1
|
Scaltriti E, Iyad K, Boniotti MB, Menozzi I, Bolzoni L, Ippolito D, Ciarello FP, Loda D, D’Incau M, Zanoni M, Presti VDML, Mazzone P, Gavaudan S, Pacciarini ML. Inside Mycobacterium bovis SB0120 spoligotype circulating in Italy: analysis of the most frequent genotypes by whole genome sequencing. Front Microbiol 2024; 15:1416605. [PMID: 39132144 PMCID: PMC11310128 DOI: 10.3389/fmicb.2024.1416605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bovine tuberculosis (bTB) is a chronic inflammatory disease primarily caused by Mycobacterium bovis. The infection affects domestic animals and wildlife, posing a zoonotic risk to humans. To understand the dynamics of transmission and genetic diversity in Italy's M. bovis population, we conducted whole-genome sequencing (WGS) analysis on two prevalent genotypes, belonging to Spoligotype SB0120, identified in different geographical and temporal contexts. By comparing these genomes with international M. bovis isolates, we identified a distinct clade within the lineage La1.2, encompassing the Italian SB0120 isolates, indicating a genomic segregation of Italian M. bovis from other European isolates. Within Italy, a significant level of genetic variability emerged across regions, while isolates within epidemiologically linked outbreaks exhibited minimal genetic diversity. Additionally, isolates derived from cattle and wild boars within a tuberculosis hotspot in Central Italy and from cattle and black pigs in Sicily formed unified clonal clusters. This indicates the presence of persistent strains circulating in the examined regions. The genetic diversity within herds was limited, as specific clones endured over time within certain herds. This research enhances our comprehension of the epidemiology and transmission patterns of bTB in Italy, thereby aiding the development of precise control strategies and disease management. Using WGS and implementing standardized protocols and databases will be pivotal in combating bTB and promoting One-Health approaches to address this noteworthy public health concern.
Collapse
Affiliation(s)
- Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Karaman Iyad
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Maria Beatrice Boniotti
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Ilaria Menozzi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Dorotea Ippolito
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Flavia Pruiti Ciarello
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Daniela Loda
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Mario D’Incau
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Mariagrazia Zanoni
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Vincenzo Di Marco Lo Presti
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Piera Mazzone
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Perugia, Italy
| | - Stefano Gavaudan
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Ancona, Italy
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| |
Collapse
|
2
|
Pereira AC, Pinto D, Cunha MV. First time whole genome sequencing of Mycobacterium bovis from the environment supports transmission at the animal-environment interface. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134473. [PMID: 38703681 DOI: 10.1016/j.jhazmat.2024.134473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/30/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Khoulane M, Fellahi S, Khayi S, Bouslikhane M, Lakhdissi H, Berrada J. First Insight into the Whole Genome Sequencing Whole Variations in Mycobacterium bovis from Cattle in Morocco. Microorganisms 2024; 12:1316. [PMID: 39065084 PMCID: PMC11278621 DOI: 10.3390/microorganisms12071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Six cattle heads which tested positive against bovine tuberculosis (bTB) in Morocco were investigated to confirm the disease and to determine the source(s) of infection. Polymerase Chain Reaction (PCR) was directly performed on tissue samples collected from slaughtered animals. All investigated animals tested positive to PCR for the Mycobacterium bovis sub-type. Bacteriological isolation was conducted according to the technique recommended by WOAH for the cultivation of the Mycobacterium tuberculosis Complex (MBTC). Whole genome sequencing (WGS) was carried out on six mycobacterial isolates and the phylogenic tree was constructed. The six Moroccan isolates fit with clades II, III, IV, V and VII and were confirmed to belong to the clonal complexes Eu2, Unknown 2 and 7 as well as to sublineages La1.7.1, La1.2 and La1.8.2. The significant Single Nucleotide Polymorphism (SNPs) ranged from 84 to 117 between the isolates and the reference M. bovis strain and from 17 to 212 between the six isolates. Considering the high resolution of WGS, these results suggests that the source of infection of the bTB could be linked to imported animals as five of the investigated reactor animals were imported a few months prior. WGS can be a useful component to the Moroccan strategy to control bTB.
Collapse
Affiliation(s)
- Mohammed Khoulane
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat 10090, Morocco;
| | - Mohammed Bouslikhane
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| | - Hassan Lakhdissi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| | - Jaouad Berrada
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10112, Morocco; (S.F.); (M.B.); (H.L.); (J.B.)
| |
Collapse
|
4
|
Hicks J, Stuber T, Lantz K, Torchetti M, Robbe-Austerman S. vSNP: a SNP pipeline for the generation of transparent SNP matrices and phylogenetic trees from whole genome sequencing data sets. BMC Genomics 2024; 25:545. [PMID: 38822271 PMCID: PMC11143592 DOI: 10.1186/s12864-024-10437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Several single nucleotide polymorphism (SNP) pipelines exist, each offering its own advantages. Among them and described here is vSNP that has been developed over the past decade and is specifically tailored to meet the needs of diagnostic laboratories. Laboratories that aim to provide rapid whole genome sequencing results during outbreak investigations face unique challenges. vSNP addresses these challenges by enabling users to verify and validate sequence accuracy with ease- having utility across various pathogens, being fully auditable, and presenting results that are easy to interpret and can be comprehended by individuals with diverse backgrounds. RESULTS vSNP has proven effective for real-time phylogenetic analysis of disease outbreaks and eradication efforts, including bovine tuberculosis, brucellosis, virulent Newcastle disease, SARS-CoV-2, African swine fever, and highly pathogenic avian influenza. The pipeline produces easy-to-read SNP matrices, sorted for convenience, as well as corresponding phylogenetic trees, making the output easily understandable. Essential data for verifying SNPs is included in the output, and the process has been divided into two steps for ease of use and faster processing times. vSNP requires minimal computational resources to run and can be run in a wide range of environments. Several utilities have been developed to make analysis more accessible for subject matter experts who may not have computational expertise. CONCLUSION The vSNP pipeline integrates seamlessly into a diagnostic workflow and meets the criteria for quality control accreditation programs, such as 17025 by the International Organization for Standardization. Its versatility and robustness make it suitable for use with a diverse range of organisms, providing detailed, reproducible, and transparent results, making it a valuable tool in various applications, including phylogenetic analysis performed in real time.
Collapse
Affiliation(s)
- Jessica Hicks
- National Veterinary Services Laboratories (NVSL), USDA, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Tod Stuber
- National Veterinary Services Laboratories (NVSL), USDA, 1920 Dayton Avenue, Ames, IA, 50010, USA.
| | - Kristina Lantz
- National Veterinary Services Laboratories (NVSL), USDA, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories (NVSL), USDA, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories (NVSL), USDA, 1920 Dayton Avenue, Ames, IA, 50010, USA
| |
Collapse
|
5
|
Pinto D, Themudo G, Pereira AC, Botelho A, Cunha MV. Rescue of Mycobacterium bovis DNA Obtained from Cultured Samples during Official Surveillance of Animal TB: Key Steps for Robust Whole Genome Sequence Data Generation. Int J Mol Sci 2024; 25:3869. [PMID: 38612679 PMCID: PMC11011339 DOI: 10.3390/ijms25073869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epidemiological surveillance of animal tuberculosis (TB) based on whole genome sequencing (WGS) of Mycobacterium bovis has recently gained track due to its high resolution to identify infection sources, characterize the pathogen population structure, and facilitate contact tracing. However, the workflow from bacterial isolation to sequence data analysis has several technical challenges that may severely impact the power to understand the epidemiological scenario and inform outbreak response. While trying to use archived DNA from cultured samples obtained during routine official surveillance of animal TB in Portugal, we struggled against three major challenges: the low amount of M. bovis DNA obtained from routinely processed animal samples; the lack of purity of M. bovis DNA, i.e., high levels of contamination with DNA from other organisms; and the co-occurrence of more than one M. bovis strain per sample (within-host mixed infection). The loss of isolated genomes generates missed links in transmission chain reconstruction, hampering the biological and epidemiological interpretation of data as a whole. Upon identification of these challenges, we implemented an integrated solution framework based on whole genome amplification and a dedicated computational pipeline to minimize their effects and recover as many genomes as possible. With the approaches described herein, we were able to recover 62 out of 100 samples that would have otherwise been lost. Based on these results, we discuss adjustments that should be made in official and research laboratories to facilitate the sequential implementation of bacteriological culture, PCR, downstream genomics, and computational-based methods. All of this in a time frame supporting data-driven intervention.
Collapse
Affiliation(s)
- Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (D.P.); (A.C.P.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Gonçalo Themudo
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (D.P.); (A.C.P.)
| | - André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (D.P.); (A.C.P.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Botelho
- National Institute for Agrarian and Veterinary Research (INIAV IP), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (D.P.); (A.C.P.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Turco S, Russo S, Pietrucci D, Filippi A, Milanesi M, Luzzago C, Garbarino C, Palladini G, Chillemi G, Ricchi M. High clonality of Mycobacterium avium subsp. paratuberculosis field isolates from red deer revealed by two different methodological approaches of comparative genomic analysis. Front Vet Sci 2024; 11:1301667. [PMID: 38379925 PMCID: PMC10876796 DOI: 10.3389/fvets.2024.1301667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the aetiological agent of paratuberculosis (Johne's disease) in both domestic and wild ruminants. In the present study, using a whole-genome sequence (WGS) approach, we investigated the genetic diversity of 15 Mycobacterium avium field strains isolated in the last 10 years from red deer inhabiting the Stelvio National Park and affected by paratuberculosis. Combining de novo assembly and a reference-based method, followed by a pangenome analysis, we highlight a very close relationship among 13 MAP field isolates, suggesting that a single infecting event occurred in this population. Moreover, two isolates have been classified as Mycobacterium avium subsp. hominissuis, distinct from the other MAPs under comparison but close to each other. This is the first time that this subspecies has been found in Italy in samples without evident epidemiological correlations, having been isolated in two different locations of the Stelvio National Park and in different years. Our study highlights the importance of a multidisciplinary approach incorporating molecular epidemiology and ecology into traditional infectious disease knowledge in order to investigate the nature of infectious disease in wildlife populations.
Collapse
Affiliation(s)
- Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Simone Russo
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| | - Daniele Pietrucci
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anita Filippi
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| | - Marco Milanesi
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Camilla Luzzago
- Department of Veterinary Medicine and Animal Sciences, Coordinated Research Centre "EpiSoMI", University of Milan, Lodi, Italy
| | - Chiara Garbarino
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| | - Giorgia Palladini
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| | - Giovanni Chillemi
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
- Institute of Translational Pharmacology, National Research Council, CNR, Rome, Italy
| | - Matteo Ricchi
- National Reference Centre and WOAH Reference Laboratory for Paratuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, Piacenza, Italy
| |
Collapse
|
7
|
Zeineldin M, Camp P, Farrell D, Lehman K, Thacker T. Whole genome sequencing of Mycobacterium bovis directly from clinical tissue samples without culture. Front Microbiol 2023; 14:1141651. [PMID: 37275178 PMCID: PMC10232834 DOI: 10.3389/fmicb.2023.1141651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Advancement in next generation sequencing offers the possibility of routine use of whole genome sequencing (WGS) for Mycobacterium bovis (M. bovis) genomes in clinical reference laboratories. To date, the M. bovis genome could only be sequenced if the mycobacteria were cultured from tissue. This requirement for culture has been due to the overwhelmingly large amount of host DNA present when DNA is prepared directly from a granuloma. To overcome this formidable hurdle, we evaluated the usefulness of an RNA-based targeted enrichment method to sequence M. bovis DNA directly from tissue samples without culture. Initial spiking experiments for method development were established by spiking DNA extracted from tissue samples with serially diluted M. bovis BCG DNA at the following concentration range: 0.1 ng/μl to 0.1 pg/μl (10-1 to 10-4). Library preparation, hybridization and enrichment was performed using SureSelect custom capture library RNA baits and the SureSelect XT HS2 target enrichment system for Illumina paired-end sequencing. The method validation was then assessed using direct WGS of M. bovis DNA extracted from tissue samples from naturally (n = 6) and experimentally (n = 6) infected animals with variable Ct values. Direct WGS of spiked DNA samples achieved 99.1% mean genome coverage (mean depth of coverage: 108×) and 98.8% mean genome coverage (mean depth of coverage: 26.4×) for tissue samples spiked with BCG DNA at 10-1 (mean Ct value: 20.3) and 10-2 (mean Ct value: 23.4), respectively. The M. bovis genome from the experimentally and naturally infected tissue samples was successfully sequenced with a mean genome coverage of 99.56% and depth of genome coverage ranging from 9.2× to 72.1×. The spoligoyping and M. bovis group assignment derived from sequencing DNA directly from the infected tissue samples matched that of the cultured isolates from the same sample. Our results show that direct sequencing of M. bovis DNA from tissue samples has the potential to provide accurate sequencing of M. bovis genomes significantly faster than WGS from cultures in research and diagnostic settings.
Collapse
|
8
|
Carneiro PAM, Pasquatti TN, Lima DAR, Rodrigues RA, Takatani H, Silva CBDG, Jardim R, Abramovitch RB, Wilkins MJ, Davila AMR, Araujo FR, Kaneene JB. Milk Contamination by Mycobacterium tuberculosis Complex, Implications for Public Health in Amazonas, Brazil. J Food Prot 2022; 85:1667-1673. [PMID: 34788443 DOI: 10.4315/jfp-21-303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT In Brazil, contamination of raw milk with Mycobacterium tuberculosis complex (MTC) has been reported in several states. The highest rate of consumption of raw milk and its derivatives in Brazil occurs in Amazonas. This state also has the highest prevalence of tuberculosis in both humans and livestock. We assessed the contamination of cow's milk and buffalo's milk with MTC in Amazonas, focusing on Mycobacterium bovis, the species most commonly found in cattle and buffalo. In 2019, 250 samples of raw milk (91 from cattle, 159 from buffalo) were collected before processing from three milk plants in the state of Amazonas. The samples were placed into 21 pools and analyzed using shotgun metagenomic sequencing and taxonomic classification with Kraken 2 and MegaBLAST. To confirm the identity of mycobacterial species found, BLASTN was used to identify specific genomic positions in the TbD1 and RD1 regions and flanking RD4 region. MTC genetic material was identified in all pools of raw milk. Genetic material consistent with M. bovis was identified in seven pools of raw milk (1 from cattle, 6 from buffalo). Buffalo's milk had significantly higher MTC reads than did cow's milk. The common practice of consumption of raw milk and its derivatives in Amazonas presents a risk to public health. Urgent measures to prevent transmission of foodborne tuberculosis are needed in the Amazon region. Greater efforts and resources also should be directed toward elimination of bovine tuberculosis in cattle and buffalo herds in Amazonas and the rest of Brazil. HIGHLIGHTS
Collapse
Affiliation(s)
- P A M Carneiro
- Center for Comparative Epidemiology, Michigan State University, East Lansing, Michigan 48824, USA.,Amazonas State Federal Institute of Science and Technology, Av. Cosme Ferreira, 8045, Manaus, Amazonas, Brazil
| | - T N Pasquatti
- Dom Bosco Catholic University, Avenida Tamandaré 6000, Jardim Seminário, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil
| | - D A R Lima
- Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - R A Rodrigues
- Embrapa Gado de Corte, Av. Radio Maia, 830 Vila Popular, Campo Grande, Mato Grosso do Sul, 79106-550, Brazil
| | - H Takatani
- Amazonas State Agro Defense Agency, Av. Carlos Drummond de Andrade, 1.460, Bloco G, Manaus, Amazonas, 69077-730, Brazil
| | - C B D G Silva
- Amazonas State Agro Defense Agency, Av. Carlos Drummond de Andrade, 1.460, Bloco G, Manaus, Amazonas, 69077-730, Brazil
| | - R Jardim
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute and Graduate Program in Biodiversity and Health, FIOCRUZ, Rio de Janeiro, Brazil
| | - R B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | - M J Wilkins
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - A M R Davila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute and Graduate Program in Biodiversity and Health, FIOCRUZ, Rio de Janeiro, Brazil
| | - F R Araujo
- Embrapa Gado de Corte, Av. Radio Maia, 830 Vila Popular, Campo Grande, Mato Grosso do Sul, 79106-550, Brazil
| | - J B Kaneene
- Center for Comparative Epidemiology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
10
|
Legall N, Salvador LCM. Selective sweep sites and SNP dense regions differentiate Mycobacterium bovis isolates across scales. Front Microbiol 2022; 13:787856. [PMID: 36160199 PMCID: PMC9489834 DOI: 10.3389/fmicb.2022.787856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium bovis, a bacterial zoonotic pathogen responsible for the economically and agriculturally important livestock disease bovine tuberculosis (bTB), infects a broad mammalian host range worldwide. This characteristic has led to bidirectional transmission events between livestock and wildlife species as well as the formation of wildlife reservoirs, impacting the success of bTB control measures. Next Generation Sequencing (NGS) has transformed our ability to understand disease transmission events by tracking variant sites, however the genomic signatures related to host adaptation following spillover, alongside the role of other genomic factors in the M. bovis transmission process are understudied problems. We analyzed publicly available M. bovis datasets collected from 700 hosts across three countries with bTB endemic regions (United Kingdom, United States, and New Zealand) to investigate if genomic regions with high SNP density and/or selective sweep sites play a role in Mycobacterium bovis adaptation to new environments (e.g., at the host-species, geographical, and/or sub-population levels). A simulated M. bovis alignment was created to generate null distributions for defining genomic regions with high SNP counts and regions with selective sweeps evidence. Random Forest (RF) models were used to investigate evolutionary metrics within the genomic regions of interest to determine which genomic processes were the best for classifying M. bovis across ecological scales. We identified in the M. bovis genomes 14 and 132 high SNP density and selective sweep regions, respectively. Selective sweep regions were ranked as the most important in classifying M. bovis across the different scales in all RF models. SNP dense regions were found to have high importance in the badger and cattle specific RF models in classifying badger derived isolates from livestock derived ones. Additionally, the genes detected within these genomic regions harbor various pathogenic functions such as virulence and immunogenicity, membrane structure, host survival, and mycobactin production. The results of this study demonstrate how comparative genomics alongside machine learning approaches are useful to investigate further the nature of M. bovis host-pathogen interactions.
Collapse
Affiliation(s)
- Noah Legall
- Interdisciplinary Disease Ecology Across Scales Research Traineeship Program, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Liliana C. M. Salvador
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
11
|
Pozo P, Lorente-Leal V, Robbe-Austerman S, Hicks J, Stuber T, Bezos J, de Juan L, Saez JL, Romero B, Alvarez J. Use of Whole-Genome Sequencing to Unravel the Genetic Diversity of a Prevalent Mycobacterium bovis Spoligotype in a Multi-Host Scenario in Spain. Front Microbiol 2022; 13:915843. [PMID: 35898917 PMCID: PMC9309649 DOI: 10.3389/fmicb.2022.915843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the efforts invested in the eradication of bovine tuberculosis in Spain, herd prevalence has remained constant in the country during the last 15 years (~1.5–1.9%) due to a combination of epidemiological factors impairing disease control, including between-species transmission. Here, our aim was to investigate the molecular diversity of Mycobacterium bovis isolates belonging to the highly prevalent SB0339 spoligotype in the cattle-wildlife interface in different regions of Spain using whole-genome sequencing (WGS). Genomic data of 136 M. bovis isolates recovered from different animal species (cattle, wild boar, fallow deer, and red deer) and locations between 2005 and 2018 were analyzed to investigate between- and within-species transmission, as well as within-herds. All sequenced isolates differed by 49–88 single nucleotide polymorphisms from their most recent common ancestor. Genetic heterogeneity was geographic rather than host species-specific, as isolates recovered from both cattle and wildlife from a given region were more closely related compared to isolates from the same species but geographically distant. In fact, a strong association between the geographic and the genetic distances separating pairs of M. bovis isolates was found, with a significantly stronger effect when cattle isolates were compared with wildlife or cattle-wildlife isolates in Spain. The same results were obtained in Madrid, the region with the largest number of sequenced isolates, but no differences depending on the host were observed. Within-herd genetic diversity was limited despite the considerable time elapsed between isolations. The detection of closely related strains in different hosts demonstrates the complex between-host transmission dynamics present in endemic areas in Spain. In conclusion, WGS results a valuable tool to track bTB infection at a high resolution and may contribute to achieve its eradication in Spain.
Collapse
Affiliation(s)
- Pilar Pozo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Pilar Pozo,
| | - Victor Lorente-Leal
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Jessica Hicks
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Tod Stuber
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucia de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de Sanidad de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
12
|
Ceres KM, Stanhope MJ, Gröhn YT. A critical evaluation of Mycobacterium bovis pangenomics, with reference to its utility in outbreak investigation. Microb Genom 2022; 8:mgen000839. [PMID: 35763423 PMCID: PMC9455707 DOI: 10.1099/mgen.0.000839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
The increased accessibility of next generation sequencing has allowed enough genomes from a given bacterial species to be sequenced to describe the distribution of genes in the pangenome, without limiting analyses to genes present in reference strains. Although some taxa have thousands of whole genome sequences available on public databases, most genomes were sequenced with short read technology, resulting in incomplete assemblies. Studying pangenomes could lead to important insights into adaptation, pathogenicity, or molecular epidemiology, however given the known information loss inherent in analyzing contig-level assemblies, these inferences may be biased or inaccurate. In this study we describe the pangenome of a clonally evolving pathogen, Mycobacterium bovis , and examine the utility of gene content variation in M. bovis outbreak investigation. We constructed the M. bovis pangenome using 1463 de novo assembled genomes. We tested the assumption of strict clonal evolution by studying evidence of recombination in core genes and analyzing the distribution of accessory genes among core monophyletic groups. To determine if gene content variation could be utilized in outbreak investigation, we carefully examined accessory genes detected in a well described M. bovis outbreak in Minnesota. We found significant errors in accessory gene classification. After accounting for these errors, we show that M. bovis has a much smaller accessory genome than previously described and provide evidence supporting ongoing clonal evolution and a closed pangenome, with little gene content variation generated over outbreaks. We also identified frameshift mutations in multiple genes, including a mutation in glpK , which has recently been associated with antibiotic tolerance in Mycobacterium tuberculosis . A pangenomic approach enables a more comprehensive analysis of genome dynamics than is possible with reference-based approaches; however, without critical evaluation of accessory gene content, inferences of transmission patterns employing these loci could be misguided.
Collapse
Affiliation(s)
- Kristina M. Ceres
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yrjö T. Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Valcheva V, Perea C, Savova-Lalkovska T, Dimitrova A, Radulski L, Mokrousov I, Marinov K, Najdenski H, Bonovska M. Mycobacterium bovis and M. caprae in Bulgaria: insight into transmission and phylogeography gained through whole-genome sequencing. BMC Vet Res 2022; 18:148. [PMID: 35461250 PMCID: PMC9034630 DOI: 10.1186/s12917-022-03249-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND This study aimed to characterize recent Mycobacterium bovis/M. caprae isolates from Bulgaria by whole-genome sequencing (WGS) to gain a first insight into their molecular diversity, transmission, and position within the global phylogeography of this important zoonotic species. RESULTS The isolates were obtained from cattle in diverse locations of Bulgaria in 2015-2020 and were identified by microbiological and PCR assays. WGS data were used for phylogenetic analysis that also included M. bovis global dataset. Thirty-seven M. bovis/caprae isolates from Bulgaria were studied and 34 of them were SNP genotyped. The isolates were subdivided into 3 major phylogenetic groups. Type Mbovis-13 (Eu2 complex [western Europe and northern Africa]) included one isolate. Mbovis-37 type included 5 isolates outside of known clonal complexes. The Bulgarian M. caprae isolates formed a sub-group within the Mcaprae-27B cluster which also included 22 M. caprae isolates from Poland, Spain, Germany, and the Republic of Congo. The Bulgarian M. caprae isolates share their latest common ancestors with Spanish isolates. The Mbovis-37 group shares a distant common ancestor (pairwise distance 22-29 SNPs) with an isolate from Poland but was very distant (> 200 SNPs) from the rest of the tree. The Mbovis-13 group shares a common ancestor with two human isolates from Germany. Phylogeographically, both M. bovis clades had limited circulation in northeastern Bulgaria while the majority of the studied isolates (M. caprae) were from central and western provinces. A phylogenetic network-based analysis demonstrated that 11 Bulgarian isolates were separated by 1 to 6 SNPs within four clusters, mostly forming pairs of isolates. CONCLUSION The obtained WGS analysis positioned the Bulgarian isolates within the global phylogeography of M. bovis/M. caprae. Hypothetically, the observed phylogenetic diversity may not have resulted from livestock trade routes, but instead may reflect the deeply rooted M. bovis/M. caprae phylogeography of Europe. A high level of genetic divergence between the majority of the studied isolates suggests limited active transmission of bTB in Bulgaria during the survey period. At the same time, a possibility of the endemic presence of circulating bTB strains in the form of the latent persistent disease cannot be ruled out.
Collapse
Affiliation(s)
- Violeta Valcheva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria.
| | - Claudia Perea
- National Veterinary Services Laboratories, United States Department of Agriculture, Ames, IA, USA
| | - Tanya Savova-Lalkovska
- National Diagnostic and Research Veterinary Medical Institute "Prof. Dr. G. Pavlov", Sofia, Bulgaria
| | - Albena Dimitrova
- National Diagnostic and Research Veterinary Medical Institute "Prof. Dr. G. Pavlov", Sofia, Bulgaria
| | | | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | | | - Hristo Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria
| | - Magdalena Bonovska
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria
| |
Collapse
|
14
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. The source and fate of Mycobacterium tuberculosis complex in wastewater and possible routes of transmission. BMC Public Health 2022; 22:145. [PMID: 35057793 PMCID: PMC8781043 DOI: 10.1186/s12889-022-12527-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Mycobacterium tuberculosis complex (MTBC) consists of causative agents of both human and animal tuberculosis and is responsible for over 10 million annual infections globally. Infections occur mainly through airborne transmission, however, there are possible indirect transmissions through a faecal-oral route which is poorly reported. This faecal-oral transmission could be through the occurrence of the microbe in environments such as wastewater. This manuscript, therefore, reviews the source and fate of MTBC in the wastewater environment, including the current methods in use and the possible risks of infections. RESULTS The reviewed literature indicates that about 20% of patients with pulmonary TB may have extra-pulmonary manifestations such as GITB, resulting in shedding in feaces and urine. This could potentially be the reason for the detection of MTBC in wastewater. MTBC concentrations of up to 5.5 × 105 (±3.9 × 105) copies/L of untreated wastewater have been reported. Studies have indicated that wastewater may provide these bacteria with the required nutrients for their growth and could potentially result in environmental transmission. However, 98.6 (± 2.7) %, removal during wastewater treatment, through physical-chemical decantation (primary treatment) and biofiltration (secondary treatment) has been reported. Despite these reports, several studies observed the presence of MTBC in treated wastewater via both culture-dependent and molecular techniques. CONCLUSION The detection of viable MTBC cells in either treated or untreated wastewater, highlights the potential risks of infection for wastewater workers and communities close to these wastewater treatment plants. The generation of aerosols during wastewater treatment could be the main route of transmission. Additionally, direct exposure to the wastewater containing MTBC could potentially contribute to indirect transmissions which may lead to pulmonary or extra-pulmonary infections. This calls for the implementation of risk reduction measures aimed at protecting the exposed populations.
Collapse
Affiliation(s)
- Hlengiwe N Mtetwa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
15
|
Lorente-Leal V, Farrell D, Romero B, Álvarez J, de Juan L, Gordon SV. Performance and Agreement Between WGS Variant Calling Pipelines Used for Bovine Tuberculosis Control: Toward International Standardization. Front Vet Sci 2022; 8:780018. [PMID: 34970617 PMCID: PMC8712436 DOI: 10.3389/fvets.2021.780018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Whole genome sequencing (WGS) and allied variant calling pipelines are a valuable tool for the control and eradication of infectious diseases, since they allow the assessment of the genetic relatedness of strains of animal pathogens. In the context of the control of tuberculosis (TB) in livestock, mainly caused by Mycobacterium bovis, these tools offer a high-resolution alternative to traditional molecular methods in the study of herd breakdown events. However, despite the increased use and efforts in the standardization of WGS methods in human tuberculosis around the world, the application of these WGS-enabled approaches to control TB in livestock is still in early development. Our study pursued an initial evaluation of the performance and agreement of four publicly available pipelines for the analysis of M. bovis WGS data (vSNP, SNiPgenie, BovTB, and MTBseq) on a set of simulated Illumina reads generated from a real-world setting with high TB prevalence in cattle and wildlife in the Republic of Ireland. The overall performance of the evaluated pipelines was high, with recall and precision rates above 99% once repeat-rich and problematic regions were removed from the analyses. In addition, when the same filters were applied, distances between inferred phylogenetic trees were similar and pairwise comparison revealed that most of the differences were due to the positioning of polytomies. Hence, under the studied conditions, all pipelines offer similar performance for variant calling to underpin real-world studies of M. bovis transmission dynamics.
Collapse
Affiliation(s)
- Víctor Lorente-Leal
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Beatriz Romero
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Transmission patterns of a Mycobacterium avium subsp. paratuberculosis clone within a single heard investigated by Whole Genome Sequencing. Vet Microbiol 2021; 263:109272. [PMID: 34785477 DOI: 10.1016/j.vetmic.2021.109272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is characterized by a low genomic rate of mutation. Current subtyping tools, such as Mini-Micro-satellite analyses, do to have not sufficient discriminatory power to disclose MAP's evolution on small spatial and temporal scales. The aim of the study was to investigate the population structure of MAP inside a single dairy herd using whole genome sequencing (WGS) approaches. For this purpose, the genomes of 43 field isolates, recovered from the faeces of 36 cows of the same dairy herd from 2012 to 2016, were sequenced by WGS. The isolates' genomes showed a low number (43) of polymorphic sites (SNPs), confirming the clonal origin of the herd infection. However, despite the limited genomic diversity found in WGS, the phylogenetic analysis was discriminatory enough to detect the presence of different genomic clades and sub-clades inside the herd population. In addition, the phylodynamic reconstruction showed the existence of an ancestor clade from which the other clades and sub-clades originated. Moreover, by reconstructing the putative within-herd transmission networks using WGS data, we demonstrated that: (i) in a herd where MAP is endemic, multiple isolates recovered from a single animal and differing from each other by few (three/four) SNPs can originate from different transmission or passive shedding events and not from intra-host evolution; and (ii) variability of minisatellites coupled with a few microsatellites does not represent reliable tracers of within-herd infection chains. Our findings show that WGS, coupled with relevant epidemiological information, represents a valuable tool to work out fine epidemiological and micro-evolutionary relationships such as those at herd-level scale.
Collapse
|
17
|
van Tonder AJ, Thornton MJ, Conlan AJK, Jolley KA, Goolding L, Mitchell AP, Dale J, Palkopoulou E, Hogarth PJ, Hewinson RG, Wood JLN, Parkhill J. Inferring Mycobacterium bovis transmission between cattle and badgers using isolates from the Randomised Badger Culling Trial. PLoS Pathog 2021; 17:e1010075. [PMID: 34843579 PMCID: PMC8659364 DOI: 10.1371/journal.ppat.1010075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/09/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is a causative agent of bovine tuberculosis, a significant source of morbidity and mortality in the global cattle industry. The Randomised Badger Culling Trial was a field experiment carried out between 1998 and 2005 in the South West of England. As part of this trial, M. bovis isolates were collected from contemporaneous and overlapping populations of badgers and cattle within ten defined trial areas. We combined whole genome sequences from 1,442 isolates with location and cattle movement data, identifying transmission clusters and inferred rates and routes of transmission of M. bovis. Most trial areas contained a single transmission cluster that had been established shortly before sampling, often contemporaneous with the expansion of bovine tuberculosis in the 1980s. The estimated rate of transmission from badger to cattle was approximately two times higher than from cattle to badger, and the rate of within-species transmission considerably exceeded these for both species. We identified long distance transmission events linked to cattle movement, recurrence of herd breakdown by infection within the same transmission clusters and superspreader events driven by cattle but not badgers. Overall, our data suggests that the transmission clusters in different parts of South West England that are still evident today were established by long-distance seeding events involving cattle movement, not by recrudescence from a long-established wildlife reservoir. Clusters are maintained primarily by within-species transmission, with less frequent spill-over both from badger to cattle and cattle to badger.
Collapse
Affiliation(s)
- Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark J. Thornton
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. K. Conlan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Lee Goolding
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | - James Dale
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | | | | | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Abstract
Animal tuberculosis (TB) is an emergent disease caused by Mycobacterium bovis, one of the animal-adapted ecotypes of the Mycobacterium tuberculosis complex (MTC). In this work, whole-genome comparative analyses of 70 M. bovis were performed to gain insights into the pan-genome architecture. The comparison across M. bovis predicted genome composition enabled clustering into the core- and accessory-genome components, with 2736 CDS for the former, while the accessory moiety included 3897 CDS, of which 2656 are restricted to one/two genomes only. These analyses predicted an open pan-genome architecture, with an average of 32 CDS added by each genome and show the diversification of discrete M. bovis subpopulations supported by both core- and accessory-genome components. The functional annotation of the pan-genome classified each CDS into one or several COG (Clusters of Orthologous Groups) categories, revealing ‘transcription’ (total average CDSs, n=258), ‘lipid metabolism and transport’ (n=242), ‘energy production and conversion’ (n=214) and ‘unknown function’ (n=876) as the most represented. The closer analysis of polymorphisms in virulence-related genes in a restrict group of M. bovis from a multi-host system enabled the identification of clade-monomorphic non-synonymous SNPs, illustrating clade-specific virulence landscapes and correlating with disease severity. This first comparative pan-genome study of a diverse collection of M. bovis encompassing all clonal complexes indicates a high percentage of accessory genes and denotes an open, dynamic non-conservative pan-genome structure, with high evolutionary potential, defying the canons of MTC biology. Furthermore, it shows that M. bovis can shape its virulence repertoire, either by acquisition and loss of genes or by SNP-based diversification, likely towards host immune evasion, adaptation and persistence.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
Reis AC, Cunha MV. Genome-wide estimation of recombination, mutation and positive selection enlightens diversification drivers of Mycobacterium bovis. Sci Rep 2021; 11:18789. [PMID: 34552144 PMCID: PMC8458382 DOI: 10.1038/s41598-021-98226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Genome sequencing has reinvigorated the infectious disease research field, shedding light on disease epidemiology, pathogenesis, host-pathogen interactions and also evolutionary processes exerted upon pathogens. Mycobacterium tuberculosis complex (MTBC), enclosing M. bovis as one of its animal-adapted members causing tuberculosis (TB) in terrestrial mammals, is a paradigmatic model of bacterial evolution. As other MTBC members, M. bovis is postulated as a strictly clonal, slowly evolving pathogen, with apparently no signs of recombination or horizontal gene transfer. In this work, we applied comparative genomics to a whole genome sequence (WGS) dataset composed by 70 M. bovis from different lineages (European and African) to gain insights into the evolutionary forces that shape genetic diversification in M. bovis. Three distinct approaches were used to estimate signs of recombination. Globally, a small number of recombinant events was identified and confirmed by two independent methods with solid support. Still, recombination reveals a weaker effect on M. bovis diversity compared with mutation (overall r/m = 0.037). The differential r/m average values obtained across the clonal complexes of M. bovis in our dataset are consistent with the general notion that the extent of recombination may vary widely among lineages assigned to the same taxonomical species. Based on this work, recombination in M. bovis cannot be excluded and should thus be a topic of further effort in future comparative genomics studies for which WGS of large datasets from different epidemiological scenarios across the world is crucial. A smaller M. bovis dataset (n = 42) from a multi-host TB endemic scenario was then subjected to additional analyses, with the identification of more than 1,800 sites wherein at least one strain showed a single nucleotide polymorphism (SNP). The majority (87.1%) was located in coding regions, with the global ratio of non-synonymous upon synonymous alterations (dN/dS) exceeding 1.5, suggesting that positive selection is an important evolutionary force exerted upon M. bovis. A higher percentage of SNPs was detected in genes enriched into "lipid metabolism", "cell wall and cell processes" and "intermediary metabolism and respiration" functional categories, revealing their underlying importance in M. bovis biology and evolution. A closer look on genes prone to horizontal gene transfer in the MTBC ancestor and included in the 3R (DNA repair, replication and recombination) system revealed a global average negative value for Taijima's D neutrality test, suggesting that past selective sweeps and population expansion after a recent bottleneck remain as major evolutionary drivers of the obligatory pathogen M. bovis in its struggle with the host.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Room 2.4.11, 1749-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Room 2.4.11, 1749-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
20
|
Ortiz AP, Perea C, Davalos E, Velázquez EF, González KS, Camacho ER, García Latorre EA, Lara CS, Salazar RM, Bravo DM, Stuber TP, Thacker TC, Robbe-Austerman S. Whole Genome Sequencing Links Mycobacterium bovis From Cattle, Cheese and Humans in Baja California, Mexico. Front Vet Sci 2021; 8:674307. [PMID: 34414224 PMCID: PMC8370811 DOI: 10.3389/fvets.2021.674307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium bovis causes tuberculosis (TB) in cattle, which in turn can transmit the pathogen to humans. Tuberculosis in dairy cattle is of particular concern where the consumption of raw milk and dairy products is customary. Baja California (BCA), Mexico, presents high prevalence of TB in both cattle and humans, making it important to investigate the molecular epidemiology of the disease in the region. A long-term study was undertaken to fully characterize the diversity of M. bovis genotypes circulating in dairy cattle, cheese and humans in BCA by whole-genome sequencing (WGS). During a 2-year period, 412 granulomatous tissue samples were collected from local abattoirs and 314 cheese samples were purchased from local stores and vendors in BCA and sent to the laboratory for mycobacterial culture, histology, direct PCR and WGS. For tissue samples M. bovis was recovered from 86.8%, direct PCR detected 90% and histology confirmed 85.9% as mycobacteriosis-compatible. For cheese, M. bovis was recovered from 2.5% and direct PCR detected 6% of the samples. There was good agreement between diagnostic tests. Subsequently, a total of 345 whole-genome SNP sequences were obtained. Phylogenetic analysis grouped these isolates into 10 major clades. SNP analysis revealed putative transmission clusters where the pairwise SNP distance between isolates from different dairies was ≤3 SNP. Also, human and/or cheese isolates were within 8.45 (range 0–17) and 5.8 SNP (range 0–15), respectively, from cattle isolates. Finally, a comparison between the genotypes obtained in this study and those reported previously suggests that the genetic diversity of M. bovis in BCA is well-characterized, and can be used to determine if BCA is the likely source of M. bovis in humans and cattle in routine epidemiologic investigations and future studies. In conclusion, WGS provided evidence of ongoing local transmission of M. bovis among the dairies in this high-TB burden region of BCA, as well as show close relationships between isolates recovered from humans, cheese, and cattle. This confirms the need for a coordinated One Health approach in addressing the elimination of TB in animals and humans. Overall, the study contributes to the knowledge of the molecular epidemiology of M. bovis in BCA, providing insight into the pathogen's dynamics in a high prevalence setting.
Collapse
Affiliation(s)
- Alejandro Perera Ortiz
- United States Embassy, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Mexico City, Mexico.,Programa de Doctorado en Ciencias Quimicobiológicas, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Claudia Perea
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA, United States
| | - Enrique Davalos
- United States Embassy, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Mexicali, Mexico
| | - Estela Flores Velázquez
- Dirección de Campañas Zoosanitarias de la Dirección General de Salud Animal Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Ciudad de México, Mexico
| | - Karen Salazar González
- Dirección de Campañas Zoosanitarias de la Dirección General de Salud Animal Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Ciudad de México, Mexico
| | - Erika Rosas Camacho
- Dirección de Campañas Zoosanitarias de la Dirección General de Salud Animal Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Ciudad de México, Mexico
| | - Ethel Awilda García Latorre
- Programa de Doctorado en Ciencias Quimicobiológicas, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Citlaltepetl Salinas Lara
- Unidad de Investigación, Facultad de Estudios Superiores de Iztacala, Universidad Autónoma Nacional de México, Ciudad de México, Mexico
| | - Raquel Muñiz Salazar
- Laboratorio de Epidemiología y Ecología Molecular, Escuela Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Doris M Bravo
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA, United States
| | - Tod P Stuber
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA, United States
| | - Tyler C Thacker
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA, United States
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA, United States
| |
Collapse
|
21
|
Perea C, Ciaravino G, Stuber T, Thacker TC, Robbe-Austerman S, Allepuz A, de Val BP. Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain. Microorganisms 2021; 9:microorganisms9081629. [PMID: 34442709 PMCID: PMC8401651 DOI: 10.3390/microorganisms9081629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
The high-resolution WGS analyses of MTBC strains have provided useful insight for determining sources of infection for animal tuberculosis. In Spain, tuberculosis in livestock is caused by Mycobacterium bovis and Mycobacterium caprae, where wildlife reservoirs play an important role. We analyzed a set of 125 M. bovis isolates obtained from livestock and wildlife from Catalonia to investigate strain diversity and identify possible sources and/or causes of infection. Whole-genome SNP profiles were used for phylogenetic reconstruction and pairwise SNP distance analysis. Additionally, SNPs were investigated to identify virulence and antimicrobial resistance factors to investigate clade-specific associations. Putative transmission clusters (≤12 SNPs) were identified, and associated epidemiological metadata were used to determine possible explanatory factors for transmission. M. bovis distribution was heterogeneous, with 7 major clades and 21 putative transmission clusters. In order of importance, the explanatory factors associated were proximity and neighborhood, residual infection, livestock-wildlife interaction, shared pasture, and movement. Genes related to lipid transport and metabolism showed the highest number of SNPs. All isolates were pyrazinamide resistant, and five were additionally resistant to isoniazid, but no clade-specific associations could be determined. Our findings highlight the importance of high-resolution molecular surveillance to monitor bovine tuberculosis dynamics in a low-prevalence setting.
Collapse
Affiliation(s)
- Claudia Perea
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
- Correspondence:
| | - Giovanna Ciaravino
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (G.C.); (A.A.)
| | - Tod Stuber
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (G.C.); (A.A.)
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), 08197 Bellaterra, Spain;
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Bernat Pérez de Val
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), 08197 Bellaterra, Spain;
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Lombard JE, Patton EA, Gibbons-Burgener SN, Klos RF, Tans-Kersten JL, Carlson BW, Keller SJ, Pritschet DJ, Rollo S, Dutcher TV, Young CA, Hench WC, Thacker TC, Perea C, Lehmkuhl AD, Robbe-Austerman S. Human-to-Cattle Mycobacterium tuberculosis Complex Transmission in the United States. Front Vet Sci 2021; 8:691192. [PMID: 34322536 PMCID: PMC8311018 DOI: 10.3389/fvets.2021.691192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) species includes both M. tuberculosis, the primary cause of human tuberculosis (TB), and M. bovis, the primary cause of bovine tuberculosis (bTB), as well as other closely related Mycobacterium species. Zoonotic transmission of M. bovis from cattle to humans was recognized more than a century ago, but transmission of MTBC species from humans to cattle is less often recognized. Within the last decade, multiple published reports from around the world describe human-to-cattle transmission of MTBC. Three probable cases of human-to-cattle MTBC transmission have occurred in the United States since 2013. In the first case, detection of active TB disease (M. bovis) in a dairy employee in North Dakota prompted testing and ultimate detection of bTB infection in the dairy herd. Whole genome sequencing (WGS) demonstrated a match between the bTB strain in the employee and an infected cow. North Dakota animal and public health officials concluded that the employee's infection was the most likely source of disease introduction in the dairy. The second case involved a Wisconsin dairy herd with an employee diagnosed with TB disease in 2015. Subsequently, the herd was tested twice with no disease detected. Three years later, a cow originating from this herd was detected with bTB at slaughter. The strain in the slaughter case matched that of the past employee based on WGS. The third case was a 4-month-old heifer calf born in New Mexico and transported to Texas. The calf was TB tested per Texas entry requirements and found to have M. tuberculosis. Humans are the suspected source of M. tuberculosis in cattle; however, public health authorities were not able to identify an infected human associated with the cattle operation. These three cases provide strong evidence of human-to-cattle transmission of MTBC organisms and highlight human infection as a potential source of introduction of MTBC into dairy herds in the United States. To better understand and address the issue, a multisectoral One Health approach is needed, where industry, public health, and animal health work together to better understand the epidemiology and identify preventive measures to protect human and animal health.
Collapse
Affiliation(s)
- Jason E. Lombard
- United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services, Field Epidemiologic Investigation Services, Fort Collins, CO, United States
| | - Elisabeth A. Patton
- Wisconsin Department of Agriculture, Trade and Consumer Protection, Madison, WI, United States
| | | | - Rachel F. Klos
- Wisconsin Department of Health Services, Division of Public Health, Madison, WI, United States
| | - Julie L. Tans-Kersten
- Wisconsin Department of Health Services, Division of Public Health, Madison, WI, United States
| | - Beth W. Carlson
- North Dakota Department of Agriculture, State Board of Animal Health, Bismarck, ND, United States
| | - Susan J. Keller
- North Dakota Department of Agriculture, State Board of Animal Health, Bismarck, ND, United States
| | | | - Susan Rollo
- Texas Animal Health Commission, Austin, TX, United States
| | - Tracey V. Dutcher
- United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services, Field Epidemiologic Investigation Services, Fort Collins, CO, United States
| | - Cris A. Young
- United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services, Field Epidemiologic Investigation Services, Fort Collins, CO, United States
| | - William C. Hench
- United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services, Ruminant Health Center, Fort Collins, CO, United States
| | - Tyler C. Thacker
- United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, Ames, IA, United States
| | - Claudia Perea
- United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, Ames, IA, United States
| | - Aaron D. Lehmkuhl
- United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, Ames, IA, United States
| | - Suelee Robbe-Austerman
- United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, Ames, IA, United States
| |
Collapse
|
23
|
Rodrigues RDA, Ribeiro Araújo F, Rivera Dávila AM, Etges RN, Parkhill J, van Tonder AJ. Genomic and temporal analyses of Mycobacterium bovis in southern Brazil. Microb Genom 2021; 7. [PMID: 34016251 PMCID: PMC8209730 DOI: 10.1099/mgen.0.000569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium bovis is a causal agent of bovine tuberculosis (bTB), one of the most important diseases currently facing the cattle industry worldwide. Tracing the source of M. bovis infections of livestock is an important tool for understanding the epidemiology of bTB and defining control/eradication strategies. In this study, whole genome sequencing (WGS) of 74 M. bovis isolates sourced from naturally infected cattle in the State of Rio Grande do Sul (RS), southern Brazil, was used to evaluate the population structure of M. bovis in the region, identify potential transmission events and date the introduction of clonal complex (CC) European 2 (Eu2). In silico spoligotyping identified 11 distinct patterns including four new profiles and two CCs, European 1 (Eu1) and Eu2. The analyses revealed a high level of genetic diversity in the majority of herds and identified putative transmission clusters that suggested that within- and between-herd transmission is occurring in RS. In addition, a comparison with other published M. bovis isolates from Argentina, Brazil, Paraguay and Uruguay demonstrated some evidence for a possible cross-border transmission of CC Eu1 into RS from Uruguay or Argentina. An estimated date for the introduction of CC Eu2 into RS in the middle of the 19th century correlated with the historical introduction of cattle into RS to improve existing local breeds. These findings contribute to the understanding of the population structure of M. bovis in southern Brazil and highlight the potential of WGS in surveillance and helping to identify bTB transmission.
Collapse
Affiliation(s)
- Rudielle de Arruda Rodrigues
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Alberto Martín Rivera Dávila
- Computational and Systems Biology Laboratory, Graduate Program in Biodiversity and Health, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
24
|
Parks DM, Jerry CFS, Ray J, Sanchez S, Howerth EW. Pathology in Practice. J Am Vet Med Assoc 2021; 257:1021-1024. [PMID: 33135982 DOI: 10.2460/javma.2020.257.10.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Carneiro PA, Zimpel CK, Pasquatti TN, Silva-Pereira TT, Takatani H, Silva CBDG, Abramovitch RB, Sa Guimaraes AM, Davila AMR, Araujo FR, Kaneene JB. Genetic Diversity and Potential Paths of Transmission of Mycobacterium bovis in the Amazon: The Discovery of M. bovis Lineage Lb1 Circulating in South America. Front Vet Sci 2021; 8:630989. [PMID: 33665220 PMCID: PMC7921743 DOI: 10.3389/fvets.2021.630989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis (bTB) has yet to be eradicated in Brazil. Herds of cattle and buffalo are important sources of revenue to people living in the banks of the Amazon River basin. A better understanding of Mycobacterium bovis (M. bovis) populational structure and transmission dynamics affecting these animals can significantly contribute in efforts to improve their sanitary status. Herein, we sequenced the whole genome of 22 M. bovis isolates (15 from buffalo and 7 from cattle) from 10 municipalities in the region of the Lower Amazon River Basin in Brazil and performed phylogenomic analysis and Single Nucleotide Polymorphism (SNP)-based transmission inference to evaluate population structure and transmission networks. Additionally, we compared these genomes to others obtained in unrelated studies in the Marajó Island (n = 15) and worldwide (n = 128) to understand strain diversity in the Amazon and to infer M. bovis lineages. Our results show a higher genomic diversity of M. bovis genomes obtained in the Lower Amazon River region when compared to the Marajó Island, while no significant difference was observed between M. bovis genomes obtained from cattle and buffalo (p ≥ 0.05). This high genetic diversity is reflected by the weak phylogenetic clustering of M. bovis from the Lower Amazon River region based on geographic proximity and in the detection of only two putative transmission clusters in the region. One of these clusters is the first description of inter-species transmission between cattle and buffalo in the Amazon, bringing implications to the bTB control program. Surprisingly, two M. bovis lineages were detected in our dataset, namely Lb1 and Lb3, constituting the first description of Lb1 in South America. Most of the strains of this study (13/22) and all 15 strains of the Marajó Island carried no clonal complex marker, suggesting that the recent lineage classification better describe the diversity of M. bovis in the Amazon.
Collapse
Affiliation(s)
- Paulo Alex Carneiro
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Amazonas State Federal Institute, Manaus, Brazil
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | | | - Taiana T. Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Haruo Takatani
- Agência de Defesa Agropecuaria Do Amazonas, Manaus, Brazil
| | | | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Ana Marcia Sa Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alberto M. R. Davila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute and Graduate Program in Biodiversity and Health, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - John B. Kaneene
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
26
|
Vázquez-Chacón CA, Rodríguez-Gaxiola FDJ, López-Carrera CF, Cruz-Rivera M, Martínez-Guarneros A, Parra-Unda R, Arámbula-Meraz E, Fonseca-Coronado S, Vaughan G, López-Durán PA. Identification of drug resistance mutations among Mycobacterium bovis lineages in the Americas. PLoS Negl Trop Dis 2021; 15:e0009145. [PMID: 33591982 PMCID: PMC7886168 DOI: 10.1371/journal.pntd.0009145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Identifying the Mycobacterium tuberculosis resistance mutation patterns is of the utmost importance to assure proper patient's management and devising of control programs aimed to limit spread of disease. Zoonotic Mycobacterium bovis infection still represents a threat to human health, particularly in dairy production regions. Routinary, molecular characterization of M. bovis is performed primarily by spoligotyping and mycobacterial interspersed repetitive units (MIRU) while next generation sequencing (NGS) approaches are often performed by reference laboratories. However, spoligotyping and MIRU methodologies lack the resolution required for the fine characterization of tuberculosis isolates, particularly in outbreak settings. In conjunction with sophisticated bioinformatic algorithms, whole genome sequencing (WGS) analysis is becoming the method of choice for advanced genetic characterization of tuberculosis isolates. WGS provides valuable information on drug resistance and compensatory mutations that other technologies cannot assess. Here, we performed an analysis of the most frequently identified mutations associated with tuberculosis drug resistance and their genetic relationship among 2,074 Mycobacterium bovis WGS recovered primarily from non-human hosts. Full-length gene sequences harboring drug resistant associated mutations and their phylogenetic relationships were analyzed. The results showed that M. bovis isolates harbor mutations conferring resistance to both first- and second-line antibiotics. Mutations conferring resistance for isoniazid, fluoroquinolones, streptomycin, and aminoglycosides were identified among animal strains. Our findings highlight the importance of molecular surveillance to monitor the emergence of mutations associated with multi and extensive drug resistance in livestock and other non-human mammals.
Collapse
Affiliation(s)
- Carlos Arturo Vázquez-Chacón
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
- Laboratorio de Micobacterias, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | | | | | - Mayra Cruz-Rivera
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Martínez-Guarneros
- Laboratorio de Micobacterias, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | - Ricardo Parra-Unda
- Unidad de Investigaciones en Salud Pública, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Eliakym Arámbula-Meraz
- Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Salvador Fonseca-Coronado
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, México
| | - Gilberto Vaughan
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Estado de México, México
| | - Paúl Alexis López-Durán
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Estado de México, México
- * E-mail:
| |
Collapse
|
27
|
Bernitz N, Kerr TJ, Goosen WJ, Chileshe J, Higgitt RL, Roos EO, Meiring C, Gumbo R, de Waal C, Clarke C, Smith K, Goldswain S, Sylvester TT, Kleynhans L, Dippenaar A, Buss PE, Cooper DV, Lyashchenko KP, Warren RM, van Helden PD, Parsons SDC, Miller MA. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Front Vet Sci 2021; 8:588697. [PMID: 33585615 PMCID: PMC7876456 DOI: 10.3389/fvets.2021.588697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Wildlife tuberculosis is a major economic and conservation concern globally. Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is the most common form of wildlife tuberculosis. In South Africa, to date, M. bovis infection has been detected in 24 mammalian wildlife species. The identification of M. bovis infection in wildlife species is essential to limit the spread and to control the disease in these populations, sympatric wildlife species and neighboring livestock. The detection of M. bovis-infected individuals is challenging as only severely diseased animals show clinical disease manifestations and diagnostic tools to identify infection are limited. The emergence of novel reagents and technologies to identify M. bovis infection in wildlife species are instrumental in improving the diagnosis and control of bTB. This review provides an update on the diagnostic tools to detect M. bovis infection in South African wildlife but may be a useful guide for other wildlife species.
Collapse
Affiliation(s)
- Netanya Bernitz
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Josephine Chileshe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Roxanne L. Higgitt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Eduard O. Roos
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Christina Meiring
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Rachiel Gumbo
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice de Waal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Charlene Clarke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Katrin Smith
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Samantha Goldswain
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Taschnica T. Sylvester
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Sven D. C. Parsons
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
28
|
Identifying likely transmissions in Mycobacterium bovis infected populations of cattle and badgers using the Kolmogorov Forward Equations. Sci Rep 2020; 10:21980. [PMID: 33319838 PMCID: PMC7738532 DOI: 10.1038/s41598-020-78900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
Established methods for whole-genome-sequencing (WGS) technology allow for the detection of single-nucleotide polymorphisms (SNPs) in the pathogen genomes sourced from host samples. The information obtained can be used to track the pathogen’s evolution in time and potentially identify ‘who-infected-whom’ with unprecedented accuracy. Successful methods include ‘phylodynamic approaches’ that integrate evolutionary and epidemiological data. However, they are typically computationally intensive, require extensive data, and are best applied when there is a strong molecular clock signal and substantial pathogen diversity. To determine how much transmission information can be inferred when pathogen genetic diversity is low and metadata limited, we propose an analytical approach that combines pathogen WGS data and sampling times from infected hosts. It accounts for ‘between-scale’ processes, in particular within-host pathogen evolution and between-host transmission. We applied this to a well-characterised population with an endemic Mycobacterium bovis (the causative agent of bovine/zoonotic tuberculosis, bTB) infection. Our results show that, even with such limited data and low diversity, the computation of the transmission probability between host pairs can help discriminate between likely and unlikely infection pathways and therefore help to identify potential transmission networks. However, the method can be sensitive to assumptions about within-host evolution.
Collapse
|
29
|
Kumar R, Register K, Christopher-Hennings J, Moroni P, Gioia G, Garcia-Fernandez N, Nelson J, Jelinski MD, Lysnyansky I, Bayles D, Alt D, Scaria J. Population Genomic Analysis of Mycoplasma bovis Elucidates Geographical Variations and Genes associated with Host-Types. Microorganisms 2020; 8:microorganisms8101561. [PMID: 33050495 PMCID: PMC7650767 DOI: 10.3390/microorganisms8101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Among more than twenty species belonging to the class Mollecutes, Mycoplasma bovis is the most common cause of bovine mycoplasmosis in North America and Europe. Bovine mycoplasmosis causes significant economic loss in the cattle industry. The number of M. bovis positive herds recently has increased in North America and Europe. Since antibiotic treatment is ineffective and no efficient vaccine is available, M. bovis induced mycoplasmosis is primarily controlled by herd management measures such as the restriction of moving infected animals out of the herds and culling of infected or shedders of M. bovis. To better understand the population structure and genomic factors that may contribute to its transmission, we sequenced 147 M. bovis strains isolated from four different countries viz. USA (n = 121), Canada (n = 22), Israel (n = 3) and Lithuania (n = 1). All except two of the isolates (KRB1 and KRB8) were isolated from two host types i.e., bovine (n = 75) and bison (n = 70). We performed a large-scale comparative analysis of M. bovis genomes by integrating 103 publicly available genomes and our dataset (250 total genomes). Whole genome single nucleotide polymorphism (SNP) based phylogeny using M.agalactiae as an outgroup revealed that M. bovis population structure is composed of five different clades. USA isolates showed a high degree of genomic divergence in comparison to the Australian isolates. Based on host of origin, all the isolates in clade IV was of bovine origin, whereas majority of the isolates in clades III and V was of bison origin. Our comparative genome analysis also revealed that M. bovis has an open pangenome with a large breadth of unexplored diversity of genes. The function based analysis of autogenous vaccine candidates (n = 10) included in this study revealed that their functional diversity does not span the genomic diversity observed in all five clades identified in this study. Our study also found that M. bovis genome harbors a large number of IS elements and their number increases significantly (p = 7.8 × 10−6) as the genome size increases. Collectively, the genome data and the whole genome-based population analysis in this study may help to develop better understanding of M. bovis induced mycoplasmosis in cattle.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
- P.G. Department of Zoology, Magadh University, Bodh Gaya, Bihar 824234, India
| | - Karen Register
- USDA/ARS/National Animal Disease Center, Ruminant Diseases & Immunology Research Unit, Ames, IA 50010, USA;
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
| | - Paolo Moroni
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA; (P.M.); (G.G.)
- Dipartimento di Medicina Veterinaria, Via dell’Università, Università degli Studi di Milano, 6, 26900 Lodi LO, Italy
| | - Gloria Gioia
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA; (P.M.); (G.G.)
| | - Nuria Garcia-Fernandez
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
| | - Julia Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
| | - Murray D. Jelinski
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Inna Lysnyansky
- Division of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel;
| | - Darrell Bayles
- USDA/ARS/National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA 50010, USA; (D.B.); (D.A.)
| | - David Alt
- USDA/ARS/National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA 50010, USA; (D.B.); (D.A.)
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
30
|
Lekko YM, Ooi PT, Omar S, Mazlan M, Ramanoon SZ, Jasni S, Jesse FFA, Che-Amat A. Mycobacterium tuberculosis complex in wildlife: Review of current applications of antemortem and postmortem diagnosis. Vet World 2020; 13:1822-1836. [PMID: 33132593 PMCID: PMC7566238 DOI: 10.14202/vetworld.2020.1822-1836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, which affects various domestic animals, wildlife, and humans. Some wild animals serve as reservoir hosts in the transmission and epidemiology of the disease. Therefore, the monitoring and surveillance of both wild and domestic hosts are critical for prevention and control strategies. For TB diagnosis, the single intradermal tuberculin test or the single comparative intradermal tuberculin test, and the gamma-interferon test, which is regarded as an ancillary test, are used. Postmortem examination can identify granulomatous lesions compatible with a diagnosis of TB. In contrast, smears of the lesions can be stained for acid-fast bacilli, and samples of the affected organs can be subjected to histopathological analyses. Culture is the gold standard test for isolating mycobacterial bacilli because it has high sensitivity and specificity compared with other methods. Serology for antibody detection allows the testing of many samples simply, rapidly, and inexpensively, and the protocol can be standardized in different laboratories. Molecular biological analyses are also applicable to trace the epidemiology of the disease. In conclusion, reviewing the various techniques used in MTBC diagnosis can help establish guidelines for researchers when choosing a particular diagnostic method depending on the situation at hand, be it disease outbreaks in wildlife or for epidemiological studies. This is because a good understanding of various diagnostic techniques will aid in monitoring and managing emerging pandemic threats of infectious diseases from wildlife and also preventing the potential spread of zoonotic TB to livestock and humans. This review aimed to provide up-to-date information on different techniques used for diagnosing TB at the interfaces between wildlife, livestock, and humans.
Collapse
Affiliation(s)
- Yusuf Madaki Lekko
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, 1069 PMB, Maiduguri, Borno State, Nigeria
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sharina Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Zubaidah Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sabri Jasni
- Department of Paraclinical, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Azlan Che-Amat
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Zimpel CK, Patané JSL, Guedes ACP, de Souza RF, Silva-Pereira TT, Camargo NCS, de Souza Filho AF, Ikuta CY, Neto JSF, Setubal JC, Heinemann MB, Guimaraes AMS. Global Distribution and Evolution of Mycobacterium bovis Lineages. Front Microbiol 2020; 11:843. [PMID: 32477295 PMCID: PMC7232559 DOI: 10.3389/fmicb.2020.00843] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium bovis is the main causative agent of zoonotic tuberculosis in humans and frequently devastates livestock and wildlife worldwide. Previous studies suggested the existence of genetic groups of M. bovis strains based on limited DNA markers (a.k.a. clonal complexes), and the evolution and ecology of this pathogen has been only marginally explored at the global level. We have screened over 2,600 publicly available M. bovis genomes and newly sequenced four wildlife M. bovis strains, gathering 1,969 genomes from 23 countries and at least 24 host species, including humans, to complete a phylogenomic analyses. We propose the existence of four distinct global lineages of M. bovis (Lb1, Lb2, Lb3, and Lb4) underlying the current disease distribution. These lineages are not fully represented by clonal complexes and are dispersed based on geographic location rather than host species. Our data divergence analysis agreed with previous studies reporting independent archeological data of ancient M. bovis (South Siberian infected skeletons at ∼2,000 years before present) and indicates that extant M. bovis originated between 715 and 3,556 years BP, with later emergence in the New World and Oceania, likely influenced by trades among countries.
Collapse
Affiliation(s)
- Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Salvatore L Patané
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Cellular Cycle, Butantan Institute, São Paulo, Brazil
| | - Aureliano Coelho Proença Guedes
- Laboratory of Protein Structure and Evolution, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Robson F de Souza
- Laboratory of Protein Structure and Evolution, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taiana T Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila C Soler Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio F de Souza Filho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Cássia Y Ikuta
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Soares Ferreira Neto
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Marcia Sa Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
33
|
Proud Tembo NF, Bwalya Muma J, Hang’ombe B, Munyeme M. Clustering and spatial heterogeneity of bovine tuberculosis at the livestock/wildlife interface areas in Namwala District of Zambia. Vet World 2020; 13:478-488. [PMID: 32367953 PMCID: PMC7183465 DOI: 10.14202/vetworld.2020.478-488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Bovine tuberculosis (bTB) remains a major public health issue in Zambia and has been exacerbated by human immunodeficiency virus prevalence and consumption of unpasteurized milk in the Southern Province of the country. The prevalence of bTB has been established to be linked to Kafue Lechwe, which act as reservoir hosts and share grazing fields with domestic cattle. No studies have so far used geographic information system (GIS) to investigate the relationship between the reservoir hosts (Kafue Lechwe) and domestic animals. This study, therefore, aimed to apply GIS to investigate the spatial distribution of bTB in Namwala District of the Southern Province of the country. MATERIALS AND METHODS To investigate the spatial distribution of bTB, geographical positioning system (GPS) coordinates representing 96 cattle herds across 20 independent villages were captured alongside risk factor data. The 96 herds were based on abattoir reports of condemned carcasses and a trace back. Positive herds were confirmed by cross-reference to purified protein derivative tests conducted by the District Veterinary Office. The GPS coordinates were transferred into ArcView 3.2 and laid on the map of Namwala District alongside physical features, including national parks, game management areas, and flood plains. Questionnaires were administered across 96 independent households to assess risk factors of bTB transmission. RESULTS The results revealed a "clustered" spatial distribution of the disease in cattle in Namwala District of Zambia, particularly significant in the eastern interface areas of the district (p=0.006 using Moran's I). Abattoir to production area trace back revealed a herd-level prevalence of 36.4% (95% CI=26.7-46.3%) among cattle herds in Namwala District, whereas individual animal prevalence ranged from 0% to 14% (95% CI=2.4-26.2%). Further, GPS data indicated that the majority of the positive herds were located at the livestock/wildlife interface area. Contacts with wildlife, coupled with sharing grazing, and watering points were found to be significant risk factors for bTB transmission. CONCLUSION This study demonstrated the presence of bTB in cattle and associated spatial risk factors. In particular, bTB was observed to be a function of animal location within the livestock/wildlife interface area. GIS is thus an applicable and important tool in studying disease distribution.
Collapse
Affiliation(s)
- Novan Fully Proud Tembo
- Department of Public Health, School of Health Sciences, University of Lusaka, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Bernard Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
34
|
Larsen MH, Lacourciere K, Parker TM, Kraigsley A, Achkar JM, Adams LB, Dupnik KM, Hall-Stoodley L, Hartman T, Kanipe C, Kurtz SL, Miller MA, Salvador LCM, Spencer JS, Robinson RT. The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis (Edinb) 2020; 121:101914. [PMID: 32279870 PMCID: PMC7428850 DOI: 10.1016/j.tube.2020.101914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Mycobacteria are important causes of disease in human and animal hosts. Diseases caused by mycobacteria include leprosy, tuberculosis (TB), nontuberculous mycobacteria (NTM) infections and Buruli Ulcer. To better understand and treat mycobacterial disease, clinicians, veterinarians and scientists use a range of discipline-specific approaches to conduct basic and applied research, including conducting epidemiological surveys, patient studies, wildlife sampling, animal models, genetic studies and computational simulations. To foster the exchange of knowledge and collaboration across disciplines, the Many Hosts of Mycobacteria (MHM) conference series brings together clinical, veterinary and basic scientists who are dedicated to advancing mycobacterial disease research. Started in 2007, the MHM series recently held its 8th conference at the Albert Einstein College of Medicine (Bronx, NY). Here, we review the diseases discussed at MHM8 and summarize the presentations on research advances in leprosy, NTM and Buruli Ulcer, human and animal TB, mycobacterial disease comorbidities, mycobacterial genetics and 'omics, and animal models. A mouse models workshop, which was held immediately after MHM8, is also summarized. In addition to being a resource for those who were unable to attend MHM8, we anticipate this review will provide a benchmark to gauge the progress of future research concerning mycobacteria and their many hosts.
Collapse
Affiliation(s)
- Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Tina M Parker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Alison Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Travis Hartman
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Carly Kanipe
- Department of Immunobiology, Iowa State University, Ames, IA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sherry L Kurtz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Washington, DC, USA
| | - Michele A Miller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liliana C M Salvador
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Analysis of Bovine Tuberculosis Transmission in Jalisco, Mexico through Whole-genome Sequencing. J Vet Res 2020; 64:51-61. [PMID: 32258800 PMCID: PMC7105993 DOI: 10.2478/jvetres-2020-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Bovine tuberculosis, caused by M. bovis, is endemic in Mexico and has had a big impact on public health. Jalisco is considered to be an important dairy region in the country, accounting for approximately 19% of the total milk production. Within Jalisco, the region of Altos Sur holds the largest proportion of the cattle inventory of the state. Material and Methods To determine the frequency of bovine tuberculosis in Altos Sur, Jalisco, as well as M. bovis genetic diversity, sampling of tissue (lymph nodes, lungs, and liver) from Holstein cattle was performed in four abattoirs belonging to three municipalities of this region (Tepatitlán de Morelos, San Miguel el Alto, and Arandas). Spoligotyping and whole-genome sequencing were carried out to assess the genetic relationships of M. bovis strains circulating in this area, as well as a comparison to isolates from other places in Mexico. Results Prevalence was 15.06%, and distribution similar among the three municipalities. The most frequent spoligotypes were SB0673, SB121, and SB0145. Whole-genome sequencing revealed three main clades (I, II, III), but isolates did not show clustering by region. Conclusion Phylogenetic analysis suggested ongoing transmission between herds of the different regions, and no unique source of infection was determined. This hinders efforts under the national program for the control and eradication of the disease, so serious attention must be paid to rural regions such as Altos Sur in order to improve its success.
Collapse
|
36
|
Loiseau C, Menardo F, Aseffa A, Hailu E, Gumi B, Ameni G, Berg S, Rigouts L, Robbe-Austerman S, Zinsstag J, Gagneux S, Brites D. An African origin for Mycobacterium bovis. Evol Med Public Health 2020; 2020:49-59. [PMID: 32211193 PMCID: PMC7081938 DOI: 10.1093/emph/eoaa005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/24/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Mycobacterium bovis and Mycobacterium caprae are two of the most important agents of tuberculosis in livestock and the most important causes of zoonotic tuberculosis in humans. However, little is known about the global population structure, phylogeography and evolutionary history of these pathogens. METHODOLOGY We compiled a global collection of 3364 whole-genome sequences from M.bovis and M.caprae originating from 35 countries and inferred their phylogenetic relationships, geographic origins and age. RESULTS Our results resolved the phylogenetic relationship among the four previously defined clonal complexes of M.bovis, and another eight newly described here. Our phylogeographic analysis showed that M.bovis likely originated in East Africa. While some groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world. CONCLUSIONS AND IMPLICATIONS Our results allow a better understanding of the global population structure of M.bovis and its evolutionary history. This knowledge can be used to define better molecular markers for epidemiological investigations of M.bovis in settings where whole-genome sequencing cannot easily be implemented. LAY SUMMARY During the last few years, analyses of large globally representative collections of whole-genome sequences (WGS) from the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages have enhanced our understanding of the global population structure, phylogeography and evolutionary history of these pathogens. In contrast, little corresponding data exists for M. bovis, the most important agent of tuberculosis in livestock. Using whole-genome sequences of globally distributed M. bovis isolates, we inferred the genetic relationships among different M. bovis genotypes distributed around the world. The most likely origin of M. bovis is East Africa according to our inferences. While some M. bovis groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world driven by cattle movements.
Collapse
Affiliation(s)
- Chloé Loiseau
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fabrizio Menardo
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Abraham Aseffa
- Mycobacterial Diseases Directorate, Armauer Hansen Research Centre, Addis Ababa, Ethiopia
| | - Elena Hailu
- Mycobacterial Diseases Directorate, Armauer Hansen Research Centre, Addis Ababa, Ethiopia
| | - Balako Gumi
- Department of Animal Science and Range Management, Bule Hora University, Bule Hora Town, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Stefan Berg
- Bacteriology Department, Animal & Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Collection of Mycobacterial Cultures (BCCM/ITM), Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Suelee Robbe-Austerman
- Diagnostic Bacteriology and Pathology Laboratory, National Veterinary Services Laboratories, United States Department of Agriculture, Ames, IA, USA
| | - Jakob Zinsstag
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
37
|
Landolt P, Stephan R, Stevens MJA, Scherrer S. Three-reaction high-resolution melting assay for rapid differentiation of Mycobacterium tuberculosis complex members. Microbiologyopen 2019; 8:e919. [PMID: 31448583 PMCID: PMC6925164 DOI: 10.1002/mbo3.919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/02/2023] Open
Abstract
The possibility of introducing a reliable assay for a quick identification and differentiation of the main species of Mycobacterium tuberculosis complex (MTBC) supports the improvement of efficient tuberculosis combating strategies worldwide. Commercially available assays are often based on cultured samples; however, due to the long cultivation time of mycobacteria, results are delayed. Developed PCR approaches have been published previously, though, when testing intricate veterinary samples, the complex composition of multiplex qPCRs frequently leads to assay failure. In order to overcome those limits, a paradigm of a three-reaction high-resolution melting (HRM) assay for the simultaneous identification and differentiation of the main members of MTBC was established. The assay is based on single nucleotide polymorphisms within gyrB and gyrA, which have been used as target for the establishment of two highly specific HRM assays (HRM assays 1 and 2) discriminating M. tuberculosis/ Mycobacterium canetti, Mycobacterium bovis/M. bovis BCG, Mycobacterium caprae/rare M. caprae/M. bovis ecotypes, Mycobacterium africanum/Mycobacterium orygis/ Mycobacterium pinnipedii/Clade A1, Mycobacterium microti, and a rare subtype of M. canettii followed by a third HRM assay (HRM assay 3) allowing a further differentiation of M. bovis, M. bovis BCG, and a rare subtype of M. caprae/M. bovis, which is considered to be a novel ecotype. High-resolution melting assay 1 is described in a previously published report. High-resolution melting assay 2 showed 100% correlation of all 39 examined isolates with the results of a commercial identification kit. 96% of the clinical samples tested demonstrated concordant results. High-resolution melting assay 3 showed an accordance of 100% with the results of the commercially available identification kit of all 22 samples analyzed. The proposed strategy of the three-reaction HRM assay can be used for an accurate differentiation of up to seven groups of MTBC and potentially to identify a rare subtype of M. canettii either on isolates or on clinical samples.
Collapse
Affiliation(s)
- Patricia Landolt
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simone Scherrer
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Genomic Polymorphism Associated with the Emergence of Virulent Isolates of Mycobacterium bovis in the Nile Delta. Sci Rep 2019; 9:11657. [PMID: 31406159 PMCID: PMC6690966 DOI: 10.1038/s41598-019-48106-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium bovis is responsible for bovine tuberculosis in both animals and humans. Despite being one of the most important global zoonotic disease, data related to the ecology and pathogenicity of bovine tuberculosis is scarce, especially in developing countries. In this report, we examined the dynamics of M. bovis transmission among dairy cattle in the Nile Delta of Egypt. Animals belonging to 27 herds from 7 governorates were tested by the Single Intradermal Comparative Skin Tuberculin (SICST), as a preliminary screen for the presence of bovine tuberculosis. Positive SICST reactors were identified in 3% of the animals spread among 40% of the examined herds. Post-mortem examination of slaughtered reactors confirmed the presence of both pulmonary and/or digestive forms of tuberculosis in > 50% of the examined animals. Targeted and whole-genome analysis of M. bovis isolates indicated the emergences of a predominant spoligotype (SB0268) between 2013–2015, suggesting a recent clonal spread of this isolate within the Nile Delta. Surprisingly, 2 isolates belonged to M. bovis BCG group, which are not allowed for animal vaccination in Egypt, while the rest of isolates belonged to the virulent M. bovis clonal complex European 2 present in Latin America and several European countries. Analysis of strain virulence in the murine model of tuberculosis indicated the emergence of a more virulent strain (MBE4) with a specific genotype. More analysis is needed to understand the molecular basis for successful spread of virulent isolates of bovine tuberculosis among animals and to establish genotype/phenotype association.
Collapse
|
39
|
Revised Interpretation of the Hain Lifescience GenoType MTBC To Differentiate Mycobacterium canettii and Members of the Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother 2019; 63:AAC.00159-19. [PMID: 30962348 DOI: 10.1128/aac.00159-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
Using 894 phylogenetically diverse genomes of the Mycobacterium tuberculosis complex (MTBC), we simulated in silico the ability of the Hain Lifescience GenoType MTBC assay to differentiate the causative agents of tuberculosis. Here, we propose a revised interpretation of this assay to reflect its strengths (e.g., it can distinguish some strains of Mycobacterium canettii and variants of Mycobacterium bovis that are not intrinsically resistant to pyrazinamide) and limitations (e.g., Mycobacterium orygis cannot be differentiated from Mycobacterium africanum).
Collapse
|
40
|
Sales ÉB, de Alencar AP, Hodon MA, Soares Filho PM, de Souza-Filho AF, Lage AP, Heinemann MB, Fonseca Júnior AA. Identification of clonal complexes of Mycobacterium bovis in Brazil. Arch Microbiol 2019; 201:1047-1051. [PMID: 31111186 DOI: 10.1007/s00203-019-01674-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022]
Abstract
Bovine tuberculosis is a disease that is widely distributed around the world. Its causative agent, Mycobacterium bovis, has characteristics of a microorganism with clonal multiplication in populations with no evidence of genetic exchange between strains, and, consequently, a group of strains can be identified as descending from a common ancestor. The aim of this study was to investigate the clonal complexes of M. bovis isolated from samples of lesions suggestive of bovine tuberculosis collected from slaughterhouses in various states of Brazil between 2006 and 2012. Ninety samples were analyzed, and it was found that 14.4% belonged to the clonal complex European1 and 81.1% to the clonal complex European2, while 4.65% were not identified as any of the four known complexes.
Collapse
Affiliation(s)
- Érica Bravo Sales
- Laboratório Nacional Agropecuário de Minas Gerais, Pedro Leopoldo, Minas Gerais, Brazil
| | | | - Mikael Arrais Hodon
- Laboratório Nacional Agropecuário de Minas Gerais, Pedro Leopoldo, Minas Gerais, Brazil
| | | | - Antonio Francisco de Souza-Filho
- Laboratório de Zoonoses Bacterianas, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Andrey Pereira Lage
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Bryan Heinemann
- Laboratório de Zoonoses Bacterianas, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
41
|
Doyle R, Clegg TA, McGrath G, Tratalos J, Barrett D, Lee A, More SJ. The bovine tuberculosis cluster in north County Sligo during 2014-16. Ir Vet J 2018; 71:24. [PMID: 30534362 PMCID: PMC6262969 DOI: 10.1186/s13620-018-0135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine tuberculosis (bTB, caused by infection with Mycobacterium bovis) is endemic in the Irish cattle population, and the subject of a national eradication programme since the late 1950s. During 2014, a substantial area-level bTB outbreak developing in north County Sligo, necessitating the need for an enhanced response. This paper describes this outbreak, the response that was undertaken and some lessons learned. RESULTS In the north Sligo area between 2014 and 2016, 23 (31.9%) of restricted herds had 4 or more reactors to the single intradermal comparative tuberculin test (SICTT)/animals with bTB lesions disclosed during the restriction, and the majority (55.5%) of test-positive animals were identified as standard reactors to the SICTT. The herds restricted during 2014-16 were typically larger than other herds in the study area and introduced more animals during 2013. M. bovis was also detected in local badgers, but not deer. CONCLUSION This paper describes a substantial outbreak in north County Sligo over a 3-year period. A coordinated area-based approach was a key feature of the outbreak, and substantial resources were applied to bring the outbreak under control. No definitive source was identified, nor reasons why a substantial number of herds were infected over a relatively short period. A coordinated regional approach was taken, and a number of lessons were learned including the need for urgency, for a team-based approach, for a consistent message when dealing with the public, for an area-based approach, for a degree of flexibility for the breakdown manager, and for molecular tools to assist in answering key questions relating to the source and spread of M. bovis to many herds during this bTB outbreak.
Collapse
Affiliation(s)
- Rob Doyle
- Department of Agriculture, Food and the Marine, Backweston Administration Building, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH Ireland
| | - Tracy A. Clegg
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| | - Guy McGrath
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| | - Jamie Tratalos
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| | - Damien Barrett
- Department of Agriculture, Food and the Marine, Backweston Administration Building, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH Ireland
| | - Ada Lee
- Cyberport, Pokfulam, Hong Kong Island, Hong Kong
| | - Simon J. More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6 Ireland
| |
Collapse
|