1
|
Wu Z, Wang P. PcNAC25, a NAC transcription factor of Pugionium cornutum(L.) Gaertn conferring enhanced drought and salt stress tolerances in Arabidopsis. Sci Rep 2025; 15:1501. [PMID: 39789053 PMCID: PMC11718195 DOI: 10.1038/s41598-025-85615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P. cornutum are largely unknown. In this study, we identified the PcNAC25 transcription factor gene in P. cornutum. Its open reading frame was revealed to comprise 891 bp, encoding a protein consisting of 297 amino acids, with an isoelectric point of 6.61. Phylogenetic analysis showed that PcNAC25 was most closely related to ANAC019. The expression of PcNAC25 was induced by dehydration, mannitol, heat, cold, salt stresses and abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (JA) treatments. A subcellular localization analysis confirmed that PcNAC25 was localized in the nucleus. The overexpressing PcNAC25 lines in Arabidopsis had longer roots than wild-type (WT) lines under drought and salt stress. The overexpression of PcNAC25 improved drought and salt tolerance in transgenic Arabidopsis. Under drought and salt stress, PcNAC25 transgenic lines exhibited higher the CAT, POD and SOD activities and scavenging ability of hydroxyl radical than WT, more proline accumulation than WT and less MDA and H2O2 content and superoxide anion production rate than WT. PcNAC25 transgenic lines also exhibited greater reduced water loss rate of detached leaves than WT. Meanwhile, DAB and NBT staining showed that the accumulation of hydrogen peroxide and superoxide anion in PcNAC25 transgenic lines were also less than WT. In addition, overexpressing PcNAC25 enhanced the expression of drought response genes (DREB2A, SOD4, RD29A, NCED3, POD3, P5CS1, PYR1 and SAG13) and salt response genes NHX, SLAH1, SOS1 and NPF6.3. The mentioned above results indicated that PcNAC25 is a positive regulator that activates ROS-scavenging enzymes and enhances root formation in Arabidopsis, which provided a basis for further research on the molecular mechanism of PCNAC25-mediated regulation of drought and salt stress, and also provided gene resources of drought and salt tolerance.
Collapse
Affiliation(s)
- Zhaoxin Wu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ping Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China.
| |
Collapse
|
2
|
Dong X, Gao J, Jiang M, Tao Y, Chen X, Yang X, Wang L, Jiang D, Xiao Z, Bai X, He F. The Identification and Characterization of WOX Family Genes in Coffea arabica Reveals Their Potential Roles in Somatic Embryogenesis and the Cold-Stress Response. Int J Mol Sci 2024; 25:13031. [PMID: 39684742 DOI: 10.3390/ijms252313031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) genes play significant roles in plant development and stress responses. Difficulties in somatic embryogenesis are a significant constraint on the uniform seedling production and genetic modification of Coffea arabica, hindering efforts to improve coffee production in Yunnan, China. This study comprehensively analyzed WOX genes in three Coffea species. A total of 23 CaWOXs, 12 CcWOXs, and 10 CeWOXs were identified. Transcriptomic profile analysis indicated that about half of the CaWOX genes were actively expressed during somatic embryogenesis. The most represented CaWOXs were CaWOX2a, CaWOX2b, CaWOX8a, and CaWOX8b, which are suggested to promote the induction and development of the embryogenic callus, whereas CaWOX13a and CaWOX13b are suggested to negatively impact these processes. Co-expression analysis revealed that somatic embryogenesis-related CaWOXs were co-expressed with genes involved in embryo development, post-embryonic development, DNA repair, DNA metabolism, phenylpropanoid metabolism, secondary metabolite biosynthesis, and several epigenetic pathways. In addition, qRT-PCR showed that four WOX genes responded to cold stress. Overall, this study offers valuable insights into the functions of CaWOX genes during somatic embryogenesis and under cold stress. The results suggest that certain WOX genes play distinct regulatory roles during somatic embryogenesis, meriting further functional investigation. Moreover, the cold-responsive genes identified here are promising candidates for further molecular analysis to assess their potential to enhance cold tolerance.
Collapse
Affiliation(s)
- Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Jing Gao
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Meng Jiang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yuan Tao
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Xingbo Chen
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Xiaoshuang Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Linglin Wang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Dandan Jiang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Ziwei Xiao
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Feifei He
- School of Agriculture, Yunnan University, Kunming 650500, China
| |
Collapse
|
3
|
Zhang S, Guo Y, Zhang P, Ai J, Wang Y, Wang F. Functional characterization of VrNAC15 for drought resistance in mung beans. Gene 2024; 926:148621. [PMID: 38821326 DOI: 10.1016/j.gene.2024.148621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Drought stress has become an important limiting factor in mung bean production, and NAC(NAM/ATAF/CUC) transcription factors are crucial for plant growth under stress conditions, so it is important to study the regulatory role of NAC transcription factors in mung bean under drought stress. In this investigation, VrNAC15, along with its promoter, was cloned, and its structure was meticulously analyzed. Using qPCR, we examined the tissue-specific expression patterns of VrNAC15, particularly under drought stress and ABA exposure. Additionally, We performed ectopic expression of VrNAC15 in Arabidopsis to assess its function.. Gene sequence analysis revealed that VrNAC15 has a total length of 1014 bp, encoding 337 amino acids. It contains a NAM domain, localizes within the nucleus, and exhibits transcriptional activation. Promoter analysis of VrNAC15 identified essential core promoter elements and cis-acting elements related to abscisic acid, methyl jasmonate, gibberellin, adversity stress, light, and metabolism. Expression analysis demonstrated the concentration of VrNAC15 in leaves, with significant alterations following ABA and drought treatments in mung beans. Cluster analysis revealed that VrNAC15 may enhanced drought tolerance in transgenic plants through its expression. Transgenic experiments supported these findings, showing that heterologous expression of VrNAC15 led to enhanced antioxidant and osmotic adjustment capabilities in Arabidopsis plants. This resulted in the maintenance of cell membrane structural integrity during drought stress and normal physiological and biochemical metabolic reactions within cells. This research provides valuable insights into the structural and functional characteristics of the VrNAC15, setting the stage for future endeavors in molecular breeding for improved drought resistance in mung beans.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Yaning Guo
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Panpan Zhang
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Jing Ai
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Yue Wang
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Fugang Wang
- School of Life Sciences, Yulin University,Yulin 719000,China.
| |
Collapse
|
4
|
Marques I, Fernandes I, Paulo OS, Batista D, Lidon FC, Rodrigues AP, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Transcriptomic Analyses Reveal That Coffea arabica and Coffea canephora Have More Complex Responses under Combined Heat and Drought than under Individual Stressors. Int J Mol Sci 2024; 25:7995. [PMID: 39063237 PMCID: PMC11277005 DOI: 10.3390/ijms25147995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing exposure to unfavorable temperatures and water deficit imposes major constraints on most crops worldwide. Despite several studies regarding coffee responses to abiotic stresses, transcriptome modulation due to simultaneous stresses remains poorly understood. This study unravels transcriptomic responses under the combined action of drought and temperature in leaves from the two most traded species: Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Substantial transcriptomic changes were found, especially in response to the combination of stresses that cannot be explained by an additive effect. A large number of genes were involved in stress responses, with photosynthesis and other physiologically related genes usually being negatively affected. In both genotypes, genes encoding for protective proteins, such as dehydrins and heat shock proteins, were positively regulated. Transcription factors (TFs), including MADS-box genes, were down-regulated, although responses were genotype-dependent. In contrast to Icatu, only a few drought- and heat-responsive DEGs were recorded in CL153, which also reacted more significantly in terms of the number of DEGs and enriched GO terms, suggesting a high ability to cope with stresses. This research provides novel insights into the molecular mechanisms underlying leaf Coffea responses to drought and heat, revealing their influence on gene expression.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Isabel Fernandes
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Octávio S. Paulo
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Dora Batista
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Ana P. Rodrigues
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Fábio L. Partelli
- Centro Universitário do Norte do Espírito Santo (CEUNES), Departmento Ciências Agrárias e Biológicas (DCAB), Universidade Federal Espírito Santo (UFES), São Mateus 29932-540, ES, Brazil;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| |
Collapse
|
5
|
Cao F, Guo C, Wang X, Wang X, Yu L, Zhang H, Zhang J. Genome-wide identification, evolution, and expression analysis of the NAC gene family in chestnut ( Castanea mollissima). Front Genet 2024; 15:1337578. [PMID: 38333622 PMCID: PMC10850246 DOI: 10.3389/fgene.2024.1337578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The NAC gene family is one of the most important transcription factor families specific to plants, responsible for regulating many biological processes, including development, stress response, and signal transduction. However, it has not yet been characterized in chestnut, an important nut tree species. Here, we identified 115 CmNAC genes in the chestnut genome, which were divided into 16 subgroups based on the phylogenetic analysis. Numerous cis-acting elements related to auxin, gibberellin, and abscisic acid were identified in the promoter region of CmNACs, suggesting that they play an important role in the growth and development of chestnut. The results of the collinear analysis indicated that dispersed duplication and whole-genome-duplication were the main drivers of CmNAC gene expansion. RNA-seq data of developmental stages of chestnut nut, bud, and ovule revealed the expression patterns of CmNAC genes. Additionally, qRT-PCR experiments were used to verify the expression levels of some CmNAC genes. The comprehensive analysis of the above results revealed that some CmNAC members may be related to chestnut bud and nut development, as well as ovule fertility. The systematic analysis of this study will help to increase understanding of the potential functions of the CmNAC genes in chestnut growth and development.
Collapse
Affiliation(s)
- Fei Cao
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Chunlei Guo
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xiangyu Wang
- The Office of Scientific Research, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xuan Wang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Liyang Yu
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haie Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| |
Collapse
|
6
|
Zhang S, Xu T, Ren Y, Song L, Liu Z, Kang X, Li Y. The NAC transcription factor family in Eucommia ulmoides: Genome-wide identification, characterization, and network analysis in relation to the rubber biosynthetic genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1030298. [PMID: 37077635 PMCID: PMC10106570 DOI: 10.3389/fpls.2023.1030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
The NAC transcription factor family is a large plant gene family, participating in plant growth and development, secondary metabolite synthesis, biotic and abiotic stresses responses, and hormone signaling. Eucommia ulmoides is a widely planted economic tree species in China that can produce trans-polyisoprene: Eucommia rubber (Eu-rubber). However, genome-wide identification of the NAC gene family has not been reported in E. ulmoides. In this study, 71 NAC proteins were identified based on genomic database of E. ulmoides. Phylogenetic analysis showed that the EuNAC proteins were distributed in 17 subgroups based on homology with NAC proteins in Arabidopsis, including the E. ulmoides-specific subgroup Eu_NAC. Gene structure analysis suggested that the number of exons varied from 1 to 7, and multitudinous EuNAC genes contained two or three exons. Chromosomal location analysis revealed that the EuNAC genes were unevenly distributed on 16 chromosomes. Three pairs of genes of tandem duplicates genes and 12 segmental duplications were detected, which indicated that segmental duplications may provide the primary driving force of expansion of EuNAC. Prediction of cis-regulatory elements indicated that the EuNAC genes were involved in development, light response, stress response and hormone response. For the gene expression analysis, the expression levels of EuNAC genes in various tissues were quite different. To explore the effect of EuNAC genes on Eu-rubber biosynthesis, a co-expression regulatory network between Eu-rubber biosynthesis genes and EuNAC genes was constructed, which indicated that six EuNAC genes may play an important role in the regulation of Eu-rubber biosynthesis. In addition, this six EuNAC genes expression profiles in E. ulmoides different tissues were consistent with the trend in Eu-rubber content. Quantitative real-time PCR analysis showed that EuNAC genes were responsive to different hormone treatment. These results will provide a useful reference for further studies addressing the functional characteristics of the NAC genes and its potential role in Eu-rubber biosynthesis.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Yongyu Ren
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Lianjun Song
- Weixian Eucommia National Forest Tree Germplasm Repository, Weixian Forestry Cultivation Base of Superior Species, Hebei, China
| | - Zhao Liu
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Shen Q, Qian Z, Wang T, Zhao X, Gu S, Rao X, Lyu S, Zhang R, He L, Li F. Genome-wide identification and expression analysis of the NAC transcription factor family in Saccharum spontaneum under different stresses. PLANT SIGNALING & BEHAVIOR 2022; 17:2088665. [PMID: 35730557 PMCID: PMC9225438 DOI: 10.1080/15592324.2022.2088665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 05/15/2023]
Abstract
The NAC (NAM, ATAF1/2, and CUC2) transcription factor family is one of the largest families unique to plants and is involved in plant growth and development, organs, morphogenesis, and stress responses. The NAC family has been identified in many plants. As the main source of resistance genes for sugarcane breeding, the NAC gene family in the wild species Saccharum spontaneum has not been systematically studied. In this study, 115 SsNAC genes were identified in the S. spontaneum genome, and these genes were heterogeneously distributed on 25 chromosomes. Phylogenetic analysis divided the SsNAC family members into 18 subgroups, and the gene structure and conserved motif analysis further supported the phylogenetic classification. Four groups of tandemly duplicated genes and nine pairs of segmentally duplicated genes were detected. The SsNAC gene has different expression patterns at different developmental stages of stems and leaves. Further qRT-PCR analysis showed that drought, low-temperature, salinity, pathogenic fungi, and other stresses as well as abscisic acid (ABA) and methyl jasmonate (MeJA) treatments significantly induced the expression of 12 SsNAC genes, indicating that these genes may play a key role in the resistance of S. spontaneum to biotic and abiotic stresses. In summary, the results from this study provide comprehensive information on the NAC transcription factor family, providing a reference for further functional studies of the SsNAC gene.
Collapse
Affiliation(s)
- Qingqing Shen
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhenfeng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tianju Wang
- Institute for Bio-resources Research and Development of Central Yunnan Plateau, Chuxiong Normal University, Chuxiong, China
| | - Xueting Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shujie Gu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xibing Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaozhi Lyu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rongqiong Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lilian He
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fusheng Li
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Huded AKC, Jingade P, Mishra MK, Ercisli S, Ilhan G, Marc RA, Vodnar D. Comparative genomic analysis and phylogeny of NAC25 gene from cultivated and wild Coffea species. FRONTIERS IN PLANT SCIENCE 2022; 13:1009733. [PMID: 36186041 PMCID: PMC9523601 DOI: 10.3389/fpls.2022.1009733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Coffee is a high value agricultural commodity grown in about 80 countries. Sustainable coffee cultivation is hampered by multiple biotic and abiotic stress conditions predominantly driven by climate change. The NAC proteins are plants specific transcription factors associated with various physiological functions in plants which include cell division, secondary wall formation, formation of shoot apical meristem, leaf senescence, flowering embryo and seed development. Besides, they are also involved in biotic and abiotic stress regulation. Due to their ubiquitous influence, studies on NAC transcription factors have gained momentum in different crop plant species. In the present study, NAC25 like transcription factor was isolated and characterized from two cultivated coffee species, Coffea arabica and Coffea canephora and five Indian wild coffee species for the first time. The full-length NAC25 gene varied from 2,456 bp in Coffea jenkinsii to 2,493 bp in C. arabica. In all the seven coffee species, sequencing of the NAC25 gene revealed 3 exons and 2 introns. The NAC25 gene is characterized by a highly conserved 377 bp NAM domain (N-terminus) and a highly variable C terminus region. The sequence analysis revealed an average of one SNP per every 40.92 bp in the coding region and 37.7 bp in the intronic region. Further, the non-synonymous SNPs are 8-11 fold higher compared to synonymous SNPs in the non-coding and coding region of the NAC25 gene, respectively. The expression of NAC25 gene was studied in six different tissue types in C. canephora and higher expression levels were observed in leaf and flower tissues. Further, the relative expression of NAC25 in comparison with the GAPDH gene revealed four folds and eight folds increase in expression levels in green fruit and ripen fruit, respectively. The evolutionary relationship revealed the independent evolution of the NAC25 gene in coffee.
Collapse
Affiliation(s)
- Arun Kumar C. Huded
- Plant Biotechnology Division, Unit of Central Coffee Research Institute, Coffee Board, Mysore, Karnataka, India
| | - Pavankumar Jingade
- Plant Biotechnology Division, Unit of Central Coffee Research Institute, Coffee Board, Mysore, Karnataka, India
| | - Manoj Kumar Mishra
- Plant Biotechnology Division, Unit of Central Coffee Research Institute, Coffee Board, Mysore, Karnataka, India
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Erzurum, Turkey
| | - Gulce Ilhan
- Department of Horticulture, Faculty of Agriculture, Erzurum, Turkey
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dan Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Tariq R, Hussain A, Tariq A, Khalid MHB, Khan I, Basim H, Ingvarsson PK. Genome-wide analyses of the mung bean NAC gene family reveals orthologs, co-expression networking and expression profiling under abiotic and biotic stresses. BMC PLANT BIOLOGY 2022; 22:343. [PMID: 35836131 PMCID: PMC9284730 DOI: 10.1186/s12870-022-03716-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mung bean is a short-duration and essential food crop owing to its cash prominence in Asia. Mung bean seeds are rich in protein, fiber, antioxidants, and phytonutrients. The NAC transcription factors (TFs) family is a large plant-specific family, participating in tissue development regulation and abiotic and biotic stresses. RESULTS In this study, we perform genome-wide comparisons of VrNAC with their homologs from Arabidopsis. We identified 81 NAC transcription factors (TFs) in mung bean genome and named as per their chromosome location. A phylogenetic analysis revealed that VrNACs are broadly distributed in nine groups. Moreover, we identified 20 conserved motifs across the VrNACs highlighting their roles in different biological process. Based on the gene structure of the putative VrNAC and segmental duplication events might be playing a vital role in the expansion of mung bean genome. A comparative phylogenetic analysis of mung bean NAC together with homologs from Arabidopsis allowed us to classify NAC genes into 13 groups, each containing several orthologs and paralogs. Gene ontology (GO) analysis categorized the VrNACs into biological process, cellular components and molecular functions, explaining the functions in different plant physiology processes. A gene co-expression network analysis identified 173 genes involved in the transcriptional network of putative VrNAC genes. We also investigated how miRNAs potentially target VrNACs and shape their interactions with proteins. VrNAC1.4 (Vradi01g03390.1) was targeted by the Vra-miR165 family, including 9 miRNAs. Vra-miR165 contributes to leaf development and drought tolerance. We also performed qRT-PCR on 22 randomly selected VrNAC genes to assess their expression patterns in the NM-98 genotype, widely known for being tolerant to drought and bacterial leaf spot disease. CONCLUSIONS This genome-wide investigation of VrNACs provides a unique resource for further detailed investigations aimed at predicting orthologs functions and what role the play under abiotic and biotic stress, with the ultimate aim to improve mung bean production under diverse environmental conditions.
Collapse
Affiliation(s)
- Rezwan Tariq
- Department of Plant Protection, Akdeniz University, 07070, Antalya, Turkey
| | - Ammara Hussain
- Department of Biotechnology, University of Okara, Punjab, 56300, Pakistan
| | - Arslan Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Hayder Bin Khalid
- College of agronomy, Sichuan Agricultural University, Ya'an, China
- National Research Center of intercropping, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystem, Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou, 730020, China
| | - Huseyin Basim
- Department of Plant Protection, Akdeniz University, 07070, Antalya, Turkey.
| | - Pär K Ingvarsson
- Linnean Centre for Plan Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden.
| |
Collapse
|
10
|
Geng L, Su L, Fu L, Lin S, Zhang J, Liu Q, Jiang X. Genome-wide analysis of the rose (Rosa chinensis) NAC family and characterization of RcNAC091. PLANT MOLECULAR BIOLOGY 2022; 108:605-619. [PMID: 35169911 DOI: 10.1007/s11103-022-01250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
A genome-wide analysis identified 116 NAC genes in rose, including stress-related ones with different expression patterns under drought and salt stress. Silencing of RcNAC091, a member of the ATAF subfamily, decreased dehydration tolerance in rose. The NAC (NAM, ATAF, and CUC) transcription factors (TFs) are plant-specific proteins that regulate various developmental processes and stress responses. However, knowledge of the NAC TFs in rose (Rosa chinensis), one of the most important horticultural crops, is limited. In this study, 116 NAC genes were identified from the rose genome and classified into 16 subfamilies based on protein phylogenetic analysis. Chromosomal mapping revealed that the RcNAC genes were unevenly distributed on the seven chromosomes of rose. Gene structure and motif analysis identified a total of ten conserved motifs, of which motifs 1-7 were highly conserved and present in most rose NACs, while motifs 8-10 were present only in a few subfamilies. Further study of the stress-related RcNACs based on the transcriptome data showed differences in the expression patterns among the organs, at various floral developmental stages, and under drought and salt stress in rose leaves and roots. The stress-related RcNACs possessed cis-regulatory elements (CREs) categorized into three groups corresponding to plant growth and development, phytohormone response, and abiotic and biotic stress response. Reverse transcription-quantitative real-time PCR (RT-qPCR) analysis of 11 representative RcNACs revealed their differential expression in rose leaves and roots under abscisic acid (ABA), polyethylene glycol (PEG), and sodium chloride (NaCl) treatments. Furthermore, the silencing of RcNAC091 verified its role in positively regulating the dehydration stress response. Overall, the present study provides valuable insights into stress-related RcNACs and paves the way for stress tolerance in rose.
Collapse
Affiliation(s)
- Lifang Geng
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Lin Su
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Lufeng Fu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Shang Lin
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Jianmei Zhang
- Yantai Service Center of Forest Resources Monitoring and Protection, Yantai, 264000, China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China.
| |
Collapse
|
11
|
Ma W, Kang X, Liu P, She K, Zhang Y, Lin X, Li B, Chen Z. The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensis. HORTICULTURE RESEARCH 2022; 9:6498065. [PMID: 35031799 PMCID: PMC8788374 DOI: 10.1093/hr/uhab046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 05/19/2023]
Abstract
Caffeine is an important functional substance and is abundant in tea plant, but little is known about how its biosynthesis is regulated by transcription factors. In this study, the NAC-like transcription factor-encoding gene CsNAC7, which is involved in caffeine synthesis, was isolated from a Yinghong 9 cDNA library using a yeast one-hybrid assay; this gene comprises 1371 bp nucleotides and is predicted to encode 456 amino acids. The expression of CsNAC7 at the transcriptional level in tea shoots shared a similar pattern with that of the caffeine synthase gene yhNMT1 in the spring and summer, and its expressed protein was localized in the nucleus. Assays of gene activity showed that CsNAC7 has self-activation activity in yeast, that the active region is at the N-terminus, and that the transient expression of CsNAC7 could significantly promote the expression of yhNMT1 in tobacco leaves. In addition, overexpression or silencing of CsNAC7 significantly increased or decreased the expression of yhNMT1 and the accumulation of caffeine in transgenic tea calli, respectively. Our data suggest that the isolated transcription factor CsNAC7 positively regulates the caffeine synthase gene yhNMT1 and promotes caffeine accumulation in tea plant.
Collapse
Affiliation(s)
- Wenhui Ma
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Xin Kang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Ping Liu
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Kexin She
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Corresponding authors. ,
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Corresponding authors. ,
| |
Collapse
|
12
|
Yang S, Zhu H, Huang L, Zhang G, Wang L, Jiang X, Zhong Q. Transcriptome-wide and expression analysis of the NAC gene family in pepino ( Solanum muricatum) during drought stress. PeerJ 2021; 9:e10966. [PMID: 33850643 PMCID: PMC8015785 DOI: 10.7717/peerj.10966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
Solanum muricatum (Pepino) is an increasingly popular solanaceous crop and is tolerant of drought conditions. In this study, 71 NAC transcription factor family genes of S. muricatum were selected to provide a theoretical basis for subsequent in-depth study of their regulatory roles in the response to biological and abiotic stresses, and were subjected to whole-genome analysis. The NAC sequences obtained by transcriptome sequencing were subjected to bioinformatics prediction and analysis. Three concentration gradient drought stresses were applied to the plants, and the target gene sequences were analyzed by qPCR to determine their expression under drought stress. The results showed that the S. muricatum NAC family contains 71 genes, 47 of which have conserved domains. The protein sequence length, molecular weight, hydrophilicity, aliphatic index and isoelectric point of these transcription factors were predicted and analyzed. Phylogenetic analysis showed that the S. muricatum NAC gene family is divided into seven subfamilies. Some NAC genes of S. muricatum are closely related to the NAC genes of Solanaceae crops such as tomato, pepper and potato. The seedlings of S. muricatum were grown under different gradients of drought stress conditions and qPCR was used to analyze the NAC expression in roots, stems, leaves and flowers. The results showed that 13 genes did not respond to drought stress while 58 NAC genes of S. muricatum that responded to drought stress had obvious tissue expression specificity. The overall expression levels in the root were found to be high. The number of genes at extremely significant expression levels was very large, with significant polarization. Seven NAC genes with significant responses were selected to analyze their expression trend in the different drought stress gradients. It was found that genes with the same expression trend also had the same or part of the same conserved domain. Seven SmNACs that may play an important role in drought stress were selected for NAC amino acid sequence alignment of Solanaceae crops. Four had strong similarity to other Solanaceae NAC amino acid sequences, and SmNAC has high homology with the Solanum pennellii. The NAC transcription factor family genes of S. muricatum showed strong structural conservation. Under drought stress, the expression of NAC transcription factor family genes of S. muricatum changed significantly, which actively responded to and participated in the regulation process of drought stress, thereby laying foundations for subsequent in-depth research of the specific functions of NAC transcription factor family genes of S. muricatum.
Collapse
Affiliation(s)
- Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | | | - Liping Huang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Guangnan Zhang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Lihui Wang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Xiaoting Jiang
- Qinghai Higher Vocational & Technical Institute, Ledu, P.R. China, Xining, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| |
Collapse
|
13
|
The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060788] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.
Collapse
|
14
|
Shen S, Zhang Q, Shi Y, Sun Z, Zhang Q, Hou S, Wu R, Jiang L, Zhao X, Guo Y. Genome-Wide Analysis of the NAC Domain Transcription Factor Gene Family in Theobroma cacao. Genes (Basel) 2019; 11:E35. [PMID: 31905649 PMCID: PMC7017368 DOI: 10.3390/genes11010035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
As a plant-specific transcription factor, the NAC (NAM, ATAF1/2 and CUC2) domain protein plays an important role in plant growth and development, as well as stress resistance. Based on the genomic data of the cacao tree, this study identified 102 cacao NAC genes and named them according to their location within the genome. The phylogeny of the protein sequence of the cacao tree NAC family was analyzed using various bioinformatic methods, and then divided into 12 subfamilies. Then, the amino-acid composition, physicochemical properties, genomic location, gene structure, conserved domains, and promoter cis-acting elements were analyzed. This study provides information on the evolution of the TcNAC gene and its possible functions, laying the foundation for further research on the NAC family.
Collapse
Affiliation(s)
- Shiya Shen
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianru Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Shi
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhenmei Sun
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sijia Hou
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150000, China
| | - Yunqian Guo
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|