1
|
Miranda CTCDS, Soares SD, de Oliveira WQ, Lima ADS, Neri Numa IA, Pastore GM. Unconventional Edible Plants of the Amazon: Bioactive Compounds, Health Benefits, Challenges, and Future Trends. Foods 2024; 13:2925. [PMID: 39335854 PMCID: PMC11431067 DOI: 10.3390/foods13182925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of an improved quality of life is a major trend in the food market. This is driving the reformulation of the industry's product portfolio, with the aim of providing nourishment while also contributing to beneficial health metabolic processes. In this context, the use of local biodiversity and the recovery of the traditional knowledge associated with the consumption of vegetables that grow spontaneously in nature emerge as more sustainable and nutritionally adequate concepts. The Amazon region is known for its abundant biodiversity, housing numerous unconventional food plants whose nutritional and biological properties remain unknown due to a lack of research. Among the different species are Xanthosoma sagittifolium, Acmella oleracea, Talinum triangulare, Pereskia bleo, Bidens bipinnata, and Costus spiralis. These species contain bioactive compounds such as apigenin, syringic acid, spilanthol, and lutein, which provide various health benefits. There are few reports on the biological effects, nutritional composition, bioactive compounds, and market prospects for these species. Therefore, this review provides an overview of their nutritional contribution, bioactive compounds, health benefits, and current market, as well as the use of new technologies that can contribute to the development of functional products/ingredients derived from them.
Collapse
Affiliation(s)
- Cynthia Tereza Corrêa da Silva Miranda
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas—UFAM, Manaus 69080-900, AM, Brazil
| | - Stephanie Dias Soares
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Adriana de Souza Lima
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
- Faculty of Tourism and Hospitality, Federal Fluminense University—UFF, Gragoatá Campus, Niterói 24210-200, RJ, Brazil
| | - Iramaia Angélica Neri Numa
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Gláucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| |
Collapse
|
2
|
Kaur N, Kaur S, Agarwal A, Sabharwal M, Tripathi AD. Amaranthus crop for food security and sustainable food systems. PLANTA 2024; 260:59. [PMID: 39046582 DOI: 10.1007/s00425-024-04490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
MAIN CONCLUSION This review ascertains amaranth grains as a potent crop for food security and sustainable food systems by highlighting its agricultural advantages, health benefits and applications in the food, packaging, and brewing industry. The global population surge and rapidly transitioning climatic conditions necessitate the maximization of nutritional crop yield to mitigate malnutrition resulting from food and nutrition insecurity. The modern agricultural practices adopted to maximize the yield of the conventional staple crops are heavily contingent on the depleting natural resources and are contributing extensively to the contamination of these natural resources. Furthermore, these agricultural practices are also causing detrimental effects on the environment like rising emission of greenhouse gasses and increased water footprints. To address these challenges while ensuring sustainable nutrient-rich crop production, it is imperative to utilize underutilized crops like Amaranthus. Amaranth grains are gluten-free pseudo-cereals that are gaining much prominence owing to their abundance in vital nutrients and bio-active components, potential health benefits, resilience to adverse climatic and soil conditions, minimum agricultural input requirements, potential of generating income for small holder farmers as well as various applications across the sustainable value chain. However, due to the limited awareness of these potential benefits of the amaranth grains among the consumers, researchers, and policymakers, they have remained untapped. This review paper enunciates the nutritional composition and potential health benefits of the grains while briefly discussing their various applications in food and beverage industries and accentuating the need to explore further possibilities of valorizing amaranth grains to maximize their utilization along the value chain.
Collapse
Affiliation(s)
- Naman Kaur
- Department of Food and Nutrition and Food Technology, Lady Irwin College, University of Delhi, Sikandra Road, New Delhi, 110001, India
| | - Simran Kaur
- Independent Consultant (Biotechnologist), New Delhi, India
| | - Aparna Agarwal
- Department of Food and Nutrition and Food Technology, Lady Irwin College, University of Delhi, Sikandra Road, New Delhi, 110001, India.
| | - Manisha Sabharwal
- Department of Food and Nutrition and Food Technology, Lady Irwin College, University of Delhi, Sikandra Road, New Delhi, 110001, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
3
|
Saravana Kumari P, Ramkumar S, Seethalaxmi M, Rekha T, Abiyoga M, Baskar V, Sureshkumar S. Biofortification of crops with nutrients by the application of nanofertilizers for effective agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108772. [PMID: 38801788 DOI: 10.1016/j.plaphy.2024.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The agricultural industry is rapidly accepting daily changes and updates, and expanding to meet the basic demands of humanity. The main objective of modern agricultural practices is high profits with minimal investment, without upsetting any other form of life or abiotic factors. According to this principle, nanofertilizers are recommended for use in agriculture and are classified in different ways based on their nutritive value, functional role in the environment, chemical composition, and form of application to ensure their persistent availability in the required quantities. These nanofertilizers meet the global crop nutrient requirement of 191.8 million metric tons along with multitudes of added value, and which are highly endorsed in the agricultural field compared to other chemical fertilizers, or their usage can be reduced to less than 50% by the use of nanofertilizers. In this review, we discuss different types of nanofertilizers, their effects on crop yield, stress tolerance, and their impact on the environment. Furthermore, the different types of nanofertilizer delivery, modes of action, and toxic impacts of nanofertilizers have been discussed. Although a large number of commercially successful effects of nanofertilizers have been demonstrated, the effects of biomagnification and cellular transformation are still disputed. The effect of the biomagnification of nanofertilizers remains unclear. A suitable strategy must be developed to easily recycle nanofertilizers. It is the need of the hour to accept the use of nanofertilizers in parallel to addressing this issue.
Collapse
Affiliation(s)
- P Saravana Kumari
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India
| | - S Ramkumar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - M Seethalaxmi
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India; Department of Biotechnology, Surana College, Bangalore, India
| | - T Rekha
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| | - M Abiyoga
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India
| | - V Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - S Sureshkumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| |
Collapse
|
4
|
Lee YJ, Pan Y, Lim D, Park SH, Sin SI, Kwack K, Park KY. Broccoli Cultivated with Deep Sea Water Mineral Fertilizer Enhances Anti-Cancer and Anti-Inflammatory Effects of AOM/DSS-Induced Colorectal Cancer in C57BL/6N Mice. Int J Mol Sci 2024; 25:1650. [PMID: 38338927 PMCID: PMC10855752 DOI: 10.3390/ijms25031650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to determine the alleviating effect of broccoli grown with deep sea water mineral (DSWM) fertilizer extracted from deep sea water on the development of colorectal cancer in C57BL/6N mice treated with AOM/DSS. Naturaldream Fertilizer Broccoli (NFB) cultured with deep sea water minerals (DSWM) showed a higher antioxidant effect and mineral content. In addition, orally administered NFB, showed a level of recovery in the colon and spleen tissues of mice compared with those in normal mice through hematoxylin and eosin (H&E) staining. Orally administered NFB showed the inhibition of the expression of inflammatory cytokine factors IL-1β, IL-6, TNF, IFN-γ, and IL-12 while increasing the expression of IL-10. Furthermore, the expression of inflammatory cytokines and NF-κB in the liver tissue was inhibited, and that of inflammatory enzymes, such as COX-2 and iNOS, was reduced. In the colon tissue, the expression of p53 and p21 associated with cell cycle arrest increased, and that of Bcl-2 associated with apoptosis decreased. Additionally, the expression of Bax, Bad, Bim, Bak, caspase 9, and caspase 3 increased, indicating enhanced activation of apoptosis-related factors. These results demonstrate that oral administration of broccoli cultivated using DSWM significantly restores spleen and colon tissues and simultaneously inhibits the NF-κB pathway while significantly decreasing cytokine expression. Moreover, by inducing cell cycle arrest and activating cell apoptosis, they also suggest alleviating AOM/DSS-induced colon cancer symptoms in C57BL/6N mice.
Collapse
Affiliation(s)
- Yeon-Jun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Yanni Pan
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Daewoo Lim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Seung-Hwan Park
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - Sin-Il Sin
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Kun-Young Park
- Graduate School of Integrative Medicine, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
5
|
Pattappan D, Kapoor S, Islam SS, Lai YT. Layered Double Hydroxides for Regulating Phosphate in Water to Achieve Long-Term Nutritional Management. ACS OMEGA 2023; 8:24727-24749. [PMID: 37483187 PMCID: PMC10357453 DOI: 10.1021/acsomega.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
Hunger and undernourishment are increasing global challenges as the world's population continuously grows. Consequently, boosting productivity must be implemented to reach the global population's food demand and avoid deforestation. The current promising agricultural practice without herbicides and pesticides is fertilizer management, particularly that of phosphorus fertilizers. Layered double hydroxides (LDHs) have recently emerged as favorable materials in phosphate removal, with practical application possibilities in nanofertilizers. This review discusses the fundamental aspects of phosphate removal/recycling mechanisms and highlights the current endeavors on the development of phosphate-selective sorbents using LDH-based materials. Specific emphasis is provided on the progress in designing LDHs as the slow release of phosphate fertilizers reveals their relevance in making agro-practices more ecologically sound. Relevant pioneering efforts have been briefly reviewed, along with a discussion of perspectives on the potential of LDHs as green nanomaterials to improve food productivity with low eco-impacts.
Collapse
Affiliation(s)
- Dhanaprabhu Pattappan
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
| | - Sakshi Kapoor
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia (A Central University), New Delhi 110025, India
| | - Saikh Safiul Islam
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia (A Central University), New Delhi 110025, India
| | - Yi-Ting Lai
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
- Center
for Plasma and Thin Film Technologies, Ming
Chi University of Technology, New Taipei City 24301, Taiwan, ROC
- Biochemical
Technology R&D Center, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
| |
Collapse
|
6
|
Sheoran P, Kamboj P, Kumar A, Kumar A, Singh RK, Barman A, Prajapat K, Mandal S, Yousuf DJ, Narjary B, Kumar S. Matching N supply for yield maximization in salt-affected wheat agri-food systems: On-farm participatory assessment and validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162573. [PMID: 36871711 DOI: 10.1016/j.scitotenv.2023.162573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Driven by the UN-SDGs of achieving food security and agricultural sustainability, it remains more challenging in degraded ecosystems to simultaneously improve the crop performance without creating unintended favour for excessive fertilization and associated environmental consequences. We assessed the N-use pattern of 105 wheat-growers in sodicity affected Ghaghar Basin of Haryana, India, and then experimented upon to optimize and identify indicators of efficient N use in contrasting wheat cultivars for sustainable production. The survey results revealed that majority of farmers (88%) have increased their reliance on N nutrition (∼18 % extra N), and even extended their duration of N scheduling (12-15 days) for better plant adaptation and yield insurance in sodicity stressed wheat; albeit to a greater extent in moderately sodic soils applying 192 kg N ha-1 in 62 days. The participatory trials validated the farmers' perception of using more than the recommended N in sodic lands. This could realize the transformative improvements in plant physiological [higher photosynthetic rate (Pn; 5 %) and transpiration rate (E; 9 %)] and yield [more tillers (ET; 3 %), grains spike-1 (GS; 6 %) and healthier grains (TGW; 3 %)] traits culminating in ∼20 % higher yield at 200 kg N ha-1 (N200). However, further incremental N application had no apparent yield advantage or monetary benefits. At N200, every additional kilogram of N captured by the crop beyond the recommended N improved grain yields by 36.1 kg ha-1 in KRL 210 and 33.7 kg ha-1 in HD 2967. Further, the varietal differences for N requirements, with 173 kg ha-1 in KRL 210 and 188 kg ha-1 in HD 2967, warrants the need of applying balanced fertilizer dose and advocate revision of existing N recommendations to cope up the sodicity induced agricultural vulnerability. Principal Component Analysis (PCA) and correlation matrix showed N uptake efficiency (NUpE) and total N uptake (TNUP) as the highly weighted variables illustrating strong positive association with grain yield, and potentially deciding the fate of proper N utilization in sodicity stressed wheat. Key insights suggested that combining participatory research with farmers' knowledge and local perspective could be decisive in better integration of technologies, and serving to adapt the real-time soil sodicity stress and sustaining wheat yields with economized farm profits.
Collapse
Affiliation(s)
| | - Paras Kamboj
- ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| | - Ranjay K Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| | - Arijit Barman
- ICAR-Central Soil Salinity Research Institute, Karnal, India; ICAR-National Bureau of Soil Survey & Land Use Planning, Regional Station, Jorhat, Assam, India.
| | | | - Subhasis Mandal
- ICAR-Central Soil Salinity Research Institute, Karnal, India
| | | | - Bhaskar Narjary
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| | - Satyendra Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| |
Collapse
|
7
|
De Rossi S, Di Marco G, D'Agostino A, Braglia R, Mecca G, Canini A, Gismondi A. Influence of environmental conditions on the production of nutraceuticals in Italian edible plant landraces. Food Res Int 2023; 165:112483. [PMID: 36869496 DOI: 10.1016/j.foodres.2023.112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Autochthonous plant varieties, also referred to as landraces, represent an important genetic resource, being well-adapted to the environment in which they have been selected. Landraces usually show profiles rich in nutraceuticals, making them an effective and valuable alternative to commercial agri-products, as well as potential candidates for crop improvement programs. Basilicata region is recognized as an Italian hotspot for agrobiodiversity, due to its complex orography. Thus, this work aimed to characterize and monitor, for two successive years, the content of secondary metabolites and related antioxidant properties of seven different species, four officinal (i.e., wild fennel - Feoniculum vulgare Mill.; oregano - Origanum vulgare L.; thyme - Thymus vulgaris L.; valerian - Valeriana officinalis L.) and three fruit species (i.e., fig - Ficus carica L. cv. Dottato; sweet cherry Prunus avium L. cv. Majatica; plum - Prunus domestica L. cv. Cascavella Gialla), collected in three different sites of this region. In detail, spectrophotometric tests were performed to assess the concentration of phenolic compounds, flavonoids, and - for officinal plants - also terpenoids, together with the antiradical activity (FRAP assays). In addition, to better typify the phytocomplexes of these landraces, HPLC-DAD and GC-MS analyses were carried out. In general, officinal plants showed higher values of nutraceutical compounds and related bioactivity with respect to fruit species. The data showed how different accessions of the same species had different phytochemical profiles, according to the sampling area and the year of collection, suggesting a role for both genetic and environmental factors in determining the observed results. Therefore, the final goal of this research was also to find a possible correlation between environmental factors and nutraceutics. The greatest correlation was found in valerian, where a lower water intake seemed to lead to a higher accumulation of antioxidants, and in plum, where the flavonoid content correlated positively with high temperatures. All these outcomes contribute at valorising Basilicata landraces for their aptitude to be high-quality foods and, at the same time, promoting the preservation of the agrobiodiversity for this region.
Collapse
Affiliation(s)
- Silvia De Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00132 Rome, Italy
| | - Gabriele Di Marco
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00132 Rome, Italy
| | - Alessia D'Agostino
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00132 Rome, Italy
| | - Roberto Braglia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00132 Rome, Italy
| | - Gennaro Mecca
- EXO-Ricerca Soc. Consortile a r.l., Via del Gallitello 116/I, 85100 Potenza, Italy
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00132 Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00132 Rome, Italy.
| |
Collapse
|
8
|
Frittelli A, Botticella E, Palombieri S, Masci S, Celletti S, Fontanella MC, Astolfi S, De Vita P, Volpato M, Sestili F. The suppression of TdMRP3 genes reduces the phytic acid and increases the nutrient accumulation in durum wheat grain. FRONTIERS IN PLANT SCIENCE 2023; 14:1079559. [PMID: 36743506 PMCID: PMC9890658 DOI: 10.3389/fpls.2023.1079559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Micronutrient malnutrition affects more than half of the world population. Reduced bioavailability of microelements in the raw materials is considered one of the main causes of mineral deficiency in populations whose diet is largely based on the consumption of staple crops. In this context, the production of low phytic acid (lpa) cereals is a main goal of the breeding programs, as phytic acid (PA) binds essential mineral cations such as iron (Fe), zinc (Zn), manganese (Mn), potassium (K), calcium (Ca) and magnesium (Mg) precipitating in the form of phytate salts poorly digested by monogastric animals, including humans, due to the lack of phytases in the digestive tract. Since PA limits the bioavailability of microelements, it is widely recognized as an anti-nutritional compound. A Targeting Induced Local Lesions IN Genomes (TILLING) approach has been undertaken to silence the genes encoding the TdABCC13 proteins, known as Multidrug-Resistance associated Proteins 3 (TdMRP3), transporters involved in the accumulation of PA inside the vacuole in durum wheat. The TdMRP3 complete null genotypes showed a significant reduction in the content of PA and were able to accumulate a higher amount of essential micronutrients (Fe, Zn, Mn) compared to the control. The number of spikelets and seeds per spike, traits associated with the agronomic performances, were reduced compared to the control, but the negative effect was in part balanced by the increased grain weight. The TdMRP3 mutant lines showed morphological differences in the root apparatus such as a significant decrease in the number of root tips, root length, volume and surface area and an increase in root average diameter compared to the control plants. These materials represent a promising basis for obtaining new commercial durum wheats with higher nutritional value.
Collapse
Affiliation(s)
- Arianna Frittelli
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Silvia Celletti
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Process, Faculty of Agriculture, Food and Environmental Science (DiSTAS), Università Cattolica, Piacenza, Italy
| | - Stefania Astolfi
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | | | - Francesco Sestili
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
9
|
Gorrasi S, Pasqualetti M, Muñoz-Palazon B, Novello G, Mazzucato A, Campiglia E, Fenice M. Comparison of the Peel-Associated Epiphytic Bacteria of Anthocyanin-Rich "Sun Black" and Wild-Type Tomatoes under Organic and Conventional Farming. Microorganisms 2022; 10:2240. [PMID: 36422310 PMCID: PMC9694333 DOI: 10.3390/microorganisms10112240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 07/30/2023] Open
Abstract
Tomatoes are among the most consumed vegetables worldwide and represent a source of health-beneficial substances. Our study represents the first investigating the peel-associated epiphytic bacteria of red and purple (anthocyanin-rich) tomatoes subjected to organic and conventional farming systems. Proteobacteria was the dominant phylum (relative abundances 79-91%) in all experimental conditions. Enterobacteriaceae represented a large fraction (39.3-47.5%) of the communities, with Buttiauxella and Atlantibacter as the most represented genera. The core microbiota was composed of 59 operational taxonomic units (OTUs), including the majority of the most abundant ones. The occurrence of the most abundant OTUs differed among the experimental conditions. OTU 1 (Buttiauxella), OTU 2 (Enterobacteriales), and OTU 6 (Bacillales) were higher in red and purple tomatoes grown under organic farming. OTU 5 (Acinetobacter) had the highest abundance in red tomatoes subjected to organic farming. OTU 3 (Atlantibacter) was among the major OTUs in red tomatoes under both farming conditions. OTU 7 (Clavibacter) and OTU 8 (Enterobacteriaceae) had abundances ≥1% only in red tomatoes grown under conventional farming. PCA and clustering analysis highlighted a high similarity between the bacterial communities of red and purple tomatoes grown under organic farming. Furthermore, the bacterial communities of purple tomatoes grown under organic farming showed the lowest diversity and evenness. This work paves the way to understand the role of nutritional superior tomato genotypes, combined with organic farming, to modulate the presence of beneficial/harmful bacteria and supply healthier foods within a sustainable agriculture.
Collapse
Affiliation(s)
- Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Laboratory of Ecology of Marine Fungi, CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Institute of Water Research, University of Granada, 18071 Granada, Spain
| | - Giorgia Novello
- Department of Science, Technology and Innovation (DISIT), Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Andrea Mazzucato
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Enio Campiglia
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Laboratory of Applied Marine Microbiology, CoNISMa, University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| |
Collapse
|
10
|
Chen C, Chaudhary A, Mathys A. Dietary Change and Global Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.771041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Food production for human consumption is a leading cause of environmental damage in the world and yet over two billion people suffer from malnutrition. Several studies have presented evidence that changes in dietary patterns across the world can lead to win-win outcomes for environmental and social sustainability and can complement ongoing technological and policy efforts to improve the efficiency of agricultural production. However, the existing evidence have been compiled in “silos” by a large range of researchers across several disciplines using different indicators. The aim of this quantitative review is to bring together the existing knowledge on heterogeneity of current dietary patterns across the world and how a transition toward healthy diets in different countries can aid in progress toward multiple global Sustainable Development Goals (SDGs). We first summarize the nutritional quality, economic cost, and environmental footprint of current diets of over 150 countries using multiple indicators. Next, we review which shifts in dietary patterns across different world regions can help toward achievement of SDG2 (Zero hunger), SDG3 (Good health and wellbeing), SDG 6 (Clean water and sanitation), SDG13 (Climate action), SDG14 (Life below water), and SDG15 (Life on land). Finally, we briefly discuss how to enable the shift toward sustainable dietary patterns and identify the research and data gaps that need to be filled through future efforts. Our analysis reveals that dietary change is necessary in all countries as each one has unique priorities and action items. For regions such as Sub-Saharan Africa and South Asia, increased intake of nutrient dense foods is needed to address deficiency of essential nutrients like folate, potassium, and vitamin A. For North America and Europe, shifting toward more plant-based diets would be healthier and simultaneously reduce the per capita environmental footprints. The results can be useful for policymakers in designing country-specific strategies for adoption of sustainable dietary behaviors and for food industry to ensure the supply of sustainable food items customized with regions' need.
Collapse
|
11
|
Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14148329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Is there any relationship between plant nutrition and human health? The overall response to this question is very positive, and a strong relationship between the nutrition of plants and humans has been reported in the literature. The nutritional status of edible plants consumed by humans can have a negative or positive impact on human health. This review was designed to assess the importance of plant bioactive compounds for human health under the umbrella of sustainable agriculture. With respect to the first research question, it was found that plant bioactives (e.g., alkaloids, carotenoids, flavonoids, phenolics, and terpenoids) have a crucial role in human health due to their therapeutic benefits, and their potentiality depends on several factors, including botanical, environmental, and clinical attributes. Plant bioactives could be produced using plant tissue culture tools (as a kind of agro-biotechnological method), especially in cases of underexploited or endangered plants. Bioactive production of plants depends on many factors, especially climate change (heat stress, drought, UV radiation, ozone, and elevated CO2), environmental pollution, and problematic soils (degraded, saline/alkaline, waterlogged, etc.). Under the previously mentioned stresses, in reviewing the literature, a positive or negative association was found depending on the kinds of stress or bioactives and their attributes. The observed correlation between plant bioactives and stress (or growth factors) might explain the importance of these bioactives for human health. Their accumulation in stressed plants can increase their tolerance to stress and their therapeutic roles. The results of this study are in keeping with previous observational studies, which confirmed that the human nutrition might start from edible plants and their bioactive contents, which are consumed by humans. This review is the first report that analyzes this previously observed relationship using pictorial presentation.
Collapse
|
12
|
Gallé Á, Czékus Z, Tóth L, Galgóczy L, Poór P. Pest and disease management by red light. PLANT, CELL & ENVIRONMENT 2021; 44:3197-3210. [PMID: 34191305 DOI: 10.1111/pce.14142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
Light is essential for plant life. It provides a source of energy through photosynthesis and regulates plant growth and development and other cellular processes, such as by controlling the endogenous circadian clock. Light intensity, quality, duration and timing are all important determinants of plant responses, especially to biotic stress. Red light can positively influence plant defence mechanisms against different pathogens, but the molecular mechanism behind this phenomenon is not fully understood. Therefore, we reviewed the impact of red light on plant biotic stress responses against viruses, bacteria, fungi and nematodes, with a focus on the physiological effects of red light treatment and hormonal crosstalk under biotic stress in plants. We found evidence suggesting that exposing plants to red light increases levels of salicylic acid (SA) and induces SA signalling mediating the production of reactive oxygen species, with substantial differences between species and plant organs. Such changes in SA levels could be vital for plants to survive infections. Therefore, the application of red light provides a multidimensional aspect to developing innovative and environmentally friendly approaches to plant and crop disease management.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Clemensen AK, Provenza FD, Hendrickson JR, Grusak MA. Ecological Implications of Plant Secondary Metabolites - Phytochemical Diversity Can Enhance Agricultural Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
De La Torre-Roche R, Cantu J, Tamez C, Zuverza-Mena N, Hamdi H, Adisa IO, Elmer W, Gardea-Torresdey J, White JC. Seed Biofortification by Engineered Nanomaterials: A Pathway To Alleviate Malnutrition? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12189-12202. [PMID: 33085897 DOI: 10.1021/acs.jafc.0c04881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micronutrient deficiencies in global food chains are a significant cause of ill health around the world, particularly in developing countries. Agriculture is the primary source of nutrients required for sound health, and as the population has continued to grow, the agricultural sector has come under pressure to improve crop production, in terms of both quantity and quality, to meet the global demands for food security. The use of engineered nanomaterial (ENM) has emerged as a promising technology to sustainably improve the efficiency of current agricultural practices as well as overall crop productivity. One promising approach that has begun to receive attention is to use ENM as seed treatments to biofortify agricultural crop production and quality. This review highlights the current state of the science for this approach as well as critical knowledge gaps and research needs that must be overcome to optimize the sustainable application of nano-enabled seed fortification approaches.
Collapse
Affiliation(s)
- Roberto De La Torre-Roche
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jesus Cantu
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Carlos Tamez
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ishaq O Adisa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jorge Gardea-Torresdey
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| |
Collapse
|