1
|
Kenea AM, Tolemariam Ejeta T, Duguma Iticha B, Dierenfeld ES, Paul Jules Janssens G, Demeke Cherkos S. Natural mineral spring water ( hora) and surrounding soils in southwestern Ethiopia: farmers' feeding practices and their perception about its nutritional roles on animal performance. Heliyon 2024; 10:e33299. [PMID: 39027454 PMCID: PMC11254596 DOI: 10.1016/j.heliyon.2024.e33299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Natural mineral water (termed hora in Afan Oromo) and surrounding soils are the most important source of mineral supplement traditionally used for livestock in many parts of Ethiopia. However, limited information exists on feeding practices and the impact of hora on animal performance. Thus, the present study aimed to assess farmers' feeding practices and perceptions about the role of hora and surrounding soils on animal performance. Data were collected from 385 households in four districts (Bedele, Dabo, Gechi and Boracha) through face-to-face interviews using a semi-structured questionnaire with the help of the KoboCollect application. Data were analyzed using SPSS version 26. The majority (72.3 %) of respondents reported hora as an important source of mineral supplement for livestock. About 78.1 % of respondents in Boracha routinely supplement their animals compared with farmers from other districts. Large ruminants were given first priority in supplementation with hora compared to other livestock. Interviewed farmers trekked their animals a distance of 6.5 ± 0.2 km to access hora twice a year during the dry season. The majority of the farmers (68.1 %) believed that hora supplementation improved animal performance, while 35.1 % noted negative impacts such as abortions, birth defects, delayed puberty, decreased conception rates and paralysis due to excessive consumption. This study underscores the perceived importance of hora as a natural source of mineral supplementation for livestock health and productivity. It emphasizes the need for improved management and conservation practices to ensure sustainable utilisation and mitigate negative impacts associated with excessive consumption. Moreover, to validate local farmers' perceptions regarding the importance of hora mineral water in animal nutrition and health, further research is needed to determine mineral composition of hora and livestock responses under controlled feeding trials.
Collapse
Affiliation(s)
- Ashenafi Miresa Kenea
- Department of Animal Science, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Oromia, Ethiopia
| | - Taye Tolemariam Ejeta
- Department of Animal Science, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Oromia, Ethiopia
| | - Belay Duguma Iticha
- Department of Animal Science, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Oromia, Ethiopia
| | - Ellen S. Dierenfeld
- School of Agriculture, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Geert Paul Jules Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Solomon Demeke Cherkos
- Department of Animal Science, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Oromia, Ethiopia
| |
Collapse
|
2
|
Guo C, Wang X, Dai D, Kong F, Wang S, Sun X, Li S, Xu X, Zhang L. Effects of alkaline mineral complex supplementation on production performance, serum variables, and liver transcriptome in calves. Front Vet Sci 2023; 10:1282055. [PMID: 38125683 PMCID: PMC10730931 DOI: 10.3389/fvets.2023.1282055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Calf diarrhea causes huge economic losses to livestock due to its high incidence and mortality rates. Alkaline mineral complex water is an alkaline solution containing silicon, sodium, potassium, zinc, and germanium, and has biological benefits and therapeutic effects. This study aimed to evaluate the impact of alkaline mineral complex water supplementation on the health of calves and to investigate the effect of Alkaline mineral complex water supplementation on neonatal calf serum variables and the liver transcriptome. Sixty Holstein calves (age 1.88 ± 0.85 days, weight 36.63 ± 3.34 kg) were selected and randomly divided into two groups: the T group (treatment group with alkaline mineral complex water supplemented during the experiment) and C group (control group without alkaline mineral complex water supplementation). Alkaline mineral complex water supplementation significantly increased the body weight for calves aged 60 d and average daily gain during the experimental period (1-60 d). In addition, Alkaline mineral complex water supplementation could significantly decrease the diarrhea rate for calves aged 16-30 d, enhance the T-AOC, IgG, IGF-1, and IGFBP-2 in concentrations. The results of KEGG enrichment analysis in transcriptomics indicate that Alkaline mineral complex water supplementation inhibited the target IL-1B gene of the NF-kappa B signaling pathway of liver. Alkaline mineral complex water supplementation decreased calf diarrhea and improved partial immune function, anti-inflammatory activity, antioxidant capacity, and health of calves. Alkaline mineral complex is a candidate to replace medicated feed additives. Alkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex water.
Collapse
Affiliation(s)
- Cheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaowei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Dongwen Dai
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fanlin Kong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuo Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaofeng Xu
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lili Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Rebelo A, Duarte B, Freitas AR, Almeida A, Azevedo R, Pinto E, Peixe L, Antunes P, Novais C. Uncovering the effects of copper feed supplementation on the selection of copper-tolerant and antibiotic-resistant Enterococcus in poultry production for sustainable environmental practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165769. [PMID: 37506909 DOI: 10.1016/j.scitotenv.2023.165769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
The use of antibiotics in animal production is linked to the emergence and spread of antibiotic-resistant bacteria, a threat to animal, environmental and human health. Copper (Cu) is an essential element in poultry diets and an alternative to antibiotics, supplementing inorganic or organic trace mineral feeds (ITMF/OTMF). However, its contribution to select multidrug-resistant (MDR) and Cu tolerant Enterococcus, a bacteria with a human-animal-environment-food interface, remains uncertain. We evaluated whether feeding chickens with Cu-ITMF or Cu-OTMF contributes to the selection of Cu tolerant and MDR Enterococcus from rearing to slaughter. Animal faeces [2-3-days-old (n = 18); pre-slaughter (n = 16)] and their meat (n = 18), drinking-water (n = 14) and feed (n = 18) from seven intensive farms with ITMF and OTMF flocks (10.000-64.000 animals each; 2019-2020; Portugal) were sampled. Enterococcus were studied by cultural, molecular and whole-genome sequencing methods and Cu concentrations by ICP-MS. Enterococcus (n = 477; 60 % MDR) were identified in 80 % of the samples, with >50 % carrying isolates resistant to tetracycline, quinupristin-dalfopristin, erythromycin, streptomycin, ampicillin or ciprofloxacin. Enterococcus with Cu tolerance genes, especially tcrB ± cueO, were mainly found in faeces (85 %; E. faecium/E. lactis) of ITMF/OTMF flocks. Similar occurrence and load of tcrB ± cueO Enterococcus in the faeces was detected throughout the chickens' lifespan in the ITMF/OTMF flocks, decreasing in meat. Most of the polyclonal MDR Enterococcus population carrying tcrB ± cueO or only cueO (67 %) showed a wild-type phenotype (MICCuSO4 ≤ 12 mM) linked to absence of tcrYAZB or truncated variants, also detected in 85 % of Enterococcus public genomes from poultry. Finally, < 65 μg/g Cu was found in all faecal and meat samples. In conclusion, Cu present in ITMF/OTMF is not selecting Cu tolerant and MDR Enterococcus during chickens' lifespan. However, more studies are needed to assess the minimum concentration of Cu required for MDR bacterial selection and horizontal transfer of antibiotic resistance genes, which would support sustainable practices mitigating antibiotic resistance spread in animal production and the environment beyond.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Bárbara Duarte
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Ana R Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Avenida Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Rui Azevedo
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Edgar Pinto
- ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
6
|
Lu H, Liu P, Liu S, Zhao X, Bai B, Cheng J, Zhang Z, Sun C, Hao L, Xue Y. Effects of sources and levels of dietary supplementary manganese on growing yak's in vitro rumen fermentation. Front Vet Sci 2023; 10:1175894. [PMID: 37360409 PMCID: PMC10288112 DOI: 10.3389/fvets.2023.1175894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Manganese (Mn) is an essential trace element for livestock, but little is known about the optimal Mn source and level for yak. Methods To improve yak's feeding standards, a 48-h in vitro study was designed to examine the effect of supplementary Mn sources including Mn sulfate (MnSO4), Mn chloride (MnCl2), and Mn methionine (Met-Mn) at five Mn levels, namely 35 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, and 70 mg/kg dry matter (includes Mn in substrates), on yak's rumen fermentation. Results Results showed that Met-Mn groups showed higher acetate (p < 0.05), propionate, total volatile fatty acids (p < 0.05) levels, ammonia nitrogen concentration (p < 0.05), dry matter digestibility (DMD), and amylase activities (p < 0.05) compared to MnSO4 and MnCl2 groups. DMD (p < 0.05), amylase activities, and trypsin activities (p < 0.05) all increased firstly and then decreased with the increase of Mn level and reached high values at 40-50 mg/kg Mn levels. Cellulase activities showed high values (p < 0.05) at 50-70 mg/kg Mn levels. Microbial protein contents (p < 0.05) and lipase activities of Mn-Met groups were higher than those of MnSO4 and MnCl2 groups at 40-50 mg/kg Mn levels. Discussion Therefore, Mn-met was the best Mn source, and 40 to 50 mg/kg was the best Mn level for rumen fermentation of yaks.
Collapse
Affiliation(s)
- Huizhen Lu
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Biotechnology Center, Anhui Agricultural University, Hefei, China
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
| | - Pengpeng Liu
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shujie Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xinsheng Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Binqiang Bai
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jianbo Cheng
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cai Sun
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
| | - Lizhuang Hao
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yanfeng Xue
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
7
|
Xiong Y, Cui B, He Z, Liu S, Wu Q, Yi H, Zhao F, Jiang Z, Hu S, Wang L. Dietary replacement of inorganic trace minerals with lower levels of organic trace minerals leads to enhanced antioxidant capacity, nutrient digestibility, and reduced fecal mineral excretion in growing-finishing pigs. Front Vet Sci 2023; 10:1142054. [PMID: 37303716 PMCID: PMC10248082 DOI: 10.3389/fvets.2023.1142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction More effective and environment-friendly organic trace minerals have great potential to replace the inorganic elements in the diets of livestock. This study aimed to investigate the effects of dietary replacement of 100% inorganic trace minerals (ITMs) with 30-60% organic trace minerals (OTMs) on the performance, meat quality, antioxidant capacity, nutrient digestibility, and fecal mineral excretion and to assess whether low-dose OTMs could replace whole ITMs in growing-finishing pigs' diets. Methods A total of 72 growing-finishing pigs (Duroc × Landrace × Yorkshire) with an initial average body weight of 74.25 ± 0.41 kg were selected and divided into four groups with six replicates per group and three pigs per replicate. The pigs were fed either a corn-soybean meal basal diet containing commercial levels of 100% ITMs or a basal diet with 30, 45, or 60% amino acid-chelated trace minerals instead of 100% ITMs, respectively. The trial ended when the pigs' weight reached ~110 kg. Results The results showed that replacing 100% ITMs with 30-60% OTMs had no adverse effect on average daily gain, average daily feed intake, feed/gain, carcass traits, or meat quality (P > 0.05) but significantly increased serum transferrin and calcium contents (P < 0.05). Meanwhile, replacing 100% ITMs with OTMs tended to increase serum T-SOD activity (0.05 ≤ P < 0.1), and 30% OTMs significantly increased muscle Mn-SOD activity (P < 0.05). Moreover, replacing 100% ITMs with OTMs tended to increase the apparent digestibility of energy, dry matter, and crude protein (0.05 ≤ P < 0.1) while significantly reducing the contents of copper, zinc, and manganese in feces (P < 0.05). Discussion In conclusion, dietary supplementation with 30-60% OTMs has the potential to replace 100% ITMs for improving antioxidant capacity and nutrient digestibility and for reducing fecal mineral excretion without compromising the performance of growing-finishing pigs.
Collapse
Affiliation(s)
- Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bailei Cui
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhentao He
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Liu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fei Zhao
- DeBon Bio-Tech Co., Ltd., Hengyang, Hunan, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
8
|
Paganin ACL, Monzani PS, Carazzolle MF, Araujo RB, Gonzalez-Esquerra R, Haese D, Kill JL, Rezende GS, de Lima CG, Malavazi I, de Melo Freire CC, da Cunha AF. Assessment of cecal microbiota modulation from piglet dietary supplementation with copper. BMC Microbiol 2023; 23:92. [PMID: 37003969 PMCID: PMC10064724 DOI: 10.1186/s12866-023-02826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Swine production expanded in the last decades. Efforts have been made to improve meat production and to understand its relationship to pig gut microbiota. Copper (Cu) is a usual supplement to growth performance in animal production. Here, two performance studies were conducted to investigate the effects of three different sources of Cu on the microbiota of piglets. A total of 256 weaned piglets were randomly allocated into 4 treatments (10 replicates per treatment of 4 piglets per pen in Trial 1 and 8 replicates of 3 piglets per pen in Trial 2). Treatments included a control group (fed 10 mg/kg of Cu from CuSO4), a group fed at 160 mg/kg of Copper (II) sulfate (CuSO4) or tri-basic copper chloride (TBCC), and a group fed with Cu methionine hydroxy analogue chelated (Cu-MHAC) at 150, 80, and 50 mg/kg in Phases 1 (24-35 d), 2 (36-49 d), and 3 (50-70 d), respectively. At 70 d, the cecum luminal contents from one pig per pen were collected and polled for 16 S rRNA sequencing (V3/V4 regions). Parameters were analyzed in a completely randomized block design, in which each experiment was considered as a block. RESULTS A total of 1337 Operational Taxonomic Units (OTUs) were identified. Dominance and Simpson ecological metrics were statistically different between control and treated groups (P < 0.10) showing that different Cu sources altered the gut microbiota composition with the proliferation of some bacteria that improve gut health. A high abundance of Prevotella was observed in all treatments while other genera were enriched and differentially modulated, according to the Cu source and dosage. The supplementation with Cu-MHAC can modify a group of bacteria involved in feed efficiency (FE) and short chain fatty acids (SCFA) production (Clostridium XIVa, Desulfovibrio, and Megasphera). These bacteria are also important players in the activation of ghrelin and growth hormones that were previously reported to correlate with Cu-MHAC supplementation. CONCLUSIONS These results indicated that some genera seem to be directly affected by the Cu source offered to the animals. TBCC and Cu-MHAC (even in low doses) can promote healthy modifications in the gut bacterial composition, being a promising source of supplementation for piglets.
Collapse
Affiliation(s)
| | - Paulo Sérgio Monzani
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | | | | | | - Douglas Haese
- Centro de Tecnologia Animal Ltda, Espirito Santo - ES, Domingos Martins, Brasil
| | - João L Kill
- Centro de Tecnologia Animal Ltda, Espirito Santo - ES, Domingos Martins, Brasil
| | - Graziela Silva Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - César Gonçalves de Lima
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | | | | |
Collapse
|
9
|
Sarkar VK, De UK, Kala A, Chauhan A, Verma AK, Paul BR, Soni S, Chaudhuri P, Patra MK, Gaur GK. Effects of oral probiotic and lactoferrin interventions on iron-zinc homeostasis, oxidant/antioxidant equilibrium and diarrhoea incidence of neonatal piglets. Benef Microbes 2023; 14:197-208. [PMID: 37026367 DOI: 10.3920/bm2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/20/2022] [Indexed: 04/08/2023]
Abstract
The objective of this study was to examine the effects of early-life host specific probiotic and lactoferrin (LF) supplementations on diarrhoea incidence, iron (Fe)-zinc (Zn) balance and antioxidant capabilities in serum of neonatal piglets. A total of eight sow litters obtained from parity matched sows were randomly divided into four groups and assigned to one of the four interventions: control (2.0 ml normal saline), bovine lactoferrin (bLF) (100 mg bLF in normal saline), probiotic (Pb) (1×109 cfu of swine origin Pediococcus acidilactici FT28 strain) and bLF+Pb (both 100 mg bLF and 1×109 cfu of P. acidilactici FT28). All the piglets received supplementations once daily orally for first 7 days of life. The incidence of diarrhoea markedly decreased in bLF group compared to control group. Notably, no incidences of diarrhoea were recorded in Pb and bLF+Pb groups. The Zn and Fe concentrations were significantly increased from day 7 to 21 in bLF and on day 21 in bLF+Pb group. No such changes were noted in Pb group. Total antioxidant capacity (TAC) in serum was significantly increased on days 7 and 15 in bLF group and on days 7 and 21 in bLF+Pb group. Malonaldehyde concentration was markedly reduced from day 7 to 21 in bLF and bLF+Pb groups. The concentrations of nitrate on days 15 and 21 and malonaldehyde on day 7 were significantly higher in Pb group, but mean TAC was unaltered from day 0 to 21. Although no correlation between the incidence of diarrhoea and Zn/Fe and oxidant/antioxidant homeostasis was noted in the Pb group, the supplementation of P. acidilactici FT28 alone was sufficient to prevent the incidence of diarrhoea in neonatal piglets. Taken together, it is concluded that strategic supplementation of P. acidilactici FT28 in early life could help in preventing diarrhoea until weaning of piglets.
Collapse
Affiliation(s)
- V K Sarkar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - U K De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A Kala
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A K Verma
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - B R Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - S Soni
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - P Chaudhuri
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - M K Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - G K Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| |
Collapse
|
10
|
Zhou J, Ren Y, Wen X, Yue S, Wang Z, Wang L, Peng Q, Hu R, Zou H, Jiang Y, Hong Q, Xue B. Comparison of coated and uncoated trace elements on growth performance, apparent digestibility, intestinal development and microbial diversity in growing sheep. Front Microbiol 2022; 13:1080182. [PMID: 36605519 PMCID: PMC9808050 DOI: 10.3389/fmicb.2022.1080182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The suitable supplement pattern affects the digestion and absorption of trace minerals by ruminants. This study aimed to compare the effects of coated and uncoated trace elements on growth performance, apparent digestibility, intestinal development and microbial diversity in growing sheep. Thirty 4-month-old male Yunnan semi-fine wool sheep were randomly assigned to three treatments (n = 10) and fed with following diets: basal diet without adding exogenous trace elements (CON), basal diet plus 400 mg/kg coated trace elements (CTE, the rumen passage rate was 65.87%) and basal diet plus an equal amount of trace elements in uncoated form (UTE). Compared with the CON group, the average daily weight gain and apparent digestibility of crude protein were higher (P < 0.05) in the CTE and UTE groups, while there was no difference between the CTE and UTE groups. The serum levels of selenium, iodine and cobalt were higher (P < 0.05) in the CTE and UTE groups than those in the CON group, the serum levels of selenium and cobalt were higher (P < 0.05) in the CTE group than those in the UTE group. Compared with the CON and UTE groups, the villus height and the ratio of villus height to crypt depth in duodenum and ileum were higher (P < 0.05) in the CTE groups. The addition of trace minerals in diet upregulated most of the relative gene expression of Ocludin, Claudin-1, Claudin-2, ZO-1, and ZO-2 in the duodenum and jejunum and metal ion transporters (FPN1 and ZNT4) in small intestine. The relative abundance of the genera Christensenellaceae R-7 group, Ruminococcus 1, Lachnospiraceae NK3A20 group, and Ruminococcaceae in ileum, and Ruminococcaceae UCG-014 and Lactobacillus in colon was higher in the CTE group that in the CON group. These results indicated that dietary trace mineral addition improved the growth performance and intestinal development, and altered the structure of intestinal bacteria in growing sheep. Compared to uncoated form, offering trace mineral elements to sheep in coated form had a higher absorption efficiency, however, had little effect on improving growth performance of growing sheep.
Collapse
Affiliation(s)
- Jia Zhou
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yifan Ren
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiao Wen
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuangming Yue
- 2Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu, China
| | - Zhisheng Wang
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yahui Jiang
- 3College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qionghua Hong
- 4Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Bai Xue
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,*Correspondence: Bai Xue,
| |
Collapse
|
11
|
de Arruda Roque F, Chen J, Araujo RB, Murcio AL, de Souza Leite BG, Dias Tanaka MT, Granghelli CA, Pelissari PH, Bueno Carvalho RS, Torres D, Vázquez‐Añón M, Hancock D, Soares da Silva Araujo C, Araujo LF. Maternal supplementation of different trace mineral sources on broiler breeder production and progeny growth and gut health. Front Physiol 2022; 13:948378. [PMID: 36267581 PMCID: PMC9577897 DOI: 10.3389/fphys.2022.948378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Trace mineral minerals Zn, Cu, and Mn play important roles in breeder production and progeny performance. The objective of this study was to determine maternal supplementation of trace mineral minerals on breeder production and progeny growth and development. A total of 540 broiler breeders, Cobb 500 (Slow feathering; 0-66 weeks old) were assigned to one of three treatment groups with the same basal diet and three different supplemental trace minerals: ITM-inorganic trace minerals in sulfates: 100, 16, and 100 ppm of Zn, Cu, and Mn respectively; MMHAC -mineral methionine hydroxy analog chelate: 50, 8, and 50 ppm of bis-chelated MINTREX®Zn, Cu and Mn (Novus International, Inc.), and TMAAC - trace minerals amino acid complex: 50, 8, and 50 ppm of Zn, Cu, and Mn. At 28 weeks of age, eggs from breeder treatments were hatched for progeny trial, 10 pens with 6 males and 6 female birds per pen were fed a common diet with ITM for 45 days. Breeder production, egg quality, progeny growth performance, mRNA expression of gut health associated genes in breeder and progeny chicks were measured. Data were analyzed by one-way ANOVA; means were separated by Fisher's protected LSD test. A p-Value ≤ 0.05 was considered statistically different and 0.1 was considered numerical trend. Breeders on ITM treatment had higher (p < 0.05) body weight (BW), weight gain and lower (p < 0.05) feed conversion ratio (FCR) from 0 to 10 weeks, when compared to birds fed MMHAC. MMHAC significantly improved egg mass by 3 g (p < 0.05) and FCR by 34 points (0.05 < p < 0.1) throughout the reproductive period (26-66 weeks) in comparison to ITM. MMHAC improved (p < 0.01) egg yolk color versus (vs.) ITM and TMAAC in all periods, except 28 weeks, increased (p < 0.01) eggshell thickness and resistance vs. TMAAC at 58 weeks, and reduced (p < 0.05) jejunal NF-κB gene expression vs. TMAAC at 24 weeks. There was a significant reduction in tibial dry matter weight, Seedor index and resistance for the breeders that received MMHAC and/or TMAAC when compared to ITM at 18 weeks. Lower seedor index but numerically wider tibial circumference was seen in hens fed MMHAC at 24 weeks, and wider tibial circumference but lower tibial resistance in hens fed TMAAC at 66 weeks. Maternal supplementation of MMHAC in breeder hens increased (p < 0.0001) BW vs. ITM and TMAAC at hatching, reduced (p < 0.05) feed intake vs. ITM at d14 and d28, and improved (p < 0.01) FCR and performance index vs. TMAAC at d28, reduced (p < 0.01) NF-κB gene expression and increased (p < 0.05) A20 gene expression vs. TMAAC on d0 and vs. ITM on d14, reduced (p < 0.05) TLR2 gene expression vs. ITM on d0 and vs. TMAAC on d14, increased (p < 0.05) MUC2 gene expression vs. both ITM and TMAAC on d45 in progeny jejunum. Overall, these results suggest that supplementation with lower levels of MHA-chelated trace minerals improved breeder production and egg quality and reduced breeder jejunal inflammation while maintaining tibial development in comparison to those receiving higher inorganic mineral supplementation, and it also carried over the benefits to progeny with better growth performance, less jejunal inflammation and better innate immune response and gut barrier function in comparison to ITM and/or TMAAC.
Collapse
Affiliation(s)
| | - Juxing Chen
- Novus International Inc., St. Charles, MO, United States
| | | | | | | | | | | | | | | | - David Torres
- Novus International Inc., St. Charles, MO, United States
| | | | - Deana Hancock
- Novus International Inc., St. Charles, MO, United States
| | | | | |
Collapse
|
12
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
13
|
Chen C, Qu M, Liang H, Ouyang K, Xiong Z, Zheng Y, Yan Q, Xu L. Gastrointestinal digestibility insights of different levels of coated complex trace minerals supplementation on growth performance of yellow-feathered broilers. Front Vet Sci 2022; 9:982699. [PMID: 36176698 PMCID: PMC9513376 DOI: 10.3389/fvets.2022.982699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
This study was designed to evaluate the optimum additional level of coated complex trace minerals (TMs) and its impacts on the growth performance of broilers through measurement of digestibility of nutrients and intestinal development. In a 56-day trial, a total of 360 one-day-old male yellow-feathered broilers were randomly divided into six dietary treatment groups. Each treatment contained six replicates, with 10 birds. The control group was supplemented with 1,000 mg/kg of uncoated complex TMs in the basal diet (UCCTM1000). The remaining 5 treatments were degressively supplemented with coated complex TMs from 1,000 to 200 mg/kg in the basal diet, which were considered as (CCTM1000), (CCTM800), (CCTM600), (CCTM400), (CCTM200), respectively. Results: On comparing the UCCTM1000 supplementation, the CCTM1000 supplementation decreased the feed to gain ratio (F/G) (P < 0.05), increased digestibility of crude protein (CP) (P < 0.05), crude fat (CF) (P < 0.05), villus height (VH) of duodenum (P < 0.05), and the mRNA expression level of occludin in jejunal mucosa (P < 0.05). In addition, the F/G was lower in the CCTE600 group than that in the CCTE200 group (P < 0.05). The VH to crypt depth (CD) ratio (V/C) of jejunum and ileum in the CCTM400 and CCTM600 groups was higher (P < 0.05) than that in the CCTM1000 group. The serum endotoxin and D-lactate level and CP digestibility were increased by dietary coated complex TMs addition level. The mRNA expression levels of claudin-1 and ZO-1 in the CCTM600 group were higher (P < 0.05) than that in the CCTM1000 group. In conclusion, adding 600 mg/kg of coated complex TMs showed the minimum F/G and the maximum crude protein digestibility and intestine development of yellow-feathered broilers compared with other treatments. This supplementation level of coated complex TMs could totally replace 1,000 mg/kg of uncoated complex TMs to further decrease the dose of TMs and raise economic benefit.
Collapse
Affiliation(s)
- Chuanbin Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| | - Huan Liang
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| | - Zhihui Xiong
- Gongqingcheng Element Animal Nutrition Co., Ltd., Gongqingcheng, China
| | - Youchang Zheng
- Gongqingcheng Element Animal Nutrition Co., Ltd., Gongqingcheng, China
| | - Qiuliang Yan
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Byrne L, Murphy RA. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals (Basel) 2022; 12:1981. [PMID: 35953970 PMCID: PMC9367456 DOI: 10.3390/ani12151981] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of dietary supplementation of animal feeds with trace minerals is irrefutable, with various forms of both organic and inorganic products commercially available. With advances in research techniques, and data obtained from both in-vitro and in-vivo studies in recent years, differences between inorganic and organic trace minerals have become more apparent. Furthermore, differences between specific organic mineral types can now be identified. Adhering to PRISMA guidelines for systematic reviews, we carried out an extensive literature search on previously published studies detailing performance responses to trace minerals, in addition to their corresponding relative bioavailability values. This review covers four of the main trace minerals included in feed: copper, iron, manganese and zinc, and encompasses the different types of organic and inorganic products commercially available. Their impact from environmental, economic, and nutritional perspectives are discussed, along with the biological availability of various mineral forms in production animals. Species-specific sections cover ruminants, poultry, and swine. Extensive relative bioavailability tables cover values for all trace mineral products commercially available, including those not previously reviewed in earlier studies, thereby providing a comprehensive industry reference guide. Additionally, we examine reasons for variance in reported relative bioavailability values, with an emphasis on accounting for data misinterpretation.
Collapse
Affiliation(s)
- Laurann Byrne
- Alltech Bioscience Centre, Summerhill Road, Dunboyne, A86 X006 Co. Meath, Ireland
| | | |
Collapse
|
15
|
Abd El-Ghany WA. A perspective review on the effect of different forms of zinc on poultry production of poultry with special reference to the hazardous effects of misuse. CABI REVIEWS 2022; 2022. [DOI: 10.1079/cabireviews202217013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractZinc (Zn) is a unique micro-mineral because it is an essential component in many enzymes such as superoxide dismutase, carbonic anhydrase, and alkaline phosphatase, as well as being important for regulation of proteins and lipids metabolism, and sex hormones. This mineral is applied in poultry production in three forms; inorganic, organic, and nanoparticle form. The nano-form of Zn is preferable in application to other conventional forms with regard to absorption, bioavailability, and efficacy. Broilers fed on diets supplemented with Zn showed improvement of growth performance, carcass meat yield, and meat quality. In addition, Zn plays an important role in enhancing of both cellular and humeral immune responses, beside its antimicrobial and antioxidant activities. In laying hens, dietary addition of Zn improves the eggshell quality and the quantity of eggs. Moreover, Zn has a vital role in breeders in terms of improving the egg production, fertility, hatchability, embryonic development, and availability of the hatched chicks. Therefore, this review article is focused on the effects of using Zn on the performance and immunity of poultry, as well as its antimicrobial and antioxidant properties with special reference to the hazardous effects of the misusing of this mineral.
Collapse
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Address: Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
16
|
Zhang G, Hu G, Yang Z, Zhao J. Effects of Tetrabasic Zinc Chloride on Growth Performance, Nutrient Digestibility and Fecal Microbial Community in Weaned Piglets. Front Vet Sci 2022; 9:905242. [PMID: 35782559 PMCID: PMC9244461 DOI: 10.3389/fvets.2022.905242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The study was conducted to explore the effects of tetrabasic zinc chloride (TBZC), as an alternative to zinc oxide (ZnO), on growth performance, serum indexes, and fecal microbiota of weaned piglets. A total of 108 weaned piglets (average initial body weight of 7.84 ± 0.97 kg) were randomly allocated into one of three dietary treatments with six replicate pens and six piglets per pen. The dietary treatments included a control diet (CON, negative control), a ZnO diet (CON + 1,600 mg Zn/kg from ZnO, positive control), and a TBZC diet (CON + 1,000 mg Zn/kg from TBZC). The average daily gain of pigs in the TBZC group was greater (P < 0.05) than those in CON and ZnO groups during the whole period. Piglets fed the ZnO and TBZC diets showed lower (P < 0.05) diarrhea incidence than those fed the CON diet during d 1-14 and the whole period. Piglets fed the TBZC diet had higher (P < 0.05) digestibility of crude protein and gross energy than those fed the CON diet. Serum concentrations of IGF-I and GH, as well as ALP activity, were significantly elevated (P < 0.05) in the TBZC treatment group compared to the CON group on d 14. Piglets fed the ZnO diet had greater (P < 0.05) acetate and total short-chain fatty acids concentrations, while the TBZC diet had greater (P < 0.05) fecal acetate and propionate concentrations on d 28. Moreover, TBZC supplementation significantly increased (P < 0.05) microbial α-diversity compared with the CON group. The fecal microbiota of piglets in ZnO and TBZC treatment groups tended (P = 0.08) to have greater relative abundance of Prevotellaceae compared with the CON piglets. In conclusion, TBZC acted as a suitable alternative to ZnO to reduce zinc excretion, and improve growth performance of weaned piglets.
Collapse
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Nutrition Laboratory of Wellhope Foods Co., Ltd, Shengyang, China
| | - Guoqing Hu
- Nutrition Laboratory of Wellhope Foods Co., Ltd, Shengyang, China
| | - Zhenyan Yang
- Animal Husbandry and Fishery Science and Innovation Department, Jinan Institute of Agricultural Sciences, Jinan, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Jinbiao Zhao
| |
Collapse
|
17
|
Yin D, Zhai F, Lu W, Moss AF, Kuang Y, Li F, Zhu Y, Zhang R, Zhang Y, Zhang S. Comparison of Coated and Uncoated Trace Minerals on Growth Performance, Tissue Mineral Deposition, and Intestinal Microbiota in Ducks. Front Microbiol 2022; 13:831945. [PMID: 35495727 PMCID: PMC9039745 DOI: 10.3389/fmicb.2022.831945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Abnormally low or high levels of trace elements in poultry diets may elicit health problems associated with deficiency and toxicity, and impact poultry growth. The optimal supplement pattern of trace mineral also impacts the digestion and absorption in the body. For ducks, the limited knowledge of trace element requirements puzzled duck production. Thus, the objective of this study was to investigate the influence of dietary inclusions of coated and uncoated trace minerals on duck growth performance, tissue mineral deposition, serum antioxidant status, and intestinal microbiota profile. A total of 1,080 14-day-old Cherry Valley male ducks were randomly divided into six dietary treatment groups in a 2 (uncoated or coated trace minerals) × 3 (300, 500, or 1,000 mg/kg supplementation levels) factorial design. Each treatment was replicated 12 times (15 birds per replicate). Coated trace minerals significantly improved average daily gain (p < 0.05), increased Zn, Se, and Fe content of serum, liver, and muscle, increased serum antioxidant enzyme (p < 0.05) and decreased the excreta Fe, Zn, and Cu concentrations. Inclusions of 500 mg/kg of coated trace minerals had a similar effect on serum trace minerals and tissue metal ion deposition as the 1,000 mg/kg inorganic trace minerals. Higher concentrations of Lactobacillus, Sphaerochatea, Butyricimonas, and Enterococcus were found in birds fed with coated trace minerals. In conclusion, diets supplemented with coated trace minerals could reduce the risk of environmental contamination from excreted minerals without affecting performance. Furthermore, coated trace minerals may improve the bioavailability of metal ions and the colonization of probiotic microbiota to protect microbial barriers and maintain gut health.
Collapse
Affiliation(s)
- Dafei Yin
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Feng Zhai
- Yichun Tequ Feed Company, Yichun, China
| | - Wenbiao Lu
- Fujian Syno Biotech Co., Ltd., Fuzhou, China
| | - Amy F Moss
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | | | - Fangfang Li
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yujing Zhu
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruiyang Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yong Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
18
|
Chang Y, Tang H, Zhang Z, Yang T, Wu B, Zhao H, Liu G, Chen X, Tian G, Cai J, Wu F, Jia G. Zinc Methionine Improves the Growth Performance of Meat Ducks by Enhancing the Antioxidant Capacity and Intestinal Barrier Function. Front Vet Sci 2022; 9:774160. [PMID: 35174244 PMCID: PMC8841862 DOI: 10.3389/fvets.2022.774160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
This study was conducted to investigate the effects of zinc methionine (Zn-Met) on the growth performance, antioxidant capacity and intestinal barrier function of meat ducks. Three hundred and sixty 1-day-old male Cherry Valley ducks were randomly divided into 6 groups with 6 replicates (10 birds each), and fed diets with 0, 30, 60, 90, 120 or 150 mg/kg Zn for 35 d. The results indicated that dietary supplementation with Zn-Met substantially increased the average daily gain (ADG), and reduced the feed to gain ratio (F/G) during 1–35 d (P < 0.05). Dietary Zn-Met markedly increased the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), and reduced the malondialdehyde (MDA) content in the jejunum (P < 0.05). The mRNA expression levels of critical antioxidant enzymes such as SOD, CAT, and nuclear factor erythroid 2-related factor 2 (Nrf2) were increased by Zn in the jejunum (P < 0.05). Supplementation with 60, 90, 120, and 150 mg/kg of Zn significantly reduced the diamine oxidase (DAO) activity in the serum (P < 0.05). Different levels of Zn can increase the mRNA expression of occluding (OCLN) and zonula occludens-1 (ZO-1) in the jejunum (P < 0.05). Diets supplemented with zinc significantly increased the content of mucin2 (MUC2), secretory immunoglobulin A (sIgA), immunoglobulin A (IgA) and immunoglobulin G (IgG) in the jejunum of meat ducks (P < 0.05). The 16S rRNA sequence analysis indicated that 150 mg/kg of Zn had a higher relative abundance of Verrucomicrobia and Akkermansia in cecal digesta (P < 0.05). In conclusion, Zn-Met improved the growth performance of meat ducks by enhancing intestinal antioxidant capacity and intestinal barrier function. This study provides data support for the application of Zn-Met in meat duck breeding.
Collapse
Affiliation(s)
- Yaqi Chang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Huangyao Tang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhenyu Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
| | - Ting Yang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Wu
- Chelota Group, Guanghan, China
| | - Hua Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Fali Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Gang Jia ;
| |
Collapse
|
19
|
Luis-Chincoya H, Herrera-Haro JG, Pro-Martínez A, Santacruz-Varela A, Jerez-Salas MP. Effect of source and concentration of zinc on growth performance, meat quality and mineral retention in New Zealand rabbits. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.14095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p>Zinc supplementation in rabbit diet favours deposition of this mineral in meat and, therefore, contributes to satisfying the daily requirements of Zn in humans that consume it. A trial was conducted to study the effect of two sources (ZnSO<sub>4</sub> and Zn-methionate) and two concentrations of Zn, along with a control (without Zn supplementation), on weight gain, meat quality and muscle retention in New Zealand White (NZW) rabbits during fattening stage. Treatments were randomly assigned to 100 NZW rabbits 40 days old, in a completely randomised experimental design using a factorial arrangement of treatments (2×2+control). The experimental period was 30 d. In each experimental treatment, weight gain, feed consumption and meat quality were recorded, as well as the retention of Zn in serum, liver, loin and hind leg. Results showed no differences (<em>P</em>>0.05) in weight gain and food consumption, which can be attributed to diet-added Zn sources (ZnSO<sub>4</sub> and Zn-methionate). Food conversion was better with the organic source at the highest concentration (<em>P</em><0.05). Regarding meat quality, no differences were found (<em>P</em>>0.05) in hind legs for source effect and Zn concentration, while in loin, differences (<em>P</em>=0.02) were found in the colour parameter of L* and B* when the organic source of Zn (Zn-methionate) was supplied. Most retention of Zn on the loin occurred when a concentration of 25 mg Zn kg<sup>–1</sup> of Zn-methionate was added, which could be important to provide larger amounts of Zn for human consumption.</p>
Collapse
|
20
|
O’Doherty JV, Venardou B, Rattigan R, Sweeney T. Feeding Marine Polysaccharides to Alleviate the Negative Effects Associated with Weaning in Pigs. Animals (Basel) 2021; 11:2644. [PMID: 34573610 PMCID: PMC8465377 DOI: 10.3390/ani11092644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In young pigs, the challenge of weaning frequently leads to dysbiosis. This predisposes pigs to intestinal infection such as post-weaning diarrhoea (PWD). Dietary interventions to reduce PWD have centred on dietary inclusion of antibiotic growth promoters (AGP) and antimicrobials in pig diets, or high concentrations of zinc oxide. These interventions are under scrutiny because of their role in promoting multidrug resistant bacteria and the accumulation of minerals in the environment. There are significant efforts being made to identify natural alternatives. Marine polysaccharides, such as laminarin and fucoidan from macroalgae and chitosan and chito-oligosaccharides from chitin, are an interesting group of marine dietary supplements, due to their prebiotic, antibacterial, anti-oxidant, and immunomodulatory activities. However, natural variability exists in the quantity, structure, and bioactivity of these polysaccharides between different macroalgae species and harvest seasons, while the wide range of available extraction methodologies and conditions results in further variation. This review will discuss the development of the gastrointestinal tract in the pig during the post-weaning period and how feeding marine polysaccharides in both the maternal and the post-weaned pig diet, can be used to alleviate the negative effects associated with weaning.
Collapse
Affiliation(s)
- John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (T.S.)
| | - Ruth Rattigan
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (T.S.)
| |
Collapse
|
21
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
22
|
Montoya D, D’Angelo M, Martín-Orúe SM, Rodríguez-Sorrento A, Saladrigas-García M, Araujo C, Chabrillat T, Kerros S, Castillejos L. Effectiveness of Two Plant-Based In-Feed Additives against an Escherichia coli F4 Oral Challenge in Weaned Piglets. Animals (Basel) 2021; 11:ani11072024. [PMID: 34359152 PMCID: PMC8300363 DOI: 10.3390/ani11072024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
This study evaluates the efficacy of two plant-based feed supplementations to fight colibacillosis in weanlings. A total of 96 piglets (32 pens) were assigned to four diets: a control diet (T1) or supplemented with ZnO (2500 ppm Zn) (T2) or two different plant supplements, T3 (1 kg/t; based on essential oils) and T4 (T3 + 1.5 kg/t based on non-volatile compounds). After one week, animals were challenged with ETEC F4, and 8 days after, one animal per pen was euthanized. Performance, clinical signs, microbial analysis, inflammatory response, intestinal morphology, and ileal gene expression were assessed. ZnO improved daily gains 4 days after challenge, T3 and T4 showing intermediate values (96, 249, 170, and 157 g/d for T1, T2, T3, and T4, p = 0.035). Fecal lactobacilli were higher with T3 and T4 compared to ZnO (7.55, 6.26, 8.71, and 8.27 cfu/gFM; p = 0.0007) and T3 increased the lactobacilli/coliforms ratio (p = 0.002). T4 was associated with lower levels of Pig-MAP (p = 0.07) and increases in villus/crypt ratio (1.49, 1.90, 1.73, and 1.84; p = 0.009). Moreover, T4 was associated with an upregulation of the REG3G gene (p = 0.013; pFDR = 0.228) involved in the immune response induced by enteric pathogens. In conclusion, both plant supplements enhanced animal response in front of an ETEC F4 challenge probably based on different modes of action.
Collapse
Affiliation(s)
- Daniel Montoya
- Animal Nutrition and Welfare Service (SNIBA), Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.M.); (M.D.); (A.R.-S.); (M.S.-G.); (L.C.)
| | - Matilde D’Angelo
- Animal Nutrition and Welfare Service (SNIBA), Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.M.); (M.D.); (A.R.-S.); (M.S.-G.); (L.C.)
| | - Susana M. Martín-Orúe
- Animal Nutrition and Welfare Service (SNIBA), Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.M.); (M.D.); (A.R.-S.); (M.S.-G.); (L.C.)
- Correspondence: ; Tel.: +34-93581-1504
| | - Agustina Rodríguez-Sorrento
- Animal Nutrition and Welfare Service (SNIBA), Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.M.); (M.D.); (A.R.-S.); (M.S.-G.); (L.C.)
| | - Mireia Saladrigas-García
- Animal Nutrition and Welfare Service (SNIBA), Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.M.); (M.D.); (A.R.-S.); (M.S.-G.); (L.C.)
| | - Coralie Araujo
- Phytosynthese, 57 Avenue Jean Jaurès, 63200 Mozac, France; (C.A.); (T.C.); (S.K.)
| | - Thibaut Chabrillat
- Phytosynthese, 57 Avenue Jean Jaurès, 63200 Mozac, France; (C.A.); (T.C.); (S.K.)
| | - Sylvain Kerros
- Phytosynthese, 57 Avenue Jean Jaurès, 63200 Mozac, France; (C.A.); (T.C.); (S.K.)
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service (SNIBA), Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.M.); (M.D.); (A.R.-S.); (M.S.-G.); (L.C.)
| |
Collapse
|
23
|
Zinc hydroxychloride supplementation improves tibia bone development and intestinal health of broiler chickens. Poult Sci 2021; 100:101254. [PMID: 34174567 PMCID: PMC8242038 DOI: 10.1016/j.psj.2021.101254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of zinc (Zn), as a combination of oxide (ZnO) and sulfate (ZnSO4), compared with incremental levels of zinc hydroxychloride (ZH) on tibia traits, intestinal integrity, expression of selected jejunal genes, cecal short chain fatty acids and microbial composition in broilers. Day-old male Ross 308 chicks (n = 784) were randomly allocated to seven dietary treatments, each replicated seven times with 16 chicks per replication. The dietary treatments included a negative control diet (NC) with no supplemental Zn, a positive control (PC) with 100 mg/kg supplemental Zn from an ionic bound source combination (50 mg/kg ZnO + 50 mg/kg ZnSO4), and the NC diet supplemented with one of 20, 40, 60, 80, or 100 mg/kg Zn as ZH. The diets were fed over starter (1–14 d) and grower (14–35 d) phases, with tissue and digesta samples collected from 3 birds per replicate on days 14 and 35. The results showed that dietary Zn level had a significant effect on tibia breaking strength on d 35 (P < 0.05), and tibia Zn concentration both on d 14 and d 35 (P < 0.01). Dietary Zn levels linearly (P < 0.01) increased cecal lactic acid production, increased Lactobacillus, and decreased Bacillus and total bacteria counts (P < 0.05). Inclusion of 80 and 100 mg/kg Zn as ZH tended to upregulate the expression of claudin-1 (P = 0.088) and tight junction protein-1 (P = 0.086). The results obtained in this study suggest that a non-Zn supplemented diet can negatively influence tibia development and gut microbiota composition in broiler chickens. Higher supplemental Zn in the diet alters cecal microbiota population in favor of Lactobacillus and can decrease the total bacterial load. Supplemental Zn level in the feed have the potential to manipulate the jejunal gut integrity at a molecular level.
Collapse
|
24
|
Shurson GC, Hung YT, Jang JC, Urriola PE. Measures Matter-Determining the True Nutri-Physiological Value of Feed Ingredients for Swine. Animals (Basel) 2021; 11:1259. [PMID: 33925594 PMCID: PMC8146707 DOI: 10.3390/ani11051259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Many types of feed ingredients are used to provide energy and nutrients to meet the nutritional requirements of swine. However, the analytical methods and measures used to determine the true nutritional and physiological ("nutri-physiological") value of feed ingredients affect the accuracy of predicting and achieving desired animal responses. Some chemical characteristics of feed ingredients are detrimental to pig health and performance, while functional components in other ingredients provide beneficial health effects beyond their nutritional value when included in complete swine diets. Traditional analytical procedures and measures are useful for determining energy and nutrient digestibility of feed ingredients, but do not adequately assess their true physiological or biological value. Prediction equations, along with ex vivo and in vitro methods, provide some benefits for assessing the nutri-physiological value of feed ingredients compared with in vivo determinations, but they also have some limitations. Determining the digestion kinetics of the different chemical components of feed ingredients, understanding how circadian rhythms affect feeding behavior and the gastrointestinal microbiome of pigs, and accounting for the functional properties of many feed ingredients in diet formulation are the emerging innovations that will facilitate improvements in precision swine nutrition and environmental sustainability in global pork-production systems.
Collapse
Affiliation(s)
- Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (Y.-T.H.); (J.C.J.); (P.E.U.)
| | | | | | | |
Collapse
|
25
|
Stoica C, Cox G. Old problems and new solutions: antibiotic alternatives in food animal production. Can J Microbiol 2021; 67:427-444. [PMID: 33606564 DOI: 10.1139/cjm-2020-0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The antimicrobial resistance crisis is a Global Health challenge that impacts humans, animals, and the environment alike. In response to increased demands for animal protein and by-products, there has been a substantial increase in the use of antimicrobial agents in the animal industry. Indeed, they are extensively used to prevent, control, and (or) treat disease in animals. In addition to infection control, in-feed supplementation with antimicrobials became common practice for growth promotion of livestock. Unfortunately, the global overuse of antimicrobials has contributed to the emergence and spread of resistance. As such, many countries have implemented policies and approaches to eliminate the use of antimicrobials as growth promoters in food animals, which necessitates the need for alternate and One Health strategies to maintain animal health and welfare. This review summarizes the antimicrobial resistance crisis from Global Health and One Health perspectives. In addition, we outline examples of potential alternate strategies to circumvent antimicrobial use in animal husbandry practices, including antivirulence agents, bacteriophages, and nutritional measures to control bacterial pathogens. Overall, these alternate strategies require further research and development efforts, including assessment of efficacy and the associated development, manufacturing, and labor costs.
Collapse
Affiliation(s)
- Celine Stoica
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
26
|
Jang KB, Kim JH, Purvis JM, Chen J, Ren P, Vazquez-Anon M, Kim SW. Effects of mineral methionine hydroxy analog chelate in sow diets on epigenetic modification and growth of progeny. J Anim Sci 2020; 98:5897043. [PMID: 32841352 PMCID: PMC7507415 DOI: 10.1093/jas/skaa271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
The study was conducted to determine the effects of mineral methionine hydroxy analog chelate (MMHAC) partially replacing inorganic trace minerals in sow diets on epigenetic and transcriptional changes in the muscle and jejunum of progeny. The MMHAC is zinc (Zn), manganese (Mn), and copper (Cu) chelated with methionine hydroxy analog (Zn-, Mn-, and Cu-methionine hydroxy analog chelate [MHAC]). On day 35 of gestation, 60 pregnant sows were allotted to two dietary treatments in a randomized completed block design using parity as a block: 1) ITM: inorganic trace minerals with zinc sulfate (ZnSO4), manganese oxide (MnO), and copper sulfate (CuSO4) and 2) CTM: 50% of ITM was replaced with MMHAC (MINTREX trace minerals, Novus International Inc., St Charles, MO). Gestation and lactation diets were formulated to meet or exceed NRC requirements. On days 1 and 18 of lactation, milk samples from 16 sows per treatment were collected to measure immunoglobulins (immunoglobulin G, immunoglobulin A, and immunoglobulin M) and micromineral concentrations. Two pigs per litter were selected to collect blood to measure the concentration of immunoglobulins in the serum, and then euthanized to collect jejunal mucosa, jejunum tissues, and longissimus muscle to measure global deoxyribonucleic acid methylation, histone acetylation, cytokines, and jejunal histomorphology at birth and day 18 of lactation. Data were analyzed using Proc MIXED of SAS. Supplementation of MMHAC tended to decrease (P = 0.059) body weight (BW) loss of sows during lactation and tended to increase (P = 0.098) piglet BW on day 18 of lactation. Supplementation of MMHAC increased (P < 0.05) global histone acetylation and tended to decrease myogenic regulatory factor 4 messenger ribonucleic acid (mRNA; P = 0.068) and delta 4-desaturase sphingolipid1 (DEGS1) mRNA (P = 0.086) in longissimus muscle of piglets at birth. Supplementation of MMHAC decreased (P < 0.05) nuclear factor kappa B mRNA in the jejunum and DEGS1 mRNA in longissimus muscle and tended to decrease mucin-2 (MUC2) mRNA (P = 0.057) and transforming growth factor-beta 1 (TGF-β1) mRNA (P = 0.057) in the jejunum of piglets on day 18 of lactation. There were, however, no changes in the amounts of tumor necrosis factor-alpha, interleukin-8, TGF-β, MUC2, and myogenic factor 6 in the tissues by MMHAC. In conclusion, maternal supplementation of MMHAC could contribute to histone acetylation and programming in the fetus, which potentially regulates intestinal health and skeletal muscle development of piglets at birth and weaning, possibly leading to enhanced growth of their piglets.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Jong Hyuk Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | | | | | - Ping Ren
- Novus International, Inc., St. Charles, MO
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
27
|
Wickramasinghe HKJP, Anast JM, Schmitz-Esser S, Serão NVL, Appuhamy JADRN. Beginning to offer drinking water at birth increases the species richness and the abundance of Faecalibacterium and Bifidobacterium in the gut of preweaned dairy calves. J Dairy Sci 2020; 103:4262-4274. [PMID: 32171510 DOI: 10.3168/jds.2019-17258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
We previously demonstrated that dairy calves having access to drinking water since birth (W0) achieved greater body weight, fiber digestibility, and feed efficiency than those that first received drinking water at 17 d of age (W17). Since gut microbiota composition could be linked to growth and development of animals, the objective of this study was to examine the effect of offering drinking water to newborn calves on composition of bacteria in the gut using a fecal microbiota analysis. Fresh feces were collected directly from the rectum of calves in W0 (n = 14) and W17 (n = 15) at 2, 6, and 10 wk of age. All of the calves were fed pasteurized waste milk, weaned at 7 wk of age, and offered tap water according to the treatment. The DNA was sequenced using 16S rRNA gene-amplicon sequencing on an Illumina MiSeq system (Illumina Inc., San Diego, CA). The sequences were clustered into operational taxonomic units (OTU) with a 99% similarity threshold. Treatment effects on α-diversity indices and relative abundance of the 10 most abundant genera were analyzed using GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). Statistical significance (q-value) of treatment effects on the 50 most abundant OTU was determined with a false discovery rate analysis. At 2 wk of age, W0 had a greater number of observed OTU (5,908 vs. 4,698) and species richness (Chao 1 index) than W17. The number of OTU and richness indices increased from wk 2 to 6, but the increment of W17 was greater than that of W0. The Shannon and inverse-Simpson indices increased linearly with age, but no difference was observed between W0 and W17 at any time point. The Firmicutes to Bacteroidetes ratios were also similar at every time point but decreased markedly when calves were weaned. The relative abundance of genera Faecalibacterium and Bacteroides was greater in W0 than W17 at 2 wk of age. The genus Faecalibacterium continued to be more abundant in W0 than W17 at 6 wk of age but had similar abundance 3 wk after weaning (10 wk of age). The abundance of Faecalibacterium at wk 6 was positively correlated with apparent total-tract digestibility of acid detergent fiber at 10 wk of age. Calves receiving water since birth had greater abundance of OTU related to Faecalibacterium prausnitzii, and Bifidobacterium breve at 6 wk of age (q < 0.085). These species are known to improve growth in preweaned calves. The abundance of none of the genera and OTU was different between W0 at W17 at 10 wk of age (q > 0.100). Overall, beginning to offer drinking water at birth has a potential to modulate gut microbiota composition and thereby positively affect performance of young dairy heifer calves (≤10 wk of age).
Collapse
Affiliation(s)
| | - J M Anast
- Department of Animal Science, Iowa State University, Ames 50011; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames 50011
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames 50011; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames 50011
| | - N V L Serão
- Department of Animal Science, Iowa State University, Ames 50011
| | | |
Collapse
|