1
|
Lee CH, Lee HJ, Park SW, Shin J, Kang SJ, Park IB, Kim HK, Chun T. Mutational analysis of pig tissue factor pathway inhibitor α to increase anti-coagulation activity in pig-to-human xenotransplantation. Biotechnol Lett 2024; 46:521-530. [PMID: 38872071 DOI: 10.1007/s10529-024-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Blood coagulation mediated by pig tissue factor (TF), which is expressed in pig tissues, causes an instant blood-mediated inflammatory reaction during pig-to-human xenotransplantation. Previously, we generated a soluble pig tissue factor pathway inhibitor α fusion immunoglobulin (TFPI-Ig) which inhibits pig TF activity more efficiently than human TFPI-Ig in human plasma. In this study, we generated several pig TFPI-Ig mutants and tested the efficacy of these mutants in preventing pig-to-human xenogeneic blood coagulation. Structurally important amino acid residues of pig TFPI-Ig were changed into different residues by site-directed mutagenesis. Subsequently, a retroviral vector encoding each cDNA of several pig TFPI-Ig mutants was cloned and transduced into CHO-K1 cells. After establishing stable cell lines expressing each of the pig TFPI-Ig mutants, soluble proteins were produced and purified for evaluating their inhibitory effects on pig TF-mediated blood coagulation in human plasma. The replacement of K36 and K257 with R36 and H257, respectively, in pig TFPI-Ig more efficiently blocked pig TF activity in human plasma when compared with the wild-type pig TFPI-Ig. These results may provide additional information to understand the structure of pig TFPIα, and an improved pig TFPI-Ig variant that more efficiently blocks pig TF-mediated blood coagulation during pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeon Jeong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Si-Won Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jiyoon Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seok-Jin Kang
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - In-Byung Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Prince N, Ramasamy J, Amirtham SM, Rajendran E, Mani P. Isolated bovine pancreatic islets as an alternate in vitro model for diabetes research. Indian J Med Res 2024; 159:519-526. [PMID: 39382423 PMCID: PMC11463253 DOI: 10.25259/ijmr_851_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Isolation of functional pancreatic islets for diabetes research and clinical islet transplantation stands as a big challenge despite the advancements in the field. In this context, the non-availability of human/animal tissues is one of the major impediments to islet-based research, which has tremendous scope for translation. The current study explores the feasibility of using the bovine pancreas as an alternative source to isolate pancreatic islets and assess its functionality for in vitro studies. Methods The bovine pancreas was collected from a registered slaughterhouse and transported in an ice-cold medium - Hank's Balanced Salt Solution (HBSS) to the laboratory. Islets were isolated by sequential collagenase digestion followed by a two-step filtration and purification by density gradient separation method. After isolation, islets were identified with dithizone staining and the islet function was assayed in vitro for assessing the dynamic insulin secretory function by monitoring the glucose-stimulated insulin secretion (GSIS), in response to low and high glucose. Staining techniques were also used to understand the cytoarchitecture of the bovine pancreas. Results The islet yield was 157±23 islets per gram of pancreas and was viable. The cold ischaemia time was reduced to 60-75 min. The islets released insulin with glucose stimulation. The insulin release was observed more with high glucose (28 mM) than with low glucose (2.8 mM). Dithizone staining confirmed the presence of islets after isolation and the size of islets ranged from 50 to 600 µm size. The mantled islets (islets with acinar tissue) were also noted with the pure islets in culture. Hematoxylin and eosin (H&E) and aldehyde- fuchsin showed islets interspersed in the acinar tissue of the bovine pancreas. Special stain defined the islets better than regular staining. Fluorescent and diaminobenzidine (DAB) staining with insulin, glucagon and somatostatin revealed the arrangement of the cells in each islet. The beta cells were majorly found in the islet core with alpha cells interspersed with the delta cells in the periphery. Interpretation & conclusions The isolation procedure described in this study yielded viable islets for in vitro studies which showed a differential response to glucose challenge, confirming their viability. We provide a simple and reproducible method for small-scale isolation of functional islets from the bovine pancreas. This model proffers the beginner a hands-on in islet experiments and helps to re-iterate the process that could be extrapolated to other pancreatic tissues as well as to expand on diabetes research.
Collapse
Affiliation(s)
- Neetu Prince
- Department of Physiology, Christian Medical College, Vellore, India
| | - Jagadish Ramasamy
- Department of Biochemistry, Velammal Medical College Hospital and Research Institute, Madurai, India
| | | | | | - Puurnima Mani
- Department of Physiology, Christian Medical College, Vellore, India
| |
Collapse
|
3
|
Kim JM, Kang SJ, Hong SH, Chung H, Shin JS, Min BH, Kim HJ, Ha J, Park CG. Long-term control of diabetes by tofacitinib-based immunosuppressive regimen after allo islet transplantation in diabetic rhesus monkeys that rejected previously transplanted porcine islets. Xenotransplantation 2024; 31:e12850. [PMID: 38501729 DOI: 10.1111/xen.12850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Porcine islet xenotransplantation has been highlighted as an alternative to allo islet transplantation. Despite the remarkable progress that has been made in porcine-islet pre-clinical studies in nonhuman primates, immunological tolerance to porcine islets has not been achieved to date. Therefore, allo islet transplantation could be required after the failure of porcine islet xenotransplantation. Here, we report the long-term control of diabetes by allogeneic pancreatic islet transplantation in diabetic rhesus monkeys that rejected previously transplanted porcine islets. Four diabetic male rhesus monkeys received the porcine islets and then allo islets (5700-19 000 IEQ/kg) were re-transplanted for a short or long period after the first xeno islet rejection. The recipient monkeys were treated with an immunosuppressive regimen consisting of ATG, humira, and anakinra for induction, and sirolimus and tofacitinib for maintenance therapy. The graft survival days of allo islets in these monkeys were >440, 395, >273, and 127, respectively, similar to that in allo islet transplanted cynomolgus monkeys that received the same immunosuppressive regimen without xeno sensitization. Taken together, it is likely that prior islet xenotransplantation does not affect the survival of subsequent allo islets under clinically applicable immunosuppressants.
Collapse
Affiliation(s)
- Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Animal Health, Cheongju University College of Health and Medical Sciences, Cheongju, South Korea
| | - Seong-Jun Kang
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hyunwoo Chung
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
| | - Hyun Je Kim
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Lee SH, Kim M, Lee EJ, Ahn SM, Ahn YR, Choi J, Kang JT, Kim HO. Dual-targeted nano-encapsulation of neonatal porcine islet-like cell clusters with triiodothyronine-loaded bifunctional polymersomes. DISCOVER NANO 2024; 19:23. [PMID: 38315307 PMCID: PMC10844179 DOI: 10.1186/s11671-024-03964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
There is growing evidence that neonatal porcine islet-like cell clusters (NPCCs) isolated from piglets can be used to treat type 1 diabetes in humans. However, graft rejection is a common complication in humans owing to the prevalence of xenoantigens in porcine. Therefore, researchers have investigated various islet encapsulation techniques that could protect against these antigens. To this end, this study presents a robust nano-encapsulation method based on bifunctional polymersomes (PSomes), in which N-hydroxysuccinimide (NHS) and maleimide (Mal) groups conjugated to the PSomes terminal interact with the amine and thiol groups on the surface of NPCCs to induce dual targeting via two covalent bonds. The findings indicate that the ratio of NHS to Mal on PSomes is optimal for dual targeting. Moreover, triiodothyronine (T3) is known to promotes pancreatic islet maturation and differentiation of endocrine cells into beta cells. T3 encapsulated in PSomes is shown to increase the glucose sensitivity of NPCCs and enhance insulin secretion from NPCCs. Furthermore, improvements in the nano-encapsulation efficiency and insulin-secreting capability of NPCCs through dual targeting via dual-Psomes are demonstrated. In conclusion, the proposed nano-encapsulation technique could pave the way for significant advances in islet nano-encapsulation and the imprevement of NPCC immaturity via T3 release.
Collapse
Affiliation(s)
- Sang Hoon Lee
- MGENSolutions Biotechnology Research Institute, Seoul, 06688, Republic of Korea
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Minse Kim
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Eun-Jin Lee
- MGENSolutions Biotechnology Research Institute, Seoul, 06688, Republic of Korea
| | - Sun Mi Ahn
- MGENSolutions Biotechnology Research Institute, Seoul, 06688, Republic of Korea
| | - Yu-Rim Ahn
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jaewon Choi
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jung-Taek Kang
- MGENSolutions Biotechnology Research Institute, Seoul, 06688, Republic of Korea.
| | - Hyun-Ouk Kim
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
5
|
Pylaev TE, Smyshlyaeva IV, Popyhova EB. Regeneration of β-cells of the islet apparatus of the pancreas. Literature review. DIABETES MELLITUS 2022. [DOI: 10.14341/dm12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetes of both type 1 and type 2 is characterized by a progressive loss of β-cell mass, which contributes to the disruption of glucose homeostasis. The optimal antidiabetic therapy would be simple replacement of lost cells, but at present, many researchers have shown that the pancreas (PZ) of adults has a limited regenerative potential. In this regard, significant efforts of researchers are directed to methods of inducing the proliferation of β-cells, stimulating the formation of β-cells from alternative endogenous sources and/or the generation of β-cells from pluripotent stem cells. Factors that regulate β-cell regeneration under physiological or pathological conditions, such as mediators, transcription factors, signaling pathways and potential pharmaceuticals, are also being intensively studied. In this review, we consider recent scientific studies carried out in the field of studying the development and regeneration of insulin-producing cells obtained from exogenous and endogenous sources and their use in the treatment of diabetes. The literature search while writing this review was carried out using the databases of the RSIC, CyberLeninka, Scopus, Web of Science, MedLine, PubMed for the period from 2005 to 2021. using the following keywords: diabetes mellitus, pancreas, regeneration, β-cells, stem cells, diabetes therapy.
Collapse
|
6
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
7
|
Wang W, Teng Y, Xue JJ, Cai HK, Pan YB, Ye XN, Mao XL, Li SW. Nanotechnology in Kidney and Islet Transplantation: An Ongoing, Promising Field. Front Immunol 2022; 13:846032. [PMID: 35464482 PMCID: PMC9024121 DOI: 10.3389/fimmu.2022.846032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Organ transplantation has evolved rapidly in recent years as a reliable option for patients with end-stage organ failure. However, organ shortage, surgical risks, acute and chronic rejection reactions and long-term immunosuppressive drug applications and their inevitable side effects remain extremely challenging problems. The application of nanotechnology in medicine has proven highly successful and has unique advantages for diagnosing and treating diseases compared to conventional methods. The combination of nanotechnology and transplantation brings a new direction of thinking to transplantation medicine. In this article, we provide an overview of the application and progress of nanotechnology in kidney and islet transplantation, including nanotechnology for renal pre-transplantation preservation, artificial biological islets, organ imaging and drug delivery.
Collapse
Affiliation(s)
- Wei Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya Teng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ji-Ji Xue
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hong-Kai Cai
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yu-Biao Pan
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Xing-Nan Ye
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Xin-Li Mao, ; Shao-Wei Li,
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Xin-Li Mao, ; Shao-Wei Li,
| |
Collapse
|
8
|
Lau HH, Gan SU, Lickert H, Shapiro AMJ, Lee KO, Teo AKK. Charting the next century of insulin replacement with cell and gene therapies. MED 2021; 2:1138-1162. [DOI: 10.1016/j.medj.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
|
9
|
Lau H, Khosrawipour T, Li S, Alexander M, Frelkiewicz P, Labbé MK, Stieglitz S, Lakey JRT, Kielan W, Khosrawipour V. Exploring Insulin Production Following Alveolar Islet Transplantation (AIT). Int J Mol Sci 2021; 22:ijms221910185. [PMID: 34638521 PMCID: PMC8508311 DOI: 10.3390/ijms221910185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies have demonstrated the feasibility of islet implantation into the alveoli. However, until today, there are no data on islet behavior and morphology at their transplant site. This study is the first to investigate islet distribution as well insulin production at the implant site. Using an ex vivo postmortem swine model, porcine pancreatic islets were isolated and aerosolized into the lung using an endoscopic spray-catheter. Lung tissue was explanted and bronchial airways were surgically isolated and connected to a perfusor. Correct implantation was confirmed via histology. The purpose of using this new lung perfusion model was to measure static as well as dynamic insulin excretions following glucose stimulation. Alveolar islet implantation was confirmed after aerosolization. Over 82% of islets were correctly implanted into the intra-alveolar space. The medium contact area to the alveolar surface was estimated at 60 +/− 3% of the total islet surface. The new constructed lung perfusion model was technically feasible. Following static glucose stimulation, insulin secretion was detected, and dynamic glucose stimulation revealed a biphasic insulin secretion capacity during perfusion. Our data indicate that islets secrete insulin following implantation into the alveoli and display an adapted response to dynamic changes in glucose. These preliminary results are encouraging and mark a first step toward endoscopically assisted islet implantation in the lung.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, University of California, Irvine (UCI), Orange, CA 92868, USA; (M.A.); (J.R.T.L.); (V.K.)
- Correspondence: (H.L.); (T.K.)
| | - Tanja Khosrawipour
- Department of Surgery (A), University-Hospital Düsseldorf, Heinrich-Heine University, Moorenstrasse 5, D-40225 Duesseldorf, Germany
- Correspondence: (H.L.); (T.K.)
| | - Shiri Li
- Department of Surgery, Weill Medical College of Cornell University, New York, NY 10065, USA;
| | - Michael Alexander
- Department of Surgery, University of California, Irvine (UCI), Orange, CA 92868, USA; (M.A.); (J.R.T.L.); (V.K.)
| | - Piotr Frelkiewicz
- Center for Experimental Diagnostics and Biomedical Innovations, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Maya Karine Labbé
- School of Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Sven Stieglitz
- Department Pulmonary Medicine, Petrus-Hospital Wuppertal, University of Witten-Herdecke, D-42283 Wuppertal, Germany;
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California, Irvine (UCI), Orange, CA 92868, USA; (M.A.); (J.R.T.L.); (V.K.)
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Veria Khosrawipour
- Department of Surgery, University of California, Irvine (UCI), Orange, CA 92868, USA; (M.A.); (J.R.T.L.); (V.K.)
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
10
|
Barra JM, Kozlovskaya V, Kepple JD, Seeberger KL, Kuppan P, Hunter CS, Korbutt GS, Kharlampieva E, Tse HM. Xenotransplantation of tannic acid-encapsulated neonatal porcine islets decreases proinflammatory innate immune responses. Xenotransplantation 2021; 28:e12706. [PMID: 34245064 DOI: 10.1111/xen.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Islet transplantation with neonatal porcine islets (NPIs) is a promising treatment for type 1 diabetes (T1D), but immune rejection poses a major hurdle for clinical use. Innate immune-derived reactive oxygen species (ROS) synthesis can facilitate islet xenograft destruction and enhance adaptive immune responses. METHODS To suppress ROS-mediated xenograft destruction, we utilized nanothin encapsulation materials composed of multilayers of tannic acid (TA), an antioxidant, and a neutral polymer, poly(N-vinylpyrrolidone) (PVPON). We hypothesized that (PVPON/TA)-encapsulated NPIs will maintain euglycemia and dampen proinflammatory innate immune responses following xenotransplantation. RESULTS (PVPON/TA)-encapsulated NPIs were viable and glucose-responsive similar to non-encapsulated NPIs. Transplantation of (PVPON/TA)-encapsulated NPIs into hyperglycemic C57BL/6.Rag or NOD.Rag mice restored euglycemia, exhibited glucose tolerance, and maintained islet-specific transcription factor levels similar to non-encapsulated NPIs. Gene expression analysis of (PVPON/TA)-encapsulated grafts post-transplantation displayed reduced proinflammatory Ccl5, Cxcl10, Tnf, and Stat1 while enhancing alternatively activated macrophage Retnla, Arg1, and Stat6 mRNA accumulation compared with controls. Flow cytometry analysis demonstrated significantly reduced innate immune infiltration, MHC-II, co-stimulatory molecule, and TNF expression with concomitant increases in arginase-1+ macrophages and dendritic cells. Similar alterations in immune responses were observed following xenotransplantation into immunocompetent NOD mice. CONCLUSION Our data suggest that (PVPON/TA) encapsulation of NPIs is an effective strategy to decrease inflammatory innate immune signals involved in NPI xenograft responses through STAT1/6 modulation without compromising islet function.
Collapse
Affiliation(s)
- Jessie M Barra
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica D Kepple
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen L Seeberger
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Purushothaman Kuppan
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Chad S Hunter
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory S Korbutt
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Eugenia Kharlampieva
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Lau H, Khosrawipour T, Alexander M, Li S, Mikolajczyk A, Nicpon J, Schubert J, Bania J, Lakey JRT, Khosrawipour V. Islet Transplantation in the Lung via Endoscopic Aerosolization: Investigation of Feasibility, Islet Cluster Cell Vitality, and Structural Integrity. Cell Transplant 2021; 29:963689720949244. [PMID: 32967455 PMCID: PMC7784503 DOI: 10.1177/0963689720949244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aerosolized drug delivery has recently attracted much attention as a possible new tool for the delivery of complex nanoparticles. This study aims to investigate whether catheter-based aerosolization of islets via endobronchial systems is a feasible option in islet transplantation. Besides investigating the feasibility of islet aerosolization, we also examined cluster cell vitality and structural integrity of the islets following aerosolization. Using an ex vivo postmortem swine model, porcine pancreatic islets were isolated and aerosolized with an endoscopic spray catheter. Following aerosolization, islet cell vitality and function were assessed via Calcein AM and propidium iodide as well as insulin production after glucose exposure. In the final step, the overall feasibility of the procedure and structural integrity of cells were analyzed and evaluated with respect to clinical applicability. No significant difference was detected in the viability of control islets (90.67 ± 2.19) vs aerosolized islets (90.68 ± 1.20). Similarly, there was no significant difference in control islets (1.62 ± 0.086) vs aerosolized islets (1.42 ± 0.11) regarding insulin release after stimulation. Indocyanine green marked islets were transplanted into the lung without major difficulty. Histological analysis confirmed retained structural integrity and predominant location in the alveolar cavity. Our ex vivo data suggest that catheter-based aerosolized islet cell delivery is a promising tool for the application of cell clusters. According to our data, islet cell clusters delivery is feasible from a mechanical and physical perspective. Moreover, cell vitality and structural integrity remain largely unaffected following aerosolization. These preliminary results are encouraging and represent a first step toward endoscopically assisted islet cell implantation in the lung.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA
| | - Tanja Khosrawipour
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA.,Department of Surgery (A), University-Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Alexander
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA
| | - Shiri Li
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA
| | - Agata Mikolajczyk
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, 56641Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jakub Nicpon
- Department of Surgery, Faculty of Veterinary Sciences, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, 56641Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, 56641Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Veria Khosrawipour
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA.,Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, 56641Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
12
|
Lee SH, Kim HO, Kang JT. Optimization of Nano-encapsulation on Neonatal Porcine Islet-like Cell Clusters Using Polymersomes. NANOSCALE RESEARCH LETTERS 2021; 16:53. [PMID: 33788062 PMCID: PMC8012476 DOI: 10.1186/s11671-021-03512-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/21/2021] [Indexed: 05/09/2023]
Abstract
Researches proving methods for nano-encapsulation of neonatal porcine islet-like cell clusters (NPCCs) using polymersomes (PSomes) formed using polymers of polyethylene glycol-block-poly lactide. Herein, our studies present efficient nano-encapsulation procedure with minimal damage and loss of NPCCs.We used N-hydroxysuccinimide (NHS) on the N-terminal of PSomes to induce binding of amine groups in the extracellular matrix surrounding NPCCs. F-10 culture medium with bovine serum albumin was used in the nano-encapsulation procedure to minimize damage and loss of NPCCs. Finally, we induced cross-linking between bifunctional PSomes (NHS-/NH2-PSomes). F-10 culture medium containing 0.25% BSA with pH of 7.3 minimized the damage and loss of NPCCs after nano-encapsulation as compared with using basic HBSS buffer (pH 8.0). Also, we induced the efficient nano-encapsulation through conjugation of PSomes using bifunctional PSomes (NHS-/NH2-PSomes).
Collapse
Affiliation(s)
- Sang Hoon Lee
- MGENPLUS Biotechnology Research Institute, Mgenplus Co., Ltd, Seoul, 06688, Republic of Korea
| | - Hyun-Ouk Kim
- Department of Biotechnology and Bioengineering, Kangwon National University, Gangwon-do, Chuncheon, 24341, Republic of Korea
- Biohealth-Machinery Convergence Engineering, Kangwon National University, Gangwon-do, Chuncheon, 24341, Republic of Korea
| | - Jung-Taek Kang
- MGENPLUS Biotechnology Research Institute, Mgenplus Co., Ltd, Seoul, 06688, Republic of Korea.
| |
Collapse
|
13
|
MacFarlane EM, Bruin JE. Human Pluripotent Stem Cells: A Unique Tool for Toxicity Testing in Pancreatic Progenitor and Endocrine Cells. Front Endocrinol (Lausanne) 2021; 11:604998. [PMID: 33542706 PMCID: PMC7851047 DOI: 10.3389/fendo.2020.604998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes prevalence is increasing worldwide, and epidemiological studies report an association between diabetes incidence and environmental pollutant exposure. There are >84,000 chemicals in commerce, many of which are released into the environment without a clear understanding of potential adverse health consequences. While in vivo rodent studies remain an important tool for testing chemical toxicity systemically, we urgently need high-throughput screening platforms in biologically relevant models to efficiently prioritize chemicals for in depth toxicity analysis. Given the increasing global burden of obesity and diabetes, identifying chemicals that disrupt metabolism should be a high priority. Pancreatic endocrine cells are key regulators of systemic metabolism, yet often overlooked as a target tissue in toxicology studies. Immortalized β-cell lines and primary human, porcine, and rodent islets are widely used for studying the endocrine pancreas in vitro, but each have important limitations in terms of scalability, lifespan, and/or biological relevance. Human pluripotent stem cell (hPSC) culture is a powerful tool for in vitro toxicity testing that addresses many of the limitations with other β-cell models. Current in vitro differentiation protocols can efficiently generate glucose-responsive insulin-secreting β-like cells that are not fully mature, but still valuable for high-throughput toxicity screening in vitro. Furthermore, hPSCs can be applied as a model of developing pancreatic endocrine cells to screen for chemicals that influence endocrine cell formation during critical windows of differentiation. Given their versatility, we recommend using hPSCs to identify potential β-cell toxins, which can then be prioritized as chemicals of concern for metabolic disruption.
Collapse
Affiliation(s)
| | - Jennifer E. Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
14
|
Dinnyes A, Schnur A, Muenthaisong S, Bartenstein P, Burcez CT, Burton N, Cyran C, Gianello P, Kemter E, Nemeth G, Nicotra F, Prepost E, Qiu Y, Russo L, Wirth A, Wolf E, Ziegler S, Kobolak J. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment. Cell Prolif 2020; 53:e12785. [PMID: 32339373 PMCID: PMC7260069 DOI: 10.1111/cpr.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.
Collapse
Affiliation(s)
- Andras Dinnyes
- Biotalentum Ltd, Hungary, Godollo, Hungary.,Sichuan University, College of Life Sciences, Chengdu, China.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | | | | - Clemens Cyran
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | - Pierre Gianello
- Health Science Sector - Laboratory of Experimental Surgery and Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Elisabeth Kemter
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Gabor Nemeth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Yi Qiu
- iThera Medical GmbH, Munchen, Germany
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andras Wirth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Eckhard Wolf
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | |
Collapse
|
15
|
Xu S, Qin D, Yang H, He C, Liu W, Tian N, Wei Y, He X, Hua J, Peng S. SerpinB1 promotes the proliferation of porcine pancreatic stem cells through the STAT3 signaling pathway. J Steroid Biochem Mol Biol 2020; 198:105537. [PMID: 31785377 DOI: 10.1016/j.jsbmb.2019.105537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023]
Abstract
Porcine pancreatic stem cells (pPSCs) can be induced to insulin-secreting cells and therefore considered the most promising seeding cells for curing human diabetes in future. However, insufficient pPSCs number is one of the bottleneck problems before its clinical application. SerpinB1 is a serine protease inhibitor in neutrophils and can directly promote the proliferation of β cells. Whether SerpinB1 is involved in pPSC proliferation and differentiation remains unknown. The effects of SerpinB1 on pPSCs proliferation were measured by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, qRT-PCR, western blot, and flow cytometry assays. We found that pPSCs did not efficiently reach the S phase when SerpinB1 expression was knocked down with short hairpin RNA (sh-SerpinB1), the expression of Cyclin D1, CDK-2, and PCNA also decreased. Meanwhile, cell viability and proliferation ability were both declined. Further analyses showed that the expression level of phosphorylated STAT3/STAT3was downregulated, along with an upregulation of p53 and p21. We used a two-step induction method to induce pPSCs to insulin-secreting cells and found that SerpinB1 expression in insulin-secreting cells was higher than in pPSCs. Meanwhile, the protein expression level of phosphorylated STAT3/STAT3 was increased while p53 and p21 was decreased in induced insulin-secreting cells in comparison with control cells. The insulin-secreting cells derived from the sh-SerpinB1 cells secreted less insulin and showed poor sensitivity to high glucose than control group. However, the insulin-secreting cells derived from the ov-SerpinB1 cells has a quite contrary tendency. In conclusion, this study demonstrates that SerpinB1 promotes the proliferation of pPSCs through the STAT3 signaling pathway, and SerpinB1 is a key factor for maintaining the viability of pPSCs during the transition to insulin-secreting cells.
Collapse
Affiliation(s)
- Shuanshuan Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Dezhe Qin
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hong Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chen He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wenqing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Na Tian
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
16
|
Farina M, Alexander JF, Thekkedath U, Ferrari M, Grattoni A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev 2019; 139:92-115. [PMID: 29719210 DOI: 10.1016/j.addr.2018.04.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Cell-based therapy is emerging as a promising strategy for treating a wide range of human diseases, such as diabetes, blood disorders, acute liver failure, spinal cord injury, and several types of cancer. Pancreatic islets, blood cells, hepatocytes, and stem cells are among the many cell types currently used for this strategy. The encapsulation of these "therapeutic" cells is under intense investigation to not only prevent immune rejection but also provide a controlled and supportive environment so they can function effectively. Some of the advanced encapsulation systems provide active agents to the cells and enable a complete retrieval of the graft in the case of an adverse body reaction. Here, we review various encapsulation strategies developed in academic and industrial settings, including the state-of-the-art technologies in advanced preclinical phases as well as those undergoing clinical trials, and assess their advantages and challenges. We also emphasize the importance of stimulus-responsive encapsulated cell systems that provide a "smart and live" therapeutic delivery to overcome barriers in cell transplantation as well as their use in patients.
Collapse
|
17
|
Smith KE, Purvis WG, Davis MA, Min CG, Cooksey AM, Weber CS, Jandova J, Price ND, Molano DS, Stanton JB, Kelly AC, Steyn LV, Lynch RM, Limesand SW, Alexander M, Lakey JRT, Seeberger K, Korbutt GS, Mueller KR, Hering BJ, McCarthy FM, Papas KK. In vitro characterization of neonatal, juvenile, and adult porcine islet oxygen demand, β-cell function, and transcriptomes. Xenotransplantation 2018; 25:e12432. [PMID: 30052287 DOI: 10.1111/xen.12432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/20/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted. METHODS Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, β-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing. RESULTS Oxygen consumption rate normalized to DNA was not significantly different between ages. Membrane integrity was age dependent, and API had the highest percentage of intact cells. API also had the highest glucose-stimulated insulin secretion response during a dynamic insulin secretion assay and had 50-fold higher total insulin content compared to NPI and JPI. NPI and JPI had similar glucose responsiveness, β-cell percentage, and β-cell proliferation rate. Transcriptome analysis was consistent with physiological assessments. API transcriptomes were enriched for cellular metabolic and insulin secretory pathways, while NPI exhibited higher expression of genes associated with proliferation. CONCLUSIONS The oxygen demand, membrane integrity, β-cell function and proliferation, and transcriptomes of islets from API, JPI, and NPI provide a comprehensive physiological comparison for future studies. These assessments will inform the optimal application of each age of porcine islet to expand the availability of islet transplantation.
Collapse
Affiliation(s)
- Kate E Smith
- Department of Physiological Sciences, University of Arizona, Tucson, AZ, USA.,Department of Surgery, University of Arizona, Tucson, AZ, USA
| | | | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Catherine G Min
- Department of Physiological Sciences, University of Arizona, Tucson, AZ, USA.,Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Amanda M Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Craig S Weber
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Diana S Molano
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | | | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Ronald M Lynch
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Michael Alexander
- Department of Surgery, University of California-Irvine, Orange, CA, USA
| | | | - Karen Seeberger
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AL, Canada
| | - Gregory S Korbutt
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AL, Canada
| | - Kate R Mueller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
18
|
Nie W, Ma X, Yang C, Chen Z, Rong P, Wu M, Jiang J, Tan M, Yi S, Wang W. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia. Xenotransplantation 2018; 25:e12405. [PMID: 29932262 DOI: 10.1111/xen.12405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/25/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hypoxia-induced damage is one of the key factors associated with islet graft dysfunction. Mesenchymal stem cells (MSCs) could be used to enhance the therapeutic effect of islet transplantation due to their paracrine potential such as exosomes. In this study, we investigated whether exosomes from human umbilical cord-derived MSC-conditioned medium (hu-MSC-CM) could increase the survival and function of neonatal porcine islet cell clusters (NICCs) exposed to hypoxia. METHODS Neonatal porcine islet cell clusters were cultured with hu-MSC-CM, with or without exosomes, and native medium RPMI-1640 (Control) under hypoxic conditions (1% O2 ). The effects of exosomes on NICCs viability and function in vitro were examined by FACS, the Loops system, and the Extracellular Flux assay, respectively. RESULTS Compared with NICCs cultured in RPMI-1640 medium and hu-MSC-CM without exosomes, the survival ratio, viability, and function increased in NICCs cultured in hu-MSC-CM with exosomes. CONCLUSIONS This study found that hu-MSC-CM could protect NICCs from hypoxia-induced dysfunction, and exosomes played an important role in hypoxic resistance, suggesting a potential strategy to improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Wei Nie
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Cejun Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Zeyi Chen
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Mengqun Tan
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Shounan Yi
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China.,Center for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| |
Collapse
|
19
|
Li WC, Chen CY, Kao CW, Huang PC, Hsieh YT, Kuo TY, Chen TY, Chia HY, Juang JH. Porcine Neonatal Pancreatic Cell Clusters Maintain Their Multipotency in Culture and After Transplantation. Sci Rep 2018; 8:8212. [PMID: 29844347 PMCID: PMC5974285 DOI: 10.1038/s41598-018-26404-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/11/2018] [Indexed: 01/22/2023] Open
Abstract
Ductal epithelium is primarily detected in porcine neonatal pancreatic cell clusters (NPCCs) bearing grafts, suggesting that transplants might exhibit progenitor-like phenotypes. Here we found that soon after NPCC isolation, PDX1+/insulin− and SOX9+ pancreatic progenitor-like cells dramatically increased while dual-hormonal progenitor-like cells were routinely observed in NPCC culture. After transplantation (Tx), insulin+ cells increased and PDX1+ and SOX9+ cells gradually decreased in both non-diabetic (NDM) and streptozotocin-induced diabetic (DM) grafts over 2 months. Strikingly, a significantly higher percentage of insulin+ cells were detected in 9-day and 16-day, but not in 23-day, 30-day and 60-day grafts implying that hyperglycemia could only facilitate NPCC-derived β cells early post-Tx. A higher percentage of NPCC-derived β cells in early DM grafts was determined via an enhanced neogenic differentiation based on the detection of insulin+ cells budding out from PDX1+/SOX9+ epithelium. Interestingly, a drop in SOX9+ progenitor-like cells was detected 16 days post-Tx in DM grafts whilst PDX1+ cells do not show a significant difference until 60 days post-Tx between DM and NDM grafts, demonstrating that distinct progenitor-like populations fuel new β cells post-Tx. In conclusion, PDX1+/SOX9+ cells could be quickly activated after NPCC isolation, maintain their multipotency in culture and differentiate into new β cell post-Tx.
Collapse
Affiliation(s)
- Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Yi Chen
- Division of Endocrinology and Metabolism and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Wei Kao
- Division of Endocrinology and Metabolism and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Chun Huang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ta Hsieh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Tz-Yu Kuo
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Tsai-Ying Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Yuan Chia
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Gamble A, Pepper AR, Bruni A, Shapiro AMJ. The journey of islet cell transplantation and future development. Islets 2018; 10:80-94. [PMID: 29394145 PMCID: PMC5895174 DOI: 10.1080/19382014.2018.1428511] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.
Collapse
Affiliation(s)
- Anissa Gamble
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| |
Collapse
|
21
|
Lee SH, Park HS, Yang Y, Lee EY, Kim JW, Khang G, Yoon KH. Improvement of islet function and survival by integration of perfluorodecalin into microcapsules in vivo and in vitro. J Tissue Eng Regen Med 2018; 12:e2110-e2122. [PMID: 29330944 DOI: 10.1002/term.2643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022]
Abstract
Hypoxic injury of islets is a major obstacle for encapsulated islet transplantation into the peritoneal cavity. To improve oxygen delivery to encapsulated islets, we integrated 20% of the oxygen carrier material, perfluorodecalin (PFD), in alginate capsules mixed with islets (PFD-alginate). Integration of PFD clearly improved islet viability and decreased reactive oxygen species production compared to islets encapsulated with alginate only (alginate) and naked islets exposed to hypoxia in vitro. In PFD-alginate capsules, HIF-1α expression was minimal, and insulin expression was well maintained. Furthermore, the best islet function represented by glucose-stimulated insulin secretion was observed for the PFD-alginate capsules in hypoxic condition. For the in vivo study, the same number of naked islets and encapsulated islets (alginate and PFD-alginate) was transplanted into streptozotocin-induced diabetic mice. Nonfasting blood glucose levels and the area under the curve for glucose based on intraperitoneal glucose tolerance tests in the PFD-alginate group were lower than in the alginate group. The harvested islets stained positive for insulin in all groups, but the ratio of dead cell area was 4 times higher in the alginate group than in the PFD-alginate group. In conclusion, integration of PFD in alginate microcapsules improved islet function and survival by minimizing the hypoxic damage of islets after intraperitoneal transplantation.
Collapse
Affiliation(s)
- Sang-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Heon-Seok Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeoree Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, South Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
22
|
Targeted Mutation of NGN3 Gene Disrupts Pancreatic Endocrine Cell Development in Pigs. Sci Rep 2018; 8:3582. [PMID: 29483633 PMCID: PMC5827570 DOI: 10.1038/s41598-018-22050-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
The domestic pig is an attractive model for biomedical research because of similarities in anatomy and physiology to humans. However, key gaps remain in our understanding of the role of developmental genes in pig, limiting its full potential. In this publication, the role of NEUROGENIN 3 (NGN3), a transcription factor involved in endocrine pancreas development has been investigated by CRISPR/Cas9 gene ablation. Precomplexed Cas9 ribonucleoproteins targeting NGN3 were injected into in vivo derived porcine embryos, and transferred into surrogate females. On day 60 of pregnancy, nine fetuses were collected for genotypic and phenotypic analysis. One of the piglets was identified as an in-frame biallelic knockout (Δ2/Δ2), which showed a loss of putative NGN3-downstream target genes: NEUROD1 and PAX4, as well as insulin, glucagon, somatostatin and pancreatic polypeptide-Y. Fibroblasts from this fetus were used in somatic cell nuclear transfer to generate clonal animals to qualify the effect of mutation on embryonic lethality. Three live piglets were born, received colostrum and suckled normally, but experienced extreme weight loss over a 24 to 36-hour period requiring humane euthanasia. Expression of pancreatic endocrine hormones: insulin, glucagon, and somatostatin were lost. The data support a critical role of NGN3 in porcine endocrine pancreas development.
Collapse
|
23
|
Lew B, Kim IY, Choi H, Kim K. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug Deliv Transl Res 2018; 8:857-862. [DOI: 10.1007/s13346-018-0484-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Lee EM, Jung JI, Alam Z, Yi HG, Kim H, Choi JW, Hurh S, Kim YJ, Jeong JC, Yang J, Oh KH, Kim HC, Lee BC, Choi I, Cho DW, Ahn C. Effect of an oxygen-generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters. Xenotransplantation 2018; 25:e12378. [DOI: 10.1111/xen.12378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Eun Mi Lee
- Graduate School of Translational Medicine; Seoul National University College of Medicine; Seoul Korea
- Center for Medical Innovation; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
| | - Ji-In Jung
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang Gyeongsangbuk-do Korea
| | - Zahid Alam
- Center for Medical Innovation; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
| | - Hee-Gyeong Yi
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang Gyeongsangbuk-do Korea
| | - Heejin Kim
- Interdisciplinary Program in Bioengineering; Graduate School; Seoul National University; Seoul Korea
| | - Jin Woo Choi
- Interdisciplinary Program in Bioengineering; Graduate School; Seoul National University; Seoul Korea
| | - Sunghoon Hurh
- Center for Medical Innovation; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
| | - Young June Kim
- Designed Animal & Transplantation Research Institute; Institute of Green Bio Science & Technology; Seoul National University; Pyeongchang Gangwon-do Korea
| | - Jong Cheol Jeong
- Department of Nephrology; Ajou University School of Medicine; Suwon Gyeonggi-do Korea
| | - Jaeseok Yang
- Transplantation Center; Seoul National University Hospital; Seoul Korea
- Department of Surgery; Seoul National University Hospital; Seoul Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Hee Chan Kim
- Department of Biomedical Engineering; Seoul National University College of Medicine; Seoul Korea
| | - Byeong Chun Lee
- Designed Animal & Transplantation Research Institute; Institute of Green Bio Science & Technology; Seoul National University; Pyeongchang Gangwon-do Korea
- Department of Theriogenology and Biotechnology; College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Inho Choi
- Department of Pharmaceutical Engineering; College of Life and Health Sciences; Hoseo University; Asan Chungcheongnam-do Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang Gyeongsangbuk-do Korea
| | - Curie Ahn
- Designed Animal & Transplantation Research Institute; Institute of Green Bio Science & Technology; Seoul National University; Pyeongchang Gangwon-do Korea
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
25
|
Zhu H, Li W, Liu Z, Li W, Chen N, Lu L, Zhang W, Wang Z, Wang B, Pan K, Zhang X, Chen G. Selection of Implantation Sites for Transplantation of Encapsulated Pancreatic Islets. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:191-214. [PMID: 29048258 DOI: 10.1089/ten.teb.2017.0311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic islet transplantation has been validated as a valuable therapy for type 1 diabetes mellitus patients with exhausted insulin treatment. However, this therapy remains limited by the shortage of donor and the requirement of lifelong immunosuppression. Islet encapsulation, as an available bioartificial pancreas (BAP), represents a promising approach to enable protecting islet grafts without or with minimal immunosuppression and possibly expanding the donor pool. To develop a clinically implantable BAP, some key aspects need to be taken into account: encapsulation material, capsule design, and implant site. Among them, the implant site exerts an important influence on the engraftment, stability, and biocompatibility of implanted BAP. Currently, an optimal site for encapsulated islet transplantation may include sufficient capacity to host large graft volumes, portal drainage, ease of access using safe and reproducible procedure, adequate blood/oxygen supply, minimal immune/inflammatory reaction, pliable for noninvasive imaging and biopsy, and potential of local microenvironment manipulation or bioengineering. Varying degrees of success have been confirmed with the utilization of liver or extrahepatic sites in an experimental or preclinical setting. However, the ideal implant site remains to be further engineered or selected for the widespread application of encapsulated islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China .,2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China
| | - Wenjing Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhongwei Liu
- 3 Department of Cardiology, Shaanxi Provincial People's Hospital , Xi'an, China
| | - Wenliang Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Niuniu Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Linlin Lu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Wei Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhen Wang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Bo Wang
- 2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China .,4 Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University , Xi'an, China
| | - Kaili Pan
- 5 Department of Pediatrics (No. 2 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Xiaoge Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Guoqiang Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| |
Collapse
|
26
|
|
27
|
Li HW, Vishwasrao P, Hölzl MA, Chen S, Choi G, Zhao G, Sykes M. Impact of Mixed Xenogeneic Porcine Hematopoietic Chimerism on Human NK Cell Recognition in a Humanized Mouse Model. Am J Transplant 2017; 17:353-364. [PMID: 27401926 PMCID: PMC5414033 DOI: 10.1111/ajt.13957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/25/2023]
Abstract
Mixed chimerism is a promising approach to inducing allograft and xenograft tolerance. Mixed allogeneic and xenogeneic chimerism in mouse models induced specific tolerance and global hyporesponsiveness, respectively, of host mouse natural killer (NK) cells. In this study, we investigated whether pig/human mixed chimerism could tolerize human NK cells in a humanized mouse model. Our results showed no impact of induced human NK cell reconstitution on porcine chimerism. NK cells from most pig/human mixed chimeric mice showed either specifically decreased cytotoxicity to pig cells or global hyporesponsiveness in an in vitro cytotoxicity assay. Mixed xenogeneic chimerism did not hamper the maturation of human NK cells but was associated with an alteration in NK cell subset distribution and interferon gamma (IFN-γ) production in the bone marrow. In summary, we demonstrate that mixed xenogeneic chimerism induces human NK cell hyporesponsiveness to pig cells. Our results support the use of this approach to inducing xenogeneic tolerance in the clinical setting. However, additional approaches are required to improve the efficacy of tolerance induction while ensuring adequate NK cell functions.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paresh Vishwasrao
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY,Department of Hematology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Markus A. Hölzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Stephanie Chen
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Goda Choi
- Department of Hematology, Academic Medical Center, University of Amsterdam, The Netherlands,Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Guiling Zhao
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
28
|
Kawanishi K. Mesothelial cell transplantation: history, challenges and future directions. Pleura Peritoneum 2016; 1:135-143. [PMID: 30911617 PMCID: PMC6419540 DOI: 10.1515/pp-2016-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022] Open
Abstract
Mesothelial cells line the surface of the pleura, pericardium, peritoneum and internal reproductive organs. One of their main functions is to act as a non-adhesive barrier to protect against physical damage, however, over the past decades their physiological and pathological properties have been revealed in association with a variety of conditions and diseases. Mesothelium has been used in surgical operations in clinical settings, such as omental patching for perforated peptic ulcers and in glutaraldehyde-treated autologous pericardium for aortic valve reconstruction. Various methods for mesothelial cell transplantation have also been established and developed, particularly within the area of tissue engineering, including scaffold and non-scaffold cell sheet technologies. However, the use of mesothelial cell transplantation in patients remains challenging, as it requires additional operations under general anesthesia in order to obtain enough intact cells for culture. Moreover, the current methods of mesothelial cell transplantation are expensive and are not yet available in clinical practice. This review firstly summarizes the history of the use of mesothelial cell transplantation in tissue engineering, and then critically discusses the barriers for the clinical application of mesothelial cell transplantation. Finally, the recent developments in xenotransplantation technologies are discussed to evaluate other feasible alternatives to mesothelial cell transplantation.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Department of Cellular and Molecular Medicine, University of California, San Diego,9500 Gilman Drive, La Jolla, CA 92093–0687, USA
- Department of Surgical Pathology, Tokyo Women’s Medical University, 8–1, Kawada-cho, Shinjuku-ku, 162–8666, Tokyo, Japan
| |
Collapse
|
29
|
Matsumoto S, Tomiya M, Sawamoto O. Current status and future of clinical islet xenotransplantation. J Diabetes 2016; 8:483-93. [PMID: 26987992 DOI: 10.1111/1753-0407.12395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/18/2016] [Accepted: 03/04/2016] [Indexed: 12/11/2022] Open
Abstract
β-Cell replacement therapy, including allogeneic pancreas and islet transplantation, can normalize HbA1c levels in unstable type 1 diabetic (T1D) patients, but a donor shortage is a serious issue. To overcome this problem, xenotransplantation is an attractive option. In fact, islet transplantation from porcine pancreata was performed in the 1990s, which opened the door for islet xenotransplantation, but the possibility of porcine endogenous retrovirus (PERV) infection was raised, which has restricted progress in this field. The International Xenotransplantation Association published a consensus statement on conditions for undertaking clinical trials of porcine islet products in T1D to restart islet xenotransplantation safely. Clinical porcine islet xenotransplantation was restarted under comprehensive regulations in New Zealand. In addition, newly emerged gene-editing technologies have activated the xenotransplantation field. Islet xenotransplantation is becoming a clinical reality, with the results of recent studies showing promise to advance this field.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Naruto, Japan
- Islet Transplantation Project National Institute for Global Health and Medicine, Tokyo, Japan
| | - Masayuki Tomiya
- Department of Regenerative Medicine, Otsuka Pharmaceutical Factory, Naruto, Japan
| | - Osamu Sawamoto
- Department of Regenerative Medicine, Otsuka Pharmaceutical Factory, Naruto, Japan
| |
Collapse
|
30
|
Zhu HT, Lu L, Liu XY, Yu L, Lyu Y, Wang B. Treatment of diabetes with encapsulated pig islets: an update on current developments. J Zhejiang Univ Sci B 2016; 16:329-43. [PMID: 25990050 DOI: 10.1631/jzus.b1400310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The potential use of allogeneic islet transplantation in curing type 1 diabetes mellitus has been adequately demonstrated, but its large-scale application is limited by the short supply of donor islets and the need for sustained and heavy immunosuppressive therapy. Encapsulation of pig islets was therefore suggested with a view to providing a possible alternative source of islet grafts and avoiding chronic immunosuppression and associated adverse or toxic effects. Nevertheless, several vital elements should be taken into account before this therapy becomes a clinical reality, including cell sources, encapsulation approaches, and implantation sites. This paper provides a comprehensive review of xenotransplantation of encapsulated pig islets for the treatment of type 1 diabetes mellitus, including current research findings and suggestions for future studies.
Collapse
Affiliation(s)
- Hai-tao Zhu
- Heart Center, Northwest Women's and Children's Hospital, Xi'an 710061, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China; Department of Hand Surgery, China-Japan Union Hospital, Norman Bethune Health Science Center, Jilin University, Changchun 130033, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | |
Collapse
|
31
|
Zhu H, Yu L, He Y, Lyu Y, Wang B. Microencapsulated Pig Islet Xenotransplantation as an Alternative Treatment of Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:474-89. [PMID: 26028249 DOI: 10.1089/ten.teb.2014.0499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Heart Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yayi He
- Department of Endocrinology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|