1
|
Cai P, Wang J, Ye P, Zhang Y, Wang M, Guo R, Zhao H. Performance of self-performed SARS-CoV-2 rapid antigen test: a systematic review and meta-analysis. Front Public Health 2024; 12:1402949. [PMID: 39494084 PMCID: PMC11527648 DOI: 10.3389/fpubh.2024.1402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background The aim of this study was to investigate the accuracy of self-tested SARS-CoV-2 rapid antigen tests. Methods Databases of Pubmed, Embase, and Cochrane Library were searched for original studies investigating accuracy of self-tested SARS-CoV-2 rapid antigen tests, with RT-PCR as "gold standard." Results Forty-five eligible studies were found after database searching and screening using pre-defined criteria. The accuracy results from 50,897 suspected COVID-19 patients were pooled, and the overall sensitivity, specificity and diagnostic odds ratio were 0.77, 1.00, and 625.95, respectively. Subgroup analysis showed higher sensitivity of rapid antigen tests in subgroups of Abbott Panbio, self-collected nasal swab samples, and use of nasopharyngeal or oropharyngeal swab and lower Ct cutoff value in RT-PCR. Conclusion Fully self-performed SARS-CoV-2 rapid antigen tests showed overall high accuracy compared to "gold standard," and are reliable surrogates for the standard test of COVID-19 using nasopharyngeal or oropharyngeal samples and RT-PCR.
Collapse
Affiliation(s)
- Peiling Cai
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Junren Wang
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Peng Ye
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Yarong Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shannxi, China
| | - Mengping Wang
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Ronglian Guo
- Department of Pediatrics, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Hongying Zhao
- Department of Pediatrics, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Hayden MK, Hanson KE, Englund JA, Lee F, Lee MJ, Loeb M, Morgan DJ, Patel R, El Alayli A, El Mikati IK, Sultan S, Falck-Ytter Y, Mansour R, Amarin JZ, Morgan RL, Murad MH, Patel P, Bhimraj A, Mustafa RA. The Infectious Diseases Society of America Guidelines on the Diagnosis of COVID-19: Antigen Testing (January 2023). Clin Infect Dis 2024; 78:e350-e384. [PMID: 36702617 DOI: 10.1093/cid/ciad032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Immunoassays designed to detect SARS-CoV-2 protein antigens (Ag) are commonly used to diagnose COVID-19. The most widely used tests are lateral flow assays that generate results in approximately 15 minutes for diagnosis at the point-of-care. Higher throughput, laboratory-based SARS-CoV-2 Ag assays have also been developed. The number of commercially available SARS-CoV-2 Ag detection tests has increased rapidly, as has the COVID-19 diagnostic literature. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the literature and develop best-practice guidance related to SARS-CoV-2 Ag testing. This guideline is an update to the third in a series of frequently updated COVID-19 diagnostic guidelines developed by the IDSA. IDSA's goal was to develop evidence-based recommendations or suggestions that assist clinicians, clinical laboratories, patients, public health authorities, administrators, and policymakers in decisions related to the optimal use of SARS-CoV-2 Ag tests in both medical and nonmedical settings. A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 Ag tests. A review of relevant, peer-reviewed published literature was conducted through 1 April 2022. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. The panel made 10 diagnostic recommendations that address Ag testing in symptomatic and asymptomatic individuals and assess single versus repeat testing strategies. US Food and Drug Administration (FDA) SARS-CoV-2 Ag tests with Emergency Use Authorization (EUA) have high specificity and low to moderate sensitivity compared with nucleic acid amplification testing (NAAT). Ag test sensitivity is dependent on the presence or absence of symptoms and, in symptomatic patients, on timing of testing after symptom onset. In most cases, positive Ag results can be acted upon without confirmation. Results of point-of-care testing are comparable to those of laboratory-based testing, and observed or unobserved self-collection of specimens for testing yields similar results. Modeling suggests that repeat Ag testing increases sensitivity compared with testing once, but no empirical data were available to inform this question. Based on these observations, rapid RT-PCR or laboratory-based NAAT remain the testing methods of choice for diagnosing SARS-CoV-2 infection. However, when timely molecular testing is not readily available or is logistically infeasible, Ag testing helps identify individuals with SARS-CoV-2 infection. Data were insufficient to make a recommendation about the utility of Ag testing to guide release of patients with COVID-19 from isolation. The overall quality of available evidence supporting use of Ag testing was graded as very low to moderate.
Collapse
Affiliation(s)
- Mary K Hayden
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kimberly E Hanson
- Divisions of Infectious Diseases and Clinical Microbiology, University of Utah, Salt Lake City, Utah, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Francesca Lee
- Departments of Pathology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark J Lee
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark Loeb
- Division of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniel J Morgan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and the Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Abdallah El Alayli
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Ibrahim K El Mikati
- Outcomes and Implementation Research Unit, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis VA Healthcare System, Minneapolis, Minnesota, USA
| | - Yngve Falck-Ytter
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
- VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Razan Mansour
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Justin Z Amarin
- Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca L Morgan
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - M Hassan Murad
- Division of Public Health, Infectious diseases and occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Payal Patel
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Adarsh Bhimraj
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Ryu JY, Hong DH. Association of mixed polycyclic aromatic hydrocarbons exposure with oxidative stress in Korean adults. Sci Rep 2024; 14:7511. [PMID: 38553533 PMCID: PMC10980696 DOI: 10.1038/s41598-024-58263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants associated with several adverse health effects and PAH-induced oxidative stress has been proposed as a potential mechanism. This study evaluated the associations of single and multiple PAHs exposure with oxidative stress within the Korean adult population, using serum gamma glutamyltransferase (GGT) as an oxidative stress marker. Data from the Second Korean National Environmental Health Survey (2012-2014) were analyzed. For analysis, 5225 individuals were included. PAH exposure was assessed with four urinary PAH metabolites: 1-hydroxyphenanthrene, 1-hydroxypyrene, 2-hydroxyfluorene, and 2-naphthol. After adjusting for age, sex, body mass index, drinking, passive smoking, and current smoking (model 1), as well as the presence of diabetes and hepatobiliary diseases (model 2), complex samples general linear model regression analyses for each metabolite revealed a significant positive association between Ln(1-hydroxyphenanthrene) and Ln(GGT) (model 1: β = 0.040, p < 0.01 and model 2: β = 0.044, p < 0.05). For the complete dataset (n = 4378), a significant positive association was observed between mixture of four urinary PAH metabolites and serum GGT in both the quantile g-computation and the Bayesian kernel machine regression analysis. Our study provides evidence for the association between mixed PAH exposure and oxidative stress.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan, 48108, South Korea.
| | - Dong Hyun Hong
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan, 48108, South Korea
| |
Collapse
|
4
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Law JHY, Chan WS, Chan TL, Ma ESK, Tang BSF. Evaluation of a Commercial Point-of-Care RT-LAMP Assay for Rapid Detection of SARS-CoV-2. Biomedicines 2023; 11:2344. [PMID: 37760785 PMCID: PMC10525214 DOI: 10.3390/biomedicines11092344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The goal of this study was to evaluate the performance of a commercial reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay (Detect COVID-19 Test) in the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A total of 202 human respiratory and viral culture specimens were tested retrospectively. The performance of the Detect COVID-19 Test was comparable to that of commercial real-time polymerase chain reaction assays (sensitivity: 93.42%; specificity: 100%), and better than that of the rapid antigen test (sensitivity: 48.00%; specificity: 100%) for specimens with threshold cycle (Ct) values of less than 30. The Beta, Delta, and Omicron variants of concern were successfully detected. With their simplicity of use and good assay sensitivity, point-of-care RT-LAMP assays may be a viable option for SARS-CoV-2 testing at home, or in regions without sophisticated laboratory facilities.
Collapse
Affiliation(s)
| | | | | | | | - Bone Siu Fai Tang
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China; (J.H.Y.L.); (W.S.C.); (T.L.C.); (E.S.K.M.)
| |
Collapse
|
6
|
Xie JW, Zheng YW, Wang M, Lin Y, He Y, Lin LR. Nasal swab is a good alternative sample for detecting SARS-CoV-2 with rapid antigen test: A meta-analysis. Travel Med Infect Dis 2023; 52:102548. [PMID: 36758806 PMCID: PMC9909360 DOI: 10.1016/j.tmaid.2023.102548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND We aim to determine if nasal samples have equivalent detection sensitivity to nasopharyngeal swabs for RAT and evaluate the diagnostic accuracy of nasal swabs with RAT. METHODS PubMed and Web of Science were searched for eligible studies published before August 23, 2022. A bivariate random effects model was used to perform the quantitative synthesis. RESULTS The pooled sensitivity, pooled specificity, positive likelihood ratio, negative likelihood ratio, and summary AUC on nasal swabs with RAT were 0.81 (95% CI, 0.77-0.85), 1.00 (95% CI: 0.99-1.00), 0.97 (95% CI, 0.95-0.98), 298.91 (95% CI, 144.71-617.42) and 0.19 (95% CI, 0.15-0.23), respectively. WHO required RAT kits to perform with a sensitivity of 0.80 and a specificity of 0.97, nasal swabs (0.81) achieved the required sensitivity while nasopharyngeal swabs (0.75) did not. The symptomatic population yielded higher pooled sensitivity than the asymptomatic population (0.86 versus 0.71), with a pooled sensitivity of 0.90 for five days of symptom onset. CONCLUSION Nasal sampling had a great performance and yielded a high sensitivity in detecting SARS-CoV-2 using RAT, we believe that RAT performed with nasal swabs is a good alternative for detecting SARS-CoV-2, especially early in the onset of symptoms.
Collapse
Affiliation(s)
- Jia-Wen Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Ya-Wen Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Mao Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yun He
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Lim HJ, Park MY, Baek YH, Lee HS, Kim I, Kwon Y, You Y, Nam K, Yang JH, Kim MJ, Yu N, Sohn YH, Park JE, Yang YJ. Evaluation of Four Rapid Antigen Tests for the Detection of SARS-CoV-2 Infection with Nasopharyngeal Swabs. Biomedicines 2023; 11:biomedicines11030701. [PMID: 36979680 PMCID: PMC10045780 DOI: 10.3390/biomedicines11030701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Owing to the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the capacity of testing systems based on the gold standard real-time reverse transcription–polymerase chain reaction (rRT-PCR) is limited. Rapid antigen tests (RATs) can substantially contribute to the prevention of community transmission, but their further assessment is required. Here, using 1503 nasopharyngeal swabs, we compared the diagnostic performance of four RAT kits (Abbott Panbio™ COVID-19 Ag Rapid Test, SD Biosensor Standard™ Q COVID-19 Ag Test, Humasis COVID-19 Ag Test, and SG Medical Acrosis COVID-19 Ag Test) to the cycle threshold (Ct) values obtained from rRT-PCR. The precision values, area under the curve values, SARS-CoV-2 variant detection ability, and non-SARS-CoV-2 specificity of all four kits were similar. An assay using the Acrosis kit had a significantly better positive detection rate with a higher recall value and cut-off value than that using the other three RAT kits. During the current COVID-19 pandemic, the Acrosis kit is an effective tool to prevent the spread of SARS-CoV-2 in communities.
Collapse
Affiliation(s)
- Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Min-Young Park
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Young-Hyun Baek
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Hyeon-Seo Lee
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Inhee Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Youngjin Kwon
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Youngshin You
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Kyoungwoo Nam
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Min-Jin Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Nae Yu
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Yong-Hak Sohn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Jung-Eun Park
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
- Correspondence: (J.-E.P.); (Y.-J.Y.)
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
- Correspondence: (J.-E.P.); (Y.-J.Y.)
| |
Collapse
|
8
|
Ashagre W, Atnafu A, Wassie L, Tschopp R, Fentahun D, Assefa G, Wegayehu T, Wondale B, Mulu A, Miheret A, Bobosha K. Evaluation of the diagnostic performance of PanbioTM Abbott SARS-CoV-2 rapid antigen test for the detection of COVID-19 from suspects attending ALERT center. PLoS One 2022; 17:e0277779. [PMID: 36413550 PMCID: PMC9681070 DOI: 10.1371/journal.pone.0277779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The emergence and rapid spread of coronavirus disease 2019 (COVID-19), a potentially lethal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is causing public health issues around the world. In resource-constrained nations, rapid Abbott SARS-CoV-2 antigen test kits are critical for addressing diagnostic gaps in health institutions and community screening. However, there is no evidence or proof of diagnostic performance in Ethiopia. The aim of this study was to compare the performance of PanbioTM Abbott SARS-CoV-2antigen rapid test kit to the gold standard, RT-PCR, in COVID-19 patients with clinical symptoms suggestive of COVID-19. METHOD A prospective, cross-sectional study was conducted between November 2021 and April 2022, on 120 suspected patients recruited from outpatient, emergency, and intensive care units in one of the tertiary hospitals in Ethiopia. Nasopharyngeal swabs were collected from suspected cases and were tested using the Abbott SARS-CoV-2 kit, a rapid diagnostic test (RDT) and compared to the reference standard RT-PCR. RESULT The sensitivity and specificity of the RDT were 74.2% and 100%, respectively. A total of 62 samples (51.6%) were RT-PCR positive. Of these, 46 were Ag-RDT positive. Sensitivity among symptomatic patients was 79.4% (95% CI 68.3-90). The Abbot RDT and RT-PCR had a Kappa value of agreement of 0.735 (p < 0.001). These values were acceptable when compared to the WHO's suggested thresholds. CONCLUSION The finding from this study support the use of the Abbot RDT as a diagnostic tool in COVID-19 suspects, mainly in those with higher viral loads.
Collapse
Affiliation(s)
- Wondimu Ashagre
- Arba Minch University, Arba Minch, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abay Atnafu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Liya Wassie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rea Tschopp
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | | | | | - Adane Miheret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Ye Q, Shao W, Meng H. Performance and Application Evaluation of SARS-CoV-2 Antigen Assay. J Med Virol 2022; 94:3548-3553. [PMID: 35445404 PMCID: PMC9088371 DOI: 10.1002/jmv.27798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) nucleic acid detection is the gold standard for the laboratory diagnosis of coronavirus disease 2019 (COVID‐19). However, this method has high requirements for practitioners' skills and testing sites, so it is not easy to popularize and promote the application in places other than large hospitals. In addition, the detection flux of SARS‐CoV‐2 nucleic acid is small, and the whole detection process takes much time, which cannot meet the actual needs of rapid screening in large quantities. The WHO conditionally approved a batch of SARS‐CoV‐2 antigen reagents for clinical application to alleviate this contradiction. SARS‐CoV‐2 antigen detection offers a trade‐off among clinical performance, speed and accessibility. With the gradual increase in clinical application, the accumulated clinical data show that the sensitivity and specificity of the SARS‐CoV‐2 antigen assay are over 80% and 97%, respectively, which can basically meet the requirements of the WHO. However, the sensitivity of the SARS‐CoV‐2 Antigen Assay among asymptomatic people in low prevalence areas of COVID‐19 cannot meet the standard, leading to a large number of missed diagnoses. In addition, the detection ability of SARS‐CoV‐2 antigen reagent for different SARS‐CoV‐2 mutant strains differs greatly, especially for those escaping the COVID‐19 vaccines. In terms of results interpretation, it is highly reliable to exclude SARS‐CoV‐2 infection based on the high negative predictive value of the SARS‐CoV‐2 antigen assay. However, in the low prevalence environment, the probability of false positives of the SARS‐CoV‐2 antigen assay is high, so the positive results need to be confirmed by the SARS‐CoV‐2 nucleic acid reagent. The SARS‐CoV‐2 antigen assay is only a supplement to SARS‐CoV‐2 nucleic acid detection and can never completely replace it. To date, SARS‐CoV‐2 nucleic acid detection continues to be the standard laboratory method for COVID‐19 diagnosis.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Wenxia Shao
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanyan Meng
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| |
Collapse
|