well as sphingolipid metabolism were discovered between the two categories of patients.
Collapse
Affiliation(s)
- Jing Zhang
- Traditional Chinese Medicine Hospital of Yinchuan, 231 Jiefang West Street, Yinchuan, 750001, China
| | - Ruru Ren
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Shuqin Ding
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weiman Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Kaimin Gong
- Traditional Chinese Medicine Hospital of Yinchuan, 231 Jiefang West Street, Yinchuan, 750001, China
| |
Collapse
|
5
|
Etkin A, Powell J, Savitz AJ. Opportunities for use of neuroimaging in de-risking drug development and improving clinical outcomes in psychiatry: an industry perspective. Neuropsychopharmacology 2024; 50:258-268. [PMID: 39169213 PMCID: PMC11526012 DOI: 10.1038/s41386-024-01970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Neuroimaging, across positron emission tomography (PET), electroencephalography (EEG), and magnetic resonance imaging (MRI), has been a mainstay of clinical neuroscience research for decades, yet has penetrated little into psychiatric drug development beyond often underpowered phase 1 studies, or into clinical care. Simultaneously, there is a pressing need to improve the probability of success in drug development, increase mechanistic diversity, and enhance clinical efficacy. These goals can be achieved by leveraging neuroimaging in a precision psychiatry framework, wherein effects of drugs on the brain are measured early in clinical development to understand dosing and indication, and then in later-stage trials to identify likely drug responders and enrich clinical trials, ultimately improving clinical outcomes. Here we examine the key variables important for success in using neuroimaging for precision psychiatry from the lens of biotechnology and pharmaceutical companies developing and deploying new drugs in psychiatry. We argue that there are clear paths for incorporating different neuroimaging modalities to de-risk subsequent development phases in the near to intermediate term, culminating in use of select neuroimaging modalities in clinical care for prescription of new precision drugs. Better outcomes through neuroimaging biomarkers, however, require a wholesale commitment to a precision psychiatry approach and will necessitate a cultural shift to align biopharma and clinical care in psychiatry to a precision orientation already routine in other areas of medicine.
Collapse
Affiliation(s)
- Amit Etkin
- Alto Neuroscience Inc., Los Altos, CA, 94022, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94304, USA.
| | | | - Adam J Savitz
- Alto Neuroscience Inc., Los Altos, CA, 94022, USA
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10021, USA
| |
Collapse
|
6
|
Lányi O, Koleszár B, Schulze Wenning A, Balogh D, Engh MA, Horváth AA, Fehérvari P, Hegyi P, Molnár Z, Unoka Z, Csukly G. Excitation/inhibition imbalance in schizophrenia: a meta-analysis of inhibitory and excitatory TMS-EMG paradigms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:56. [PMID: 38879590 PMCID: PMC11180212 DOI: 10.1038/s41537-024-00476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 06/19/2024]
Abstract
Cortical excitation-inhibition (E/I) imbalance is a potential model for the pathophysiology of schizophrenia. Previous research using transcranial magnetic stimulation (TMS) and electromyography (EMG) has suggested inhibitory deficits in schizophrenia. In this meta-analysis we assessed the reliability and clinical potential of TMS-EMG paradigms in schizophrenia following the methodological recommendations of the PRISMA guideline and the Cochrane Handbook. The search was conducted in three databases in November 2022. Included articles reported Short-Interval Intracortical Inhibition (SICI), Intracortical Facilitation (ICF), Long-Interval Intracortical Inhibition (LICI) and Cortical Silent Period (CSP) in patients with schizophrenia and healthy controls. Meta-analyses were conducted using a random-effects model. Subgroup analysis and meta-regressions were used to assess heterogeneity. Results of 36 studies revealed a robust inhibitory deficit in schizophrenia with a significant decrease in SICI (Cohen's d: 0.62). A trend-level association was found between SICI and antipsychotic medication. Our findings support the E/I imbalance hypothesis in schizophrenia and suggest that SICI may be a potential pathophysiological characteristic of the disorder.
Collapse
Affiliation(s)
- Orsolya Lányi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Boróka Koleszár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | | | - David Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - András Attila Horváth
- Neurocognitive Research Center, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| | - Péter Fehérvari
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland
| | - Zsolt Unoka
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Gonzalez-Burgos I, Valencia M, Redondo R, Janz P. Optogenetic inhibition of the limbic corticothalamic circuit does not alter spontaneous oscillatory activity, auditory-evoked oscillations, and deviant detection. Sci Rep 2024; 14:13114. [PMID: 38849374 PMCID: PMC11161607 DOI: 10.1038/s41598-024-63036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Aberrant neuronal circuit dynamics are at the core of complex neuropsychiatric disorders, such as schizophrenia (SZ). Clinical assessment of the integrity of neuronal circuits in SZ has consistently described aberrant resting-state gamma oscillatory activity, decreased auditory-evoked gamma responses, and abnormal mismatch responses. We hypothesized that corticothalamic circuit manipulation could recapitulate SZ circuit phenotypes in rodent models. In this study, we optogenetically inhibited the mediodorsal thalamus-to-prefrontal cortex (MDT-to-PFC) or the PFC-to-MDT projection in rats and assessed circuit function through electrophysiological readouts. We found that MDT-PFC perturbation could not recapitulate SZ-linked phenotypes such as broadband gamma disruption, altered evoked oscillatory activity, and diminished mismatch negativity responses. Therefore, the induced functional impairment of the MDT-PFC pathways cannot account for the oscillatory abnormalities described in SZ.
Collapse
Affiliation(s)
- Irene Gonzalez-Burgos
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
- Program of Biomedical Engineering, Universidad de Navarra, CIMA, Avenida Pío XII 55, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
| | - Miguel Valencia
- Program of Biomedical Engineering, Universidad de Navarra, CIMA, Avenida Pío XII 55, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
| | - Roger Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
8
|
Kotov R, Carpenter WT, Cicero DC, Correll CU, Martin EA, Young JW, Zald DH, Jonas KG. Psychosis superspectrum II: neurobiology, treatment, and implications. Mol Psychiatry 2024; 29:1293-1309. [PMID: 38351173 PMCID: PMC11731826 DOI: 10.1038/s41380-024-02410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
Alternatives to traditional categorical diagnoses have been proposed to improve the validity and utility of psychiatric nosology. This paper continues the companion review of an alternative model, the psychosis superspectrum of the Hierarchical Taxonomy of Psychopathology (HiTOP). The superspectrum model aims to describe psychosis-related psychopathology according to data on distributions and associations among signs and symptoms. The superspectrum includes psychoticism and detachment spectra as well as narrow subdimensions within them. Auxiliary domains of cognitive deficit and functional impairment complete the psychopathology profile. The current paper reviews evidence on this model from neurobiology, treatment response, clinical utility, and measure development. Neurobiology research suggests that psychopathology included in the superspectrum shows similar patterns of neural alterations. Treatment response often mirrors the hierarchy of the superspectrum with some treatments being efficacious for psychoticism, others for detachment, and others for a specific subdimension. Compared to traditional diagnostic systems, the quantitative nosology shows an approximately 2-fold increase in reliability, explanatory power, and prognostic accuracy. Clinicians consistently report that the quantitative nosology has more utility than traditional diagnoses, but studies of patients with frank psychosis are currently lacking. Validated measures are available to implement the superspectrum model in practice. The dimensional conceptualization of psychosis-related psychopathology has implications for research, clinical practice, and public health programs. For example, it encourages use of the cohort study design (rather than case-control), transdiagnostic treatment strategies, and selective prevention based on subclinical symptoms. These approaches are already used in the field, and the superspectrum provides further impetus and guidance for their implementation. Existing knowledge on this model is substantial, but significant gaps remain. We identify outstanding questions and propose testable hypotheses to guide further research. Overall, we predict that the more informative, reliable, and valid characterization of psychopathology offered by the superspectrum model will facilitate progress in research and clinical care.
Collapse
Affiliation(s)
- Roman Kotov
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
| | | | - David C Cicero
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - David H Zald
- Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Katherine G Jonas
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Pujol J, Pujol N, Mané A, Martínez-Vilavella G, Deus J, Pérez-Sola V, Blanco-Hinojo L. Mapping alterations in the local synchrony of the cerebral cortex in schizophrenia. Eur Psychiatry 2023; 66:e84. [PMID: 37848404 PMCID: PMC10755567 DOI: 10.1192/j.eurpsy.2023.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Observations from different fields of research coincide in indicating that a defective gamma-aminobutyric acid (GABA) interneuron system may be among the primary factors accounting for the varied clinical expression of schizophrenia. GABA interneuron deficiency is locally expressed in the form of neural activity desynchronization. We mapped the functional anatomy of local synchrony in the cerebral cortex in schizophrenia using functional connectivity MRI. METHODS Data from 86 patients with schizophrenia and 137 control subjects were obtained from publicly available repositories. Resting-state functional connectivity maps based on Iso-Distant Average Correlation measures across three distances were estimated detailing the local functional structure of the cerebral cortex. RESULTS Patients with schizophrenia showed weaker local functional connectivity (i.e., lower MRI signal synchrony) in (i) prefrontal lobe areas, (ii) somatosensory, auditory, visual, and motor cortices, (iii) paralimbic system at the anterior insula and anterior cingulate cortex, and (iv) hippocampus. The distribution of the defect in cortical area synchrony largely coincided with the synchronization effect of the GABA agonist alprazolam previously observed using identical functional connectivity measures. There was also a notable resemblance between the anatomy of our findings and cortical areas showing higher density of parvalbumin (prefrontal lobe and sensory cortices) and somatostatin (anterior insula and anterior cingulate cortex) GABA interneurons in humans. CONCLUSIONS Our results thus provide detail of the functional anatomy of synchrony changes in the cerebral cortex in schizophrenia and suggest which elements of the interneuron system are affected. Such information could ultimately be relevant in the search for specific treatments.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nuria Pujol
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
- Institute of Neuropsychiatry and Addictions, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Anna Mané
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
- Institute of Neuropsychiatry and Addictions, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Víctor Pérez-Sola
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
- Institute of Neuropsychiatry and Addictions, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
10
|
Valt C, Quarto T, Tavella A, Romanelli F, Fazio L, Arcara G, Altamura M, Barrasso G, Bellomo A, Blasi G, Brudaglio F, Carofiglio A, D'Ambrosio E, Padalino FA, Rampino A, Saponaro A, Semisa D, Suma D, Pergola G, Bertolino A. Reduced magnetic mismatch negativity: a shared deficit in psychosis and related risk. Psychol Med 2023; 53:6037-6045. [PMID: 36321391 DOI: 10.1017/s003329172200321x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Abnormal auditory processing of deviant stimuli, as reflected by mismatch negativity (MMN), is often reported in schizophrenia (SCZ). At present, it is still under debate whether this dysfunctional response is specific to the full-blown SCZ diagnosis or rather a marker of psychosis in general. The present study tested MMN in patients with SCZ, bipolar disorder (BD), first episode of psychosis (FEP), and in people at clinical high risk for psychosis (CHR). METHODS Source-based MEG activity evoked during a passive auditory oddball task was recorded from 135 patients grouped according to diagnosis (SCZ, BD, FEP, and CHR) and 135 healthy controls also divided into four subgroups, age- and gender-matched with diagnostic subgroups. The magnetic MMN (mMMN) was analyzed as event-related field (ERF), Theta power, and Theta inter-trial phase coherence (ITPC). RESULTS The clinical group as a whole showed reduced mMMN ERF amplitude, Theta power, and Theta ITPC, without any statistically significant interaction between diagnosis and mMMN reductions. The mMMN subgroup contrasts showed lower ERF amplitude in all the diagnostic subgroups. In the analysis of Theta frequency, SCZ showed significant power and ITPC reductions, while only indications of diminished ITPC were observed in CHR, but no significant decreases characterized BD and FEP. CONCLUSIONS Significant mMMN alterations in people experiencing psychosis, also for diagnoses other than SCZ, suggest that this neurophysiological response may be a feature shared across psychotic disorders. Additionally, reduced Theta ITPC may be associated with risk for psychosis.
Collapse
Affiliation(s)
- Christian Valt
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Quarto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Humanities, University of Foggia, Foggia, Italy
| | | | | | - Leonardo Fazio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | | | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Barrasso
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| | - Flora Brudaglio
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | | | - Enrico D'Ambrosio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience - King's College London, London, UK
| | | | - Antonio Rampino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| | | | | | - Domenico Suma
- Department of Mental Health, ASL Brindisi, Brindisi, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| |
Collapse
|
11
|
Huang J, Zhao Y, Tian Z, Qu W, Du X, Zhang J, Tan Y, Wang Z, Tan S. Evaluating the clinical utility of speech analysis and machine learning in schizophrenia: A pilot study. Comput Biol Med 2023; 164:107359. [PMID: 37591160 DOI: 10.1016/j.compbiomed.2023.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Schizophrenia is a serious mental disorder that significantly impacts social functioning and quality of life. However, current diagnostic methods lack objective biomarker support. While some studies have indicated differences in audio features between patients with schizophrenia and healthy controls, these findings are influenced by demographic information and variations in experimental paradigms. Therefore, it is crucial to explore stable and reliable audio biomarkers for an auxiliary diagnosis and disease severity prediction of schizophrenia. METHOD A total of 130 individuals (65 patients with schizophrenia and 65 healthy controls) read three fixed texts containing positive, neutral, and negative emotions, and recorded them. All audio signals were preprocessed and acoustic features were extracted by a librosa-0.9.2 toolkit. Independent sample t-tests were performed on two sets of acoustic features, and Pearson correlation on the acoustic features and Positive and Negative Syndrome Scale (PANSS) scores of the schizophrenia group. Classification algorithms in scikit-learn were used to diagnose schizophrenia and predict the level of negative symptoms. RESULTS Significant differences were observed between the two groups in the mfcc_8, mfcc_11, and mfcc_33 of mel-frequency cepstral coefficient (MFCC). Furthermore, a significant correlation was found between mfcc_7 and the negative PANSS scores. Through acoustic features, we could not only differentiate patients with schizophrenia from healthy controls with an accuracy of 0.815 but also predict the grade of the negative symptoms in schizophrenia with an average accuracy of 0.691. CONCLUSIONS The results demonstrated the considerable potential of acoustic characteristics as reliable biomarkers for diagnosing schizophrenia and predicting clinical symptoms.
Collapse
Affiliation(s)
- Jie Huang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yanli Zhao
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Zhanxiao Tian
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Wei Qu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Xia Du
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Jie Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China.
| |
Collapse
|
12
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
14
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
15
|
Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang YD, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
|
16
|
de la Salle S, Choueiry J, McIntosh J, Bowers H, Ilivitsky V, Knott V. N-methyl-D-aspartate receptor antagonism impairs sensory gating in the auditory cortex in response to speech stimuli. Psychopharmacology (Berl) 2022; 239:2155-2169. [PMID: 35348805 DOI: 10.1007/s00213-022-06090-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Deficits in early auditory sensory processing in schizophrenia have been linked to N-methyl-D-aspartate receptor (NMDAR) hypofunction, but the role of NMDARs in aberrant auditory sensory gating (SG) in this disorder is unclear. This study, conducted in 22 healthy humans, examined the acute effects of a subanesthetic dose of the NMDAR antagonist ketamine on SG as measured electrophysiologically by suppression of the P50 event-related potential (ERP) to the second (S2) relative to the first (S1) of two closely paired (500 ms) identical speech stimuli. Ketamine induced impairment in SG indices at sensor (scalp)-level and at source-level in the auditory cortex (as assessed with eLORETA). Together with preliminary evidence of modest positive associations between impaired gating and dissociative symptoms elicited by ketamine, tentatively support a model of NMDAR hypofunction underlying disturbances in auditory SG in schizophrenia.
Collapse
Affiliation(s)
- Sara de la Salle
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Joelle Choueiry
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Vadim Ilivitsky
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Verner Knott
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Asimakidou E, Job X, Kilteni K. The positive dimension of schizotypy is associated with a reduced attenuation and precision of self-generated touch. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:57. [PMID: 35854009 PMCID: PMC9261081 DOI: 10.1038/s41537-022-00264-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
The brain predicts the sensory consequences of our movements and uses these predictions to attenuate the perception of self-generated sensations. Accordingly, self-generated touch feels weaker than an externally generated touch of identical intensity. In schizophrenia, this somatosensory attenuation is substantially reduced, suggesting that patients with positive symptoms fail to accurately predict and process self-generated touch. If an impaired prediction underlies the positive symptoms of schizophrenia, then a similar impairment should exist in healthy nonclinical individuals with high positive schizotypal traits. One hundred healthy participants (53 female), assessed for schizotypal traits, underwent a well-established psychophysics force discrimination task to quantify how they perceived self-generated and externally generated touch. The perceived intensity of tactile stimuli delivered to their left index finger (magnitude) and the ability to discriminate the stimuli (precision) was measured. We observed that higher positive schizotypal traits were associated with reduced somatosensory attenuation and poorer somatosensory precision of self-generated touch, both when treating schizotypy as a continuous or categorical variable. These effects were specific to positive schizotypy and were not observed for the negative or disorganized dimensions of schizotypy. The results suggest that positive schizotypal traits are associated with a reduced ability to predict and process self-generated touch. Given that the positive dimension of schizotypy represents the analogue of positive psychotic symptoms of schizophrenia, deficits in processing self-generated tactile information could indicate increased liability to schizophrenia.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Xavier Job
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Konstantina Kilteni
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden.
| |
Collapse
|
18
|
Rosenbrock H, Dorner-Ciossek C, Giovannini R, Schmid B, Schuelert N. Effects of the glycine transporter-1 inhibitor iclepertin (BI 425809) on sensory processing, neural network function, and cognition in animal models related to schizophrenia. J Pharmacol Exp Ther 2022; 382:223-232. [PMID: 35661632 DOI: 10.1124/jpet.121.001071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor hypofunction leading to neural network dysfunction is thought to play an important role in the pathophysiology of cognitive impairment associated with schizophrenia (CIAS). Increasing extracellular concentrations of the NMDA receptor co-agonist glycine through inhibition of glycine transporter-1 (GlyT1) has the potential to treat CIAS by improving cortical network function through enhanced glutamatergic signaling. Indeed, the novel GlyT1 inhibitor iclepertin (BI 425809) improved cognition in a recent clinical study in patients with schizophrenia. The present study tested the ability of iclepertin to reverse MK-801-induced deficits in auditory sensory processing and cortical network function using electroencephalography (EEG) to measure auditory event-related potentials (AERP) and 40 Hz auditory steady-state response (ASSR). In addition, improvements in memory performance with iclepertin were evaluated using the T-maze spontaneous alternation test in MK-801-treated mice and the social recognition test in naïve rats. Iclepertin reversed MK-801-induced deficits in the AERP readouts N1 amplitude and N1 gating, as well as 40 Hz ASSR power and inter-trial coherence. Additionally, iclepertin significantly attenuated an MK-801-induced increase in basal gamma power. Furthermore, iclepertin reversed MK-801-induced working memory deficits in mice and improved social recognition memory performance in rats. Overall, this study demonstrates that inhibition of GlyT1 is sufficient to attenuate MK-801-induced deficits in translatable EEG parameters relevant to schizophrenia. Moreover, iclepertin showed memory-enhancing effects in rodent cognition tasks, further demonstrating the potential for GlyT1 inhibition to treat CIAS. Significance Statement Despite the significant patient burden caused by cognitive impairment associated with schizophrenia, there are currently no approved pharmacotherapies. In this preclinical study, the novel glycine transporter inhibitor iclepertin (BI 425809) reversed sensory processing deficits and neural network dysfunction evoked by inhibition of N-methyl-D-aspartate (NMDA) receptors, and enhanced working memory performance and social recognition in rodents. These findings support previous clinical evidence for the pro-cognitive effects of iclepertin.
Collapse
Affiliation(s)
- Holger Rosenbrock
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | | | - Bernhard Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Niklas Schuelert
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| |
Collapse
|
19
|
Kipiński L, Maciejowski A, Małyszczak K, Pilecki W. High-frequency changes in single-trial visual evoked potentials for unattended stimuli in chronic schizophrenia. J Neurosci Methods 2022; 377:109626. [DOI: 10.1016/j.jneumeth.2022.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
20
|
Lian L, Kim DD, Procyshyn RM, Cázares D, Honer WG, Barr AM. Long-acting injectable antipsychotics for early psychosis: A comprehensive systematic review. PLoS One 2022; 17:e0267808. [PMID: 35486616 PMCID: PMC9053823 DOI: 10.1371/journal.pone.0267808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
AIM Long acting injectable (LAI) antipsychotics are an alternative to oral antipsychotic (OAP) treatment and may be beneficial for patients in the early stages of schizophrenia. This study aims to provide a comprehensive review on the efficacy of first-generation and second-generation LAI antipsychotics in recent-onset, first-episode, and early psychosis patients. METHODS MEDLINE, EMBASE, PsycINFO, and Web of Science Core databases were used to search for studies that used LAIs in early psychosis patients. Studies published up to 06 Jun 2019 were included with no language restrictions applied. Inclusion criteria were a diagnosis of schizophrenia or related disorder, where patients were in their first episode or had a duration of illness ≤5 years. RESULTS 33 studies were included: 8 RCTs, 4 post-hoc analyses, 2 case reports, and 19 naturalistic studies. The majority of studies evaluated risperidone LAIs (N = 14) and paliperidone palmitate (N = 10), while the remainder investigated fluphenazine decanoate (N = 3), flupentixol decanoate (N = 2), and aripiprazole (N = 1). Two studies did not specify the LAI formulation used, and one cohort study compared the efficacy of multiple different LAI formulations. CONCLUSIONS While the majority of data is based on naturalistic studies investigating risperidone LAIs or paliperidone palmitate, LAIs may be an effective treatment for early psychosis patients in terms of adherence, relapse reduction, and symptom improvements. There is still a need to conduct more high quality RCTs that investigate the efficacy of different LAI formulations in early psychosis patients.
Collapse
Affiliation(s)
- Lulu Lian
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, B.C., Canada
| | - David D. Kim
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, B.C., Canada
- British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, B.C., Canada
| | - Ric M. Procyshyn
- British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, B.C., Canada
- Department of Psychiatry, University of British Columbia, Vancouver, B.C., Canada
| | - Diana Cázares
- Department of Chemical & Biological Sciences, Universidad de las Americas Puebla, Puebla, Mexico
| | - William G. Honer
- British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, B.C., Canada
- Department of Psychiatry, University of British Columbia, Vancouver, B.C., Canada
| | - Alasdair M. Barr
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, B.C., Canada
- British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, B.C., Canada
| |
Collapse
|
21
|
Chang Q, Li C, Zhang J, Wang C. Dynamic brain functional network based on EEG microstate during sensory gating in schizophrenia. J Neural Eng 2022; 19. [PMID: 35130537 DOI: 10.1088/1741-2552/ac5266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/07/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cognitive impairment is one of the core symptoms of schizophrenia, with an emphasis on dysfunctional information processing. Sensory gating deficits have consistently been reported in schizophrenia, but the underlying physiological mechanism is not well-understood. We report the discovery and characterization of P50 dynamic brain connections based on microstate analysis. APPROACH We identify five main microstates associated with the P50 response and the difference between the first and second click presentation (S1-S2-P50) in first-episode schizophrenia patients (FESZ), ultra-high-risk individuals (UHR) and healthy controls (HC). The we used the signal segments composed of consecutive time points with the same microstate label to construct brain functional networks. MAIN RESULTS The microstate with a prefrontal extreme location during the response to the S1 of P50 are statistically different in duration, occurrence and coverage among the FESZ, UHR and HC groups. In addition, a microstate with anterior-posterior orientation was found to be associated with S1-S2-P50 and its coverage was found to differ among the FESZ, UHR and HC groups. Source location of microstates showed that activated brain regions were mainly concentrated in the right temporal lobe. Furthermore, the connectivities between brain regions involved in P50 processing of HC were widely different from those of FESZ and UHR. SIGNIFICANCE Our results indicate that P50 suppression deficits in schizophrenia may be due to both aberrant baseline sensory perception and adaptation to repeated stimulus. Our findings provide new insight into the mechanisms of P50 suppression in the early stage of schizophrenia.
Collapse
Affiliation(s)
- Qi Chang
- BeiHang University School of Biological Science and Medical Engineering, Xueyuan Road 37#, Haidian district, Beijing, 100191, P.R. China, Beijing, 100191, CHINA
| | - Cancheng Li
- School of Biological and Medical Engineering , Beihang University, Xueyuan Road 37#, Haidian district, Beijing, Beijing, 100083, CHINA
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Xueyuan Road 37#, Haidian district, Beijing, Beijing, 100083, CHINA
| | - Chuanyue Wang
- Beijing An Ding Hospital, 5 Ankang Hutong, Dewai Avenue, Xicheng District, Beijing, Beijing, 100088, CHINA
| |
Collapse
|
22
|
Bridging the gap: TMS-EEG from Lab to Clinic. J Neurosci Methods 2022; 369:109482. [PMID: 35041855 DOI: 10.1016/j.jneumeth.2022.109482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 01/06/2023]
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has reached technological maturity and has been an object of significant scientific interest for over two decades. Ιn parallel, accumulating evidence highlights the potential of TMS-EEG as a useful tool in the field of clinical neurosciences. Nevertheless, its clinical utility has not yet been established, partly because technical and methodological limitations have created a gap between an evolving scientific tool and standard clinical practice. Here we review some of the identified gaps that still prevent TMS-EEG moving from science laboratories to clinical practice. The principal and partly overlapping gaps include: 1) complex and laborious application, 2) difficulty in obtaining high-quality signals, 3) suboptimal accuracy and reliability, and 4) insufficient understanding of the neurobiological substrate of the responses. All these four aspects need to be satisfactorily addressed for the method to become clinically applicable and enter the diagnostic and therapeutic arena. In the current review, we identify steps that might be taken to address these issues and discuss promising recent studies providing tools to aid bridging the gaps.
Collapse
|
23
|
Galkin S, Bokhan N. The differential diagnosis of unipolar and bipolar depression based on EEG signals. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:51-56. [DOI: 10.17116/jnevro202212211151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Taylor JA, Larsen KM, Dzafic I, Garrido MI. Predicting subclinical psychotic-like experiences on a continuum using machine learning. Neuroimage 2021; 241:118329. [PMID: 34302968 DOI: 10.1016/j.neuroimage.2021.118329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
Previous studies applying machine learning methods to psychosis have primarily been concerned with the binary classification of chronic schizophrenia patients and healthy controls. The aim of this study was to use electroencephalographic (EEG) data and pattern recognition to predict subclinical psychotic-like experiences on a continuum between these two extremes in otherwise healthy people. We applied two different approaches to an auditory oddball regularity learning task obtained from N = 73 participants: A feature extraction and selection routine incorporating behavioural measures, event-related potential components and effective connectivity parameters; Regularisation of spatiotemporal maps of event-related potentials. Using the latter approach, optimal performance was achieved using the response to frequent, predictable sounds. Features within the P50 and P200 time windows had the greatest contribution toward lower Prodromal Questionnaire (PQ) scores and the N100 time window contributed most to higher PQ scores. As a proof-of-concept, these findings demonstrate that EEG data alone are predictive of individual psychotic-like experiences in healthy people. Our findings are in keeping with the mounting evidence for altered sensory responses in schizophrenia, as well as the notion that psychosis may exist on a continuum expanding into the non-clinical population.
Collapse
Affiliation(s)
- Jeremy A Taylor
- Melbourne School of Psychological Sciences, University of Melbourne, Australia; Queensland Brain Institute, University of Queensland, Australia.
| | - Kit Melissa Larsen
- Queensland Brain Institute, University of Queensland, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Child and Adolescent Mental Health Care, Mental Health Services Capital Region Copenhagen, University of Copenhagen, Denmark
| | - Ilvana Dzafic
- Melbourne School of Psychological Sciences, University of Melbourne, Australia; Queensland Brain Institute, University of Queensland, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function; Centre for Advanced Imaging, University of Queensland, Australia
| | - Marta I Garrido
- Melbourne School of Psychological Sciences, University of Melbourne, Australia; Queensland Brain Institute, University of Queensland, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function; Centre for Advanced Imaging, University of Queensland, Australia
| |
Collapse
|
25
|
Watanabe T, Motomura E, Kawano Y, Fujii S, Hakumoto Y, Morimoto M, Nakatani K, Okada M, Inui K. Electrical field distribution of Change-N1 and its prepulse inhibition. Neurosci Lett 2021; 751:135804. [PMID: 33705935 DOI: 10.1016/j.neulet.2021.135804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
An abrupt change in a sound feature (Test) in a continuous sound elicits an auditory evoked potential, peaking at approx. 100-180 ms (Change-N1) after the change onset. Change-N1 is attenuated by a preceding weak change stimulus (Prepulse), in the phenomenon known as prepulse inhibition (PPI). In this electroencephalographic study, we compared these two indexes among scalp electrodes. Change-N1 was elicited by an abrupt 10-dB increase in sound pressure in repeats of a 70-dB click sound at 100 Hz and was recorded using 22 electrodes in 31 healthy subjects. The prepulse was a 10-dB decrease in three consecutive clicks at 30, 40, and 50 ms before the Test onset. Four stimuli (Test alone, Test with Prepulse, Prepulse alone, and background alone) were presented randomly through headphones at an even probability. The results demonstrated that: (1) Electrodes at the frontal/central midline were reconfirmed to be suitable to record Change-N1; (2) Change-N1 showed right-hemisphere predominance; (3) There was no difference in the %PPI among regions (prefrontal/frontal/central) and hemispheres (midline/left/right); and (4) the Change-N1 amplitude and its PPI at prefrontal electrodes were positively correlated with those at the frontal electrodes. These results support the use of Change-N1 and its PPI as a tool to evaluate the change detection sensitivity and inhibitory function in individuals. The use of prefrontal electrodes can be an option for a screening test.
Collapse
Affiliation(s)
- Takayasu Watanabe
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan.
| | - Yasuhiro Kawano
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Shinobu Fujii
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Yuhei Hakumoto
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Makoto Morimoto
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Kaname Nakatani
- Department of Central Laboratories, Mie University Hospital, Tsu, 514-8507, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392, Japan
| |
Collapse
|
26
|
Wiedmann M, Kuitunen-Paul S, Basedow LA, Roessner V, Golub Y. Attenuated Psychotic Symptoms in Adolescents With Chronic Cannabis and MDMA Use. Front Psychiatry 2021; 12:696133. [PMID: 35126190 PMCID: PMC8814345 DOI: 10.3389/fpsyt.2021.696133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Both substance use, on the one hand, and the first signs of psychosis, on the other, commonly begin in adolescence. Adolescents with substance use disorder (SUD) frequently show recreational use of cannabis and 3,4-methylenedioxymethamphetamine (MDMA). When attenuated psychotic symptoms (APS) occur during the course of SUD, they are commonly attributed to the cannabis use, neglecting the role of other substances abused, such as MDMA in the risk of psychosis. METHODS We analyzed retrospective self-reports on APS (Prodromal Questionnaire, PQ-16) and amount of cannabis and MDMA use in n = 46 adolescent psychiatry outpatients with SUD. N = 17 (35%) individuals reported MDMA consume additional to cannabis. Furthermore, we examined the associations of APS with cannabis and MDMA use in stepwise hierarchical regressions while controlling for trauma history, birth complications and gender. RESULTS APS were not related to cannabis (B = 0.04, p = 0.842), but to MDMA use (B = 4.88, p = 0.001) and trauma history (B = 0.72, p = 0.001). Gender (B = -0.22, p = 0.767) and birth complications (B = -0.68, p = 0.178) were not associated with APS. DISCUSSION Our results indicate that MDMA use additional to cannabis use is associated with APS among adolescent SUD patients. Contrary to our expectations, we did not see an association of cannabis use and APS. We speculate that cannabis increases the risk for psychosis after a longer period of use and in combination with other risk factors, such as trauma history. Clinicians should screen for APS among SUD patients using MDMA and cannabis in order to adapt treatment plans of SUDs. Future research should validate these findings in longitudinal studies including polysubstance use and trauma history.
Collapse
Affiliation(s)
- Melina Wiedmann
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sören Kuitunen-Paul
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lukas A Basedow
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Yulia Golub
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|