1
|
Nan X, Li W, Wang L. Functional magnetic resonance imaging studies in bipolar disorder in resting state: A coordinates-based meta-analysis. Psychiatry Res Neuroimaging 2024; 344:111869. [PMID: 39146823 DOI: 10.1016/j.pscychresns.2024.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Exploring changes in the intrinsic activity of the brain in people with bipolar disorder (BD) is necessary. However, the findings have not yet led to consistent conclusions. In this regard, this paper aims to extract more obvious differential brain areas and neuroimaging markers, for the purpose of providing assistance for early clinical diagnosis and subsequent treatment. We conducted a meta-analysis of whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) studies using seed-based d-mapping software that examined differences in amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) between patients with BD and healthy controls (HCs). Seed-based d-Mapping (formerly Signed Differential Mapping) with Permutation of Subject Images, or SDM-PSI, is a statistical technique for meta-analyzing studies of differences in brain activity or structure. A total of 16 articles involving 1112 individuals were included in this study for meta-analysis. This paper confidently analyzes the correlation between the clinical scales HAMD, HAMA, and YMRS, and the area of difference. We found significant changes that increased activation in the anterior connective and left lens nucleus, the nucleus of the shell, and BA 48 in BD patients compared with HC (P < 0.05, uncorrected), as well as a significant correlation between HAMD and the left superior frontal gyrus (after FWE correction P < 0.05). Therefore, basal ganglia and frontal cortex may have important significance in the pathogenesis and pathological basis of BD, making it an important issue to be attached importance to.
Collapse
Affiliation(s)
- Xia Nan
- Baiyin City Central Hospital, Baiyin, China
| | - Wenling Li
- The NO.2 People's Hospital of Lanzhou, Lanzhou, China
| | - Lin Wang
- Department of Radiology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China; Cancer Clinical Medical Research Center, Gansu combination of traditional Chinese and Western medicine, Lanzhou, China.
| |
Collapse
|
2
|
Qiu L, Liang C, Kochunov P, Hutchison KE, Sui J, Jiang R, Zhi D, Vergara VM, Yang X, Zhang D, Fu Z, Bustillo JR, Qi S, Calhoun VD. Associations of alcohol and tobacco use with psychotic, depressive and developmental disorders revealed via multimodal neuroimaging. Transl Psychiatry 2024; 14:326. [PMID: 39112461 PMCID: PMC11306356 DOI: 10.1038/s41398-024-03035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
People affected by psychotic, depressive and developmental disorders are at a higher risk for alcohol and tobacco use. However, the further associations between alcohol/tobacco use and symptoms/cognition in these disorders remain unexplored. We identified multimodal brain networks involving alcohol use (n = 707) and tobacco use (n = 281) via supervised multimodal fusion and evaluated if these networks affected symptoms and cognition in people with psychotic (schizophrenia/schizoaffective disorder/bipolar, n = 178/134/143), depressive (major depressive disorder, n = 260) and developmental (autism spectrum disorder/attention deficit hyperactivity disorder, n = 421/346) disorders. Alcohol and tobacco use scores were used as references to guide functional and structural imaging fusion to identify alcohol/tobacco use associated multimodal patterns. Correlation analyses between the extracted brain features and symptoms or cognition were performed to evaluate the relationships between alcohol/tobacco use with symptoms/cognition in 6 psychiatric disorders. Results showed that (1) the default mode network (DMN) and salience network (SN) were associated with alcohol use, whereas the DMN and fronto-limbic network (FLN) were associated with tobacco use; (2) the DMN and fronto-basal ganglia (FBG) related to alcohol/tobacco use were correlated with symptom and cognition in psychosis; (3) the middle temporal cortex related to alcohol/tobacco use was associated with cognition in depression; (4) the DMN related to alcohol/tobacco use was related to symptom, whereas the SN and limbic system (LB) were related to cognition in developmental disorders. In summary, alcohol and tobacco use were associated with structural and functional abnormalities in DMN, SN and FLN and had significant associations with cognition and symptoms in psychotic, depressive and developmental disorders likely via different brain networks. Further understanding of these relationships may assist clinicians in the development of future approaches to improve symptoms and cognition among psychotic, depressive and developmental disorders.
Collapse
Affiliation(s)
- Ling Qiu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Chuang Liang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Dongmei Zhi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Victor M Vergara
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Xiao Yang
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Juan R Bustillo
- Departments of Neurosciences and Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA.
| | - Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Merola GP, Tarchi L, Saccaro LF, Delavari F, Piguet C, Van De Ville D, Castellini G, Ricca V. Transdiagnostic markers across the psychosis continuum: a systematic review and meta-analysis of resting state fMRI studies. Front Psychiatry 2024; 15:1378439. [PMID: 38895037 PMCID: PMC11184053 DOI: 10.3389/fpsyt.2024.1378439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Psychotic symptoms are among the most debilitating and challenging presentations of severe psychiatric diseases, such as schizophrenia, schizoaffective, and bipolar disorder. A pathophysiological understanding of intrinsic brain activity underlying psychosis is crucial to improve diagnosis and treatment. While a potential continuum along the psychotic spectrum has been recently described in neuroimaging studies, especially for what concerns absolute and relative amplitude of low-frequency fluctuations (ALFF and fALFF), these efforts have given heterogeneous results. A transdiagnostic meta-analysis of ALFF/fALFF in patients with psychosis compared to healthy controls is currently lacking. Therefore, in this pre-registered systematic review and meta-analysis PubMed, Scopus, and Embase were searched for articles comparing ALFF/fALFF between psychotic patients and healthy controls. A quantitative synthesis of differences in (f)ALFF between patients along the psychotic spectrum and healthy controls was performed with Seed-based d Mapping, adjusting for age, sex, duration of illness, clinical severity. All results were corrected for multiple comparisons by Family-Wise Error rates. While lower ALFF and fALFF were detected in patients with psychosis in comparison to controls, no specific finding survived correction for multiple comparisons. Lack of this correction might explain the discordant findings highlighted in previous literature. Other potential explanations include methodological issues, such as the lack of standardization in pre-processing or analytical procedures among studies. Future research on ALFF/fALFF differences for patients with psychosis should prioritize the replicability of individual studies. Systematic review registration https://osf.io/, identifier (ycqpz).
Collapse
Affiliation(s)
| | - Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Luigi F. Saccaro
- Psychiatry Department, Geneva University Hospital and Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Farnaz Delavari
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Camille Piguet
- Psychiatry Department, Geneva University Hospital and Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
- General Pediatric Division, Geneva University Hospital, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Zhang L, Ding Y, Li T, Li H, Liu F, Li P, Zhao J, Lv D, Lang B, Guo W. Similar imaging changes and their relations to genetic profiles in bipolar disorder across different clinical stages. Psychiatry Res 2024; 335:115868. [PMID: 38554494 DOI: 10.1016/j.psychres.2024.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Bipolar disorder (BD) across different clinical stages may present shared and distinct changes in brain activity. We aimed to reveal the neuroimaging homogeneity and heterogeneity of BD and its relationship with clinical variables and genetic variations. In present study, we conducted fractional amplitude of low-frequency fluctuations (fALFF), functional connectivity (FC) and genetic neuroimaging association analyses with 32 depressed, 26 manic, 35 euthymic BD patients and 87 healthy controls (HCs). Significant differences were found in the bilateral pre/subgenual anterior cingulate cortex (ACC) across the four groups, and all bipolar patients exhibited decreased fALFF values in the ACC when compared to HCs. Furthermore, positive associations were significantly observed between fALFF values in the pre/subgenual ACC and participants' cognitive functioning. No significant changes were found in ACC-based FC. We identified fALFF-alteration-related genes in BD, with enrichment in biological progress including synaptic and ion transmission. Taken together, abnormal activity in ACC is a characteristic change associated with BD, regardless of specific mood stages, serving as a potential neuroimaging feature in BD patients. Our genetic neuroimaging association analysis highlights possible heterogeneity in biological processes that could be responsible for different clinical stages in BD.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tingting Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dongsheng Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot 010010, China.
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
5
|
Zhang X, You J, Qao Q, Qi X, Shi J, Li J. Correlation Between the Fractional Amplitude of Low-Frequency Fluctuation and Cognitive Defects in Alzheimer's Disease. J Alzheimers Dis 2024; 101:577-587. [PMID: 39240633 DOI: 10.3233/jad-231040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background The fractional amplitude of low-frequency fluctuations (fALFFs) can detect spontaneous brain activity. However, the association between abnormal brain activity and cognitive function, amyloid protein (Aβ), and emotion in Alzheimer's disease (AD) patients remains unclear. Objective This study aimed to survey alterations in fALFF in different frequency bands and the relationship between abnormal brain activity, depressive mood, and cognitive function to determine the potential mechanism of AD. Methods We enrolled 34 AD patients and 32 healthy controls (HC). All the participants underwent resting-state magnetic resonance imaging, and slow-4 and slow-5 fALFF values were measured. Subsequently, the study determined the correlation of abnormal brain activity with mood and cognitive function scores. Results AD patients revealed altered mfALFF values in the slow-5 and slow-4 bands. In the slow-4 band, the altered mfALFF regions were the right cerebellar crus I, right inferior frontal orbital gyrus (IFOG), right supramarginal gyrus, right precuneus, angular gyrus, and left middle cingulate gyrus. Elevated mfALFF values in the right IFOG were negatively associated with Montreal Cognitive Assessment scores, Boston Naming Test, and Aβ1-42 levels. The mfALFF value of the AD group was lower than the HC group in the slow-5 band, primarily within the right inferior parietal lobule and right precuneus. Conclusions Altered mfALFF values in AD patients are linked with cognitive dysfunction. Compared with HCs, Aβ1-42 levels in AD patients are related to abnormal IFOG activity. Therefore, mfALFF could be a potential biomarker of AD.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jie You
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Qao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyang Qi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Liu XF, Zhao SW, Cui JJ, Gu YW, Fan JW, Fu YF, Zhang YH, Yin H, Chen K, Cui LB. Differential expression of diacylglycerol kinase ζ is involved in inferior parietal lobule-related dysfunction in schizophrenia with cognitive impairments. BMC Psychiatry 2023; 23:526. [PMID: 37479996 PMCID: PMC10362743 DOI: 10.1186/s12888-023-04955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Cognitive impairment is the main factor in the poor prognosis of schizophrenia, but its mechanism remains unclear. The inferior parietal lobule (IPL) is related to various clinical symptoms and cognitive impairment in schizophrenia. We aimed to explore the relationship between IPL-related functions and cognitive impairment in schizophrenia. METHODS 136 schizophrenia patients and 146 demographically matched healthy controls were enrolled for a cross-sectional study. High-spatial-resolution structural and resting-state functional images were acquired to demonstrate the alternations of brain structure and function. At the same time, the digit span and digit symbol coding tasks of the Chinese Wechsler Adult Intelligence Test Revised (WAIS-RC) were utilized in assessing the subjects' cognitive function. Patients were divided into cognitive impairment and normal cognitive groups according to their cognitive score and then compared whether there were differences between the three groups in fractional amplitude of low-frequency fluctuation (fALFF). In addition, we did a correlation analysis between cognitive function and the fALFF for the left IPL of patients and healthy controls. Based on the Allen Human Brain Atlas, we obtained genes expressed in the left IPL, which were then intersected with the transcriptome-wide association study results and differentially expressed genes in schizophrenia. RESULTS Grouping of patients by the backward digit span task and the digit symbol coding task showed differences in fALFF values between healthy controls and cognitive impairment patients (P < 0.05). We found a negative correlation between the backward digit span task score and fALFF of the left IPL in healthy controls (r = - 0.388, P = 0.003), which was not seen in patients (r = 0.203, P = 0.020). In addition, none of the other analyses were statistically significant (P > 0.017). In addition, we found that diacylglycerol kinase ζ (DGKζ) is differentially expressed in the left IPL and associated with schizophrenia. CONCLUSION Our study demonstrates that the left IPL plays a vital role in cognitive impairment in schizophrenia. DGKζ may act as an essential regulator in the left IPL of schizophrenia patients with cognitive impairment.
Collapse
Affiliation(s)
- Xiao-Fan Liu
- Department of Radiology, Xi'an People's Hospital, Xi'an, China
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Shu-Wan Zhao
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Jin-Jin Cui
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yue-Wen Gu
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Jing-Wen Fan
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Ya-Hong Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xi'an People's Hospital, Xi'an, China.
| | - Kun Chen
- Department of Human Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China.
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi'an, China.
| | - Long-Biao Cui
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China.
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi'an, China.
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Xue C, Zhang X, Cao P, Yuan Q, Liang X, Zhang D, Qi W, Hu J, Xiao C. Evidence of functional abnormalities in the default mode network in bipolar depression: A coordinate-based activation likelihood estimation meta-analysis. J Affect Disord 2023; 326:96-104. [PMID: 36717032 DOI: 10.1016/j.jad.2023.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND The default mode network (DMN) is thought to be involved in the pathophysiology of bipolar depression (BD). However, the findings of prior studies on DMN alterations in BD are inconsistent. Thus, this study aimed to systematically investigate functional abnormalities of the DMN in BD patients. METHODS We systematically searched PubMed, Ovid, and Web of Science for functional neuroimaging studies on regional homogeneity, amplitude of low frequency fluctuations (ALFF), and functional connectivity of the DMN in BD patients published before March 18, 2022. The stereotactic coordinates of the reported altered brain regions were extracted and incorporated into a brain map using the coordinate-based activation likelihood estimation approach. RESULTS A total of 43 original research studies were included in the meta-analysis. BD patients showed specific changes in the DMN including decreased ALFF/fractional ALFF in the left cingulate gyrus (CG) and bilateral precuneus (PCUN); increased functional connectivity (FC) in the left CG, left posterior CG, left PCUN, bilateral medial frontal gyrus, and bilateral superior frontal gyrus; and decreased FC in the left CG, left PCUN, left inferior parietal lobule, and left postcentral gyrus. LIMITATIONS Conclusions are limited by the small number of studies, additional meta-analyses are needed to obtain more data in BD subgroup. CONCLUSION This meta-analysis supports specific changes in DMN activity and FC in BD patients, which may be powerful biomarkers for the diagnosis of BD. The CG and PCUN were the most affected regions and are thus potential targets for clinical interventions to delay BD progression.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xulian Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Cao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhong Liang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Da Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
8
|
Chen H, Wang L, Li H, Song H, Zhang X, Wang D. Altered intrinsic brain activity and cognitive impairment in euthymic, unmedicated individuals with bipolar disorder. Asian J Psychiatr 2023; 80:103386. [PMID: 36495730 DOI: 10.1016/j.ajp.2022.103386] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022]
Abstract
Cognitive impairment in euthymic bipolar disorder (BD) contributes to poor functional outcomes. Resting-state magnetic resonance imaging (MRI)may help us understand the neurobiology of cognitive impairment in BD. Here, forty unmedicated euthymic BD patients and thirty-nine healthy controls were recruited, undergoing MRI scans and neuropsychological measures. The amplitude of low-frequency fluctuation (ALFF) and ALFF-based functional connectivity (FC) analysis was employed to explore the potential alterations of neural activity. Voxel-wised correlation was calculated between clinical and cognitive variables and abnormal brain activity. Compared with healthy controls, euthymic BD patients showed worse cognitive performance in Trail Making Test, Digit Span Test, and Stroop Color-Word Test (SCWT). The euthymic BD group had significantly lower ALFF in the left medial frontal gyrus, right middle frontal gyrus, right postcentral gyrus, and left superior frontal gyrus. Furthermore, we found decreased ALFF values in the right middle frontal gyrus that was negatively correlated with cognitive inhibition, (r = -0.43, P = 0.015). ALFF-based FC analysis showed that BD group showed significantly decreased FC between the right middle frontal gyrus (seed) and left middle temporal gyrus and left medial frontal gyrus, (Two-tailed, PFWE < 0.05, TFCE corrected). The findings demonstrated that individuals with BD during the euthymic phase exhibited decreased ALFF and hypoconnectivity of key brain areas within the frontoparietal network. These altered spontaneous brain activity in euthymic BD patients may be involved in the pathophysiology mechanism of cognitive deficits.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Longxi Wang
- Department of laboratory, Rongfu Military Hospital of Jining city, Jining, China
| | - Hong Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Song
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaobin Zhang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| | - Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Combined HTR1A/1B methylation and human functional connectome to recognize patients with MDD. Psychiatry Res 2022; 317:114842. [PMID: 36150307 DOI: 10.1016/j.psychres.2022.114842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study aimed to use a machine-learning method to identify HTR1A/1B methylation and resting-state functional connectivity (rsFC) related to the diagnosis of MDD, then try to build classification models for MDD diagnosis based on the identified features. METHODS Peripheral blood samples were collected from all recruited participants, and part of the participants underwent the resting-state fMRI scan. Features including HTR1A/1B methylation and rsFC were calculated. Then, the initial feature sets of epigenetics and neuroimaging were separately input into an all-relevant feature selection to generate significant discriminative power for MDD diagnosis. Random forest classifiers were constructed and evaluated based on identified features. In addition, the SHapley Additive exPlanations (SHAP) method was adapted to interpret the diagnostic model. RESULTS A combination of selected HTR1A/1B methylation and rsFC feature sets achieved better performance than using either one alone - a distinction between MDD and healthy control groups was achieved at 81.78% classification accuracy and 0.8948 AUC. CONCLUSION A high classification accuracy can be achieved by combining multidimensional information from epigenetics and cerebral radiomic features in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD and further exploring the pathogenesis of MDD.
Collapse
|
10
|
Zhang ZF, Bo QJ, Li F, Zhao L, Gao P, Wang Y, Liu R, Chen XY, Wang CY, Zhou Y. Altered frequency-specific/universal amplitude characteristics of spontaneous brain oscillations in patients with bipolar disorder. Neuroimage Clin 2022; 36:103207. [PMID: 36162237 PMCID: PMC9668601 DOI: 10.1016/j.nicl.2022.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
The human brain is a dynamic system with intrinsic oscillations in spontaneous neural activity. Whether the dynamic characteristics of these spontaneous oscillations are differentially altered across different frequency bands in patients with bipolar disorder (BD) remains unclear. This study recruited 65 patients with BD and 85 healthy controls (HCs). The entire frequency range of resting-state fMRI data was decomposed into four frequency intervals. Two-way repeated-measures ANCOVA was employed to detect frequency-specific/universal alterations in the dynamic oscillation amplitude in BD. The patients were then divided into two subgroups according to their mood states to explore whether these alterations were independent of their mood states. Finally, other window sizes, step sizes, and window types were tested to replicate all analyses. Frequency-specific abnormality of the dynamic oscillation amplitude was detected within the posterior medial parietal cortex (centered at the precuneus extending to the posterior cingulate cortex). This specific profile indicates decreased amplitudes in the lower frequency bands (slow-5/4) and no amplitude changes in the higher frequency bands (slow-3/2) compared with HCs. Frequency-universal abnormalities of the dynamic oscillation amplitude were also detectable, indicating increased amplitudes in the thalamus and left cerebellum anterior lobe but decreased amplitudes in the medial superior frontal gyrus. These alterations were independent of the patients' mood states and replicable across multiple analytic and parametric settings. In short, frequency-specific/universal amplitude characteristics of spontaneous oscillations were observed in patients with BD. These abnormal characteristics have important implications for specific functional changes in BD from multiple frequency and dynamic perspectives.
Collapse
Affiliation(s)
- Zhi-Fang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi-Jing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Peng Gao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiong-Ying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chuan-Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China,Corresponding authors at: The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, China (C.-Y. Wang). CAS Key Laboratory of Behavioral Science, Institute of Psychology, No. 16 Lincui Road, Chaoyang District, Beijing, PR China (Y. Zhou).
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, China (C.-Y. Wang). CAS Key Laboratory of Behavioral Science, Institute of Psychology, No. 16 Lincui Road, Chaoyang District, Beijing, PR China (Y. Zhou).
| |
Collapse
|
11
|
Zhang X, Zhang R, Lv L, Qi X, Shi J, Xie S. Correlation between cognitive deficits and dorsolateral prefrontal cortex functional connectivity in first-episode depression. J Affect Disord 2022; 312:152-158. [PMID: 35752217 DOI: 10.1016/j.jad.2022.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/17/2022] [Accepted: 06/16/2022] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Although depression is commonly accompanied by cognitive deficits, the underlying mechanism remains unclear. One possibility is that such deficits are related to abnormal brain network connections. The purpose of this study was thus to investigate changes in brain functional connectivity (FC) in depression and its relationship with cognitive deficits. METHODS We enrolled 37 first-episode MDD patients and 53 matched healthy controls (HC). All participants completed clinical and neurocognitive assessments and underwent resting-state functional MRI. Seed-based analysis was used to define the dorsolateral prefrontal cortex (DLPFC) and FC analysis was then performed. We used bias correlation to analyze the correlation between FC and clinical and neurocognitive scores. RESULTS MDD patients showed increased FC of the right DLPFC with the left inferior temporal gyrus, left cuneus, right inferior frontal gyrus, right anterior cingulate cortex, left BA39, right angular gyrus, right precuneus, left middle frontal gyrus, and right precentral gyrus. MDD patients also showed stronger FC in the left thalamus and reduced FC between the left superior occipital gyrus and left DLPFC seed region. Interestingly, increased FC was related to disease severity (with the right precentral gyrus) and social cognitive dysfunction (with the right angular gyrus) in MDD patients. LIMITATIONS The sample size was relatively small and it is unclear how age may influence FC changes in patients with depression. CONCLUSIONS These findings support changes in FC of the DLPFC in early MDD patients related to cognitive function. FC is a potential biomarker for the diagnosis of MDD.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lanlan Lv
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyang Qi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shiping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Ping L, Zhou C, Sun S, Wang W, Zheng Q, You Z. Alterations in resting-state whole-brain functional connectivity pattern similarity in bipolar disorder patients. Brain Behav 2022; 12:e2580. [PMID: 35451228 PMCID: PMC9120726 DOI: 10.1002/brb3.2580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/04/2022] [Accepted: 03/20/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Previous neuroimaging studies have extensively demonstrated many signs of functionally spontaneous local neural activity abnormalities in bipolar disorder (BD) patients using resting-state functional magnetic resonance imaging (rs-fMRI). However, how to identify the changes of voxel-wise whole-brain functional connectivity pattern and its corresponding functional connectivity changes remain largely unclear in BD patients. The current study aimed to investigate the voxel-wise changes of functional connectivity patterns in BD patients using publicly available data from the UCLA CNP LA5c Study. METHODS A total of 45 BD patients and 115 healthy control subjects were finally included and whole-brain functional connectivity homogeneity (FcHo) was calculated from their rs-fMRI. Moreover, the alterations of corresponding functional connectivity were subsequently identified using seed-based resting-state functional connectivity analysis. RESULTS Individuals with BD exhibited significantly lower FcHo values in the left middle temporal gyrus (MTG) when compared with controls. Functional connectivity findings further indicated decreased functional connectivities between left MTG and cluster 1 (left superior temporal gyrus, extend to middle temporal gyrus, rolandic operculum), cluster 2 (right postcentral, extend to right precentral) in BD patients. The mean FcHo values of left MTG were positively correlated with insomnia, middle scores and appetite increase scores. The mean functional connectivities of left MTG to cluster 1 were negatively correlated with grandiose delusions scores. While the functional connections between left MTG with cluster 2 were negatively correlated with delusions of reference and positively correlated with insomnia, middle scores in BD patients. CONCLUSIONS Our findings suggested that abnormal FcHo and functional connections in those areas of the brain involving DMN and SMN networks might play a crucial role in the neuropathology of BD.
Collapse
Affiliation(s)
| | - Cong Zhou
- School of Mental HealthJining Medical UniversityJiningChina
| | - Shan Sun
- Department of PsychiatryXiamen Xianyue HospitalXiamenChina
| | - Wenqiang Wang
- Department of PsychiatryXiamen Xianyue HospitalXiamenChina
| | - Qi Zheng
- Department of PsychiatryXiamen Xianyue HospitalXiamenChina
| | - Zhiyi You
- Department of PsychiatryXiamen Xianyue HospitalXiamenChina
| |
Collapse
|
13
|
Sun F, Liu Z, Fan Z, Zuo J, Xi C, Yang J. Dynamical regional activity in putamen distinguishes bipolar type I depression and unipolar depression. J Affect Disord 2022; 297:94-101. [PMID: 34678402 DOI: 10.1016/j.jad.2021.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Intrinsic human brain activity is time-varying and dynamic. However, there is still a lack of knowledge about the dynamic regional activity differences between unipolar depression (UD) and bipolar type I depression (BD-I), and whether their differential pattern can help to distinguish these two patient groups who are prone to misdiagnosis in clinical practice. METHOD In this study, we used the dynamical fractional amplitude of low-frequency fluctuations (dfALFF) to examine the resting-state dynamical regional activity in 40 BD-I, 42 UD, and 44 healthy controls (HCs). Analysis of covariance was applied to explore the shared and distinct dfALFF pattern among three groups, and machine-learning methods were conducted to classify BD-I from UD by using the detected distinct dfALFF pattern. RESULTS Compared with HCs, both BD-I and UD exhibited decreased dfALFF temporal variability in the left inferior temporal gyrus. The BD-I showed significantly decreased dfALFF temporal variability in the left putamen compared to UD. By using the dfALFF variability pattern of the left putamen as features, we achieved the 75.61% accuracy and 0.756 area under curve in classifying BD-I from UD. LIMITATIONS The small sample size of the current study may limit the generalizability of the findings. CONCLUSIONS The current study demonstrated that the dfALFF temporal variability pattern in the putamen may show a promise as future diagnostic aids for BD-I and UD.
Collapse
Affiliation(s)
- Fuping Sun
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zebin Fan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Zuo
- Clinical Medical Research Center of Hunan Provincial Mental Behavioral Disorder, Clinical Medical School of Hunan University of Chinese Medicine, Hunan Provincial Brain Hospital, Changsha, Hunan 410007, China
| | - Chang Xi
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jie Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
14
|
Song Y, Yang J, Chang M, Wei Y, Yin Z, Zhu Y, Zhou Y, Zhou Y, Jiang X, Wu F, Kong L, Xu K, Wang F, Tang Y. Shared and distinct functional connectivity of hippocampal subregions in schizophrenia, bipolar disorder, and major depressive disorder. Front Psychiatry 2022; 13:993356. [PMID: 36186868 PMCID: PMC9515660 DOI: 10.3389/fpsyt.2022.993356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) share etiological and pathophysiological characteristics. Although neuroimaging studies have reported hippocampal alterations in SZ, BD, and MDD, little is known about how different hippocampal subregions are affected in these conditions because such subregions, namely, the cornu ammonis (CA), dentate gyrus (DG), and subiculum (SUB), have different structural foundations and perform different functions. Here, we hypothesize that different hippocampal subregions may reflect some intrinsic features among the major psychiatric disorders, such as SZ, BD, and MDD. By investigating resting functional connectivity (FC) of each hippocampal subregion among 117 SZ, 103 BD, 96 MDD, and 159 healthy controls, we found similarly and distinctly changed FC of hippocampal subregions in the three disorders. The abnormal functions of middle frontal gyrus might be the core feature of the psychopathological mechanisms of SZ, BD, and MDD. Anterior cingulate cortex and inferior orbital frontal gyrus might be the shared abnormalities of SZ and BD, and inferior orbital frontal gyrus is also positively correlated with depression and anxiety symptoms in SZ and BD. Caudate might be the unique feature of SZ and showed a positive correlation with the cognitive function in SZ. Middle temporal gyrus and supplemental motor area are the differentiating features of BD. Our study provides evidence for the different functions of different hippocampal subregions in psychiatric pathology.
Collapse
Affiliation(s)
- Yanzhuo Song
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Jingyu Yang
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Miao Chang
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiyang Yin
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Yuning Zhou
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China.,Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| | - Ke Xu
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Li Z, Chen J, Feng Y, Zhong S, Tian S, Dai Z, Lu Q, Guan Y, Shan Y, Jia Y. Differences in verbal and spatial working memory in patients with bipolar II and unipolar depression: an MSI study. BMC Psychiatry 2021; 21:568. [PMID: 34781922 PMCID: PMC8594073 DOI: 10.1186/s12888-021-03595-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Depressive symptoms could be similarly expressed in bipolar and unipolar disorder. However, changes in cognition and brain networks might be quite distinct. We aimed to find out the difference in the neural mechanism of impaired working memory in patients with bipolar and unipolar disorder. METHOD According to diagnostic criteria of bipolar II disorder of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and assessments, 13 bipolar II depression (BP II), 8 unipolar depression (UD) patients and 15 healthy controls (HC) were recruited in the study. We used 2-back tasks and magnetic source imaging (MSI) to test working memory functions and get the brain reactions of the participants. RESULTS Compared with HC, only spatial working memory tasks accuracy was significantly worse in both UD and BP II (p = 0.001). Pearson correlation showed that the stronger the FCs' strength of MFG-IPL and IPL-preSMA, the higher accuracy of SWM task within left FPN in patients with UD (r = 0.860, p = 0.006; r = 0.752, p = 0.031). However, the FC strength of IFG-IPL was negatively correlated with the accuracy of SWM task within left FPN in patients with BP II (r = - 0.591, p = 0.033). CONCLUSIONS Our study showed that the spatial working memory of patients with whether UD or BP II was impaired. The patterns of FCs within these two groups of patients were different when performing working memory tasks.
Collapse
Affiliation(s)
- Zhinan Li
- grid.412601.00000 0004 1760 3828Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630 China ,grid.412558.f0000 0004 1762 1794Psychiatric Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junhao Chen
- grid.412601.00000 0004 1760 3828Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630 China
| | - Yigang Feng
- grid.490151.8Department of Electrophysiology, the Guangdong 999 brain Hospital, Guangzhou, China
| | - Shuming Zhong
- grid.412601.00000 0004 1760 3828Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630 China
| | - Shui Tian
- grid.263826.b0000 0004 1761 0489School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Zhongpeng Dai
- grid.263826.b0000 0004 1761 0489School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Qing Lu
- grid.263826.b0000 0004 1761 0489School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Yufang Guan
- grid.490151.8Department of Electrophysiology, the Guangdong 999 brain Hospital, Guangzhou, China
| | - Yanyan Shan
- grid.412601.00000 0004 1760 3828Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630 China
| | - Yanbin Jia
- Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
16
|
Li P, Zhao SW, Wu XS, Zhang YJ, Song L, Wu L, Liu XF, Fu YF, Wu D, Wu WJ, Zhang YH, Yin H, Cui LB, Guo F. The Association Between Lentiform Nucleus Function and Cognitive Impairments in Schizophrenia. Front Hum Neurosci 2021; 15:777043. [PMID: 34744673 PMCID: PMC8566813 DOI: 10.3389/fnhum.2021.777043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction: Cognitive decline is the core schizophrenia symptom, which is now well accepted. Holding a role in various aspects of cognition, lentiform nucleus (putamen and globus pallidus) dysfunction contributes to the psychopathology of this disease. However, the effects of lentiform nucleus function on cognitive impairments in schizophrenia are yet to be investigated. Objectives: We aim to detect the fractional amplitude of low-frequency fluctuation (fALFF) alterations in patients with schizophrenia, and examine how their behavior correlates in relation to the cognitive impairments of the patients. Methods: All participants underwent magnetic resonance imaging (MRI) and cognitive assessment (digit span and digit symbol coding tests). Screening of brain regions with significant changes in fALFF values was based on analysis of the whole brain. The data were analyzed between Jun 2020 and Mar 2021. There were no interventions beyond the routine therapy determined by their clinicians on the basis of standard clinical practice. Results: There were 136 patients (75 men and 61 women, 24.1 ± 7.4 years old) and 146 healthy controls (82 men and 64 women, 24.2 ± 5.2 years old) involved in the experiments seriatim. Patients with schizophrenia exhibited decreased raw scores in cognitive tests (p < 0.001) and increased fALFF in the bilateral lentiform nuclei (left: 67 voxels; x = −24, y = −6, z = 3; peak t-value = 6.90; right: 16 voxels; x = 18, y = 0, z = 3; peak t-value = 6.36). The fALFF values in the bilateral lentiform nuclei were positively correlated with digit span-backward test scores (left: r = 0.193, p = 0.027; right: r = 0.190, p = 0.030), and the right lentiform nucleus was positively correlated with digit symbol coding scores (r = 0.209, p = 0.016). Conclusion: This study demonstrates that cognitive impairments in schizophrenia are associated with lentiform nucleus function as revealed by MRI, involving working memory and processing speed.
Collapse
Affiliation(s)
- Ping Li
- Medical Imaging Department 1, Xi'an Mental Health Center, Xi'an, China
| | - Shu-Wan Zhao
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Lei Song
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Lin Wu
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Fan Liu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Di Wu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Wu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya-Hong Zhang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Qiu Y, Yang M, Li S, Teng Z, Jin K, Wu C, Xu X, Chen J, Tang H, Huang J, Xiang H, Guo W, Wang B, Wu H. Altered Fractional Amplitude of Low-Frequency Fluctuation in Major Depressive Disorder and Bipolar Disorder. Front Psychiatry 2021; 12:739210. [PMID: 34721109 PMCID: PMC8548428 DOI: 10.3389/fpsyt.2021.739210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Discriminating between major depressive disorder (MDD) and bipolar disorder (BD) remains challenging and cognitive deficits in MDD and BD are generally recognized. In this study, the fractional amplitude of low-frequency fluctuation (fALFF) approach was performed to explore neural activity and cognition in first-episode, drug-naïve BD and MDD patients, as well as the relationship between altered fALFF values and clinical or psychometric variables. Methods: A total of 21 BD patients, 25 MDD patients, and 41 healthy controls (HCs) completed clinical assessments and resting-state functional magnetic resonance imaging (rs-fMRI) scans in this study. The rs-fMRI data were analyzed by fALFF method and Pearson correlation analyses were performed between altered fALFF values and clinical variables or cognition. Support vector machine (SVM) was adopted to identify the three groups from each other with abnormal fALFF values in the brain regions obtained by group comparisons. Results: (1) The fALFF values were significantly different in the frontal lobe, temporal lobe, and left precuneus among three groups. In comparison to HCs, BD showed increased fALFF values in the right inferior temporal gyrus (ITG) and decreased fALFF values in the right middle temporal gyrus, while MDD showed decreased fALFF values in the right cerebellar lobule IV/V. In comparison to MDD, BD showed decreased fALFF values in bilateral posterior cingulate gyrus and the right cerebellar lobule VIII/IX. (2) In the BD group, a negative correlation was found between increased fALFF values in the right ITG and years of education, and a positive correlation was found between decreased fALFF values in the right cerebellar lobule VIII/IX and visuospatial abilities. (3) The fALFF values in the right cerebellar lobule VIII/IX may have the ability to discriminate BD patients from MDD patients, with sensitivity, specificity, and accuracy all over 0.70. Conclusions: Abnormal brain activities were observed in BD and MDD and were related with cognition in BD patients. The abnormality in the cerebellum can be potentially used to identify BD from MDD patients.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Yang
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Jin
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chujun Wu
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xuelei Xu
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|