1
|
Chandrasekar V, Mohammad S, Aboumarzouk O, Singh AV, Dakua SP. Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137071. [PMID: 39808958 DOI: 10.1016/j.jhazmat.2024.137071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Point of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data. Hence, the current study utilizes a two-stage machine learning (ML) model for predicting NOAEL values, based on data curated from diverse toxicity exposures. In the first stage, a random forest regressor is used for supervised outlier detection and removal addressing any variability in data and poor correlations. The refined data is then used for toxicity prediction using several ML models; random forest and XGBoost show relatively higher performance with an R2 value of 0.4 and 0.43, respectively, for predicting NOAEL in chronic toxicity. Similarly, feature combinations with absorption distribution metabolism and excretion (ADME) indicate better NOAEL prediction for acute toxicity. External validation is performed by predicting NOAEL values for cosmetic pigments and calculating reference doses (RfD). Notably, pigments like orange and red show higher RfD values, indicating broader safety margins. This study provides a practical framework for addressing variability and data limitations in toxicity prediction while offering insights into its applicability in risk evaluation.
Collapse
Affiliation(s)
- Vaisali Chandrasekar
- Department of Surgery, Clinical Advancement Department, Hamad Medical Corporation, Qatar
| | - Syed Mohammad
- Department of Surgery, Clinical Advancement Department, Hamad Medical Corporation, Qatar
| | - Omar Aboumarzouk
- Department of Surgery, Clinical Advancement Department, Hamad Medical Corporation, Qatar; College of Health and Medical Sciences, Qatar University, Qatar
| | | | - Sarada Prasad Dakua
- Department of Surgery, Clinical Advancement Department, Hamad Medical Corporation, Qatar; College of Health and Medical Sciences, Qatar University, Qatar.
| |
Collapse
|
2
|
Aurisano N, Fantke P, Chiu WA, Judson R, Jang S, Unnikrishnan A, Jolliet O. Probabilistic Reference and 10% Effect Concentrations for Characterizing Inhalation Non-cancer and Developmental/Reproductive Effects for 2,160 Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8278-8288. [PMID: 38697947 PMCID: PMC11097392 DOI: 10.1021/acs.est.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Chemicals assessment and management frameworks rely on regulatory toxicity values, which are based on points of departure (POD) identified following rigorous dose-response assessments. Yet, regulatory PODs and toxicity values for inhalation exposure (i.e., reference concentrations [RfCs]) are available for only ∼200 chemicals. To address this gap, we applied a workflow to determine surrogate inhalation route PODs and corresponding toxicity values, where regulatory assessments are lacking. We curated and selected inhalation in vivo data from the U.S. EPA's ToxValDB and adjusted reported effect values to chronic human equivalent benchmark concentrations (BMCh) following the WHO/IPCS framework. Using ToxValDB chemicals with existing PODs associated with regulatory toxicity values, we found that the 25th %-ile of a chemical's BMCh distribution (POD p 25 BMC h ) could serve as a suitable surrogate for regulatory PODs (Q2 ≥ 0.76, RSE ≤ 0.82 log10 units). We applied this approach to derive POD p 25 BMC h for 2,095 substances with general non-cancer toxicity effects and 638 substances with reproductive/developmental toxicity effects, yielding a total coverage of 2,160 substances. From these POD p 25 BMC h , we derived probabilistic RfCs and human population effect concentrations. With this work, we have expanded the number of chemicals with toxicity values available, thereby enabling a much broader coverage for inhalation risk and impact assessment.
Collapse
Affiliation(s)
- Nicolò Aurisano
- Quantitative
Sustainability Assessment, Department of Environmental and Resource
Engineering, Technical University of Denmark, Bygningstorvet 115, Kgs., Lyngby 2800, Denmark
| | - Peter Fantke
- Quantitative
Sustainability Assessment, Department of Environmental and Resource
Engineering, Technical University of Denmark, Bygningstorvet 115, Kgs., Lyngby 2800, Denmark
| | - Weihsueh A. Chiu
- Department
of Veterinary Integrative Biosciences, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United
States
| | - Richard Judson
- National
Center for Computational Toxicology, U.S.
Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| | - Suji Jang
- Department
of Veterinary Integrative Biosciences, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United
States
| | - Aswani Unnikrishnan
- National
Center for Computational Toxicology, U.S.
Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| | - Olivier Jolliet
- Quantitative
Sustainability Assessment, Department of Environmental and Resource
Engineering, Technical University of Denmark, Bygningstorvet 115, Kgs., Lyngby 2800, Denmark
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Zhang L, Li M, Zhang D, Zhang S, Zhang L, Wang X, Qian Z. Developmental neurotoxicity (DNT) QSAR combination prediction model establishment and structural characteristics interpretation. Toxicol Res (Camb) 2024; 13:tfad116. [PMID: 38178999 PMCID: PMC10762666 DOI: 10.1093/toxres/tfad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
With the incidence of neurodevelopmental disorders on the rise, it is imperative to screen and evaluate developmental neurotoxicity (DNT) compounds from a large number of environmental chemicals and understand their mechanisms. In this study, DNT qualitative structure-activity relationship (QSAR) study was carried out for the first time based on DNT data of mammals and structural characterization of DNT compounds was preliminarily illustrated. Five different classification algorithms and two feature selection methods were used to construct prediction models. The best model had good predictive ability on the external test set, but a small application domain (AD). Through combining of three different models, both MCC and AD values were improved. Furthermore, electronical properties, van der Waals volume-related properties and S, Cl or P containing substructure were found to be associated with DNT through modeling descriptors analysis and structure alerts (SAs) identification. This study lays a foundation for further DNT prediction of environmental exposures in human and contributes to the understanding of DNT mechanism.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Min Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Shujing Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Li Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Xiaojun Wang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| |
Collapse
|
4
|
Bowden AM, Escher SE, Rose J, Sadekar N, Patlewicz G, O'Keeffe L, Bury D, Hewitt NJ, Giusti A, Rothe H. Workshop report: Challenges faced in developing inhalation thresholds of Toxicological Concern (TTC) - State of the science and next steps. Regul Toxicol Pharmacol 2023; 142:105434. [PMID: 37302561 PMCID: PMC10494708 DOI: 10.1016/j.yrtph.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
A challenging step in human risk assessment of chemicals is the derivation of safe thresholds. The Threshold of Toxicological Concern (TTC) concept is one option which can be used for the safety evaluation of substances with a limited toxicity dataset, but for which exposure is sufficiently low. The application of the TTC is generally accepted for orally or dermally exposed cosmetic ingredients; however, these values cannot directly be applied to the inhalation route because of differences in exposure route versus oral and dermal. Various approaches of an inhalation TTC concept have been developed over recent years to address this. A virtual workshop organized by Cosmetics Europe, held in November 2020, shared the current state of the science regarding the applicability of existing inhalation TTC approaches to cosmetic ingredients. Key discussion points included the need for an inhalation TTC for local respiratory tract effects in addition to a systemic inhalation TTC, dose metrics, database building and quality of studies, definition of the chemical space and applicability domain, and classification of chemicals with different potencies. The progress made to date in deriving inhalation TTCs was highlighted, as well as the next steps envisaged to develop them further for regulatory acceptance and use.
Collapse
Affiliation(s)
- Anthony M Bowden
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, UK.
| | | | | | - Nikaeta Sadekar
- Research Institute for Fragrance Materials, Inc., Mahwah, NJ, USA
| | - Grace Patlewicz
- Center for Computational and Exposure, US Environmental Protection Agency, RTP, NC, 27711, USA
| | | | - Dagmar Bury
- L'Oréal Research & Innovation, Clichy, France
| | | | | | - Helga Rothe
- SciConT (formerly at Coty), Darmstadt, Germany
| |
Collapse
|
5
|
Wohlleben W, Mehling A, Landsiedel R. Lessons Learned from the Grouping of Chemicals to Assess Risks to Human Health. Angew Chem Int Ed Engl 2023; 62:e202210651. [PMID: 36254879 DOI: 10.1002/anie.202210651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
In analogy to the periodic system that groups elements by their similarity in structure and chemical properties, the hazard of chemicals can be assessed in groups having similar structures and similar toxicological properties. Here we review case studies of chemical grouping strategies that supported the assessment of hazard, exposure, and risk to human health. By the EU-REACH and the US-TSCA New Chemicals Program, structural similarity is commonly used as the basis for grouping, but that criterion is not always adequate and sufficient. Based on the lessons learned, we derive ten principles for grouping, including: transparency of the purpose, criteria, and boundaries of the group; adequacy of methods used to justify the group; and inclusion or exclusion of substances in the group by toxicological properties. These principles apply to initial grouping to prioritize further actions as well as to definitive grouping to generate data for risk assessment. Both can expedite effective risk management.
Collapse
Affiliation(s)
- Wendel Wohlleben
- Department of Analytical and Material Science, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Annette Mehling
- Dept. of Advanced Formulation and Performance Technology, BASF Personal Care and Nutrition GmbH, 40589, Duesseldorf, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Free University of Berlin, Biology, Chemistry and Pharmacy-Pharmacology and Toxicology, 14195, Berlin, Germany
| |
Collapse
|
6
|
Pham YL, Wojnowski W, Beauchamp J. Volatile Compound Emissions from Stereolithography Three-Dimensional Printed Cured Resin Models for Biomedical Applications. Chem Res Toxicol 2023; 36:369-379. [PMID: 36534374 DOI: 10.1021/acs.chemrestox.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stereolithography three-dimensional printing is used increasingly in biomedical applications to create components for use in healthcare and therapy. The exposure of patients to volatile organic compounds (VOCs) emitted from cured resins represents an element of concern in such applications. Here, we investigate the biocompatibility in relation to inhalation exposure of volatile emissions of three different cured commercial resins for use in printing a mouthpiece adapter for sampling exhaled breath. VOC emission rates were estimated based on direct analysis using a microchamber/thermal extractor coupled to a proton transfer reaction-mass spectrometer. Complementary analyses using comprehensive gas chromatography-mass spectrometry aided compound identification. Major VOCs emitted from the cured resins were associated with polymerization agents, additives, and postprocessing procedures and included alcohols, aldehydes, ketones, hydrocarbons, esters, and terpenes. Total VOC emissions from cubes printed using the general-purpose resin were approximately an order of magnitude higher than those of the cubes printed using resins dedicated to biomedical applications at the respective test temperatures (40 and 25 °C). Daily inhalation exposures were estimated and compared with daily tolerable intake levels or standard thresholds of toxicological concerns. The two resins intended for biomedical applications were deemed suitable for fabricating an adapter mouthpiece for use in breath research. The general-purpose resin was unsuitable, with daily inhalation exposures for breath sampling applications at 40 °C estimated at 310 μg day-1 for propylene glycol (tolerable intake (TI) limit of 190 μg day-1) and 1254 μg day-1 for methyl acrylate (TI of 43 μg day-1).
Collapse
Affiliation(s)
- Y Lan Pham
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354Freising, Germany
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054Erlangen, Germany
| | - Wojciech Wojnowski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233Gdańsk, Poland
- Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315Oslo, Norway
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354Freising, Germany
| |
Collapse
|
7
|
Vreeke S, Faulkner DM, Strongin RM, Rufer E. A First-Tier Framework for Assessing Toxicological Risk from Vaporized Cannabis Concentrates. TOXICS 2022; 10:771. [PMID: 36548603 PMCID: PMC9782653 DOI: 10.3390/toxics10120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Vaporization is an increasingly prevalent means to consume cannabis, but there is little guidance for manufacturers or regulators to evaluate additive safety. This paper presents a first-tier framework for regulators and cannabis manufacturers without significant toxicological expertise to conduct risk assessments and prioritize additives in cannabis concentrates for acceptance, elimination, or further evaluation. Cannabinoids and contaminants (e.g., solvents, pesticides, etc.) are excluded from this framework because of the complexity involved in their assessment; theirs would not be a first-tier toxicological assessment. Further, several U.S. state regulators have provided guidance for major cannabinoids and contaminants. Toxicological risk assessment of cannabis concentrate additives, like other types of risk assessment, includes hazard assessment, dose-response, exposure assessment, and risk characterization steps. Scarce consumption data has made exposure assessment of cannabis concentrates difficult and variable. Previously unpublished consumption data collected from over 54,000 smart vaporization devices show that 50th and 95th percentile users consume 5 and 57 mg per day on average, respectively. Based on these and published data, we propose assuming 100 mg per day cannabis concentrate consumption for first-tier risk assessment purposes. Herein, we provide regulators, cannabis manufacturers, and consumers a preliminary methodology to evaluate the health risks of cannabis concentrate additives.
Collapse
Affiliation(s)
| | | | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | | |
Collapse
|
8
|
Arnot JA, Toose L, Armitage JM, Sangion A, Looky A, Brown TN, Li L, Becker RA. Developing an internal threshold of toxicological concern (iTTC). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:877-884. [PMID: 36347933 PMCID: PMC9731903 DOI: 10.1038/s41370-022-00494-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Threshold of Toxicological Concern (TTC) approaches are used for chemical safety assessment and risk-based priority setting for data poor chemicals. TTCs are derived from in vivo No Observed Effect Level (NOEL) datasets involving an external administered dose from a single exposure route, e.g., oral intake rate. Thus, a route-specific TTC can only be compared to a route-specific exposure estimate and such TTCs cannot be used for other exposure scenarios such as aggregate exposures. OBJECTIVE Develop and apply a method for deriving internal TTCs (iTTCs) that can be used in chemical assessments for multiple route-specific exposures (e.g., oral, inhalation or dermal) or aggregate exposures. METHODS Chemical-specific toxicokinetics (TK) data and models are applied to calculate internal concentrations (whole-body and blood) from the reported administered oral dose NOELs used to derive the Munro TTCs. The new iTTCs are calculated from the 5th percentile of cumulative distributions of internal NOELs and the commonly applied uncertainty factor of 100 to extrapolate animal testing data for applications in human health assessment. RESULTS The new iTTCs for whole-body and blood are 0.5 nmol/kg and 0.1 nmol/L, respectively. Because the iTTCs are expressed on a molar basis they are readily converted to chemical mass iTTCs using the molar mass of the chemical of interest. For example, the median molar mass in the dataset is 220 g/mol corresponding to an iTTC of 22 ng/L-blood (22 pg/mL-blood). The iTTCs are considered broadly applicable for many organic chemicals except those that are genotoxic or acetylcholinesterase inhibitors. The new iTTCs can be compared with measured or estimated whole-body or blood exposure concentrations for chemical safety screening and priority-setting. SIGNIFICANCE Existing Threshold of Toxicological Concern (TTC) approaches are limited in their applications for route-specific exposure scenarios only and are not suitable for chemical risk and safety assessments under conditions of aggregate exposure. New internal Threshold of Toxicological Concern (iTTC) values are developed to address data gaps in chemical safety estimation for multi-route and aggregate exposures.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada.
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Liisa Toose
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
| | | | - Alessandro Sangion
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Trevor N Brown
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
| | - Li Li
- School of Public Health, University of Nevada Reno, Reno, NV, USA
| | | |
Collapse
|
9
|
Parris P, Whelan G, Burild A, Whritenour J, Bruen U, Bercu J, Callis C, Graham J, Johann E, Griffin T, Kohan M, Martin EA, Masuda-Herrera M, Stanard B, Tien E, Cruz M, Nagao L. Framework for sensitization assessment of extractables and leachables in pharmaceuticals. Crit Rev Toxicol 2022; 52:125-138. [PMID: 35703156 DOI: 10.1080/10408444.2022.2065966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the toxicological assessment of extractables and leachables in drug products, localized hazards such as irritation or sensitization may be identified. Typically, because of the low concentration at which leachables occur in pharmaceuticals, irritation is of minimal concern; therefore, this manuscript focuses on sensitization potential. The primary objective of performing a leachable sensitization assessment is protection against Type IV induction of sensitization, rather than prevention of an elicitation response, as it is not possible to account for the immunological state of every individual. Sensitizers have a wide range of potencies and those which induce sensitization upon exposure at a low concentration (i.e. strong, or extreme sensitizers) pose the highest risk to patients and should be the focus of the risk assessment. The Extractables and Leachables Safety Information Exchange (ELSIE) consortium has reviewed the status of dermal, respiratory, and systemic risk assessment in cosmetic and pharmaceutical industries, and proposes a framework to evaluate the safety of known or potential dermal sensitizers in pharmaceuticals. Due to the lack of specific regulatory guidance on this topic, the science-driven risk-based approach proposed by ELSIE encourages consistency in the toxicological assessment of extractables and leachables to maintain high product quality and ensure patient safety.
Collapse
Affiliation(s)
- Patricia Parris
- Pfizer Worldwide Research, Development and Medical, Kent, UK
| | | | - Anders Burild
- Novo Nordisk A/S, Safety Sciences, Imaging and Data Management, Måløv, Denmark
| | | | - Uma Bruen
- Organon USA Inc., Jersey City, NJ, USA
| | - Joel Bercu
- Gilead Sciences Inc., Foster City, CA, USA
| | - Courtney Callis
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, USA
| | | | | | - Troy Griffin
- Teva Branded Pharmaceutical Products R&D, West Chester, PA, USA
| | - Martin Kohan
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth A Martin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Maureen Cruz
- Faegre Drinker Biddle & Reath LLP, Washington, DC, USA
| | - Lee Nagao
- Faegre Drinker Biddle & Reath LLP, Washington, DC, USA
| |
Collapse
|
10
|
Rethinking agrochemical safety assessment: A perspective. Regul Toxicol Pharmacol 2021; 127:105068. [PMID: 34678328 DOI: 10.1016/j.yrtph.2021.105068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022]
Abstract
Agrochemical safety assessment has traditionally relied on the use of animals for toxicity testing, based on scientific understanding and test guidelines developed in the 1980s. However, since then, there have been significant advances in the toxicological sciences that have improved our understanding of mechanisms underpinning adverse human health effects. The time is ripe to 'rethink' approaches used for human safety assessments of agrochemicals to ensure they reflect current scientific understanding and increasingly embrace new opportunities to improve human relevance and predictivity, and to reduce the reliance on animals. Although the ultimate aim is to enable a paradigm shift and an overhaul of global regulatory data requirements, there is much that can be done now to ensure new opportunities and approaches are adopted and implemented within the current regulatory frameworks. This commentary reviews current initiatives and emerging opportunities to embrace new approaches to improve agrochemical safety assessment for humans, and considers various endpoints and initiatives (including acute toxicity, repeat dose toxicity studies, carcinogenicity, developmental and reproductive toxicity, exposure-driven approaches, inhalation toxicity, and data modelling). Realistic aspirations to improve safety assessment, incorporate new technologies and reduce reliance on animal testing without compromising protection goals are discussed.
Collapse
|
11
|
Arnesdotter E, Rogiers V, Vanhaecke T, Vinken M. An overview of current practices for regulatory risk assessment with lessons learnt from cosmetics in the European Union. Crit Rev Toxicol 2021; 51:395-417. [PMID: 34352182 DOI: 10.1080/10408444.2021.1931027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Risk assessments of various types of chemical compounds are carried out in the European Union (EU) foremost to comply with legislation and to support regulatory decision-making with respect to their safety. Historically, risk assessment has relied heavily on animal experiments. However, the EU is committed to reduce animal experimentation and has implemented several legislative changes, which have triggered a paradigm shift towards human-relevant animal-free testing in the field of toxicology, in particular for risk assessment. For some specific endpoints, such as skin corrosion and irritation, validated alternatives are available whilst for other endpoints, including repeated dose systemic toxicity, the use of animal data is still central to meet the information requirements stipulated in the different legislations. The present review aims to provide an overview of established and more recently introduced methods for hazard assessment and risk characterisation for human health, in particular in the context of the EU Cosmetics Regulation (EC No 1223/2009) as well as the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC 1907/2006).
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Bury D, Head J, Keller D, Klaric M, Rose J. The Threshold of Toxicological Concern (TTC) is a pragmatic tool for the safety assessment: Case studies of cosmetic ingredients with low consumer exposure. Regul Toxicol Pharmacol 2021; 123:104964. [PMID: 34023455 DOI: 10.1016/j.yrtph.2021.104964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
The Threshold of Toxicological Concern (TTC) is an internationally accepted pragmatic and conservative tool for the safety assessment of substances, which is used in a wide range of regulatory contexts. The TTC approach produces human exposure threshold values (TTC values) originally derived by Munro from oral toxicity data on cancer and non-cancer toxicity endpoints. This database has been recently substantially enlarged by the COSMOS database, an enhanced oral non-cancer TTC dataset on a larger chemical domain, thereby resulting in a new, transparent and public TTC database also including 552 cosmetics-related chemicals. The 5th percentile point of departure value for each Cramer Class was determined, from which human exposure TTC values have been derived. The combined COSMOS/Munro dataset provided TTC values of 46, 6.2 and 2.3 μg/kg bw/day for Cramer Classes I, II or III, respectively. In order to demonstrate the diverse scope and successful application of the TTC concept to cosmetic ingredients including hair dyes, fragrances and plant-derived ingredients, Cosmetics Europe has prepared several case studies. Overall, the TTC concept is not only useful to replace animal testing but can also successfully be applied to the safety evaluation of cosmetic ingredients in the marketed formulas with low human exposure.
Collapse
Affiliation(s)
- Dagmar Bury
- L'Oréal Research & Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France.
| | - Julia Head
- Unilever, Safety & Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1ET, UK
| | | | - Martina Klaric
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | | | | |
Collapse
|