1
|
Ali Q, Ma S, Farooq U, Liu B, Wang Z, Sun H, Cui Y, Li D, Shi Y. Chronological dynamics of the gut microbiome in response to the pasture grazing system in geese. Microbiol Spectr 2024; 12:e0418823. [PMID: 39189756 PMCID: PMC11448393 DOI: 10.1128/spectrum.04188-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/21/2024] [Indexed: 08/28/2024] Open
Abstract
It is commonly accepted that dietary fibers are good for gut health. The effect of fibers on the diversity and metabolic activities of the cecal microflora, however, differ with the passage of time. Therefore, we investigated the time-series impacts of the pasture grazing system (a high dietary fiber source) on the cecal microbiome and short-chain fatty acids in Wanpu geese, comparing it to commercial feeding (a low dietary fiber source). The cecal microbiota composition and SCFA concentrations were evaluated by 16S rRNA gene sequencing and gas chromatography, respectively. We found that pasture produced a generally quick positive response to Bacteroidales, Lactobacillales, Gastranaerophilales (at 45 days), Lachnospirales, and Oscillospirales (at 60 days and 90 days) irrespective of Erysipelotrichales (at 45 days), Clostridia_UCG-014, RF39 (at 60 days), Christensenellales, and Peptostreptococcales-Tissierellales (at 90 days) in geese. Meanwhile, we found that Lactobacillales, Gastranaerophilales, Lachnospirales, and Oscillospirales were significantly correlated with short-chain fatty acids in pasture grazing geese. Indeed, the correlation of cecal microbiota with SCFAs led to altered microbial functions evinced by COG; KEGG pathway levels 1, 2, and 3; BugBase; and FAPROTAX databases. This study emphasizes the importance of dietary fiber sources in influencing beneficial impacts in regulating geese microbiota homeostasis and metabolic functions such as energy and lipid metabolism.IMPORTANCELow dietary fiber diet sources cause gut microbial and short-chain fatty acid alterations that lead to compromised animal health. The establishment of an artificial pasture grazing system at the expense of ryegrass is a good source of dietary fiber for geese. Our results described the importance of pasture in maintaining the gut microbiota, SCFAs, and potential microbial functions reported by COG; KEGG pathway levels 1, 2, and 3; BugBase; and FAPROTAX databases.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Umar Farooq
- Department of Poultry Science, University of Agriculture Faisalabad, Sub Campus Toba Tek Singh, Toba Tek Singh, Pakistan
| | - Boshuai Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Zhichang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Hao Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Yalei Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, China
| |
Collapse
|
2
|
Obianwuna UE, Huang L, Zhang H, Wang J, Qi G, Qiu K, Wu S. Fermented soybean meal improved laying performance and egg quality of laying hens by modulating cecal microbiota, nutrient digestibility, intestinal health, antioxidant and immunological functions. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:309-321. [PMID: 39290855 PMCID: PMC11405646 DOI: 10.1016/j.aninu.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Antinutritional factors in feedstuffs may limit their utilization in livestock production, but fermentation process can be used to improve feed quality; however, studies on fermented soybeans for laying hens remain limited. We investigated the effect of fermented soybean meal (FSBM) at various inclusion levels as a partial replacement for soybean meal (SBM) on egg production, egg quality, amino acid digestibility, gut morphology and microbiota, antioxidant capacity and immune response of young laying hens. A total of 360 Hy-line Brown laying hens aged 18 weeks were selected and divided into 5 groups of 6 replicates each and 12 birds per replicate. The control group received a basal diet while the trial group received the basal diet with FSBM included at 2.5%, 5.0%, 7.5% and 10.0%, respectively, for 12 weeks. Our findings revealed that the nutritional value of FSBM was higher compared to that of SBM in terms of reduced content of trypsin inhibitors and increased contents of crude protein, amino acids and minerals. FSBM enhanced egg production (P < 0.05), feed-to-egg ratio (P < 0.05), and albumen quality (albumen height and Haugh unit) (P < 0.05). Furthermore, FSBM improved apparent fecal amino acid digestibility (P < 0.05), gut morphology (increased villus height, villus width, villus height-to-crypt depth ratio and decreased crypt depth) (P < 0.05), antioxidant capacity (reduced malondialdehyde and increased catalase, total superoxide dismutase, glutathione peroxidase and total antioxidant capacity) (P < 0.05) and immune function (increased concentrations of IgG, IgA, and IgM; increased levels of transforming growth factor beta and Toll-like receptor 2; and reduced levels of interleukin 1β and tumor necrosis factor alpha) (P < 0.05). Further analysis showed that FSBM altered the composition of the gut microbiota favoring beneficial microbes. These findings suggest that probiotic fermentation improved the nutritional value of SBM. The inclusion of FSBM in the diets of laying hens at 2.5% or 5.0% improved amino acid digestibility, gut health, immune function, egg production and egg quality.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingling Huang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Campos PM, Miska KB, Jenkins MC, Yan X, Proszkowiec-Weglarz M. Effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum and ileum in broiler chickens. Sci Rep 2024; 14:10702. [PMID: 38729976 PMCID: PMC11087572 DOI: 10.1038/s41598-024-61299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Coccidiosis, an intestinal disease caused by Eimeria parasites, is responsible for major losses in the poultry industry by impacting chicken health. The gut microbiota is associated with health factors, such as nutrient exchange and immune system modulation, requiring understanding on the effects of Eimeria infection on the gut microbiota. This study aimed to determine the effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum (CeL and CeM) and ileum (IlL and IlM) at multiple time points (days 3, 5, 7, 10, and 14) post-infection. E. acervulina infection decreased evenness in CeL microbiota at day 10, increased richness in CeM microbiota at day 3 before decreasing richness at day 14, and decreased richness in IlL microbiota from day 3 to 10. CeL, CeM, and IlL microbiota differed between infected and control birds based on beta diversity at varying time points. Infection reduced relative abundance of bacterial taxa and some predicted metabolic pathways known for short-chain fatty acid production in CeL, CeM, and IlL microbiota, but further understanding of metabolic function is required. Despite E. acervulina primarily targeting the duodenum, our findings demonstrate the infection can impact bacterial diversity and abundance in the cecal and ileal microbiota.
Collapse
Affiliation(s)
- Philip M Campos
- Oak Ridge Institute for Science and Education (ORISE), USDA-ARS Research Participation Program, Oak Ridge, TN, USA
- USDA-ARS, NEA Bioinformatics, Beltsville, MD, USA
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, B-307, Rm. 335, BARC-East, Beltsville, MD, 20705, USA
| | - Katarzyna B Miska
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, B-307, Rm. 335, BARC-East, Beltsville, MD, 20705, USA
| | - Mark C Jenkins
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - Xianghe Yan
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA
| | - Monika Proszkowiec-Weglarz
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, B-307, Rm. 335, BARC-East, Beltsville, MD, 20705, USA.
| |
Collapse
|
4
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Khasanah H, Kusbianto DE, Purnamasari L, Cruz JFD, Widianingrum DC, Hwang SG. Modulation of chicken gut microbiota for enhanced productivity and health: A review. Vet World 2024; 17:1073-1083. [PMID: 38911084 PMCID: PMC11188898 DOI: 10.14202/vetworld.2024.1073-1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Microbiota in the digestive tract has become an interesting topic for researchers in recent years. The profile of chicken digestive tract microbiota and its relationship with health and production efficiency have become basic data for modulating the diversity and abundance of the digestive tract microbiota. This article reviews the techniques used to analyze the diversity, role, and function of the gastrointestinal microbiota and the mechanisms by which they are modulated. The gut microbiota plays an important role in animal production, especially during feed digestion and animal health, because it interacts with the host against pathogens. Feed modulation can be a strategy to modulate gut composition and diversity to increase production efficiency by improving growth conditions.
Collapse
Affiliation(s)
- Himmatul Khasanah
- Study Program of Animal Husbandry University of Jember, Jember 68121, Indonesia
- Applied Molecular and Microbial Biotechnology (AM2B) Research Group, University of Jember, Jawa Timur, 68121, Indonesia
| | - Dwi E. Kusbianto
- Study Program of Agricultural Science, University of Jember, Jember 68121, Indonesia
| | - Listya Purnamasari
- Study Program of Animal Husbandry University of Jember, Jember 68121, Indonesia
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
| | - Joseph F. dela Cruz
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños-4031, Philippines
| | - Desy C. Widianingrum
- Study Program of Animal Husbandry University of Jember, Jember 68121, Indonesia
- Applied Molecular and Microbial Biotechnology (AM2B) Research Group, University of Jember, Jawa Timur, 68121, Indonesia
| | - Seong Gu Hwang
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
6
|
Saeed M, Kamboh AA, Huayou C. Promising future of citrus waste into fermented high-quality bio-feed in the poultry nutrition and safe environment. Poult Sci 2024; 103:103549. [PMID: 38387290 PMCID: PMC10899041 DOI: 10.1016/j.psj.2024.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Essential oils (EO), ascorbic acid, sugars, carotenoids, flavonoids, dietary fiber, polyphenols, and trace minerals are found in citrus residue. It gives animals energy and promotes health. On a dry matter basis, the citrus pulp is composed of 7% crude protein, 14% crude fiber, 21.6% nitrogen detergent fiber, 2.5% fat, 24.4% total sugars, and 12.1% ME MJ/kg. It has been reported that the natural antioxidant content of citrus pulp has a beneficial effect on growth and microbial and immunological parameters. The literature indicates that the ultimate weight and weight gain of poultry are significantly (P > 0.05) greater with 7.5% inclusion. Growing knowledge of the health benefits of lactic acid bacteria (LAB) in producing beneficial metabolites has led to interest in developing LAB-containing products for use in biofeed businesses. The consumption of fermented citrus residue significantly decreased blood cholesterol levels. Fermentation results in the production of many compounds (including organic acids, exopolysaccharides, bioactive peptides, phenolic compounds, and gamma-aminobutyric acid), which have many multidimensional functions for maintaining the health and well-being of poultry. During fermentation, the pH may quickly decrease, and harmful bacterial and fungal organisms may be substantially retarded at the early stage of ensiling. The published literature has shown that the fermentation of citrus waste with different probiotic strains, such as Lactobacillus acidophilus, Limosilactobacillus fermentum, Lactiplantibacillus plantarum, Pediococcus pentocaseus, and Lacticaseiobacillus paracasei, in the diet has fantastic effects on the conversion of citrus waste into fermented high-quality feed with extended shelf life and sensory value. Citrus waste lactic acid fermentation may be a viable option for producing nutritional biofeed for poultry, but there is a lack of related research on poultry, so more research on food-grade bacterial fermentation is needed.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Asghar Ali Kamboh
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University, Tandojam, 70060, China
| | - Chen Huayou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Tan K, Bian Z, Liang H, Hu W, Xia M, Han S, Chen B. Enzymolytic soybean meal-impact on growth performance, nutrient digestibility, antioxidative capacity, and intestinal health of weaned piglets. Front Vet Sci 2024; 11:1381823. [PMID: 38585301 PMCID: PMC10995376 DOI: 10.3389/fvets.2024.1381823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Enzymolytic soybean meal (ESBM) enriches free amino acids and small peptides, while mitigating anti-nutritional factors. Substituting soybean meal with ESBM enhances animal performance, though optimal piglet dietary supplementation levels vary. The present study aimed to assess the impact of ESBM on the growth performance, nutrient digestibility, antioxidative capacity and intestinal health of weaned piglets. A total of 120 piglets (initial body weight, 7.0 ± 0.4 kg) were randomly allocated into 4 dietary groups, each comprising 5 replicates with 6 piglets per replicate. The control group received the basal diet, while the experimental groups were fed diets containing 2, 4% or 8% ESBM as a replacement for soybean meal over 28 days. Compared with the control group, piglets supplemented with 4% ESBM exhibited a significant increase (p < 0.05) in average daily gain and the apparent total tract digestibility of dry matter, ether extract and gross energy (p < 0.05), alongside a notable decrease (p < 0.05) in diarrhea incidence. Fed ESBM linearly increased (p < 0.05) the villus height in the ileum of piglets. The levels of superoxide dismutase and total antioxidant capacity in serum of piglets increased (p < 0.05) in the 2 and 4% ESBM groups, while diamine oxidase content decreased (p < 0.05) in the 4 and 8% ESBM group. ESBM inclusion also upregulated (p < 0.05) the expression of superoxide dismutase 1 (SOD-1), Catalase (CAT) and claudin-1 mRNA. In terms of cecal fermentation characteristics, ESBM supplementation resulted in a increase (p < 0.05) in valerate content and a linear rise (p < 0.05) in propionate, butyrate, and total short-chain fatty acids levels, accompanied by a decrease (p < 0.05) in the concentrations of tryptamine and NH3 in cecal digesta. ESBM had no discernible effect on cecal microbial composition. In summary, substitution of soybean meal with ESBM effectively improved the growth performance of piglets by enhancing nutrient digestibility, antioxidant capacity, intestinal barrier and cecal microbial fermentation characteristics, with the optimal replacement level identified at 4%.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Lambo MT, Ma H, Zhang H, Song P, Mao H, Cui G, Dai B, Li Y, Zhang Y. Mechanism of action, benefits, and research gap in fermented soybean meal utilization as a high-quality protein source for livestock and poultry. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:130-146. [PMID: 38357571 PMCID: PMC10864219 DOI: 10.1016/j.aninu.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
Animal nutritionists have incessantly worked towards providing livestock with high-quality plant protein feed resources. Soybean meal (SBM) has been an essential and predominantly adopted vegetable protein source in livestock feeding for a long time; however, several SBM antinutrients could potentially impair the animal's performance and growth, limiting its use. Several processing methods have been employed to remove SBM antinutrients, including fermentation with fungal or bacterial microorganisms. According to the literature, fermentation, a traditional food processing method, could improve SBM's nutritional and functional properties, making it more suitable and beneficial to livestock. The current interest in health-promoting functional feed, which can enhance the growth of animals, improve their immune system, and promote physiological benefits more than conventional feed, coupled with the ban on the use of antimicrobial growth promoters, has caused a renewed interest in the use of fermented SBM (FSBM) in livestock diets. This review details the mechanism of SBM fermentation and its impacts on animal health and discusses the recent trend in the application and emerging advantages to livestock while shedding light on the research gap that needs to be critically addressed in future studies. FSBM appears to be a multifunctional high-quality plant protein source for animals. Besides removing soybean antinutrients, beneficial bioactive peptides and digestive enzymes are produced during fermentation, providing probiotics, antioxidants, and immunomodulatory effects. Critical aspects regarding FSBM feeding to animals remain uncharted, such as the duration of fermentation, the influence of feeding on digestive tissue development, choice of microbial strain, and possible environmental impact.
Collapse
Affiliation(s)
- Modinat T. Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haokai Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haosheng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Peng Song
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Shanghai 200137, China
| | - Hongxiang Mao
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Shanghai 200137, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baisheng Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Maguey-González JA, Liu J, Zhang G, Latorre JD, Hernández-Ramírez JO, de Jesús Nava-Ramírez M, Senas-Cuesta R, Gómez-Rosales S, de Lourdes Ángeles M, Stein A, Solís-Cruz B, Hernández-Patlán D, Merino-Guzmán R, Hernandez-Velasco X, Castellanos-Huerta I, Uribe-Diaz S, Vázquez-Durán A, Méndez-Albores A, Petrone-Garcia VM, Tellez Jr. G, Hargis BM, Téllez-Isaías G. Assessment of the Impact of Humic Acids on Intestinal Microbiota, Gut Integrity, Ileum Morphometry, and Cellular Immunity of Turkey Poults Fed an Aflatoxin B 1-Contaminated Diet. Toxins (Basel) 2024; 16:122. [PMID: 38535788 PMCID: PMC10975313 DOI: 10.3390/toxins16030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024] Open
Abstract
A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.
Collapse
Affiliation(s)
- Jesús A. Maguey-González
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Juan O. Hernández-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - María de Jesús Nava-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - Roberto Senas-Cuesta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Sergio Gómez-Rosales
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km1 Carretera a Colon Ajuchitlán, Querétaro 76280, Mexico; (S.G.-R.); (M.d.L.Á.)
| | - María de Lourdes Ángeles
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km1 Carretera a Colon Ajuchitlán, Querétaro 76280, Mexico; (S.G.-R.); (M.d.L.Á.)
| | - Andressa Stein
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Bruno Solís-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (B.S.-C.); (D.H.-P.)
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Tultitlan 54910, Mexico
| | - Daniel Hernández-Patlán
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (B.S.-C.); (D.H.-P.)
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Tultitlan 54910, Mexico
| | - Rubén Merino-Guzmán
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México 04510, Mexico; (R.M.-G.); (X.H.-V.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México 04510, Mexico; (R.M.-G.); (X.H.-V.)
| | - Inkar Castellanos-Huerta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Santiago Uribe-Diaz
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | | | - Guillermo Tellez Jr.
- Department of Developmental Biology, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK;
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Guillermo Téllez-Isaías
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| |
Collapse
|
10
|
Majidian P, Ghorbani HR, Farajpour M. Achieving agricultural sustainability through soybean production in Iran: Potential and challenges. Heliyon 2024; 10:e26389. [PMID: 38404839 PMCID: PMC10884498 DOI: 10.1016/j.heliyon.2024.e26389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
The utilization of soybean as a key oil crop to enhance sustainable agriculture has garnered significant attention from researchers. Its lower water requirements compared to rice, along with its reduced environmental impact, including greenhouse gas emissions, improved water quality, enhanced biodiversity, and efficient resource utilization, make it an attractive option. Unfortunately, Iran, like many other developing countries, heavily relies on soybean imports (over 90%) to meet the demand for oil and protein in human and livestock food rations. The decline in soybean production, coupled with diminishing cultivation areas, yield rates, and increasing import needs, underscores the urgent need to address the challenges faced in Iran. The decline in soybean production in the country can be attributed to various factors, including environmental stresses (both biotic and abiotic), limited variation in soybean cultivars, inadequate mechanization for cultivation, and economic policies. Hence, this review provides a comprehensive overview of the current status of soybean production in Iran and highlights its potential to enhance sustainable agriculture. Additionally, it examines the challenges and constraints associated with soybean cultivation, such as environmental changes and unbalanced marketing, and explores potential solutions and management strategies to bridge the gap between small-scale and large-scale production. Given the increasing global demand for plant-based protein and the significance of the feed industry, studying the limitations faced by countries with slower soybean production growth can shed light on the issues and present opportunities to capitalize on novel soybean advancements in the future. By addressing these challenges and unlocking the potential of soybean cultivation, Iran can contribute to sustainable agricultural practices and attain a more resilient food system.
Collapse
Affiliation(s)
- Parastoo Majidian
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Hamid Reza Ghorbani
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| |
Collapse
|
11
|
Wei Z, Xu L, Guo Y, Guo B, Lu C, Sun W, Li Y, Jiang X, Li X, Pi Y. Evaluation of Available Energy and Standardized Ileal Digestibility of Amino Acids in Fermented Flaxseed Meal for Growing Pigs. Animals (Basel) 2024; 14:228. [PMID: 38254397 PMCID: PMC10812548 DOI: 10.3390/ani14020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Flaxseed meal (FSM) is a byproduct of flaxseed oil extraction which has rich nutritional value and can be used as a high-quality new protein ingredient. However, the anti-nutrient factor (ANF) in FSM restricts its potential application in feed. The strategy of microbial fermentation is a highly effective approach to reducing ANF in FSM and enhancing its feeding value. However, evaluation of the nutritional value of fermented flaxseed meal (FFSM) in growing pigs has not yet been conducted. Thus, the purpose of this study was to investigate the nutritional value of FFSM in growing pigs and comparison of the effect of fermentation treatment on improving the nutritional value of FSM. Two experiments were conducted to determine the available energy value, apparent digestibility of nutrients, and standard ileal digestibility of amino acids of FSM and FFSM in growing pigs. The results showed as follows: (1) Fermentation treatment increased the levels of crude protein (CP), Ca and P in FSM by 2.86%, 9.54% and 4.56%, while decreasing the concentration of neutral detergent fiber (NDF) and acid detergent fiber (ADF) by 34.09% and 12.71%, respectively (p < 0.05); The degradation rate of CGs in FSM was 54.09% (p < 0.05); (2) The digestible energy (DE) and metabolic energy (ME) of FSM and FFSM were 14.54 MJ/kg, 16.68 MJ/kg and 12.85 MJ/kg, 15.24 MJ/kg, respectively; (3) Compared with FSM, dietary FFSM supplementation significantly increased the apparent digestibility of CP, NDF, ADF, Ca, and P of growing pigs (p < 0.05) and significantly increased the standard ileal digestibility of methionine (p < 0.05). These results indicate that fermentation treatment could effectively enhance the nutritional value of FSM and provide basic theoretical data for the application of FFSM in pig production.
Collapse
Affiliation(s)
- Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Guo
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baozhu Guo
- Zhangjiakou Animal Husbandry Technology Extension Station, Zhangjiakou 075000, China
| | - Chunxiang Lu
- Zhangjiakou Animal Husbandry Technology Extension Station, Zhangjiakou 075000, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Zhangjiakou Animal Husbandry Technology Extension Station, Zhangjiakou 075000, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Liu X, Wang A, Zhu L, Guo W, Guo X, Zhu B, Yang M. Effect of additive cellulase on fermentation quality of whole-plant corn silage ensiling by a Bacillus inoculant and dynamic microbial community analysis. Front Microbiol 2024; 14:1330538. [PMID: 38264477 PMCID: PMC10803609 DOI: 10.3389/fmicb.2023.1330538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Whole-plant corn silage (WPCS) has been widely used as the main roughage for ruminant, which promoted the utilization of corn stover for animal feed production. However, rigid cell wall structure of corn stover limits the fiber digestion and nutrients adsorption of WPCS. This study investigated the effect of adding cellulase on improving the fermentation quality of WPCS ensiling with a Bacillus complex inoculant. With the Bacillus (BA), the lactic acid accumulation in the WPCS was significantly higher than that in control (CK). The additive cellulase (BC) increased the lactic acid content to the highest of 8.2% DW at 60 days, which was significantly higher than that in the CK and BA groups, and it reduced the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents from 42.5 to 31.7% DW and 28.4 to 20.3% DW, respectively, which were significantly lower than that in the CK and BA groups. The crude protein and starch were not obviously lost. Dynamic microbial community analysis showed that the Bacillus inoculant promoted the lactic acid bacteria (LAB) fermentation, because higher abundance of Lactobacillus as the dominant bacteria was observed in BA group. Although the addition of cellulase slowed the Lactobacillus fermentation, it increased the bacterial community, where potential lignocellulolytic microorganisms and more functional enzymes were observed, thus leading to the significant degradation of NDF and ADF. The results revealed the mechanism behind the degradation of NDF and ADF in corn stover, and also suggested the potential of cellulase for improving the nutritional quality of WPCS.
Collapse
Affiliation(s)
- Xudong Liu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Aifang Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Liqi Zhu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Wei Guo
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Engineering Research Center for Agricultural Waste Resource Utilization, Baoding, China
| | - Xiaojun Guo
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Engineering Research Center for Agricultural Waste Resource Utilization, Baoding, China
| | - Baocheng Zhu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Engineering Research Center for Agricultural Waste Resource Utilization, Baoding, China
| | - Ming Yang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Engineering Research Center for Agricultural Waste Resource Utilization, Baoding, China
| |
Collapse
|
13
|
Khodadoust A, Khoshkholgh M, Noveirian HA, Mohseni M, Khara H. Effects of fermented soybean meal and supplemental methionine and lysine on growth, digestibility, body composition, and amino acid composition of Beluga (Huso huso). J Anim Sci 2024; 102:skae275. [PMID: 39302091 PMCID: PMC11465423 DOI: 10.1093/jas/skae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
There is an increasing concern about using limited high-quality protein sources in the aquafeed industry. The alternative solution to this problem is cost-effective plant proteins such as soybean meal (SBM). However, it is better to improve plant protein-containing diets through processing and supplemental amino acids. This study aimed to examine the effects of fermented soybean meal (FSBM) and supplemental methionine and lysine (ML) in diets on growth, digestibility, and body and amino acid composition in Beluga (Huso huso). Two basal diets (490 g FM Kg-1) of fish meal (FM) and FM with ML (FM + ML) were replaced by 40%, 60%, and 80% of FSBM and FSBM + ML (FM, FSBM40, FSBM60, FSBM80, FM + ML, FSBM40 + ML, FSBM60 + ML and FSBM80 + ML; 444 g kg-1 crude protein and 19.77 MJ kg-1 gross energy). The diets were fed to triplicate groups of Beluga (394.6 ± 4.3 g) three times daily for 56 d. The results showed that Beluga fed 80% FSBM and FSBM + ML had lower growth and feed utilization. Moreover, Beluga-fed FSBM + ML performed poorer than those fed FSBM (P < 0.05). No interactions between fermented SBM and ML were observed in apparent digestibility coefficients (ADC) and body proximate composition except for ADC of crude lipid. ADC in Beluga fed 80% were less than other diets. Substitution of FSBM and FSBM + ML in diets significantly reduced dry matter, ash and crude lipid; Crude lipid increased in groups fed FSBM + ML (P < 0.05). FSBM and FSBM + ML in 60% had higher and lower total amino acids in muscle and feces (P < 0.05), respectively. Also, excreted total amino acids in feces increased with ML (P < 0.05). Generally, in Beluga, FSBM-containing diets showed better effects on growth, feed utilization, whole-body lipid, and muscle and fecal amino acids than those with FSBM + ML. Fermented SBM could be replaced up to 60%.
Collapse
Affiliation(s)
- Ali Khodadoust
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Majidreza Khoshkholgh
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Hamid A Noveirian
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Mahmoud Mohseni
- International Sturgeon Research Institute, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
| | - Hossein Khara
- Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| |
Collapse
|
14
|
Xu F, Wu H, Xie J, Zeng T, Hao L, Xu W, Lu L. The Effects of Fermented Feed on the Growth Performance, Antioxidant Activity, Immune Function, Intestinal Digestive Enzyme Activity, Morphology, and Microflora of Yellow-Feather Chickens. Animals (Basel) 2023; 13:3545. [PMID: 38003161 PMCID: PMC10668758 DOI: 10.3390/ani13223545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
This experiment was conducted to investigate the effects of fermented feed on growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens. A total of 240 one-day-old female yellow-feathered (Hexi dwarf) chickens were randomly divided into two treatment groups, with six replicates per group and 20 chickens per replicate. The control group (CK) received a basal diet, whereas the experimental group was fed a basal diet of +2.00% fermented feed (FJ). The trial lasted for 22 days. Compared with the CK, (1) the growth performance was not affected (p > 0.05); (2) immunoglobin a, immunoglobin g, immunoglobin m, interleukin-1β, and interleukin-6 were affected (p < 0.05); (3) liver superoxide dismutase, glutathione peroxidase, and catalase were higher (p < 0.05); (4) trypsin activity in the duodenum and cecal Shannon index were increased (p < 0.05); (5) the relative abundance of Actinobacteriota in cecum was increased (p < 0.05); (6) the abundance of dominant microflora of Bacteroides as well as Clostridia UCG-014_norank were increased (p < 0.05). In summary, the fermented feed improved the growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Junan Agriculture and Rural Bureau, Linyi 276600, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiajun Xie
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| | - Lijian Hao
- Junan Agriculture and Rural Bureau, Linyi 276600, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| |
Collapse
|
15
|
Fries-Craft K, Schmitz-Esser S, Bobeck EA. Dietary alfalfa hay or lipid-soluble alfalfa extract may improve broiler growth, but fiber presence may be detrimental during Eimeria vaccine challenge. Poult Sci 2023; 102:103019. [PMID: 37639755 PMCID: PMC10474085 DOI: 10.1016/j.psj.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lipid-soluble components in late-cutting alfalfa are linked to beneficial immune and microbiota responses in mouse challenge models; therefore, responses in a comparative poultry Eimeria challenge model were investigated. The study objective was to evaluate performance, immunity, and the cecal microbiota in broilers fed ground hay or lipid-soluble extract from late (fifth) cutting alfalfa during Eimeria challenge. At hatch, 432 Ross 708 broilers were placed in 24 floor pens (18 birds/pen) and assigned to 3 isocaloric/isonitrogenous dietary treatments consisting of control, 5% ground hay, or 0.25% lipid-soluble extract for a 42-d trial divided into 14 d starter, grower, and finisher periods. On d 14, 4 birds/treatment were euthanized to collect blood and cecal contents before half the remainder were inoculated with 10X Merck Coccivac-B52 (Kenilworth, NJ). Tissue samples were collected at 3, 7, 14, and 28 d postinoculation (pi; 4 birds/diet × Eimeria group) with body weight (BW) and feed intake (FI) recorded weekly. Immune populations within peripheral blood mononuclear cells were characterized by flow cytometry while cecal microbial communities were profiled by 16S rRNA gene amplicon sequencing. Data were normalized when appropriate and analyzed to evaluate the effects of diet, Eimeria challenge, and timepoint (SAS 9.4; P ≤ 0.05). Before challenge, dietary alfalfa hay or extract increased FI 6.9 to 8.0% and increased CD3+ T cells 19.3 to 24.9% compared to control-fed birds (P ≤ 0.007). Alfalfa did not significantly affect post-Eimeria performance, but Eimeria-challenged birds fed hay showed the greatest numeric reduction in final BW compared to their unchallenged counterparts (0.17 kg) vs. control and extract-fed birds (0.02-0.04 kg). Immune cell changes did not indicate recruitment from peripheral blood to local infection sites; however, alfalfa hay may have accelerated Bu-1+ B cell development by 7 d in unchallenged birds (P < 0.0001). During Eimeria-challenge, dietary alfalfa extract preserved alpha diversity measures related to species richness (P ≤ 0.007). Collectively, these results indicate potential benefits of feeding lipid-soluble extract from late cutting alfalfa to broilers during Eimeria challenge.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
16
|
McCuaig B, Goto Y. Immunostimulating Commensal Bacteria and Their Potential Use as Therapeutics. Int J Mol Sci 2023; 24:15644. [PMID: 37958628 PMCID: PMC10647581 DOI: 10.3390/ijms242115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The gut microbiome is intimately intertwined with the host immune system, having effects on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can affect the immune status of the host through a stimulation of the innate immune system, training of the adaptive immune system, and competitive exclusion of pathogens. Commensal bacteria improve immune response through the production of immunomodulating compounds such as microbe-associated molecular patterns (MAMPs), short-chain fatty acids (SCFAs), and secondary bile acids. The microbiome, especially when in dysbiosis, is plastic and can be manipulated through the introduction of beneficial bacteria or the adjustment of nutrients to stimulate the expansion of beneficial taxa. The complex nature of the gastrointestinal tract (GIT) ecosystem complicates the use of these methods, as similar treatments have various results in individuals with different residential microbiomes and differential health statuses. A more complete understanding of the interaction between commensal species, host genetics, and the host immune system is needed for effective microbiome interventions to be developed and implemented in a clinical setting.
Collapse
Affiliation(s)
- Bonita McCuaig
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Yoshiyuki Goto
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Division of Pandemic and Post-Disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
17
|
Du L, Chen W, Wang J, Huang L, Zheng Q, Chen J, Wang L, Cai C, Zhang X, Wang L, Zhong Q, Zhong W, Fang X, Liao Z. Beneficial Effects of Bacillus amyloliquefaciens D1 Soy Milk Supplementation on Serum Biochemical Indexes and Intestinal Health of Bearded Chickens. Microorganisms 2023; 11:1660. [PMID: 37512832 PMCID: PMC10385625 DOI: 10.3390/microorganisms11071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of dietary supplementation with Bacillus amyloliquefaciens D1 (B. amyloliquefaciens D1) on growth performance, serum anti-inflammatory cytokines, and intestinal microbiota composition and diversity in bearded chickens. To investigate the effects of Bacillus amyloliquefaciensa and fermented soy milk, 7-day-old broilers were orally fed different doses of Bacillus amyloliquefaciens D1 fermented soy milk for 35 days, with the unfermented soy milk group as the Placebo group. This study found that B. amyloliquefaciens D1 fermented soy milk improved the intestinal microbiota of broilers, significantly increasing the abundance of beneficial bacteria and decreasing the abundance of harmful bacteria in the gut. B. amyloliquefaciens D1 fermented soy milk also significantly reduced the serum lipopolysaccharide (LPS) content. The body weight and daily weight gain of broilers were increased. In conclusion, the results of this study are promising and indicate that supplementing the diets of bearded chickens with B. amyloliquefaciens D1 fermented soy milk has many beneficial effects in terms of maintaining intestinal microbiota balance and reducing inflammation in chickens.
Collapse
Affiliation(s)
- Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weizhe Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingzhu Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qikai Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Linhao Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Cai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangbin Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wujie Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Plouhinec L, Neugnot V, Lafond M, Berrin JG. Carbohydrate-active enzymes in animal feed. Biotechnol Adv 2023; 65:108145. [PMID: 37030553 DOI: 10.1016/j.biotechadv.2023.108145] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France.
| | - Virginie Neugnot
- ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France
| | - Mickael Lafond
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
19
|
Double-Fermented Soybean Meal Totally Replaces Soybean Meal in Broiler Rations with Favorable Impact on Performance, Digestibility, Amino Acids Transporters and Meat Nutritional Value. Animals (Basel) 2023; 13:ani13061030. [PMID: 36978571 PMCID: PMC10044553 DOI: 10.3390/ani13061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Inclusion of microbial fermented soybean meal in broiler feed has induced advantageous outcomes for their performance and gastrointestinal health via exhibiting probiotic effects. In this study, soybean meal (SBM) was subjected to double-stage microbial fermentation utilizing functional metabolites of fungi and bacteria. In broiler diet, DFSBM replaced SBM by 0, 25, 50 and 100%. DFSBM was reported to have higher protein content and total essential, nonessential and free amino acids (increased by 3.67%, 12.81%, 10.10% and 5.88-fold, respectively, compared to SBM). Notably, phytase activity and lactic acid bacteria increased, while fiber, lipid and trypsin inhibitor contents were decreased by 14.05%, 38.24% and 72.80%, respectively, in a diet containing 100% DFSBM, compared to SBM. Improved growth performance and apparent nutrient digestibility, including phosphorus and calcium, and pancreatic digestive enzyme activities were observed in groups fed higher DFSBM levels. In addition, higher inclusion levels of DFSBM increased blood immune response (IgG, IgM, nitric oxide and lysozyme levels) and liver antioxidant status. Jejunal amino acids- and peptide transporter-encoding genes (LAT1, CAT-1, CAT-2, PepT-1 and PepT-2) were upregulated with increasing levels of DFSBM in the ration. Breast muscle crude protein, calcium and phosphorus retention were increased, especially at higher inclusion levels of DFSBM. Coliform bacteria load was significantly reduced, while lactic acid bacteria count in broiler intestines was increased with higher dietary levels of DFSBM. In conclusion, replacement of SBM with DFSBM positively impacted broiler chicken feed utilization and boosted chickens’ amino acid transportation, in addition to improving the nutritional value of their breast meat.
Collapse
|
20
|
Muniyappan M, Shanmugam S, Park JH, Han K, Kim IH. Effects of fermented soybean meal supplementation on the growth performance and apparent total tract digestibility by modulating the gut microbiome of weaned piglets. Sci Rep 2023; 13:3691. [PMID: 36878925 PMCID: PMC9988856 DOI: 10.1038/s41598-023-30698-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
This study investigates the effects of soybean meal fermented by Enterococcus faecium as a replacement for soybean meal on growth performance, apparent total tract digestibility, blood profile and gut microbiota of weaned pigs. Eighty piglets (weaned at 21 days) [(Landrace × Yorkshire) × Duroc] with average body weight of 6.52 ± 0.59 kg) were selected and assigned to 4 treatments/4 replicate pens (3 barrows and 2 gilts). The four diets (SBM, 3, 6 and 9% FSBM) were formulated using fermented soybean meal to replace 0, 3, 6 and 9% of soybean meal, respectively. The trial lasted for 42 days phase 1, 2 and 3. Result showed that supplemental FSBM increased (P < 0.05) the body weight gain (BWG) of piglets at day 7, 21 and 42 and ADG at days 1-7, 8-21, 22-42 and 1-42, and ADFI at days 8-21, 22-42 and 1-42 and G: F at days 1-7, 8-21 and 1-42, and crude protein, dry matter, and gross energy digestibility at day 42, and lowered (P < 0.05) diarrhea at days 1-21 and 22-42. The concentration of glucose levels, WBC, RBC, and lymphocytes were increased while, concentration of BUN level in the serum was lowered in the FSBM treatment compared to the SBM group (P < 0.05). Microbiota sequencing found that FSBM supplementation increased the microbial Shannon, Simpsons and Chao indexs, (P < 0.05) and the abundances of the phylum Firmicutes, and genera prevotella, Lactobacillus, Lachnospiraceae and Lachnoclostridium (P < 0.05), lower in the abundances of the phylum bacteroidetes, Proteobacteria, genera Escherichia-Shigella, Clostridium sensu stricto1, Bacteroides and Parabacteroides (P < 0.05). Overall, FSBM replacing SBM improved the growth performance, apparent total tract digestibility, and blood profiles; perhaps via altering the faecal microbiota and its metabolites in weaned pigs. The present study provides theoretical support for applying FSBM at 6-9% to promote immune characteristics and regulate intestinal health in weaning piglets.
Collapse
Affiliation(s)
- Madesh Muniyappan
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Sureshkumar Shanmugam
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Jae Hong Park
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, South Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, South Korea.
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea.
| |
Collapse
|
21
|
Elbaz AM, El-Sheikh SE, Abdel-Maksoud A. Growth performance, nutrient digestibility, antioxidant state, ileal histomorphometry, and cecal ecology of broilers fed on fermented canola meal with and without exogenous enzymes. Trop Anim Health Prod 2023; 55:46. [PMID: 36701002 PMCID: PMC9879825 DOI: 10.1007/s11250-023-03476-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
This study was conducted to evaluate the effects of supplementation of exogenous enzymes in broiler diets that includes fermented canola meal on performance, nutrient digestibility, biochemical indication, antioxidative capacity, digestive enzyme activity, immune responses, and gut health. Five hundred 1-day-old Ross 308 broiler chicks were randomly allocated into five experimental groups (5 replicate/group), the first group: a control (CON) contained a basal diet, and the second to the fifth groups were fed diets as follows: containing 20% canola meal (CM), contains 20% fermented canola meal (FCM), contains 20% canola meal and exogenous enzymes at 0.02%/kg feed (ECM), and contains 20% fermented canola meal and exogenous enzymes at 0.02%/kg feed (EFC), respectively. At the finisher phase, the best body weight gain, feed conversion ratio, and nutrient utilization were associated with chickens fed EFC compared to other groups (P < 0.05). Total protein, albumin, alanine aminotransferase, and superoxide dismutase levels increased (P < 0.05), while cholesterol and malondialdehyde levels decreased in chickens fed on EFC. Likewise, there was a significant increase in the relative weight of the bursa of Fabricius and antibody titer against Newcastle disease, whereas the weight of abdominal fat decreased in the EFC group compared to other groups. Furthermore, there was a significant improvement in the activity of lipase and amylase enzymes (P < 0.05) in the EFC group. Fermented canola meal addition improved gut health (decreased Escherichia coli, increased Lactobacillus, and the highest values of villus height). Overall, these results confirmed that supplementing a fermented canola meal diet with exogenous enzymes improved growth performance through enhancing nutrient digestibility, immunity, antioxidant capacity, and gut health. Thus, adding enzymes to a diet containing fermented canola meal can be recommended as an alternative protein source that could be safely used to replace up to 20% soybean meal in broiler diets.
Collapse
|
22
|
Tang J, Li W, Zhou Q, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Jiang X, Zhao H, Wu D, Trabalza-Marinucci M, Che L. Effect of heating, microbial fermentation, and enzymatic hydrolysis of soybean meal on growth performance, nutrient digestibility, and intestinal microbiota of weaned piglets. J Anim Sci 2023; 101:skad384. [PMID: 37962419 DOI: 10.1093/jas/skad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
The macromolecular proteins, anti-nutritional factors, and allergens contained in soybean meal (SBM) have a negative impact on the growth of weaned piglets. The objective of this study was to investigate the effects of heating, microbial fermentation, and enzymatically hydrolyzed SBM on the growth performance, nutrient digestibility, serum biochemistry, intestinal morphology, volatile fatty acids, and microbiota of weaned piglets. After the preparation of soaked SBM (SSBM), enzymatically hydrolyzed SBM (ESBM), and microbial fermented and enzymatically hydrolyzed SBM (MESBM), 72 weaned piglets were randomly allocated to three groups for a 21-d trial. In the three groups, 17% of conventional SBM in basal corn-soybean meal diet was replaced by an equivalent amount of SSBM (control group), ESBM, or MESBM. The results showed that the contents of glycinin, β-conglycinin, trypsin inhibitor, and proteins above 20 kDa were significantly decreased in ESBM and MESBM, compared with SSBM, and the surface of ESBM and MESBM had more pores and fragmented structure. In the second week and throughout the entire experimental period, the diarrhea index was reduced (P < 0.01) in ESBM and MESBM in contrast with SSBM. Furthermore, the inclusion of ESBM and MESBM in the diet improved the apparent total tract digestibility of dry matter and crude protein (P < 0.05), and increased the abundances of the genera Lactobacillus and Clostridium_sensu_stricto_1, respectively. Metagenomic sequencing further identified that members of six species of Proteobacteria, four species of Clostridiales, and three species of Negativiautes were enriched in the colon of piglets fed MESBM, while two bacterial species, Lachnoclostridium and Lactobacillus_points, were enriched in the colon of piglets fed ESBM. In conclusion, replacing SSBM with ESBM or MESBM in the diet decreased the diarrhea index, which could be associated with improved nutrient digestibility and microbial composition.
Collapse
Affiliation(s)
- Jiayong Tang
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Wentao Li
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Qiang Zhou
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yan Lin
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Bin Feng
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - De Wu
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | | | - Lianqiang Che
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| |
Collapse
|
23
|
Abeddargahi F, Darmani Kuhi H, Rafiei F, Roostaie-Alimehr M, Takalu Z, Sajedi RH, Mohammadpour F. The effect of probiotic and fermented soybean meal based on Bacillus subtilis spore on growth performance, gut morphology, immune response and dry matter digestibility in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2148577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Fakhredin Abeddargahi
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Hassan Darmani Kuhi
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Farjad Rafiei
- Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Zeynab Takalu
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Hassan Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mohammadpour
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
24
|
Effects of Fermentation on the Apparent Metabolizable Energy and Standardized Ileal Digestibility of Amino Acids in Soybean Meal Fed to Broiler Chickens. FERMENTATION 2022. [DOI: 10.3390/fermentation9010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two experiments were conducted to test the hypothesis that the apparent metabolizable energy (AME) and standardized ileal digestibility (SID) of amino acids (AA) in fermented soybean meal (FSBM) are greater than those in soybean meal (SBM). FSBM was produced by fermenting SBM with a mixture of Bacillus amyloliquefaciens, Lactobacillus acidophilus, and Saccharomyces cerevisiae. The fermentation process decreased trypsin inhibitor and crude fiber levels by 67.80% and 7.56%, while it increased the total amino acid content by 2.56%. In the first experiment, a substitution method was used to determine the AME and nitrogen-corrected AME (AMEn) of SBM and FSBM. A corn-SBM basal diet and two test diets consisting of 70% of the basal diet plus 30% SBM or FSBM were formulated. The results show that fermentation did not have an effect on the AME and AMEn concentrations of SBM (p > 0.05); the respective AME and AMEn values were 10.29 and 10.62 MJ/kg (DM basis) and 9.09 and 9.23 MJ/kg for SBM and FSBM. In the second experiment, a nitrogen-free diet was formulated to measure the endogenous AA flow, and the other two semi-purified diets containing SBM or FSBM as the sole source of AA were formulated. The results show that the AID and SID of isoleucine, leucine, phenylalanine, valine, cysteine, tyrosine, and aspartic acid were greater in FSBM than in SBM (p < 0.05). In conclusion, the fermentation of SBM by a mixture of B. amyloliquefaciens, L. acidophilus, and S. cerevisiae can improve its nutritional values and is a promising protein resource for broiler production.
Collapse
|
25
|
Li Z, Shi J, Lei Y, Wu J, Zhang R, Zhang X, Jia L, Wang Y, Ma Y, He P, Ma Y, Cheng Q, Zhang Z, Zhang K, Lei Z. Castration alters the cecal microbiota and inhibits growth in Holstein cattle. J Anim Sci 2022; 100:skac367. [PMID: 36326798 PMCID: PMC9733532 DOI: 10.1093/jas/skac367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/03/2022] [Indexed: 11/05/2022] Open
Abstract
To determine the effects of castration on growth performance, serum hormone levels, cecal microbiota composition, and metabolites in cattle. A total of 18 Holstein bulls and steers were divided into bull and steer groups and randomly assigned to 3 pens (3 cattle per pen, and each cattle were separated by a fence) to determine the average daily gain (ADG), daily dry matter intake (DMI), and feed efficiency (G/F). After the finishing trial, six cattle per group were randomly slaughtered. Serum was collected to measure the hormone concentration, and the cecal content was collected to measure the pH, short-chain fatty acids, and digestive enzyme activities. Metagenome sequencing and untargeted metabolomics were used to investigate the microbiota composition, functional profiles, and differential metabolites of the cecal contents. We found that castration significantly decreased ADG, DMI, and G/F in cattle (P < 0.05). The serum testosterone, thyroxine, growth hormone (P < 0.05), and triiodothyronine (P < 0.01) concentrations significantly decreased in the steer group when compared to those of the bull group. The activities of cellulase, xylanase, pectinase, and β-glucosidase (P < 0.05) significantly decreased in the steer group, whereas the activities of lipase and α-amylase significantly increased. Moreover, castration significantly decreased the relative abundance of Ruminococcaceae_bacterium, Treponema_porcinum, Oscillibacter_sp. (P < 0.05), and Alistipes_senegalensis (P < 0.01), whereas the relative abundance of Phocaeicola_plebeius (P < 0.05) was significantly increased. Also, the relative abundance of Phocaeicola_plebeius was negatively correlated with testosterone levels, and the function of the cecal microbiota was enriched in the GH29 and GH97 families in the steer group. Metabolomic analysis indicated that castration increased the levels of L-valine, L-phenylalanine, L-aspartic acid, L-isoleucine, L-lysine, methionine, L-glutamic acid, and L-leucine, while decreasing the levels of α-ketoglutaric acid through the 2-oxocarboxylic acid metabolism pathway. In addition, α-ketoglutaric acid was negatively correlated with Oscillibacter_sp. (P < 0.01). Overall, castration can inhibit cattle growth by altering the composition of the cecal microbiota. Therefore, this study provides a theoretical and practical basis for improving the growth performance of steers.
Collapse
Affiliation(s)
- Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianping Wu
- Institute of Rural Development, Northwest Normal University, Lanzhou, China
| | - Rui Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiao Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yannan Ma
- Institute of Rural Development, Northwest Normal University, Lanzhou, China
| | - Qiang Cheng
- Jingchuan Xukang Food Co., Ltd, Pingliang, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd, Zhangye, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
26
|
Sun Y, Wang F, Liu Y, Liu S, An Y, Xue H, Wang J, Xia F, Chen X, Cao Y. Microbiome-metabolome responses of Fuzhuan brick tea crude polysaccharides with immune-protective benefit in cyclophosphamide-induced immunosuppressive mice. Food Res Int 2022; 157:111370. [DOI: 10.1016/j.foodres.2022.111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
27
|
Yang N, Li M, Huang Y, Liang X, Quan Z, Liu H, Li J, Yue X. Comparative Efficacy of Fish Meal Replacement With Enzymatically Treated Soybean Meal on Growth Performance, Immunity, Oxidative Capacity and Fecal Microbiota in Weaned Pigs. Front Vet Sci 2022; 9:889432. [PMID: 35711799 PMCID: PMC9195130 DOI: 10.3389/fvets.2022.889432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
This study investigated the growth performance, immunity, antioxidant capacity and fecal microbiota of weaned pigs by partially or completely replacing dietary fish meal with enzymatically treated soybean meal. A total of 144 piglets (initial body weight of 7.19 ± 0.11 kg) weaned at 28 d were allotted to 3 dietary treatments (6 replicates per treatment): 4% fish meal diet (FM); 2% fishmeal plus 6% enzymatically treated soybean meal (ESBM1); and 6% enzymatically treated soybean meal without fish meal (ESBM2). The experimental period was 28 d, serum was collected at day 14 and day 28 for biochemical parameters analysis, feces was obtained for microbiota analysis at 28d. The body weight, average daily gain and average daily feed intake of piglets in the ESBM2 group were significantly increased compared with those in the FM and ESBM1 groups from 0 to 28 d, respectively (P < 0.05). The diets with enzymatically treated soybean meal in ESBM1 and ESBM2 groups decreased the diarrhea rate (P < 0.05). Compared with FM, ESBM1 and ESBM2 decreased 5-hydroxytryptamine (5-HT) (P < 0.05). ESBM1 decreased diamine oxidase (DAO) and Interleukin 6 (IL-6) compared with FM and ESBM2 (P < 0.05). ESBM1 decreased serum Interleukin 1β (IL-1β) compared with FM at d 14 (P < 0.05). The serum Immunoglobulin E (IgE), secretory curl associated protein 5 (sFRP-5) were higher in ESBM1 compared with FM and ESBM2 (P < 0.05). ESBM2 increased super oxidase dismutase (SOD) level and decreased malondialdehyde (MDA) content compared with FM and ESBM1, the concentration of SOD in ESBM1was higher than that in FM (P < 0.05). ESBM1 decreased cortisol and caspase 3 (Casp-3) (P < 0.05). FM showed a higher content of tri-iodothyronine (T3) (P < 0.05) and a lower thyroxine/ tri-iodothyronine ratio compared with those in the other two groups (P < 0.05). The concentration of leptin was lower in ESBM2 (P < 0.05). ESBM1 had a higher α-diversity than ESBM2 (P < 0.05). The microbiota composition was different among three treatments (difference between FM and ESBM1, p = 0.005; FM and ESBM2, p = 0.009; ESBM1 and ESBM2, p = 0.004). ESBM2 tend to increase the abundance of Firmicutes (P = 0.070) and decrease Bacteroidetes (P = 0.069). ESBM2 decreased the abundance of Parabacteroides and increased SMB53 compared with FM (P < 0.05). The spearman correlation analysis revealed that the abundance of Parabacteroides enriched in FM group was negatively correlated with SOD, Megasphaera enriched in ESBM2 group were positively correlated with SOD. The abundance of Lachnospira enriched in ESBM2 group were negatively correlated with serum concentration of D-lactate, DAO, IL-6, and NO. In conclusion, under the conditions of this study, diet with only ESBM demonstrate the beneficial impact on intestinal microbiota developments, antioxidant capacity as well as growth performance for weaned pigs.
Collapse
Affiliation(s)
- Ning Yang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mohan Li
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuetong Huang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xiaona Liang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhizhong Quan
- Liaoning Complete Biotechnology Co., Ltd., Tieling, China
| | - Haiying Liu
- Animal Nutrition Laboratory, College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiantao Li
- Animal Nutrition Laboratory, College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiqing Yue
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
28
|
Huang W, Yau Y, Zhu J, Wang Y, Dai Z, Gan H, Qian L, Yang Z. Effect of Electroacupuncture at Zusanli (ST36) on Intestinal Microbiota in Rats With Chronic Atrophic Gastritis. Front Genet 2022; 13:824739. [PMID: 35281809 PMCID: PMC8906781 DOI: 10.3389/fgene.2022.824739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Electroacupuncture is a common treatment for chronic atrophic gastritis (CAG) in China. We aimed to determine the effects of electroacupuncture at zusanli (ST36) on intestinal microbiota in CAG rats. Methods: In total, 42 SD rats were randomly divided into normal (NC, 10 rats) and model (MG, 32 rats) groups. Rats in the MG group were established as CAG disease models. After that, the rats in the MG group were randomly divided into CAG (10 rats), electroacupuncture (EA, 10 rats), and Vitacoenzyme (Vit, 10 rats) groups. Rats in the NC and CAG groups were subjected to a 30-min/d confinement for 4 weeks. Rats in the EA group were given electroacupuncture at zusanli for 30 min/d for 4 weeks. Rats in the Vit group were given Vitacoenzyme solution 10 ml/(kg d) for 4 weeks. Histopathological changes in the gastric mucosa were observed with hematoxylin and eosin staining, and the gene expression level of p53, Bcl-2, and c-myc was determined using the qPCR method. The 16S rDNA sequencing technique was used to determine structural changes and relative abundance expression of intestinal flora. Results: Compared with the NC group, gastric mucosal pathology in the CAG group revealed significant inflammatory infiltration, and the gastric mucosal lesions in the electroacupuncture group were improved remarkably; the expression of p53 and c-myc genes in the CAG group increased (p < 0.05), while the expression of Bcl-2 genes decreased (p < 0.05) in the EA group, that of p53 and c-myc genes decreased (p < 0.05), and that of Bcl-2 genes increased (p < 0.05). The abundance of bacteria such as Lactobacillus, Desulfobacterota, and Bacteroides pectinophilus group in the CAG group increased (p < 0.05), while that of bacteria such as Gastranaerophilales, Romboutsia, and Blautia decreased (p < 0.05). The relative abundance of Desulfobacterota and Helicobacter in the EA group decreased (p < 0.05), while that of probiotic bacteria such as Oscillospirales, Romboutsia, and Christensenellaceae increased (p < 0.05). Conclusion: Electroacupuncture at zusanli can promote the repair of pathological damage to the gastric mucosa in rats with CAG, and the mechanism might relate to the reduction in the relative abundance of harmful bacteria, increase in the relative abundance of intestinal probiotics, and regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Wanyi Huang
- School of Medicine, Xiamen University, Xiamen, China.,College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuenming Yau
- School of Medicine, Xiamen University, Xiamen, China
| | - Jingru Zhu
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yingjie Wang
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhipeng Dai
- Physical Education College, Hunan City University, Yiyang, China
| | - Huijuan Gan
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linchao Qian
- School of Medicine, Xiamen University, Xiamen, China
| | - Zongbao Yang
- School of Medicine, Xiamen University, Xiamen, China.,College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
29
|
Mohamed TM, Sun W, Bumbie GZ, Elokil AA, Mohammed KAF, Zebin R, Hu P, Wu L, Tang Z. Feeding Bacillus subtilis ATCC19659 to Broiler Chickens Enhances Growth Performance and Immune Function by Modulating Intestinal Morphology and Cecum Microbiota. Front Microbiol 2022; 12:798350. [PMID: 35281307 PMCID: PMC8904210 DOI: 10.3389/fmicb.2021.798350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
This study investigated dietary supplementation with Bacillus subtilis (BS) ATCC19659 on growth performance, biochemical indices, intestinal morphology, and cecum microflora in broiler chicks. A total of 600 Arbor 1-day Acres broilers of either sex were allotted to 5 treatments: chicks were fed a corn- and soybean-based diet (CON); chicks were fed basal diet containing 500 mg ZnB/kg (ZnB); chicks were fed basal diet containing 1 × 108 CFU/g feed of BS-ATCC19659 (BS-1); chicks were fed basal diet containing 3 × 108 CFU/g feed of BS-ATCC19659 (BS-3); and chicks were fed basal diet containing 5 × 108 CFU/g feed of BS-ATCC19659 (BS-5). Each treatment comprised 6 replicates with 20 birds for each replicate pen. Chicks in the BS-5 and BS-3 groups had higher body weight at the 21st and 42nd days and average daily gain from 1 to 21 days than that in the CON group (p < 0.05). Chicks in the BS-5 and ZnB groups had higher serum antioxidant activities and immunity response than those in the CON group (p < 0.05). Compared with the CON group, the liver mRNA abundance of GHR, TGF-β, IGF-1, IFN-γ, SOD, CAT, and GPX of chicks in three BS groups and the ileum villus length (μm) of chicks in BS-3 and ZnB groups was increased (p < 0.05). Compared with the CON group, the villus height-to-crypt depth ratio of the ileum of chicks in the BS-5 and BS-3 groups and the crypt depth and villus height-to-crypt depth ratio of the jejunum in the BS-5 and ZnB groups were increased (p < 0.05). The abundance of the Cyanobacteria phyla in the cecum decreased in response to treatment with both BS-ATCC19659 and ZnB groups (p < 0.05). Compared with the CON group, the cecum abundance of genera GCA-900066575 (Lachnospiraceae), Anaerofustis, and Papillibacter (Firmicutes phylum) in three BS groups were increased (p < 0.05); The abundance of genus Escherichia–Shigella reduced in the BS-3 group (p < 0.05). Compared with the CON group, the cecum abundance of genus Clostridia_unclassified in ZnB and BS-5 groups was decreased (p < 0.05) of broilers. Generally, Bacillus subtilis ATCC19659 as feed additive positively affected growth performance, immunity response, and cecal microflora of broilers.
Collapse
Affiliation(s)
- Taha M Mohamed
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China.,Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Weizhong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Gifty Z Bumbie
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Abdelmotaleb A Elokil
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | | | - Rao Zebin
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ping Hu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Kairmi SH, Taha-Abdelaziz K, Yitbarek A, Sargolzaei M, Spahany H, Astill J, Shojadoost B, Alizadeh M, Kulkarni RR, Parkinson J, Sharif S. Effects of therapeutic levels of dietary antibiotics on the cecal microbiome composition of broiler chickens. Poult Sci 2022; 101:101864. [PMID: 35477134 PMCID: PMC9061639 DOI: 10.1016/j.psj.2022.101864] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Dietary antibiotics, including antibiotic growth promoters (AGPs), have been commonly used to improve health and growth of poultry. The present study investigated the effects of therapeutic doses of dietary antibiotics, including bacitracin methylene disalicylate (BMD), penicillin G potassium (PP) and an ionophore (salinomycin, SA), on the cecal microbiome of chickens. BMD and SA treatments were given as dietary supplements from d 1 to 35 of age. The SAPP (salinomycin+ penicillin G potassium) group was given SA as a dietary supplement from d 1 to 35 of age and PP was added to drinking water from d 19 to 24 of age to simulate common practices for control of necrotic enteritis in broilers. The cecal contents were collected from all treatment groups on d 10, 24, and 35 of age and DNA was extracted for metagenomic analysis of the cecal microbiome. The results revealed that dietary or water supplementation of therapeutic levels of antibiotics and ionophores to chickens significantly altered the cecal microbial homeostasis during different stages of the chicken life. The alpha diversity analysis showed that BMD, SA, and SAPP treatments decreased diversity and evenness of the cecal microbiome of treated chickens on d 10 of age. Species richness was also reduced on d 35 following treatment with BMD. Beta diversity analyses revealed that SAPP and BMD induced significant changes in the relative abundance of Gram-positive and -negative bacteria on d 10, while no significant differences were observed on d 24. On d 35, the non-treated control group had higher relative abundance of unclassified Gram-positive and -negative bacteria compared to SA, SAPP, and BMD treatment groups. Overall, despite their beneficial role in controlling necrotic enteritis outbreaks, the findings of this study highlight the potential negative effects of dietary supplementation of therapeutic levels of antibiotics on the gut microbiome and suggest that adjusting gut bacteria may be required to restore microbial richness and diversity of the gut microbiome following treatment with these antibiotics.
Collapse
|
31
|
Bai J, Franco M, Ding Z, Hao L, Ke W, Wang M, Xie D, Li Z, Zhang Y, Ai L, Guo X. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J Anim Sci Biotechnol 2022; 13:7. [PMID: 34991716 PMCID: PMC8739699 DOI: 10.1186/s40104-021-00649-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Bacillus amyloliquefaciens (BA) and Bacillus subtilis (BS) are usually used as feed supplements directly or bacterial inoculants in biological feeds for animals. However, few research have reported the effects of BA and BS on fermentation characteristics and bacterial community successions of whole-plant corn silage during ensiling. If the BA and BS inoculants have positive effects on silages, then they could not only improve fermentation characteristics, but also deliver BA or BS viable cells to ruminants, which would play its probiotic effect. Therefore, the objectives of this study were to investigate the effects of BA and BS on the fermentation, chemical characteristics, bacterial community and their metabolic pathway of whole-plant corn silage. Results Freshly chopped whole-plant corn was inoculated without or with BA and BS, respectively, and ensiled for 1, 3, 7, 14 and 60 d. Results showed that BA and BS inoculations increased lactic acid concentrations of whole-plant corn silages compared with control, and BA inoculation decreased acetic acid concentrations, whereas BS inoculation decreased fiber contents and increased crude protein (CP) content. Higher water-soluble carbohydrate contents and lower starch contents were observed in BA- and BS-inoculated silages compared with that in control. The decreased CP content and increased non-protein nitrogen content were observed in BA-inoculated silage, which was consistent with the higher amino acid metabolism abundances observed in BA-inoculated silage. In addition, it was noteworthy that BA and BS inoculations increased the metabolism of cofactors and vitamins, and decreased the relative abundances of drug resistance: antimicrobial pathways. We also found that the bacterial metabolism pathways were clearly separated into three clusters based on the ensiling times of whole-plant corn silage in the present study. There were no significant differences in bacterial community compositions among the three groups during ensiling. However, BA and BS inoculations decreased the relative abundances of undesirable bacteria such as Acetobacter and Acinetobacter. Conclusion Our findings suggested that the BS strain was more suitable as silage inoculants than the BA strain in whole-plant corn silage in this study.
Collapse
Affiliation(s)
- Jie Bai
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Marcia Franco
- Production systems, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - Zitong Ding
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Lin Hao
- School of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Wencan Ke
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Musen Wang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Dongmei Xie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Ziqian Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Yixin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Lin Ai
- China Animal Agriculture Association, Beijing, 100044, China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China. .,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
32
|
Li Y, Liu Y, Wu J, Chen Q, Zhou Q, Wu F, Zhang R, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Wu D, Che L. Comparative effects of enzymatic soybean, fish meal and milk powder in diets on growth performance, immunological parameters, SCFAs production and gut microbiome of weaned piglets. J Anim Sci Biotechnol 2021; 12:106. [PMID: 34615550 PMCID: PMC8496045 DOI: 10.1186/s40104-021-00625-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/01/2021] [Indexed: 01/22/2023] Open
Abstract
Background The objective of this study was to evaluate the replacement effects of milk powder (MK) and fish meal (FM) by enzymatic soybean (ESB) in diets on growth performance, immunological parameters, SCFAs production and gut microbiome of weaned piglets. Methods A total of 128 piglets with initial body weight at 6.95 ± 0.46 kg, were randomly assigned into 4 dietary treatments with 8 replicates per treatment and 4 piglets per replicate for a period of 14 d. Piglets were offered iso-nitrogenous and iso-energetic diets as follows: CON diet with MK and FM as high quality protein sources, ESB plus FM diet with ESB replacing MK, ESB plus MK diet with ESB replacing FM, and ESB diet with ESB replacing both MK and FM. Results No significant differences were observed in growth performance among all treatments (P > 0.05). However, piglets fed ESB plus FM or ESB diet had increased diarrhea index (P<0.01), and lower digestibility of dry matter (DM), gross energy (GE) or crude protein (CP), relative to piglets fed CON diet (P < 0.01). Moreover, the inclusion of ESB in diet markedly decreased the plasma concentration of HPT and fecal concentration of butyric acid (BA) (P<0.01). The High-throughput sequencing of 16S rRNA gene V3−V4 region of gut microbiome revealed that the inclusion of ESB in diet increased the alpha diversity, and the linear discriminant analysis effect size (LEfSe) showed that piglets fed with ESB plus FM or ESB diet contained more gut pathogenic bacteria, such as g_Peptococcus, g_Veillonella and g_Helicobacter. Conclusion The inclusion of ESB in diet did not markedly affect growth performance of piglets, but the replacement of MK or both MK and FM by ESB increased diarrhea index, which could be associated with lower nutrients digestibility and more gut pathogenic bacteria. However, piglets fed diet using ESB to replace FM did not markedly affect gut health-related parameters, indicating the potential for replacing FM with ESB in weaning diet.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiangnan Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qiuhong Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qiang Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ruinan Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
33
|
Effects of Different Fermented Feeds on Production Performance, Cecal Microorganisms, and Intestinal Immunity of Laying Hens. Animals (Basel) 2021; 11:ani11102799. [PMID: 34679821 PMCID: PMC8532698 DOI: 10.3390/ani11102799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Fermented feed exerts beneficial effects on intestinal microorganisms, host health, and production performance. However, the effect of fermented feed on laying hens is uncertain due to the different types of inoculated probiotics, fermentation substrates, and fermentation technology. Hence, this experiment was conducted to investigate the effects of fermented feed with different compound strains on the performance and intestinal health of laying hens. Supplement fermented feed reduced the feed conversion ratio and promoted egg quality. Both dietary treatment (fermented feed A produced Bacillus subtilis, Lactobacillus, and Yeast and fermented feed B produced by C. butyricum and L. salivarius) influenced intestinal immunity and regulated cecal microbial structure. This may be because the metabolites of microorganisms in fermented feed and the reduced pH value inhibited the colonization of harmful bacteria, improved the intestinal morphology, and then had a positive impact on the production performance and albumen quality of laying hens. Abstract This experiment was conducted to investigate the effects of different compound probiotics on the performance, cecal microflora, and intestinal immunity of laying hens. A total of 270 Jing Fen No.6 (22-week-old) were randomly divided into 3 groups: basal diet (CON); basal diet supplemented with 6% fermented feed A by Bacillussubtilis,Lactobacillus, and Yeast (FA); and with 6% fermented feed B by C. butyricum and L. salivarius (FB). Phytic acid, trypsin inhibitor, β-glucan concentrations, and pH value in fermented feed were lower than the CON group (p < 0.05). The feed conversion ratio (FCR) in the experimental groups was decreased, while albumen height and Haugh unit were increased, compared with the CON group (p < 0.05). Fermented feed could upregulate the expression of the signal pathway (TLR4/MyD88/NF-κB) to inhibit mRNA expression of pro-inflammatory cytokines (p < 0.05). Fermented feed promoted the level of Romboutsia (in the FA group) Butyricicoccus (in the FB group), and other beneficial bacteria, and reduced opportunistic pathogens, such as Enterocooccus (p < 0.05). Spearman’s correlations showed that the above bacteria were closely related to albumen height and intestinal immunity. In summary, fermented feed can decrease the feed conversion ratio, and improve the performance and intestinal immunity of laying hens, which may be related to the improvement of the cecal microflora structure.
Collapse
|
34
|
Qu W, Liu J. Effects of Glucose Oxidase Supplementation on the Growth Performance, Antioxidative and Inflammatory Status, Gut Function, and Microbiota Composition of Broilers Fed Moldy Corn. Front Physiol 2021; 12:646393. [PMID: 34220529 PMCID: PMC8244819 DOI: 10.3389/fphys.2021.646393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Glucose oxidase is widely used as a livestock feed additive owing to its beneficial effects on growth performance and antioxidant activity. However, little is known about the effects of the enzyme on intestinal health. Methods To investigate the effects of glucose oxidase supplementation on the growth performance, intestinal function, and microbiota composition of broilers fed moldy corn, newly hatched Arbor Acres broilers were each randomly assigned to one of four groups, which were fed a basal diet (CON), a contaminated diet (10% moldy corn) (MC), a basal diet supplemented with 0.01% glucose oxidase (GOD), or a contaminated diet supplemented with 0.01% glucose oxidase (MCG). Results We found that the average weight gain (ADG) of the MC group was significantly lower than those of the CON and GOD groups, and there were no significant differences in ADG between the MCG group and the CON and GOD groups. Intestinal morphology results revealed irregularly arranged villi and microvilli in the ilea from the MC group, whereas those from the other three groups were aligned regularly. Tight-junction protein analysis showed that both ZO-1 expression and claudin-4 expression in the MC group were significantly lower than those in the other groups. Inflammation cytokines analysis showed lower serum concentration of interleukin-10, as well as its mRNA expression in the ileum of the MC group, when compared with those of the other groups. Additionally, we observed lower glutathione peroxidase and total superoxide dismutase activity and higher malonaldehyde concentration in the MC group than those in the MCG group. The α and β diversity of microbiota profiling indicated that the cecal microbiota in the MC group differed from those in the other three groups. Conclusion The results indicated that glucose oxidase supplementation was able to prevent the adverse effects from mycotoxin exposure on growth performance, antioxidant activity, inflammatory response, intestinal function, and microbiota composition in broilers. We suggested that glucose oxidase supplementation can be used in broilers to mitigate the adverse effects of moldy feed, and its benefits are due to its effect on intestinal microbiota composition.
Collapse
Affiliation(s)
- Wenhui Qu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiaguo Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Wu N, Wang X, Yan Z, Xu X, Xie S, Liang J. Transformation of pig manure by passage through the gut of black soldier fly larvae (Hermetia illucens): Metal speciation, potential pathogens and metal-related functional profiling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111925. [PMID: 33465627 DOI: 10.1016/j.ecoenv.2021.111925] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Black soldier fly larvae (BSFL) have great potential in livestock manure disposal. However, the changes in metal speciation, microbial communities, potential pathogens during the manure transformation process by BSFL is still largely uncharacterized, as well as the underlying metal tolerance mechanism of larval gut microbiome. Here we used BSFL to convert pig manure (PM) into larval feces (BF), and investigated the metal and microbial changes in the conversion process. Physicochemical parameters (e.g. pH, electrical conductivity, total nitrogen, total phosphorus and total potassium) in PM were significantly altered compared to BF. After conversion, less than 10% of Cu and Zn were accumulated in larval bodies. The bioavailable fraction of Cu (88.3%-86.2%) and Zn (80.6%-82.3%) occupied as the primary form in PM and BF. Genera Enterococcus, Clostridium_sensu_stricto_1, Terrisporobacter and Romboutsia were substantially enriched in the final BSFL gut (GF) compared with initial gut (GI). BSFL transformation substantially reduced pathogen abundances (decreased by 89%) derived from pig manure. Functional genes involved in metal homeostasis and resistance (e.g. CutC, pcoC, cusR, zurR and zntB) were obviously strengthened (by 2.3-7.7 folds) in GF than in GI, which might partly explain the metal tolerance ability of BSFL during the livestock manure transformation process.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
| | - Zechuan Yan
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China.
| | - Shiyu Xie
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|