1
|
Noda T, Kamiya K, Hamazaki N, Nozaki K, Uchida S, Ueno K, Miki T, Hotta K, Maekawa E, Terada T, Reed JL, Yamaoka-Tojo M, Matsunaga A, Ako J. Effect of change in hepato-renal function and cardiac rehabilitation on mortality in patients with heart failure. J Cardiol 2024; 84:355-361. [PMID: 38917873 DOI: 10.1016/j.jjcc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Patients with heart failure (HF) often suffer from hepato-renal dysfunction. The associations between hepato-renal function changes and mortality remain unclear. Further, the effect of cardiac rehabilitation (CR) on mortality and motor functions in patients with HF and hepato-renal dysfunction requires investigation. METHODS We reviewed 2522 patients with HF (63.2 % male; median age: 74 years). The association between changes in hepato-renal function assessed by the Model for End-stage Liver Disease eXcluding INR (MELD-XI) score and mortality was examined. The association of CR participation with mortality and physical functions was investigated in patients with HF with decreased, unchanged, and increased MELD-XI scores. RESULTS During the follow-up period, 519 (20.6 %) patients died. Worsened MELD-XI score was independently associated with all-cause death [adjusted hazard ratio (aHR): 1.099; 95 % confidence interval (CI): 1.061-1.138; p < 0.001]. CR participation was associated with low mortality, even in the increased MELD-XI score group (aHR: 0.498; 95 % CI: 0.333-0.745; p < 0.001). Trajectory of the MELD-XI score was not associated with physical function changes. There were no time by MELD-XI score interaction effects on handgrip strength (p = 0.084), leg strength (p = 0.082), walking speed (p = 0.583), and 6-min walking distance (p = 0.833) in patients participating in outpatient CR. CONCLUSIONS Hepato-renal dysfunction predicts high mortality. CR participation may be helpful for a better prognosis of patients with HF and hepato-renal dysfunction.
Collapse
Affiliation(s)
- Takumi Noda
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan; Department of Cardiovascular Rehabilitation, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kentaro Kamiya
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan; Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan.
| | - Nobuaki Hamazaki
- Department of Rehabilitation, Kitasato University Hospital, Sagamihara, Japan
| | - Kohei Nozaki
- Department of Rehabilitation, Kitasato University Hospital, Sagamihara, Japan
| | - Shota Uchida
- Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Kensuke Ueno
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Takashi Miki
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kazuki Hotta
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan; Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Emi Maekawa
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tasuku Terada
- Exercise Physiology and Cardiovascular Health Lab, Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Canada; School of Life Sciences, Physiology, Pharmacology and Neuroscience, University of Nottingham, Nottingham, UK
| | - Jennifer L Reed
- Exercise Physiology and Cardiovascular Health Lab, Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Canada; School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Canada
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan; Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Atsuhiko Matsunaga
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan; Department of Rehabilitation, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
2
|
Di Gioia G, Crispino SP, Monosilio S, Maestrini V, Nenna A, Segreti A, Squeo MR, Lemme E, Ussia GP, Grigioni F, Pelliccia A. Cardiovascular and metabolic effects of hyperbilirubinemia in a cohort of Italian Olympic athletes. Scand J Med Sci Sports 2023; 33:2534-2547. [PMID: 37650311 DOI: 10.1111/sms.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Bilirubin was supposed to have cardio-metabolic protective role by signaling functions. Indeed, mild hyperbilirubinemia has immunosuppressive and endocrine activities and may offer protection against oxidative stress-mediated diseases. Gilbert syndrome (GS) has been hypothesized to provide cardio-metabolic benefits. OBJECTIVE To investigate the prevalence of hyperbilirubinemia and its cardio-metabolic effects in a cohort of elite Italian athletes engaged in different sports disciplines. METHODS We enrolled 1492 elite athletes (age 25.8 ± 5.1) practising different disciplines (power, skills, endurance, and mixed) underwent blood, echocardiographic, and exercise tests. GS was diagnosed per exclusionem in athletes with isolated asymptomatic unconjugated hyperbilirubinemia. RESULTS GS was highlighted in 91 athletes (6%; globally 9% male and 2.4% female); 82% were males (p < 0.0001) showing higher indirect bilirubin (0.53 ± 0.4 vs. 0.36 ± 0.24 mg/dL in females, p < 0.0001). GS athletes had fewer platelets (201 ± 35 vs. 214 ± 41, p = 0.01), higher iron (male: 124 ± 44 vs. 100.9 ± 34 mcg/dL, p < 0.0001; female: 143.3 ± 35 vs. 99.9 ± 42 mcg/dL, p < 0.0001), and lower erythrocyte sedimentation rate, (1.93 ± 0.9 vs. 2.80 ± 2.7 mm/H, p = 0.03). At multivariate analysis, male (OR 3.89, p = 0.001) and iron (OR 3.47, p = 0.001) were independently associated with GS. No significant differences were found in cardiac remodeling, heart rate, blood pressure, arrhythmias, or power capacity at stress test. Endurance athletes (313) presented higher total (p = 0.003) and indirect bilirubin (p = 0.001). CONCLUSION Bilirubin has several metabolic effects (including immunosuppressive and endocrine) and plays a role in regulating antioxidant pathways exercise-related with hematological consequences but seems not to affect significantly cardiovascular remodeling. Endurance athletes present higher bilirubin concentrations, likely as an adaptive mechanism to counteract increased oxidative stress.
Collapse
Affiliation(s)
- Giuseppe Di Gioia
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Simone Pasquale Crispino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Sara Monosilio
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Rome, Italy
| | - Viviana Maestrini
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Rome, Italy
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Nenna
- Department of Heart Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Andrea Segreti
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Maria Rosaria Squeo
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Rome, Italy
| | - Erika Lemme
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Rome, Italy
| | - Gian Paolo Ussia
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Grigioni
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Antonio Pelliccia
- Institute of Sport Medicine and Science, National Italian Olympic Committee, Rome, Italy
| |
Collapse
|
3
|
Abstract
Gilbert's syndrome, also known as benign hyperbilirubinaemia, was described more than 100 years ago. It has usually been considered a physiological abnormality characterised by a mild elevation of the systemic level of unconjugated bilirubin, in the absence of any underlying liver or overt haemolytic disease. However, since the re-discovery of the potent antioxidant effects of bilirubin in the late 1980s, as well as multiple intracellular signalling pathways affected by bilirubin, an ever-increasing body of evidence suggests that individuals with Gilbert's syndrome may benefit from the mild hyperbilirubinaemia and are actually protected from the development of a wide variety of "diseases of civilisation" such as cardiovascular diseases, certain cancers, and autoimmune or neurodegenerative diseases. This review analyses the current state of medical knowledge given recent discoveries in this rapidly developing field, as well as their possible clinical significance, and provides a new perspective on this condition.
Collapse
Affiliation(s)
- Libor Vítek
- 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | | |
Collapse
|
4
|
Gandouzi I, Fekih S, Selmi O, Chalghaf N, Turki M, Ayedi F, Guelmami N, Azaiez F, Souissi N, Marsigliante S, Muscella A. Oxidative status alteration during aerobic-dominant mixed and anaerobic-dominant mixed effort in judokas. Heliyon 2023; 9:e20442. [PMID: 37829795 PMCID: PMC10565691 DOI: 10.1016/j.heliyon.2023.e20442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to depict the oxidative status variation in judokas during aerobic-dominant mixed effort (AeDME) and anaerobic-dominant mixed effort (AnDME). It is to be expected that the sporting commitment of Judo is a stimulus of oxidative stress leading to the recruitment of antioxidant responses. Blood samples were collected from 17 athletes at rest, immediately after a training session (AeDME) and after a 5-min bout (AnDME). AeDME and AnDME caused significant increases in malondialdehyde (MDA) (p < 0.01 and p < 0.001 respectively) and glutathione (GSH) (p = 0.018 and p < 0.001 respectively). Blood thiol concentrations decreased following AeDME and AnDME (p < 0.001) whilst catalase decreased significantly after AnDME (p = 0.026) only. Uric acid increased significantly after AnDME than after AeDME (p = 0.047) while, conversely, total bilirubin was higher after AnDME than after AeDME (p = 0.02). We may ultimately summarize that AeDME and AnDME caused oxidative stress, higher in AnDME, and some antioxidant response slightly higher in AnDME compared to AeDME. In sports, monitoring of oxidative stress status is recommended as part of the training regimen.
Collapse
Affiliation(s)
- Imed Gandouzi
- Molecular Basis of Human Pathology Laboratory, Faculty of Medicine of Sfax, Tunisia
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- RU: Physical Activity, Sport & Health, The National Observatory of Sport, Tunisia
| | - Soufien Fekih
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
| | - Okba Selmi
- Higher Institute of Sport and Physical Education of Kef ISSEP, Kef, Tunisia
| | - Nasr Chalghaf
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- Group for the Study of Development and Social Environment (GEDES), Faculty of Human and Social Science of Sfax, Sfax, Tunisia
| | - Mouna Turki
- Molecular Basis of Human Pathology Laboratory, Faculty of Medicine of Sfax, Tunisia
- Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Fatma Ayedi
- Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Noomen Guelmami
- Higher Institute of Sport and Physical Education of Kef ISSEP, Kef, Tunisia
| | - Fairouz Azaiez
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- Group for the Study of Development and Social Environment (GEDES), Faculty of Human and Social Science of Sfax, Sfax, Tunisia
| | - Nizar Souissi
- RU: Physical Activity, Sport & Health, The National Observatory of Sport, Tunisia
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| |
Collapse
|
5
|
Vitek L, Hinds TD, Stec DE, Tiribelli C. The physiology of bilirubin: health and disease equilibrium. Trends Mol Med 2023; 29:315-328. [PMID: 36828710 PMCID: PMC10023336 DOI: 10.1016/j.molmed.2023.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Bilirubin has several physiological functions, both beneficial and harmful. In addition to reactive oxygen species-scavenging activities, bilirubin has potent immunosuppressive effects associated with long-term pathophysiological sequelae. It has been recently recognized as a hormone with endocrine actions and interconnected effects on various cellular signaling pathways. Current studies show that bilirubin also decreases adiposity and prevents metabolic and cardiovascular diseases. All in all, the physiological importance of bilirubin is only now coming to light, and strategies for increasing plasma bilirubin levels to combat chronic diseases are starting to be considered. This review discusses the beneficial effects of increasing plasma bilirubin, incorporates emerging areas of bilirubin biology, and provides key concepts to advance the field.
Collapse
Affiliation(s)
- Libor Vitek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague, Czech Republic
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
6
|
Bates EA, Kipp ZA, Martinez GJ, Badmus OO, Soundarapandian MM, Foster D, Xu M, Creeden JF, Greer JR, Morris AJ, Stec DE, Hinds TD. Suppressing Hepatic UGT1A1 Increases Plasma Bilirubin, Lowers Plasma Urobilin, Reorganizes Kinase Signaling Pathways and Lipid Species and Improves Fatty Liver Disease. Biomolecules 2023; 13:252. [PMID: 36830621 PMCID: PMC9953728 DOI: 10.3390/biom13020252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Several population studies have observed lower serum bilirubin levels in patients with non-alcoholic fatty liver disease (NAFLD). Yet, treatments to target this metabolic phenotype have not been explored. Therefore, we designed an N-Acetylgalactosamine (GalNAc) labeled RNAi to target the enzyme that clears bilirubin from the blood, the UGT1A1 glucuronyl enzyme (GNUR). In this study, male C57BL/6J mice were fed a high-fat diet (HFD, 60%) for 30 weeks to induce NAFLD and were treated subcutaneously with GNUR or sham (CTRL) once weekly for six weeks while continuing the HFD. The results show that GNUR treatments significantly raised plasma bilirubin levels and reduced plasma levels of the bilirubin catabolized product, urobilin. We show that GNUR decreased liver fat content and ceramide production via lipidomics and lowered fasting blood glucose and insulin levels. We performed extensive kinase activity analyses using our PamGene PamStation kinome technology and found a reorganization of the kinase pathways and a significant decrease in inflammatory mediators with GNUR versus CTRL treatments. These results demonstrate that GNUR increases plasma bilirubin and reduces plasma urobilin, reducing NAFLD and inflammation and improving overall liver health. These data indicate that UGT1A1 antagonism might serve as a treatment for NAFLD and may improve obesity-associated comorbidities.
Collapse
Affiliation(s)
- Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Olufunto O. Badmus
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Justin F. Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jennifer R. Greer
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew J. Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|