1
|
Chung J, Kim S, Jeong J, Kim D, Jo A, Kim HY, Hwang J, Kweon DH, Yoo SY, Chung WJ. Preventive and therapeutic effects of a super-multivalent sialylated filamentous bacteriophage against the influenza virus. Biomaterials 2025; 312:122736. [PMID: 39121728 DOI: 10.1016/j.biomaterials.2024.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The resurgence of influenza viruses as a significant global threat emphasizes the urgent need for innovative antiviral strategies beyond existing treatments. Here, we present the development and evaluation of a novel super-multivalent sialyllactosylated filamentous phage, termed t-6SLPhage, as a potent entry blocker for influenza A viruses. Structural variations in sialyllactosyl ligands, including linkage type, valency, net charge, and spacer length, were systematically explored to identify optimal binding characteristics against target hemagglutinins and influenza viruses. The selected SLPhage equipped with optimal ligands, exhibited exceptional inhibitory potency in in vitro infection inhibition assays. Furthermore, in vivo studies demonstrated its efficacy as both a preventive and therapeutic intervention, even when administered post-exposure at 2 days post-infection, under 4 lethal dose 50% conditions. Remarkably, co-administration with oseltamivir revealed a synergistic effect, suggesting potential combination therapies to enhance efficacy and mitigate resistance. Our findings highlight the efficacy and safety of sialylated filamentous bacteriophages as promising influenza inhibitors. Moreover, the versatility of M13 phages for surface modifications offers avenues for further engineering to enhance therapeutic and preventive performance.
Collapse
Affiliation(s)
- Jinhyo Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sehoon Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jiyoon Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Doyeon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Anna Jo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwa Young Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|
2
|
Powell JD, Thomas MN, Anderson TK, Zeller MA, Gauger PC, Vincent Baker AL. 2018-2019 human seasonal H3N2 influenza A virus spillovers into swine with demonstrated virus transmission in pigs were not sustained in the pig population. J Virol 2024; 98:e0008724. [PMID: 39526773 DOI: 10.1128/jvi.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Human seasonal H3 clade 3C3a influenza A viruses (IAV) were detected four times in U.S. pigs from commercial swine farms in Michigan, Illinois, and Virginia in 2019. To evaluate the relative risk of this spillover to the pig population, whole genome sequencing and phylogenetic characterization were conducted, and the results revealed that all eight viral gene segments were closely related to 2018-2019 H3N2 human seasonal IAV. Next, a series of in vitro viral kinetics, receptor binding, and antigenic characterization studies were performed using a representative A/swine/Virginia/A02478738/2018(H3N2) (SW/VA/19) isolate. Viral replication kinetic studies of SW/VA/19 demonstrated less efficient replication curves than all 10 swine H3N2 viruses tested but higher than three human H3N2 strains. Serial passaging experiments of SW/VA/19 in swine cells did not increase virus replication, but changes at HA amino acid positions 9 and 159 occurred. In swine transmission studies, wild-type SW/VA/19 was shed in nasal secretions and transmitted to all indirect contact pigs, whereas the human seasonal strain A/Switzerland/9715293/2013(H3N2) from the same 3C3a clade failed to transmit. SW/VA/19 induced minimal macroscopic and microscopic lung lesions. Collectively, these findings demonstrate that these human seasonal H3N2 3C3a-like viruses did not require reassortment with endemic swine IAV gene segments for virus shedding and transmission in pigs. Limited detections in the U.S. pig population in the subsequent period of time suggest a yet-unknown restriction factor likely limiting the spread of these viruses in the U.S. pig population.IMPORTANCEInterspecies human-to-swine IAV transmission occurs globally and contributes to increased IAV diversity in pig populations. We present data that a swine isolate from a 2018-2019 human-to-swine transmission event was shed for multiple days in challenged and contact pigs. By characterizing this introduction through bioinformatic, molecular, and animal experimental approaches, these findings better inform animal health practices and vaccine decision-making. Since wholly human seasonal H3N2 viruses in the United States were not previously identified as being transmissible in pigs (i.e., reverse zoonosis), these findings reveal that the interspecies barriers for transmission to pigs may not require significant changes to all human seasonal H3N2, although additional changes may be required for sustained transmission in swine populations.
Collapse
Affiliation(s)
- Joshua D Powell
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| | - Megan N Thomas
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| | - Michael A Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| |
Collapse
|
3
|
Ciuoderis K, Usuga J, Pérez-Restrepo LS, Gonzalez-Ramirez M, Carvajal L, Cardona A, Moreno I, Diaz A, Peña M, Hernández-Ortiz JP, Osorio JE. Genomic diversity and evolutionary dynamics of Influenza A viruses in Colombian swine: implications for one health surveillance and control. Emerg Microbes Infect 2024; 13:2368202. [PMID: 38970562 PMCID: PMC11229761 DOI: 10.1080/22221751.2024.2368202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Influenza A viruses (IAV) impose significant respiratory disease burdens in both swine and humans worldwide, with frequent human-to-swine transmission driving viral evolution in pigs and highlighting the risk at the animal-human interface. Therefore, a comprehensive One Health approach (interconnection among human, animal, and environmental health) is needed for IAV prevention, control, and response. Animal influenza genomic surveillance remains limited in many Latin American countries, including Colombia. To address this gap, we genetically characterized 170 swine specimens from Colombia (2011-2017). Whole genome sequencing revealed a predominance of pandemic-like H1N1 lineage, with a minority belonging to H3N2 and H1N2 human seasonal-like lineage and H1N1 early classical swine lineages. Significantly, we have identified reassortant and recombinant viruses (H3N2, H1N1) not previously reported in Colombia. This suggests a broad genotypic viral diversity, likely resulting from reassortment between classical endemic viruses and new introductions established in Colombia's swine population (e.g. the 2009 H1N1 pandemic). Our study highlights the importance of a One Health approach in disease control, particularly in an ecosystem where humans are a main source of IAV to swine populations, and emphasizes the need for continued surveillance and enhanced biosecurity measures. The co-circulation of multiple subtypes in regions with high swine density facilitates viral exchange, underscoring the importance of monitoring viral evolution to inform vaccine selection and public health policies locally and globally.
Collapse
MESH Headings
- Animals
- Swine
- Colombia/epidemiology
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/epidemiology
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/classification
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Evolution, Molecular
- Genetic Variation
- Phylogeny
- One Health
- Humans
- Influenza A virus/genetics
- Influenza A virus/classification
- Influenza A virus/isolation & purification
- Whole Genome Sequencing
- Genome, Viral
- Epidemiological Monitoring
- Reassortant Viruses/genetics
- Reassortant Viruses/classification
- Reassortant Viruses/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/classification
- Influenza, Human/virology
- Influenza, Human/epidemiology
Collapse
Affiliation(s)
- Karl Ciuoderis
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | - Jaime Usuga
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | | | | | - Leidi Carvajal
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | - Andrés Cardona
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | - Isabel Moreno
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | - Andrés Diaz
- Pig Improvement Company, Hendersonville, NC, USA
| | - Mario Peña
- PorkColombia Association, Bogotá, Colombia
| | - Juan P. Hernández-Ortiz
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
- Faculty of Life Sciences, Universidad Nacional de Colombia, Medellín, Colombia
| | - Jorge E. Osorio
- GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Global Health Institute, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
4
|
Alberts F, Berke O, Maboni G, Petukhova T, Poljak Z. Utilizing machine learning and hemagglutinin sequences to identify likely hosts of influenza H3Nx viruses. Prev Vet Med 2024; 233:106351. [PMID: 39353303 DOI: 10.1016/j.prevetmed.2024.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Influenza is a disease that represents both a public health and agricultural risk with pandemic potential. Among the subtypes of influenza A virus, H3 influenza virus can infect many avian and mammalian species and is therefore a virus of interest to human and veterinary public health. The primary goal of this study was to train and validate classifiers for the identification of the most likely host species using the hemagglutinin gene segment of H3 viruses. A five-step process was implemented, which included training four machine learning classifiers, testing the classifiers on the validation dataset, and further exploration of the best-performing model on three additional datasets. The gradient boosting machine classifier showed the highest host-classification accuracy with a 98.0 % (95 % CI [97.01, 98.73]) correct classification rate on an independent validation dataset. The classifications were further analyzed using the predicted probability score which highlighted sequences of particular interest. These sequences were both correctly and incorrectly classified sequences that showed considerable predicted probability for multiple hosts. This showed the potential of using these classifiers for rapid sequence classification and highlighting sequences of interest. Additionally, the classifiers were tested on a separate swine dataset composed of H3N2 sequences from 1998 to 2003 from the United States of America, and a separate canine dataset composed of canine H3N2 sequences of avian origin. These two datasets were utilized to look at the applications of predicted probability and host convergence over time. Lastly, the classifiers were used on an independent dataset of environmental sequences to explore the host identification of environmental sequences. The results of these classifiers show the potential for machine learning to be used as a host identification technique for viruses of unknown origin on a species-specific level.
Collapse
Affiliation(s)
- Famke Alberts
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Olaf Berke
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Advancing Responsible and Ethical Artificial Intelligence, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Grazieli Maboni
- Athens Veterinary Diagnostic Laboratory, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W.Brooks Drive Athens, GA, USA.
| | - Tatiana Petukhova
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| |
Collapse
|
5
|
Klivleyeva N, Saktaganov N, Glebova T, Lukmanova G, Ongarbayeva N, Webby R. Influenza A Viruses in the Swine Population: Ecology and Geographical Distribution. Viruses 2024; 16:1728. [PMID: 39599843 PMCID: PMC11598916 DOI: 10.3390/v16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the efforts of practical medicine and virology, influenza viruses remain the most important pathogens affecting human and animal health. Swine are exposed to infection with all types of influenza A, B, C, and D viruses. Influenza viruses have low pathogenicity for swine, but in the case of co-infection with other pathogens, the outcome can be much more serious, even fatal. Having a high zoonotic potential, swine play an important role in the ecology and spread of influenza to humans. In this study, we review the state of the scientific literature on the zoonotic spread of swine influenza A viruses among humans, their circulation in swine populations worldwide, reverse zoonosis from humans to swine, and their role in interspecies transmission. The analysis covers a long period to trace the ecology and evolutionary history of influenza A viruses in swine. The following databases were used to search the literature: Scopus, Web of Science, Google Scholar, and PubMed. In this review, 314 papers are considered: n = 107 from Asia, n = 93 from the U.S., n = 86 from Europe, n = 20 from Africa, and n = 8 from Australia. According to the date of publication, they are conditionally divided into three groups: contemporary, released from 2011 to the present (n = 121); 2000-2010 (n = 108); and 1919-1999 (n = 85).
Collapse
Affiliation(s)
- Nailya Klivleyeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nurbol Saktaganov
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Tatyana Glebova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Galina Lukmanova
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Nuray Ongarbayeva
- The Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (N.K.); (N.S.); (G.L.); (N.O.)
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| |
Collapse
|
6
|
Cardenas M, Seibert B, Cowan B, Caceres CJ, Gay LC, Cargnin Faccin F, Perez DR, Baker AL, Anderson TK, Rajao DS. Modulation of human-to-swine influenza a virus adaptation by the neuraminidase low-affinity calcium-binding pocket. Commun Biol 2024; 7:1230. [PMID: 39354058 PMCID: PMC11445579 DOI: 10.1038/s42003-024-06928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Frequent interspecies transmission of human influenza A viruses (FLUAV) to pigs contrasts with the limited subset that establishes in swine. While hemagglutinin mutations are recognized for their role in cross-species transmission, the contribution of neuraminidase remains understudied. Here, the NA's role in FLUAV adaptation was investigated using a swine-adapted H3N2 reassortant virus with human-derived HA and NA segments. Adaptation in pigs resulted in mutations in both HA (A138S) and NA (D113A). The D113A mutation abolished calcium (Ca2+) binding in the low-affinity Ca2+-binding pocket of NA, enhancing enzymatic activity and thermostability under Ca2+-depleted conditions, mirroring swine-origin FLUAV NA behavior. Structural analysis predicts that swine-adapted H3N2 viruses lack Ca2+ binding in this pocket. Further, residue 93 in NA (G93 in human, N93 in swine) also influences Ca2+ binding and impacts NA activity and thermostability, even when D113 is present. These findings demonstrate that mutations in influenza A virus surface proteins alter evolutionary trajectories following interspecies transmission and reveal distinct mechanisms modulating NA activity during FLUAV adaptation, highlighting the importance of Ca2+ binding in the low-affinity calcium-binding pocket.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Amy L Baker
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Tavis K Anderson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Sylvén KR, Jacobson M, Schwarz L, Zohari S. Reverse zoonotic transmission of human seasonal influenza to a pig herd in Sweden. Tierarztl Prax Ausg G Grosstiere Nutztiere 2024; 52:296-303. [PMID: 39447586 DOI: 10.1055/a-2410-1530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In January 2023, a Swedish piglet-producing farm with 2800 sows in production (SIP) was diagnosed with IAV (Influenza A virus) and the isolates were shown to cluster with the human seasonal influenza (2022/2023). In December 2022, employees with flu like symptoms tended to the pigs and a few weeks later, respiratory signs appeared in different age groups; sows in farrowing units were anorectic and pyrectic. Lung and nasal swabs were tested positive for IAV and other respiratory infectious agents. Blanket vaccination against H1N1pdm09 of sows and gilts was initiated but discontinued for sows after 2 treatments. Biosecurity measures aiming to reduce the spread of virus were implemented. However, the compliance to follow the protocol was moderate.Combining immunity and strict sanitary measures is crucial to control virus circulation. As the farmer discontinued sow vaccination and just partly increased biosecurity, this may have contributed to ongoing virus circulation and clinical signs in pigs, even 5 months post-diagnosis. Although H1N1pdm09 already had been found in the herd in 2017, there were no clinical signs or diagnostic results indicating continuous circulation of this or other IAV strains afterwards. However, this cannot be entirely excluded. Swine IAVs pose a risk of reintroduction into the human population, highlighting the importance of vaccination of farm workers against seasonal influenza.
Collapse
Affiliation(s)
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Lukas Schwarz
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Austria
| | - Siamak Zohari
- Department of Microbiology, Swedish Veterinary Agency (SVA), Uppsala, Sweden
| |
Collapse
|
8
|
Kirby MK, Shu B, Keller MW, Wilson MM, Rambo-Martin BL, Jang Y, Liddell J, Salinas Duron E, Nolting JM, Bowman AS, Davis CT, Wentworth DE, Barnes JR. Discriminating North American Swine Influenza Viruses with a Portable, One-Step, Triplex Real-Time RT-PCR Assay, and Portable Sequencing. Viruses 2024; 16:1557. [PMID: 39459891 PMCID: PMC11512246 DOI: 10.3390/v16101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Swine harbors a genetically diverse population of swine influenza A viruses (IAV-S), with demonstrated potential to transmit to the human population, causing outbreaks and pandemics. Here, we describe the development of a one-step, triplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay that detects and distinguishes the majority of the antigenically distinct influenza A virus hemagglutinin (HA) clades currently circulating in North American swine, including the IAV-S H1 1A.1 (α), 1A.2 (β), 1A.3 (γ), 1B.2.2 (δ1) and 1B.2.1 (δ2) clades, and the IAV-S H3 2010.1 clade. We performed an in-field test at an exhibition swine show using in-field viral concentration and RNA extraction methodologies and a portable real-time PCR instrument, and rapidly identified three distinct IAV-S clades circulating within the N.A. swine population. Portable sequencing is used to further confirm the results of the in-field test of the swine triplex assay. The IAV-S triplex rRT-PCR assay can be easily transported and used in-field to characterize circulating IAV-S clades in North America, allowing for surveillance and early detection of North American IAV-S with human outbreak and pandemic potential.
Collapse
Affiliation(s)
- Marie K. Kirby
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Bo Shu
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Matthew W. Keller
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Malania M. Wilson
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Benjamin L. Rambo-Martin
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Yunho Jang
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Jimma Liddell
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Eduardo Salinas Duron
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
- Chippewa Government Solutions (CGS), Sault Tribe Incorporated (STI), Cherokee Nation Operational Solutions (CNOS), Sault Sainte Marie, MI 49783, USA
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - C. Todd Davis
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - David E. Wentworth
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - John R. Barnes
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| |
Collapse
|
9
|
Dias AS, Baker ALV, Baker RB, Zhang J, Zeller MA, Kitikoon P, Gauger PC. Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System. Viruses 2024; 16:626. [PMID: 38675967 PMCID: PMC11054297 DOI: 10.3390/v16040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.
Collapse
MESH Headings
- Animals
- Swine
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Swine Diseases/prevention & control
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/epidemiology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/isolation & purification
- Influenza A virus/classification
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Phylogeny
- Farms
- Animals, Suckling
- Vaccination/veterinary
- Endemic Diseases/veterinary
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- RNA, Viral/genetics
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/immunology
- Genome, Viral
Collapse
Affiliation(s)
- Alessandra Silva Dias
- Department of Preventive Veterinary Medicine, Minas Gerais State University, 6627 Antonio Carlos Avenue, Belo Horizonte 31620-295, MG, Brazil;
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Rodney B. Baker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Michael A. Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Pravina Kitikoon
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
- Phillip Gauger of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
10
|
Cardenas M, Seibert B, Cowan B, Fraiha ALS, Carnaccini S, Gay LC, Faccin FC, Caceres CJ, Anderson TK, Vincent Baker AL, Perez DR, Rajao DS. Amino acid 138 in the HA of a H3N2 subtype influenza A virus increases affinity for the lower respiratory tract and alveolar macrophages in pigs. PLoS Pathog 2024; 20:e1012026. [PMID: 38377132 PMCID: PMC10906893 DOI: 10.1371/journal.ppat.1012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Influenza A virus (FLUAV) infects a wide range of hosts and human-to-swine spillover events are frequently reported. However, only a few of these human viruses have become established in pigs and the host barriers and molecular mechanisms driving adaptation to the swine host remain poorly understood. We previously found that infection of pigs with a 2:6 reassortant virus (hVIC/11) containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from the human strain A/Victoria/361/2011 (H3N2) and internal gene segments of an endemic swine strain (sOH/04) resulted in a fixed amino acid substitution in the HA (A138S, mature H3 HA numbering). In silico analysis revealed that S138 became predominant among swine H3N2 virus sequences deposited in public databases, while 138A predominates in human isolates. To understand the role of the HA A138S substitution in the adaptation of a human-origin FLUAV HA to swine, we infected pigs with the hVIC/11A138S mutant and analyzed pathogenesis and transmission compared to hVIC/11 and sOH/04. Our results showed that the hVIC/11A138S virus had an intermediary pathogenesis between hVIC/11 and sOH/04. The hVIC/11A138S infected the upper respiratory tract, right caudal, and both cranial lobes while hVIC/11 was only detected in nose and trachea samples. Viruses induced a distinct expression pattern of various pro-inflammatory cytokines such as IL-8, TNF-α, and IFN-β. Flow cytometric analysis of lung samples revealed a significant reduction of porcine alveolar macrophages (PAMs) in hVIC/11A138S-infected pigs compared to hVIC/11 while a MHCIIlowCD163neg population was increased. The hVIC/11A138S showed a higher affinity for PAMs than hVIC/11, noted as an increase of infected PAMs in bronchoalveolar lavage fluid (BALF), and showed no differences in the percentage of HA-positive PAMs compared to sOH/04. This increased infection of PAMs led to an increase of granulocyte-monocyte colony-stimulating factor (GM-CSF) stimulation but a reduced expression of peroxisome proliferator-activated receptor gamma (PPARγ) in the sOH/04-infected group. Analysis using the PAM cell line 3D4/21 revealed that the A138S substitution improved replication and apoptosis induction in this cell type compared to hVIC/11 but at lower levels than sOH/04. Overall, our study indicates that adaptation of human viruses to the swine host involves an increased affinity for the lower respiratory tract and alveolar macrophages.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ana Luiza S. Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
11
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
12
|
Neasham PJ, Pliasas VC, North JF, Johnson C, Tompkins SM, Kyriakis CS. Development and characterization of an immortalized swine respiratory cell line for influenza A virus research. Front Vet Sci 2023; 10:1258269. [PMID: 38179335 PMCID: PMC10765598 DOI: 10.3389/fvets.2023.1258269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Swine serve as an important intermediate host species for generating novel influenza A viruses (IAVs) with pandemic potential because of the host's susceptibility to IAVs of swine, human and avian origin. Primary respiratory cell lines are used in IAV research to model the host's upper respiratory tract in vitro. However, primary cell lines are limited by their passaging capacity and are time-consuming for use in industry and research pipelines. We were interested in developing and characterizing a biologically relevant immortalized swine respiratory cell line that could be used for efficient propagation and characterization of swine IAV isolates. Methods Lung tissue for the generation of primary swine respiratory cells were isolated from the bronchi of an 8-week-old Yorkshire/Hampshire pig, which were immortalized by transduction of the SV40 T antigen using a lentivirus vector. The transduction of the SV40 T antigen was confirmed by Real Time RT-PCR in cells passaged greater than twenty times. Results Immortalized swine respiratory cells expressed primarily α2,6 sialic acid receptors and were susceptible to both swine and human IAVs, with swine viruses exhibiting higher replication rates. Notably, infection with a swine H3N2 isolate prompted increased IL-6 and IL-1α protein secretion compared to a seasonal human H3N2 virus. Even after 20 passages, the immortalized cells maintained the primary respiratory cell phenotype and remained permissive to IAV infection without exogenous trypsin. Discussion In summary, our developed immortalized swine respiratory cell line offers an alternative in vitro substrate for studying IAV replication and transmission dynamics in pigs, overcoming the limitations of primary respiratory cells in terms of low passage survivability and cost.
Collapse
Affiliation(s)
- Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Celeste Johnson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - S. Mark Tompkins
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Pliasas VC, Neasham PJ, Naskou MC, Neto R, Strate PG, North JF, Pedroza S, Chastain SD, Padykula I, Tompkins SM, Kyriakis CS. Heterologous prime-boost H1N1 vaccination exacerbates disease following challenge with a mismatched H1N2 influenza virus in the swine model. Front Immunol 2023; 14:1253626. [PMID: 37928521 PMCID: PMC10623127 DOI: 10.3389/fimmu.2023.1253626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Influenza A viruses (IAVs) pose a significant threat to both human and animal health. Developing IAV vaccine strategies able to elicit broad heterologous protection against antigenically diverse IAV strains is pivotal in effectively controlling the disease. The goal of this study was to examine the immunogenicity and protective efficacy of diverse H1N1 influenza vaccine strategies including monovalent, bivalent, and heterologous prime-boost vaccination regimens, against a mismatched H1N2 swine influenza virus. Five groups were homologous prime-boost vaccinated with either an oil-adjuvanted whole-inactivated virus (WIV) monovalent A/swine/Georgia/27480/2019 (GA19) H1N2 vaccine, a WIV monovalent A/sw/Minnesota/A02636116/2021 (MN21) H1N1 vaccine, a WIV monovalent A/California/07/2009 (CA09) H1N1, a WIV bivalent vaccine composed of CA09 and MN21, or adjuvant only (mock-vaccinated group). A sixth group was prime-vaccinated with CA09 WIV and boosted with MN21 WIV (heterologous prime-boost group). Four weeks post-boost pigs were intranasally and intratracheally challenged with A/swine/Georgia/27480/2019, an H1N2 swine IAV field isolate. Vaccine-induced protection was evaluated based on five critical parameters: (i) hemagglutination inhibiting (HAI) antibody responses, (ii) clinical scores, (iii) virus titers in nasal swabs and respiratory tissue homogenates, (iv) BALf cytology, and (v) pulmonary pathology. While all vaccination regimens induced seroprotective titers against homologous viruses, heterologous prime-boost vaccination failed to enhance HAI responses against the homologous vaccine strains compared to monovalent vaccine regimens and did not expand the scope of cross-reactive antibody responses against antigenically distinct swine and human IAVs. Mismatched vaccination regimens not only failed to confer clinical and virological protection post-challenge but also exacerbated disease and pathology. In particular, heterologous-boosted pigs showed prolonged clinical disease and increased pulmonary pathology compared to mock-vaccinated pigs. Our results demonstrated that H1-specific heterologous prime-boost vaccination, rather than enhancing cross-protection, worsened the clinical outcome and pathology after challenge with the antigenically distant A/swine/Georgia/27480/2019 strain.
Collapse
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Rachel Neto
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Philip G. Strate
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Stephen Pedroza
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Strickland D. Chastain
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ian Padykula
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens GA, United States
| | - S. Mark Tompkins
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens GA, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens GA, United States
| |
Collapse
|
14
|
Welch M, Krueger K, Zhang J, Piñeyro P, Patterson A, Gauger P. Pathogenesis of an experimental coinfection of porcine parainfluenza virus 1 and influenza A virus in commercial nursery swine. Vet Microbiol 2023; 285:109850. [PMID: 37639899 DOI: 10.1016/j.vetmic.2023.109850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Porcine parainfluenza virus 1 (PPIV-1) is a recently characterized swine respirovirus. Previous experimental studies reported PPIV-1 replicates in the porcine respiratory tract causing minimal clinical disease or lesions. However, it is unknown if PPIV-1 co-infections with viral respiratory pathogens would cause respiratory disease consistent with natural infections reported in the field. The objective of this study was to evaluate if PPIV-1 increases the severity of influenza A virus respiratory disease in swine. Fifty conventional, five-week-old pigs were assigned to one of three challenge groups (n = 15) or a negative control group (n = 5). Pigs were challenged with a γ-cluster H1N2 influenza A virus in swine (IAV-S; A/Swine/North Carolina/00169/2006), PPIV-1 (USA/MN25890NS/2016), inoculum that contained equivalent titers of IAV-S and PPIV-1 (CO-IN), or negative control. Clinical scores representing respiratory disease and nasal swabs were collected daily and all pigs were necropsied five days post inoculation (DPI). The CO-IN group demonstrated a significantly lower percentage of pigs showing respiratory clinical signs relative to the IAV-S challenge group from 2 to 4 DPI. The IAV-S and CO-IN groups had significantly lower microscopic composite lesion scores in the upper respiratory tract compared to the PPIV-1 group although the IAV-S and CO-IN groups had significantly higher microscopic composite lung lesion scores. Collectively, PPIV-1 did not appear to influence severity of clinical disease, macroscopic lesions, or alter viral loads detected in nasal swabs or necropsy tissues when administered as a coinfection with IAV-S. Studies evaluating PPIV-1 coinfections with different strains of IAV-S, different respiratory pathogens or sequential exposure of PPIV-1 and IAV-S are warranted.
Collapse
Affiliation(s)
- Michael Welch
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Karen Krueger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Abby Patterson
- Boehringer Ingelheim Animal Health Inc., 2412 S. Loop Drive, Ames, IA 50010, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
15
|
Pekarek MJ, Weaver EA. Existing Evidence for Influenza B Virus Adaptations to Drive Replication in Humans as the Primary Host. Viruses 2023; 15:2032. [PMID: 37896807 PMCID: PMC10612074 DOI: 10.3390/v15102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza B virus (IBV) is one of the two major types of influenza viruses that circulate each year. Unlike influenza A viruses, IBV does not harbor pandemic potential due to its lack of historical circulation in non-human hosts. Many studies and reviews have highlighted important factors for host determination of influenza A viruses. However, much less is known about the factors driving IBV replication in humans. We hypothesize that similar factors influence the host restriction of IBV. Here, we compile and review the current understanding of host factors crucial for the various stages of the IBV viral replication cycle. While we discovered the research in this area of IBV is limited, we review known host factors that may indicate possible host restriction of IBV to humans. These factors include the IBV hemagglutinin (HA) protein, host nuclear factors, and viral immune evasion proteins. Our review frames the current understanding of IBV adaptations to replication in humans. However, this review is limited by the amount of research previously completed on IBV host determinants and would benefit from additional future research in this area.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
16
|
Griffin EF, Tompkins SM. Fitness Determinants of Influenza A Viruses. Viruses 2023; 15:1959. [PMID: 37766365 PMCID: PMC10535923 DOI: 10.3390/v15091959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A (IAV) is a major human respiratory pathogen that causes illness, hospitalizations, and mortality annually worldwide. IAV is also a zoonotic pathogen with a multitude of hosts, allowing for interspecies transmission, reassortment events, and the emergence of novel pandemics, as was seen in 2009 with the emergence of a swine-origin H1N1 (pdmH1N1) virus into humans, causing the first influenza pandemic of the 21st century. While the 2009 pandemic was considered to have high morbidity and low mortality, studies have linked the pdmH1N1 virus and its gene segments to increased disease in humans and animal models. Genetic components of the pdmH1N1 virus currently circulate in the swine population, reassorting with endemic swine viruses that co-circulate and occasionally spillover into humans. This is evidenced by the regular detection of variant swine IAVs in humans associated with state fairs and other intersections of humans and swine. Defining genetic changes that support species adaptation, virulence, and cross-species transmission, as well as mutations that enhance or attenuate these features, will improve our understanding of influenza biology. It aids in surveillance and virus risk assessment and guides the establishment of counter measures for emerging viruses. Here, we review the current understanding of the determinants of specific IAV phenotypes, focusing on the fitness, transmission, and virulence determinants that have been identified in swine IAVs and/or in relation to the 2009 pdmH1N1 virus.
Collapse
Affiliation(s)
- Emily Fate Griffin
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Stephen Mark Tompkins
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), Athens, GA 30602, USA
| |
Collapse
|
17
|
van Diemen PM, Byrne AMP, Ramsay AM, Watson S, Nunez A, V Moreno A, Chiapponi C, Foni E, Brown IH, Brookes SM, Everett HE. Interspecies Transmission of Swine Influenza A Viruses and Human Seasonal Vaccine-Mediated Protection Investigated in Ferret Model. Emerg Infect Dis 2023; 29:1798-1807. [PMID: 37610158 PMCID: PMC10461666 DOI: 10.3201/eid2909.230066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
We investigated the infection dynamics of 2 influenza A(H1N1) virus isolates from the swine 1A.3.3.2 (pandemic 2009) and 1C (Eurasian, avian-like) lineages. The 1C-lineage virus, A/Pavia/65/2016, although phylogenetically related to swine-origin viruses, was isolated from a human clinical case. This strain infected ferrets, a human influenza model species, and could be transmitted by direct contact and, less efficiently, by airborne exposure. Infecting ferrets and pigs (the natural host) resulted in mild or inapparent clinical signs comparable to those observed with 1A.3.3.2-lineage swine-origin viruses. Both H1N1 viruses could infect pigs and were transmitted to cohoused ferrets. Ferrets vaccinated with a human 2016-17 seasonal influenza vaccine were protected against infection with the antigenically matched 1A pandemic 2009 virus but not against the swine-lineage 1C virus. Our results reaffirm the need for continuous influenza A virus surveillance in pigs and identification of candidate human vaccine viruses.
Collapse
|
18
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
19
|
Lopez-Moreno G, Culhane MR, Davies P, Corzo C, Allerson MW, Torremorell M. Farm management practices associated with influenza A virus contamination of people working in Midwestern United States swine farms. Porcine Health Manag 2023; 9:13. [PMID: 37183258 PMCID: PMC10184419 DOI: 10.1186/s40813-023-00304-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 05/16/2023] Open
Abstract
Indirect transmission of influenza A virus (IAV) contributes to virus spread in pigs. To identify farm management activities with the ability to contaminate farmworkers' hands and clothing that then could be a source of virus spread to other pigs, we conducted a within-farm, prospective IAV surveillance study. Hands and clothes from farmworkers performing the activities of piglet processing, vaccination, or weaning were sampled before and after the activities were performed. Samples were tested by IAV rRT-PCR and virus viability was assessed by cell culture. A multivariate generalized linear model was used to detect associations of the activities with IAV contamination. Of the samples collected for IAV rRT-PCR testing, there were 16% (12/76) collected immediately after processing, 96% (45/48) collected after vaccination, and 94% (29/31) collected after weaning that tested positive. Samples collected immediately after vaccination and weaning, i.e., activities that took place during the peri-weaning period when pigs were about 3 weeks of age, had almost 6 times higher risk of IAV detection and had more samples IAV positive (p-value < 0.0001) than samples collected after processing, i.e., an activity that took place in the first few days of life. Both, hands and clothes had similar contamination rates (46% and 55% respectively, p-value = 0.42) and viable virus was isolated from both. Our results indicate that activities that involve the handling of infected piglets close to weaning age represent a significant risk for IAV dissemination due to the high level of IAV contamination found in farmworkers' hands and coveralls involved in the activities. Biosecurity protocols that include hand sanitation and changing clothing after performing activities with a high-risk of influenza contamination should be recommended to farmworkers to control and limit the mechanical spread of IAV between pigs.
Collapse
Affiliation(s)
- Gustavo Lopez-Moreno
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Marie R Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Peter Davies
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Cesar Corzo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | | | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
20
|
do Nascimento GM, Bugybayeva D, Patil V, Schrock J, Yadagiri G, Renukaradhya GJ, Diel DG. An Orf-Virus (ORFV)-Based Vector Expressing a Consensus H1 Hemagglutinin Provides Protection against Diverse Swine Influenza Viruses. Viruses 2023; 15:994. [PMID: 37112974 PMCID: PMC10147081 DOI: 10.3390/v15040994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza A viruses (IAV-S) belonging to the H1 subtype are endemic in swine worldwide. Antigenic drift and antigenic shift lead to a substantial antigenic diversity in circulating IAV-S strains. As a result, the most commonly used vaccines based on whole inactivated viruses (WIVs) provide low protection against divergent H1 strains due to the mismatch between the vaccine virus strain and the circulating one. Here, a consensus coding sequence of the full-length of HA from H1 subtype was generated in silico after alignment of the sequences from IAV-S isolates obtained from public databases and was delivered to pigs using the Orf virus (ORFV) vector platform. The immunogenicity and protective efficacy of the resulting ORFVΔ121conH1 recombinant virus were evaluated against divergent IAV-S strains in piglets. Virus shedding after intranasal/intratracheal challenge with two IAV-S strains was assessed by real-time RT-PCR and virus titration. Viral genome copies and infectious virus load were reduced in nasal secretions of immunized animals. Flow cytometry analysis showed that the frequency of T helper/memory cells, as well as cytotoxic T lymphocytes (CTLs), were significantly higher in the peripheral blood mononuclear cells (PBMCs) of the vaccinated groups compared to unvaccinated animals when they were challenged with a pandemic strain of IAV H1N1 (CA/09). Interestingly, the percentage of T cells was higher in the bronchoalveolar lavage of vaccinated animals in relation to unvaccinated animals in the groups challenged with a H1N1 from the gamma clade (OH/07). In summary, delivery of the consensus HA from the H1 IAV-S subtype by the parapoxvirus ORFV vector decreased shedding of infectious virus and viral load of IAV-S in nasal secretions and induced cellular protective immunity against divergent influenza viruses in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Dina Bugybayeva
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Veerupaxagouda Patil
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Jennifer Schrock
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Ganesh Yadagiri
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Gourapura J. Renukaradhya
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
21
|
RT-LAMP as Diagnostic Tool for Influenza—A Virus Detection in Swine. Vet Sci 2023; 10:vetsci10030220. [PMID: 36977259 PMCID: PMC10051247 DOI: 10.3390/vetsci10030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Point-of-care diagnostic technologies are becoming more widely available for production species. Here, we describe the application of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect the matrix (M) gene of influenza A virus in swine (IAV-S). M-specific LAMP primers were designed based on M gene sequences from IAV-S isolated in the USA between 2017 and 2020. The LAMP assay was incubated at 65 °C for 30 min, with the fluorescent signal read every 20 s. The assay’s limit of detection (LOD) was 20 M gene copies for direct LAMP of the matrix gene standard, and 100 M gene copies when using spiked extraction kits. The LOD was 1000 M genes when using cell culture samples. Detection in clinical samples showed a sensitivity of 94.3% and a specificity of 94.9%. These results show that the influenza M gene RT-LAMP assay can detect the presence of IAV in research laboratory conditions. With the appropriate fluorescent reader and heat block, the assay could be quickly validated as a low-cost, rapid, IAV-S screening tool for use on farms or in clinical diagnostic labs.
Collapse
|
22
|
Hufnagel DE, Young KM, Arendsee ZW, Gay LC, Caceres CJ, Rajão DS, Perez DR, Vincent Baker AL, Anderson TK. Characterizing a century of genetic diversity and contemporary antigenic diversity of N1 neuraminidase in influenza A virus from North American swine. Virus Evol 2023; 9:vead015. [PMID: 36993794 PMCID: PMC10041950 DOI: 10.1093/ve/vead015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Influenza A viruses (IAVs) of the H1N1 classical swine lineage became endemic in North American swine following the 1918 pandemic. Additional human-to-swine transmission events after 1918, and a spillover of H1 viruses from wild birds in Europe, potentiated a rapid increase in genomic diversity via reassortment between introductions and the endemic classical swine lineage. To determine mechanisms affecting reassortment and evolution, we conducted a phylogenetic analysis of N1 and paired HA swine IAV genes in North America between 1930 and 2020. We described fourteen N1 clades within the N1 Eurasian avian lineage (including the N1 pandemic clade), the N1 classical swine lineage, and the N1 human seasonal lineage. Seven N1 genetic clades had evidence for contemporary circulation. To assess antigenic drift associated with N1 genetic diversity, we generated a panel of representative swine N1 antisera and quantified the antigenic distance between wild-type viruses using enzyme-linked lectin assays and antigenic cartography. Within the N1 genes, the antigenic similarity was variable and reflected shared evolutionary history. Sustained circulation and evolution of N1 genes in swine had resulted in a significant antigenic distance between the N1 pandemic clade and the classical swine lineage. Between 2010 and 2020, N1 clades and N1-HA pairings fluctuated in detection frequency across North America, with hotspots of diversity generally appearing and disappearing within 2 years. We also identified frequent N1-HA reassortment events (n = 36), which were rarely sustained (n = 6) and sometimes also concomitant with the emergence of new N1 genetic clades (n = 3). These data form a baseline from which we can identify N1 clades that expand in range or genetic diversity that may impact viral phenotypes or vaccine immunity and subsequently the health of North American swine.
Collapse
Affiliation(s)
- David E Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Katharine M Young
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Zebulun W Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Daniela S Rajão
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| |
Collapse
|
23
|
Tochetto C, Junqueira DM, Anderson TK, Gava D, Haach V, Cantão ME, Vincent Baker AL, Schaefer R. Introductions of Human-Origin Seasonal H3N2, H1N2 and Pre-2009 H1N1 Influenza Viruses to Swine in Brazil. Viruses 2023; 15:576. [PMID: 36851790 PMCID: PMC9966956 DOI: 10.3390/v15020576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In South America, the evolutionary history of influenza A virus (IAV) in swine has been obscured by historically low levels of surveillance, and this has hampered the assessment of the zoonotic risk of emerging viruses. The extensive genetic diversity of IAV in swine observed globally has been attributed mainly to bidirectional transmission between humans and pigs. We conducted surveillance in swine in Brazil during 2011-2020 and characterized 107 H1N1, H1N2, and H3N2 IAVs. Phylogenetic analysis based on HA and NA segments revealed that human seasonal IAVs were introduced at least eight times into swine in Brazil since the mid-late 1980s. Our analyses revealed three genetic clades of H1 within the 1B lineage originated from three distinct spillover events, and an H3 lineage that has diversified into three genetic clades. The N2 segment from human seasonal H1N2 and H3N2 viruses was introduced into swine six times and a single introduction of an N1 segment from the human H1N1 virus was identified. Additional analysis revealed further reassortment with H1N1pdm09 viruses. All these introductions resulted in IAVs that apparently circulate only in Brazilian herds. These results reinforce the significant contributions of human IAVs to the genetic diversity of IAV in swine and reiterate the importance of surveillance of IAV in pigs.
Collapse
Affiliation(s)
- Caroline Tochetto
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil
| | - Dennis M. Junqueira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Roraima Av., 1000, Santa Maria 97105-900, RS, Brazil
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-ARS, 1920 Dayton Av., Ames, IA 50010, USA
| | - Danielle Gava
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil
| | - Vanessa Haach
- Laboratório de Virologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Porto Alegre 90050-170, RS, Brazil
| | - Mauricio E. Cantão
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-ARS, 1920 Dayton Av., Ames, IA 50010, USA
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil
| |
Collapse
|
24
|
Souza CK, Kimble JB, Anderson TK, Arendsee ZW, Hufnagel DE, Young KM, Gauger PC, Lewis NS, Davis CT, Thor S, Vincent Baker AL. Swine-to-Ferret Transmission of Antigenically Drifted Contemporary Swine H3N2 Influenza A Virus Is an Indicator of Zoonotic Risk to Humans. Viruses 2023; 15:331. [PMID: 36851547 PMCID: PMC9962742 DOI: 10.3390/v15020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Human-to-swine transmission of influenza A (H3N2) virus occurs repeatedly and plays a critical role in swine influenza A virus (IAV) evolution and diversity. Human seasonal H3 IAVs were introduced from human-to-swine in the 1990s in the United States and classified as 1990.1 and 1990.4 lineages; the 1990.4 lineage diversified into 1990.4.A-F clades. Additional introductions occurred in the 2010s, establishing the 2010.1 and 2010.2 lineages. Human zoonotic cases with swine IAV, known as variant viruses, have occurred from the 1990.4 and 2010.1 lineages, highlighting a public health concern. If a variant virus is antigenically drifted from current human seasonal vaccine (HuVac) strains, it may be chosen as a candidate virus vaccine (CVV) for pandemic preparedness purposes. We assessed the zoonotic risk of US swine H3N2 strains by performing phylogenetic analyses of recent swine H3 strains to identify the major contemporary circulating genetic clades. Representatives were tested in hemagglutination inhibition assays with ferret post-infection antisera raised against existing CVVs or HuVac viruses. The 1990.1, 1990.4.A, and 1990.4.B.2 clade viruses displayed significant loss in cross-reactivity to CVV and HuVac antisera, and interspecies transmission potential was subsequently investigated in a pig-to-ferret transmission study. Strains from the three lineages were transmitted from pigs to ferrets via respiratory droplets, but there were differential shedding profiles. These data suggest that existing CVVs may offer limited protection against swine H3N2 infection, and that contemporary 1990.4.A viruses represent a specific concern given their widespread circulation among swine in the United States and association with multiple zoonotic cases.
Collapse
Affiliation(s)
- Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - David E. Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Katharine M. Young
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, London NW1 0TU, UK
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sharmi Thor
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| |
Collapse
|
25
|
Stadejek W, Chiers K, Van Reeth K. Infectivity and transmissibility of an avian H3N1 influenza virus in pigs. Vet Res 2023; 54:4. [PMID: 36694192 PMCID: PMC9872060 DOI: 10.1186/s13567-022-01133-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
In 2019 a low pathogenic H3N1 avian influenza virus (AIV) caused an outbreak in Belgian poultry farms, characterized by an unusually high mortality in chickens. Influenza A viruses of the H1 and H3 subtype can infect pigs and become established in swine populations. Therefore, the H3N1 epizootic raised concern about AIV transmission to pigs and from pigs to humans. Here, we assessed the replication efficiency of this virus in explants of the porcine respiratory tract and in pigs, using virus titration and/or RT-qPCR. We also examined transmission from directly, intranasally inoculated pigs to contact pigs. The H3N1 AIV replicated to moderate titers in explants of the bronchioles and lungs, but not in the nasal mucosa or trachea. In the pig infection study, infectious virus was only detected in a few lung samples collected between 1 and 3 days post-inoculation. Virus titers were between 1.7 and 4.8 log10 TCID50. In line with the ex vivo experiment, no virus was isolated from the upper respiratory tract of pigs. In the transmission experiment, we could not detect virus transmission from directly inoculated to contact pigs. An increase in serum antibody titers was observed only in the inoculated pigs. We conclude that the porcine respiratory tract tissue explants can be a useful tool to assess the replication efficiency of AIVs in pigs. The H3N1 AIV examined here is unlikely to pose a risk to swine populations. However, continuous risk assessment studies of emerging AIVs in pigs are necessary, since different virus strains will have different genotypic and phenotypic traits.
Collapse
Affiliation(s)
- Wojciech Stadejek
- grid.5342.00000 0001 2069 7798Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Koen Chiers
- grid.5342.00000 0001 2069 7798Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kristien Van Reeth
- grid.5342.00000 0001 2069 7798Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
26
|
Jeyaram RA, Anu Radha C. N1 neuraminidase of H5N1 avian influenza A virus complexed with sialic acid and zanamivir - A study by molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2022; 40:11434-11447. [PMID: 34369311 DOI: 10.1080/07391102.2021.1962407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Development of antiviral drugs is an urgent need to control and prevent the presently circulating H5N1 avian influenza virus which is affects the human respiratory tract. The complex crystal structure of N1-N-acetylneuranamic acid (sialic acid, SIA) is not available as complex and hence SIA and zanamivir (ZMR) are docked into the binding site of N1 neuraminidase. Based on the analysis, the initial complex structures have been simulated for 120 ns to get insight into the binding modes and interaction between protein-ligand complex systems. NAMD pair interaction energy and MM-PBSA binding free energy are calculated and show that there are two possible binding modes (BM1 and BM2) for N1-SIA and a single binding mode (BM1) for and N1-ZMR complex structures respectively. BM1 of N1-SIA is the most preferred binding mode. On contrary to the currently available drugs in which the chair conformation is distorted, in both the binding modes of N1-SIA, the binding pocket of N1 neuraminidase is able to accommodate SIA in 2C5 chair conformation which is the preferred conformation of SIA in solution state. In N1-ZMR complex, ZMR is bind in a distorted chair conformation. The neuraminidase binding pocket is also able to accommodate galactose of SIAα(2→3)GAL and SIAα(2→6)GAL. RMSD, RMSF and hydrogen bonding analyses have been carried out to identify the conformational flexibility and structural stability of each complex system. All the analyses show that SIA can be used as an inhibitor for N1 neuraminidase of H5N1 influenza viral infection. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R A Jeyaram
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - C Anu Radha
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
27
|
Venkatesh D, Anderson TK, Kimble JB, Chang J, Lopes S, Souza CK, Pekosz A, Shaw-Saliba K, Rothman RE, Chen KF, Lewis NS, Vincent Baker AL. Antigenic Characterization and Pandemic Risk Assessment of North American H1 Influenza A Viruses Circulating in Swine. Microbiol Spectr 2022; 10:e0178122. [PMID: 36318009 PMCID: PMC9769642 DOI: 10.1128/spectrum.01781-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022] Open
Abstract
The first pandemic of the 21st century was caused by an H1N1 influenza A virus (IAV) introduced from pigs into humans, highlighting the importance of swine as reservoirs for pandemic viruses. Two major lineages of swine H1 circulate in North America: the 1A classical swine lineage (including that of the 2009 H1N1 pandemic) and the 1B human seasonal-like lineage. Here, we investigated the evolution of these H1 IAV lineages in North American swine and their potential pandemic risk. We assessed the antigenic distance between the HA of representative swine H1 and human seasonal vaccine strains (1978 to 2015) in hemagglutination inhibition (HI) assays using a panel of monovalent antisera raised in pigs. Antigenic cross-reactivity varied by strain but was associated with genetic distance. Generally, the swine 1A lineage viruses that seeded the 2009 H1 pandemic were antigenically most similar to the H1 pandemic vaccine strains, with the exception of viruses in the genetic clade 1A.1.1.3, which had a two-amino acid deletion mutation near the receptor-binding site, which dramatically reduced antibody recognition. The swine 1B lineage strains, which arose from previously circulating (pre-2009 pandemic) human seasonal viruses, were more antigenically similar to pre-2009 human seasonal H1 vaccine viruses than post-2009 strains. Human population immunity was measured by cross-reactivity in HI assays to representative swine H1 strains. There was a broad range of titers against each swine strain that was not associated with age, sex, or location. However, there was almost no cross-reactivity in human sera to the 1A.1.1.3 and 1B.2.1 genetic clades of swine viruses, and the 1A.1.1.3 and 1B.2.1 clades were also the most antigenically distant to the human vaccine strains. Our data demonstrate that the antigenic distances of representative swine strains from human vaccine strains represent an important part of the rational assessment of swine IAV for zoonotic risk research and pandemic preparedness prioritization. IMPORTANCE Human H1 influenza A viruses (IAV) spread to pigs in North America, resulting in a sustained circulation of two major groups of H1 viruses in swine. We quantified the genetic diversity of H1 in swine and measured antigenic phenotypes. We demonstrated that the swine H1 lineages were significantly different from the human vaccine strains and that this antigenic dissimilarity increased over time as the viruses evolved in swine. Pandemic preparedness vaccine strains for human vaccines also demonstrated a loss in similarity with contemporary swine strains. Human sera revealed a range of responses to swine IAV, including two groups of viruses with little to no immunity. The surveillance and risk assessment of IAV diversity in pig populations are essential to detect strains with reduced immunity in humans and provide critical information for pandemic preparedness.
Collapse
Affiliation(s)
| | | | | | - Jennifer Chang
- National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Sara Lopes
- Royal Veterinary College, London, United Kingdom
| | | | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard E. Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kuan-Fu Chen
- Department of Emergency Medicine of Chang Gung Memorial Hospital at Keelung, Keelung City, Taiwan
| | - Nicola S. Lewis
- Royal Veterinary College, London, United Kingdom
- OIE/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA), Weybridge, Addlestone, Surrey, United Kingdom
| | | |
Collapse
|
28
|
Mo JS, Abente EJ, Cardenas Perez M, Sutton TC, Cowan B, Ferreri LM, Geiger G, Gauger PC, Perez DR, Vincent Baker AL, Rajao DS. Transmission of Human Influenza A Virus in Pigs Selects for Adaptive Mutations on the HA Gene. J Virol 2022; 96:e0148022. [PMID: 36317880 PMCID: PMC9682980 DOI: 10.1128/jvi.01480-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.
Collapse
Affiliation(s)
- Jong-suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Matias Cardenas Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Phillip C. Gauger
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
29
|
Osorio-Zambrano WF, Ospina-Jimenez AF, Alvarez-Munoz S, Gomez AP, Ramirez-Nieto GC. Zooming in on the molecular characteristics of swine influenza virus circulating in Colombia before and after the H1N1pdm09 virus. Front Vet Sci 2022; 9:983304. [PMID: 36213398 PMCID: PMC9533064 DOI: 10.3389/fvets.2022.983304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza is one of the most critical viral agents involved in the respiratory disease complex affecting swine production systems worldwide. Despite the absence of vaccination against swine influenza virus in Colombia, the serologic reactivity to classic H1N1 and H3N2 subtypes reported since 1971 indicates the virus has been circulating in the country's swine population for several decades. However, successful isolation and sequencing of field virus from pigs was nonexistent until 2008, when H1N1 classical influenza virus was identified. One year later, due to the emergence of the influenza A (H1N1) pdm09 virus, responsible for the first global flu pandemic of the 21st century, it was introduced in the country. Therefore, to understand the impact of the introduction of the H1N1pdm09 virus in Colombia on the complexity and dynamics of influenza viruses previously present in the swine population, we carried out a study aiming to characterize circulating viruses genetically and establish possible reassortment events that might have happened between endemic influenza viruses before and after the introduction of the pandemic virus. A phylogenetic analysis of ten swine influenza virus isolates from porcine samples obtained between 2008 and 2015 was conducted. As a result, a displacement of the classical swine influenza virus with the pdmH1N1 virus in the swine population was confirmed. Once established, the pandemic subtype exhibited phylogenetic segregation based on a geographic pattern in all the evaluated segments. The evidence presents reassortment events with classic viruses in one of the first H1N1pdm09 isolates. Thus, this study demonstrates complex competition dynamics and variations in Colombian swine viruses through Drift and Shift.
Collapse
|
30
|
Yang J, Gong Y, Zhang C, Sun J, Wong G, Shi W, Liu W, Gao GF, Bi Y. Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges. Innovation (N Y) 2022; 3:100306. [PMID: 35992368 PMCID: PMC9384331 DOI: 10.1016/j.xinn.2022.100306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/14/2022] [Indexed: 02/08/2023] Open
Abstract
Since the 20th century, humans have lived through five pandemics caused by influenza A viruses (IAVs) (H1N1/1918, H2N2/1957, H3N2/1968, and H1N1/2009) and the coronavirus (CoV) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IAVs and CoVs both have broad host ranges and share multiple hosts. Virus co-circulation and even co-infections facilitate genetic reassortment among IAVs and recombination among CoVs, further altering virus evolution dynamics and generating novel variants with increased cross-species transmission risk. Moreover, SARS-CoV-2 may maintain long-term circulation in humans as seasonal IAVs. Co-existence and co-infection of both viruses in humans could alter disease transmission patterns and aggravate disease burden. Herein, we demonstrate how virus-host ecology correlates with the co-existence and co-infection of IAVs and/or CoVs, further affecting virus evolution and disease dynamics and burden, calling for active virus surveillance and countermeasures for future public health challenges.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhuan Gong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunge Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Gary Wong
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Changes in the Hemagglutinin and Internal Gene Segments Were Needed for Human Seasonal H3 Influenza A Virus to Efficiently Infect and Replicate in Swine. Pathogens 2022; 11:pathogens11090967. [PMID: 36145399 PMCID: PMC9501159 DOI: 10.3390/pathogens11090967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The current diversity of influenza A viruses (IAV) circulating in swine is largely a consequence of human-to-swine transmission events and consequent evolution in pigs. However, little is known about the requirements for human IAVs to transmit to and subsequently adapt in pigs. Novel human-like H3 viruses were detected in swine herds in the U.S. in 2012 and have continued to circulate and evolve in swine. We evaluated the contributions of gene segments on the ability of these viruses to infect pigs by using a series of in vitro models. For this purpose, reassortant viruses were generated by reverse genetics (rg) swapping the surface genes (hemagglutinin-HA and neuraminidase-NA) and internal gene segment backbones between a human-like H3N1 isolated from swine and a seasonal human H3N2 virus with common HA ancestry. Virus growth kinetics in porcine intestinal epithelial cells (SD-PJEC) and in ex-vivo porcine trachea explants were significantly reduced by replacing the swine-adapted HA with the human seasonal HA. Unlike the human HA, the swine-adapted HA demonstrated more abundant attachment to epithelial cells throughout the swine respiratory tract by virus histochemistry and increased entry into SD-PJEC swine cells. The human seasonal internal gene segments improved replication of the swine-adapted HA at 33 °C, but decreased replication at 40 °C. Although the HA was crucial for the infectivity in pigs and swine tissues, these results suggest that the adaptation of human seasonal H3 viruses to swine is multigenic and that the swine-adapted HA alone was not sufficient to confer the full phenotype of the wild-type swine-adapted virus.
Collapse
|
32
|
Nogales A, DeDiego ML, Martínez-Sobrido L. Live attenuated influenza A virus vaccines with modified NS1 proteins for veterinary use. Front Cell Infect Microbiol 2022; 12:954811. [PMID: 35937688 PMCID: PMC9354547 DOI: 10.3389/fcimb.2022.954811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza A viruses (IAV) spread rapidly and can infect a broad range of avian or mammalian species, having a tremendous impact in human and animal health and the global economy. IAV have evolved to develop efficient mechanisms to counteract innate immune responses, the first host mechanism that restricts IAV infection and replication. One key player in this fight against host-induced innate immune responses is the IAV non-structural 1 (NS1) protein that modulates antiviral responses and virus pathogenicity during infection. In the last decades, the implementation of reverse genetics approaches has allowed to modify the viral genome to design recombinant IAV, providing researchers a powerful platform to develop effective vaccine strategies. Among them, different levels of truncation or deletion of the NS1 protein of multiple IAV strains has resulted in attenuated viruses able to induce robust innate and adaptive immune responses, and high levels of protection against wild-type (WT) forms of IAV in multiple animal species and humans. Moreover, this strategy allows the development of novel assays to distinguish between vaccinated and/or infected animals, also known as Differentiating Infected from Vaccinated Animals (DIVA) strategy. In this review, we briefly discuss the potential of NS1 deficient or truncated IAV as safe, immunogenic and protective live-attenuated influenza vaccines (LAIV) to prevent disease caused by this important animal and human pathogen.
Collapse
Affiliation(s)
- Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Disease Intervention and Prevetion, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| |
Collapse
|
33
|
Pliasas VC, Menne Z, Aida V, Yin JH, Naskou MC, Neasham PJ, North JF, Wilson D, Horzmann KA, Jacob J, Skountzou I, Kyriakis CS. A Novel Neuraminidase Virus-Like Particle Vaccine Offers Protection Against Heterologous H3N2 Influenza Virus Infection in the Porcine Model. Front Immunol 2022; 13:915364. [PMID: 35874791 PMCID: PMC9300842 DOI: 10.3389/fimmu.2022.915364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses (IAVs) pose a global health threat, contributing to hundreds of thousands of deaths and millions of hospitalizations annually. The two major surface glycoproteins of IAVs, hemagglutinin (HA) and neuraminidase (NA), are important antigens in eliciting neutralizing antibodies and protection against disease. However, NA is generally ignored in the formulation and development of influenza vaccines. In this study, we evaluate the immunogenicity and efficacy against challenge of a novel NA virus-like particles (VLPs) vaccine in the porcine model. We developed an NA2 VLP vaccine containing the NA protein from A/Perth/16/2009 (H3N2) and the matrix 1 (M1) protein from A/MI/73/2015, formulated with a water-in-oil-in-water adjuvant. Responses to NA2 VLPs were compared to a commercial adjuvanted quadrivalent whole inactivated virus (QWIV) swine IAV vaccine. Animals were prime boost vaccinated 21 days apart and challenged four weeks later with an H3N2 swine IAV field isolate, A/swine/NC/KH1552516/2016. Pigs vaccinated with the commercial QWIV vaccine demonstrated high hemagglutination inhibition (HAI) titers but very weak anti-NA antibody titers and subsequently undetectable NA inhibition (NAI) titers. Conversely, NA2 VLP vaccinated pigs demonstrated undetectable HAI titers but high anti-NA antibody titers and NAI titers. Post-challenge, NA2 VLPs and the commercial QWIV vaccine showed similar reductions in virus replication, pulmonary neutrophilic infiltration, and lung inflammation compared to unvaccinated controls. These data suggest that anti-NA immunity following NA2 VLP vaccination offers comparable protection to QWIV swine IAV vaccines inducing primarily anti-HA responses.
Collapse
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Zach Menne
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Ji-Hang Yin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Dylan Wilson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ioanna Skountzou
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| |
Collapse
|
34
|
Hennig C, Graaf A, Petric PP, Graf L, Schwemmle M, Beer M, Harder T. Are pigs overestimated as a source of zoonotic influenza viruses? Porcine Health Manag 2022; 8:30. [PMID: 35773676 PMCID: PMC9244577 DOI: 10.1186/s40813-022-00274-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Swine influenza caused by influenza A viruses (IAV) directly affects respiratory health and indirectly impairs reproduction rates in pigs causing production losses. In Europe, and elsewhere, production systems have intensified featuring fewer holdings but, in turn, increased breeding herd and litter sizes. This seems to foster swine IAV (swIAV) infections with respect to the entrenchment within and spread between holdings. Disease management of swine influenza is difficult and relies on biosecurity and vaccination measures. Recently discovered and widely proliferating forms of self-sustaining modes of swIAV infections in large swine holdings challenge these preventive concepts by generating vaccine-escape mutants in rolling circles of infection. Main body The most recent human IAV pandemic of 2009 rooted at least partly in IAV of porcine origin highlighting the zoonotic potential of swIAV. Pigs constitute a mixing vessel of IAV from different species including avian and human hosts. However, other host species such as turkey and quail but also humans themselves may also act in this way; thus, pigs are not essentially required for the generation of IAV reassortants with a multispecies origin. Since 1918, all human pandemic influenza viruses except the H2N2 virus of 1958 have been transmitted in a reverse zoonotic mode from human into swine populations. Swine populations act as long-term reservoirs of these viruses. Human-derived IAV constitute a major driver of swIAV epidemiology in pigs. Swine-to-human IAV transmissions occurred rarely and mainly sporadically as compared to avian-to-human spill-over events of avian IAV. Yet, new swIAV variants that harbor zoonotic components continue to be detected. This increases the risk that such components might eventually reassort into viruses with pandemic potential. Conclusions Domestic pig populations should not be globally stigmatized as the only or most important reservoir of potentially zoonotic IAV. The likely emergence from swine of the most recent human IAV pandemic in 2009, however, emphasized the principal risks of swine populations in which IAV circulate unimpededly. Implementation of regular and close-meshed IAV surveillance of domestic swine populations to follow the dynamics of swIAV evolution is clearly demanded. Improved algorithms for directly inferring zoonotic potential from whole IAV genome sequences as well as improved vaccines are still being sought.
Collapse
Affiliation(s)
- Christin Hennig
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
35
|
Lopez-Moreno G, Davies P, Yang M, Culhane MR, Corzo CA, Li C, Rendahl A, Torremorell M. Evidence of influenza A infection and risk of transmission between pigs and farmworkers. Zoonoses Public Health 2022; 69:560-571. [PMID: 35445551 PMCID: PMC9546022 DOI: 10.1111/zph.12948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 04/02/2022] [Indexed: 12/25/2022]
Abstract
Interspecies transmission of influenza A virus (IAV) between pigs and people represents a threat to both animal and public health. To better understand the risks of influenza transmission at the human–animal interface, we evaluated 1) the rate of IAV detection in swine farmworkers before and after work during two human influenza seasons, 2) assessed risk factors associated with IAV detection in farmworkers and 3) characterized the genetic sequences of IAV detected in both workers and pigs. Of 58 workers providing nasal passage samples during 8‐week periods during the 2017/18 and 2018/19 influenza seasons, 33 (57%) tested positive by rRT‐PCR at least once. Sixteen (27%) workers tested positive before work and 24 (41%) after work. At the sample level, 58 of 1,785 nasal swabs (3.2%) tested rRT‐PCR positive, of which 20 of 898 (2.2%) were collected prior to work and 38 of 887 (4.3%) after work. Although farmworkers were more likely to test positive at the end of the working day (OR = 1.98, 95% CI 1.14–3.41), there were no influenza‐like illness (ILI) symptoms, or other risk indicators, associated with IAV detection before or after reporting to work. Direct whole‐genome sequencing from samples obtained from worker nasal passages indicated evidence of infection of a worker with pandemic 2009 H1N1 of human‐origin IAV (H1‐pdm 1A 3.3.2) when reporting to work, and exposure of several workers to a swine‐origin IAV (H1‐alpha 1A 1.1) circulating in the pigs on the farm where they were employed. Our study provides evidence of 1) risk of IAV transmission between pigs and people, 2) pandemic H1N1 IAV infected workers reporting to work and 3) workers exposed to swine harbouring swine‐origin IAV in their nasal passages temporarily. Overall, our results emphasize the need to implement surveillance and transmission preventive protocols at the pig/human interface.
Collapse
Affiliation(s)
- Gustavo Lopez-Moreno
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Davies
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - My Yang
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Marie R Culhane
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Cesar A Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Chong Li
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Aaron Rendahl
- Veterinary and Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
36
|
Chauhan RP, Gordon ML. Review of genome sequencing technologies in molecular characterization of influenza A viruses in swine. J Vet Diagn Invest 2022; 34:177-189. [PMID: 35037523 PMCID: PMC8921814 DOI: 10.1177/10406387211068023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The rapidly evolving antigenic diversity of influenza A virus (IAV) genomes in swine makes it imperative to detect emerging novel strains and track their circulation. We analyzed in our review the sequencing technologies used for subtyping and characterizing swine IAV genomes. Google Scholar, PubMed, and International Nucleotide Sequence Database Collaboration (INSDC) database searches identified 216 studies that have utilized Sanger, second-, and third-generation sequencing techniques to subtype and characterize swine IAV genomes up to 31 March 2021. Sanger dideoxy sequencing was by far the most widely used sequencing technique for generating either full-length (43.0%) or partial (31.0%) IAV genomes in swine globally; however, in the last decade, other sequencing platforms such as Illumina have emerged as serious competitors for the generation of whole-genome sequences of swine IAVs. Although partial HA and NA gene sequences were sufficient to determine swine IAV subtypes, whole-genome sequences were critical for determining reassortments and identifying unusual or less frequently occurring IAV subtypes. The combination of Sanger and second-generation sequencing technologies also greatly improved swine IAV characterization. In addition, the rapidly evolving third-generation sequencing platform, MinION, appears promising for on-site, real-time sequencing of complete swine IAV genomes. With a higher raw read accuracy, the use of the MinION could enhance the scalability of swine IAV testing in the field and strengthen the swine IAV disease outbreak response.
Collapse
Affiliation(s)
| | - Michelle L. Gordon
- Michelle L. Gordon, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Rd, Durban 4001, South Africa.
| |
Collapse
|
37
|
Abstract
In 2017, the Iowa State University Veterinary Diagnostic Laboratory detected a reverse-zoonotic transmission of a human seasonal H3 influenza A virus into swine (IAV-S) in Oklahoma. Pairwise comparison between the recently characterized human seasonal H3 IAV-S (H3.2010.2) hemagglutinin (HA) sequences detected in swine and the most similar 2016-2017 human seasonal H3 revealed 99.9% nucleotide identity. To elucidate the origin of H3.2010.2 IAV-S, 45 HA and 27 neuraminidase (NA) sequences from 2017 to 2020 as well as 11 whole-genome sequences (WGS) were genetically characterized. Time to most recent common human ancestor was estimated between August and September 2016. The N2 NA was of human origin in all but one strain from diagnostic submissions with NA sequences, and the internal gene segments from WGS consisted of matrix genes originating from the 2009 pandemic H1N1 and another 5 internal genes of triple reassortant swine origin (TTTTPT). Pigs experimentally infected with H3.2010.2 demonstrated efficient nasal shedding and replication in the lungs, mild pneumonia, and minimal microscopic lung lesions and transmitted the virus to indirect contact swine. Antigenically, H3.2010.2 viruses were closer to a human seasonal vaccine strain, A/Hong Kong/4801/2014, than to the H3.2010.1 human seasonal H3 viruses detected in swine in 2012. This was the second sustained transmission of a human seasonal IAV into swine from the 2010 decade after H3.2010.1. Monitoring the spillover and detection of novel IAV from humans to swine may help vaccine antigen selection and could impact pandemic preparedness. IMPORTANCE H3.2010.2 is a new phylogenetic clade of H3N2 circulating in swine that became established after the spillover of a human seasonal H3N2 from the 2016-2017 influenza season. The novel H3.2010.2 transmitted and adapted to the swine host and demonstrated reassortment with internal genes from strains endemic to pigs, but it maintained human-like HA and NA. It is genetically and antigenically distinct from the H3.2010.1 H3N2 introduced earlier in the 2010 decade. Human seasonal IAV spillovers into swine become established in the population through adaptation and sustained transmission and contribute to the genetic and antigenic diversity of IAV circulating in swine. Continued IAV surveillance is necessary to detect emergence of novel strains in swine and assist with vaccine antigen selection to improve the ability to prevent respiratory disease in swine as well as the risk of zoonotic transmission.
Collapse
|
38
|
Moore TC, Fong J, Rosa Hernández AM, Pogreba-Brown K. CAFOs, novel influenza, and the need for One Health approaches. One Health 2021; 13:100246. [PMID: 33997233 PMCID: PMC8091921 DOI: 10.1016/j.onehlt.2021.100246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/18/2022] Open
Abstract
Concentrated animal feeding operations (CAFOs) present highly efficient means of meeting food demands. CAFOs create unique conditions that can affect the health and environment of animals and humans within and outside operations, leading to potential epidemiological concerns that scale with operational size. One such arena meriting further investigation is their possible contribution to novel influenzas. CAFOs present opportunities for cross-species transmission of influenza as demonstrated by reports of swine flu and avian influenza outbreaks. Conditions and pathways leading to novel influenza strains are complex and require varied prevention and intervention approaches. Current challenges for prevention of respiratory viruses entering or leaving swine and poultry CAFOs are multifaceted and include adherence of personal safety measures, lack of training and safety provisions for personnel, and incomplete standardized federal, state, and/or county regulation and enforcement coverage across agricultural systems. This report acknowledges that any proposed CAFO-associated influenza intervention should be cross-organizational, and no single intervention should be expected to provide full resolution. Proposed interventions affect multiple components of the One Health triad, and include seasonal human influenza immunization, PPE regulation and adherence, alternative waste management, general biosecurity standardization and an industry best practices incentive program. Due to the complexity of this problem, multiple anticipated communication, enforcement, and logistical challenges may hinder the full implementation of proposed solutions. General and operation-specific (swine and poultry) biosecurity practices may mitigate some of the risks associated with influenza virus reassortment across species. Education and advocacy can help protect workers, communities, veterinarians and consumers from CAFO-associated influenza virus. To achieve this, there must be more complete communication between CAFOs, governing agencies, health services, animal services, researchers, and consumers to better explore the potential health outcomes associated with CAFOs.
Collapse
Affiliation(s)
- Thomas C. Moore
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Joseph Fong
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Ayeisha M. Rosa Hernández
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Kristen Pogreba-Brown
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| |
Collapse
|
39
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
40
|
Cáceres CJ, Rajao DS, Perez DR. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses 2021; 13:v13101919. [PMID: 34696349 PMCID: PMC8540072 DOI: 10.3390/v13101919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol.
Collapse
|
41
|
Komadina N, Sullivan SG, Leder K, McVernon J. Likelihood of prior exposure to circulating influenza viruses resulting in cross-protection by CD8+ T cells against emergent H3N2v swine viruses infecting humans. J Med Virol 2021; 94:567-574. [PMID: 34449904 DOI: 10.1002/jmv.27299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/25/2021] [Indexed: 11/06/2022]
Abstract
Outbreaks of influenza in swine can result in potential threats to human public health. A notable occurrence was the emergence of swine-origin H1N1 influenza viruses in 2009. Since then, there have been several documented outbreaks of swine-origin influenza infecting humans in several countries. Sustained events have occurred when H1N1v, H1N2v, and H3N2v swine-origin viruses have infected humans visiting agricultural shows in the US. The predominant H3N2v viruses gained the matrix protein from the A(H1N1)pdm09 viruses, with reported human-to-human transmission raising fears of another pandemic. Current vaccines do not induce secondary cell-mediated immune responses, which may provide cross-protection against novel influenza A subtypes, however, population susceptibility to infection with seasonal influenza is likely to be influenced by cross-reactive CD8+ T-cells directed towards immunogenic peptides derived from viral proteins. This study involved a retrospective review of historical influenza viruses circulating in human populations from 1918 to 2020 to identify evidence of prior circulation of H3N3v immunogenic CD8+ T-cells peptides found in the NP and M1 proteins. We found evidence of prior circulation of H3N2v NP and M1 immunogenic peptides in historical influenza viruses. This provides insight into the population context in which influenza viruses emerge and may help inform immunogenic peptide selection for cytotoxic T-cell lymphocytes (CTL)-inducing influenza vaccines. Next-generation vaccines capable of eliciting CD8+ T-cell-mediated cross-protective immunity may offer a long-term alternative strategy for influenza vaccines.
Collapse
Affiliation(s)
- Naomi Komadina
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital and the Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Karin Leder
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Services, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jodie McVernon
- Victorian Infectious Diseases Reference Laboratory, Epidemiology Unit, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Modelling and Simulation Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Shu B, Kirby MK, Davis WG, Warnes C, Liddell J, Liu J, Wu KH, Hassell N, Benitez AJ, Wilson MM, Keller MW, Rambo-Martin BL, Camara Y, Winter J, Kondor RJ, Zhou B, Spies S, Rose LE, Winchell JM, Limbago BM, Wentworth DE, Barnes JR. Multiplex Real-Time Reverse Transcription PCR for Influenza A Virus, Influenza B Virus, and Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis 2021; 27:1821-1830. [PMID: 34152951 PMCID: PMC8237866 DOI: 10.3201/eid2707.210462] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019, and the outbreak rapidly evolved into the current coronavirus disease pandemic. SARS-CoV-2 is a respiratory virus that causes symptoms similar to those caused by influenza A and B viruses. On July 2, 2020, the US Food and Drug Administration granted emergency use authorization for in vitro diagnostic use of the Influenza SARS-CoV-2 Multiplex Assay. This assay detects influenza A virus at 102.0, influenza B virus at 102.2, and SARS-CoV-2 at 100.3 50% tissue culture or egg infectious dose, or as few as 5 RNA copies/reaction. The simultaneous detection and differentiation of these 3 major pathogens increases overall testing capacity, conserves resources, identifies co-infections, and enables efficient surveillance of influenza viruses and SARS-CoV-2.
Collapse
|
43
|
Abstract
Influenza is an extremely contagious respiratory disease, which predominantly affects the upper respiratory tract. There are four types of influenza virus, and pigs and chickens are considered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8. Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this disease is based on the clinical signs presented by the infected animals, which can be confirmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field, rapid antigen detection tests can be used for a first approach. Treatment is based on the management of the disease and rest for the animal. Regarding the prognosis, it will depend on several factors, such as the animal's vaccination status. One of the important points in this disease is its prevention, which can be done through vaccination. In addition to decreasing the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity for the animals, reducing the economic impact of this disease.
Collapse
|
44
|
Cagliani R, Mozzi A, Pontremoli C, Sironi M. Evolution and Origin of Human Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Anderson TK, Chang J, Arendsee ZW, Venkatesh D, Souza CK, Kimble JB, Lewis NS, Davis CT, Vincent AL. Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038737. [PMID: 31988203 PMCID: PMC7919397 DOI: 10.1101/cshperspect.a038737] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza A viruses (IAVs) are the causative agents of one of the most important viral respiratory diseases in pigs and humans. Human and swine IAV are prone to interspecies transmission, leading to regular incursions from human to pig and vice versa. This bidirectional transmission of IAV has heavily influenced the evolutionary history of IAV in both species. Transmission of distinct human seasonal lineages to pigs, followed by sustained within-host transmission and rapid adaptation and evolution, represent a considerable challenge for pig health and production. Consequently, although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, extensive diversity can be found in the hemagglutinin (HA) and neuraminidase (NA) genes, as well as the remaining six genes. We review the complicated global epidemiology of IAV in swine and the inextricably entangled implications for public health and influenza pandemic planning.
Collapse
Affiliation(s)
- Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Jennifer Chang
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Divya Venkatesh
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| |
Collapse
|
46
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
47
|
Alarcón LV, Allepuz A, Mateu E. Biosecurity in pig farms: a review. Porcine Health Manag 2021; 7:5. [PMID: 33397483 PMCID: PMC7780598 DOI: 10.1186/s40813-020-00181-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
The perception of the importance of animal health and its relationship with biosecurity has increased in recent years with the emergence and re-emergence of several diseases difficult to control. This is particularly evident in the case of pig farming as shown by the recent episodes of African swine fever or porcine epidemic diarrhoea. Moreover, a better biosecurity may help to improve productivity and may contribute to reducing the use of antibiotics. Biosecurity can be defined as the application of measures aimed to reduce the probability of the introduction (external biosecurity) and further spread of pathogens within the farm (internal biosecurity). Thus, the key idea is to avoid transmission, either between farms or within the farm. This implies knowledge of the epidemiology of the diseases to be avoided that is not always available, but since ways of transmission of pathogens are limited to a few, it is possible to implement effective actions even with some gaps in our knowledge on a given disease. For the effective design of a biosecurity program, veterinarians must know how diseases are transmitted, the risks and their importance, which mitigation measures are thought to be more effective and how to evaluate the biosecurity and its improvements. This review provides a source of information on external and internal biosecurity measures that reduce risks in swine production and the relationship between these measures and the epidemiology of the main diseases, as well as a description of some systems available for risk analysis and the assessment of biosecurity. Also, it reviews the factors affecting the successful application of a biosecurity plan in a pig farm.
Collapse
Affiliation(s)
- Laura Valeria Alarcón
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118, La Plata, Buenos Aires, Argentina.
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Centre de Recerca en Sanitat Animal (CreSA-IRTA-UAB), campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Centre de Recerca en Sanitat Animal (CreSA-IRTA-UAB), campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
48
|
N-Linked Glycan Sites on the Influenza A Virus Neuraminidase Head Domain Are Required for Efficient Viral Incorporation and Replication. J Virol 2020; 94:JVI.00874-20. [PMID: 32699088 DOI: 10.1128/jvi.00874-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
N-linked glycans commonly contribute to secretory protein folding, sorting, and signaling. For enveloped viruses, such as the influenza A virus (IAV), large N-linked glycans can also be added to prevent access to epitopes on the surface antigens hemagglutinin (HA or H) and neuraminidase (NA or N). Sequence analysis showed that in the NA head domain of H1N1 IAVs, three N-linked glycosylation sites are conserved and that a fourth site is conserved in H3N2 IAVs. Variable sites are almost exclusive to H1N1 IAVs of human origin, where the number of head glycosylation sites first increased over time and then decreased with and after the introduction of the 2009 pandemic H1N1 IAV of Eurasian swine origin. In contrast, variable sites exist in H3N2 IAVs of human and swine origin, where the number of head glycosylation sites has mainly increased over time. Analysis of IAVs carrying N1 and N2 mutants demonstrated that the N-linked glycosylation sites on the NA head domain are required for efficient virion incorporation and replication in cells and eggs. It also revealed that N1 stability is more affected by the head domain glycans, suggesting N2 is more amenable to glycan additions. Together, these results indicate that in addition to antigenicity, N-linked glycosylation sites can alter NA enzymatic stability and the NA amount in virions.IMPORTANCE N-linked glycans are transferred to secretory proteins upon entry into the endoplasmic reticulum lumen. In addition to promoting secretory protein maturation, enveloped viruses also utilize these large oligosaccharide structures to prevent access to surface antigen epitopes. Sequence analyses of the influenza A virus (IAV) surface antigen neuraminidase (NA or N) showed that the conservation of N-linked glycosylation sites on the NA enzymatic head domain differs by IAV subtype (H1N1 versus H3N2) and species of origin, with human-derived IAVs possessing the most variability. Experimental analyses verified that the N-linked glycosylation sites on the NA head domain contribute to virion incorporation and replication. It also revealed that the head domain glycans affect N1 stability more than N2, suggesting N2 is more accommodating to glycan additions. These results demonstrate that in addition to antigenicity, changes in N-linked glycosylation sites can alter other properties of viral surface antigens and virions.
Collapse
|
49
|
Stegmaier T, Oellingrath E, Himmel M, Fraas S. Differences in epidemic spread patterns of norovirus and influenza seasons of Germany: an application of optical flow analysis in epidemiology. Sci Rep 2020; 10:14125. [PMID: 32839522 PMCID: PMC7445178 DOI: 10.1038/s41598-020-70973-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
This analysis presents data from a new perspective offering key insights into the spread patterns of norovirus and influenza epidemic events. We utilize optic flow analysis to gain an informed overview of a wealth of statistical epidemiological data and identify trends in movement of influenza waves throughout Germany on the NUTS 3 level (413 locations) which maps municipalities on European level. We show that Influenza and norovirus seasonal outbreak events have a highly distinct pattern. We investigate the quantitative statistical properties of the epidemic patterns and find a shifted distribution in the time between influenza and norovirus seasonal peaks of reported infections over one decade. These findings align with key biological features of both pathogens as shown in the course of this analysis.
Collapse
Affiliation(s)
- Tabea Stegmaier
- BMBF Junior Research Group BIGAUGE, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Hamburg, Germany
| | - Eva Oellingrath
- BMBF Junior Research Group BIGAUGE, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Hamburg, Germany
- Department for Microbiology and Biotechnology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Mirko Himmel
- BMBF Junior Research Group BIGAUGE, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Hamburg, Germany
- Department for Microbiology and Biotechnology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Simon Fraas
- BMBF Junior Research Group BIGAUGE, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Hamburg, Germany.
| |
Collapse
|
50
|
Henritzi D, Petric PP, Lewis NS, Graaf A, Pessia A, Starick E, Breithaupt A, Strebelow G, Luttermann C, Parker LMK, Schröder C, Hammerschmidt B, Herrler G, Beilage EG, Stadlbauer D, Simon V, Krammer F, Wacheck S, Pesch S, Schwemmle M, Beer M, Harder TC. Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host Microbe 2020; 28:614-627.e6. [PMID: 32721380 DOI: 10.1016/j.chom.2020.07.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Swine influenza A viruses (swIAVs) can play a crucial role in the generation of new human pandemic viruses. In this study, in-depth passive surveillance comprising nearly 2,500 European swine holdings and more than 18,000 individual samples identified a year-round presence of up to four major swIAV lineages on more than 50% of farms surveilled. Phylogenetic analyses show that intensive reassortment with human pandemic A(H1N1)/2009 (H1pdm) virus produced an expanding and novel repertoire of at least 31 distinct swIAV genotypes and 12 distinct hemagglutinin/neuraminidase combinations with largely unknown consequences for virulence and host tropism. Several viral isolates were resistant to the human antiviral MxA protein, a prerequisite for zoonotic transmission and stable introduction into human populations. A pronounced antigenic variation was noted in swIAV, and several H1pdm lineages antigenically distinct from current seasonal human H1pdm co-circulate in swine. Thus, European swine populations represent reservoirs for emerging IAV strains with zoonotic and, possibly, pre-pandemic potential.
Collapse
Affiliation(s)
- Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Philipp Peter Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicola Sarah Lewis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK; OIE/FAO International Reference Laboratory for avian influenza, swine influenza and Newcastle Disease, Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Alberto Pessia
- Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Günter Strebelow
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Larissa Mareike Kristin Parker
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Bärbel Hammerschmidt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Georg Herrler
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Elisabeth Große Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Str. 9, 49456 Bakum, Germany
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silke Wacheck
- Ceva Santé Animale (former IDT Biologika GmbH), 06861 Dessau-Rosslau, Germany
| | - Stefan Pesch
- Ceva Santé Animale (former IDT Biologika GmbH), 06861 Dessau-Rosslau, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Timm Clemens Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|