1
|
Gallichotte EN, Bashor L, Erbeck K, Croft L, Stache K, Long J, VandeWoude S, Johnson JG, Pabilonia KL, Ebel GD. SARS-CoV-2 outbreak in lions, tigers and hyenas at Denver Zoo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617443. [PMID: 39464021 PMCID: PMC11507794 DOI: 10.1101/2024.10.14.617443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In late 2019, SARS-CoV-2 spilled-over from an animal host into humans, where it efficiently spread, resulting in the COVID-19 pandemic. Through both natural and experimental infections, we learned that many animal species are susceptible to SARS-CoV-2. Importantly, animals in close proximity to humans, including companion, farmed, and those at zoos and aquariums, became infected, and many studies demonstrated transmission to/from humans in these settings. In this study, we first review the literature of SARS-CoV-2 infections in tigers and lions, and compare species, sex, age, virus and antibody detection assay, and types, frequency and length of clinical signs, demonstrating broad heterogeneity amongst infections. We then describe a SARS-CoV-2 outbreak in lions, tigers and hyenas at Denver Zoo in late 2021. Animals were tested for viral RNA (vRNA) for four months. Lions had significantly more viral RNA in nasal swabs than both tigers and hyenas, and many individual lions experienced viral recrudescence after weeks of undetectable vRNA. Infectious virus was correlated with high levels of vRNA and was more likely to be detected earlier during infection. Four months post-infection, all tested animals generated robust neutralizing antibody titers. Animals were infected with Delta lineage AY.20 identical to a variant circulating at less than 1% in Colorado humans at that time, suggesting a single spillover event from an infected human spread within and between species housed at the zoo. Better understanding of epidemiology and susceptibility of SARS-CoV-2 infections in animals is critical to limit the current and future spread and protect animal and human health.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | - Laura Bashor
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Veterinary Diagnostic Laboratories, Colorado State University
| | | | | | | | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Kristy L Pabilonia
- Department of Microbiology, Immunology and Pathology, Colorado State University
- Veterinary Diagnostic Laboratories, Colorado State University
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
2
|
Daigle L, Khalid H, Gagnon CA, Arsenault J, Bienzle D, Bisson SK, Blais MC, Denis-Robichaud J, Forest C, Grenier St-Sauveur V, Koszegi M, MacNicol J, Nantel-Fortier N, Nury C, Prystajecky N, Fraser E, Carabin H, Aenishaenslin C. High prevalence of SARS-CoV-2 antibodies and low prevalence of SARS-CoV-2 RNA in cats recently exposed to human cases. BMC Vet Res 2024; 20:304. [PMID: 38982461 PMCID: PMC11232172 DOI: 10.1186/s12917-024-04150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The primary objective of this cross-sectional study, conducted in Québec and Bristish Columbia (Canada) between February 2021 and January 2022, was to measure the prevalence of viral RNA in oronasal and rectal swabs and serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amongst cats living in households with at least one confirmed human case. Secondary objectives included a description of potential risk factors for the presence of SARS-CoV-2 antibodies and an estimation of the association between the presence of viral RNA in swabs as well as SARS-CoV-2 antibodies and clinical signs. Oronasal and rectal swabs and sera were collected from 55 cats from 40 households at most 15 days after a human case confirmation, and at up to two follow-up visits. A RT-qPCR assay and an ELISA were used to detect SARS-CoV-2 RNA in swabs and serum SARS-CoV-2 IgG antibodies, respectively. Prevalence and 95% Bayesian credibility intervals (BCI) were calculated, and associations were evaluated using prevalence ratio and 95% BCI obtained from Bayesian mixed log-binomial models. RESULTS Nine (0.16; 95% BCI = 0.08-0.28) and 38 (0.69; 95% BCI = 0.56-0.80) cats had at least one positive RT-qPCR and at least one positive serological test result, respectively. No risk factor was associated with the prevalence of SARS-CoV-2 serum antibodies. The prevalence of clinical signs suggestive of COVID-19 in cats, mainly sneezing, was 2.12 (95% BCI = 1.03-3.98) times higher amongst cats with detectable viral RNA compared to those without. CONCLUSIONS We showed that cats develop antibodies to SARS-CoV-2 when exposed to recent human cases, but detection of viral RNA on swabs is rare, even when sampling occurs soon after confirmation of a human case. Moreover, cats with detectable levels of virus showed clinical signs more often than cats without signs, which can be useful for the management of such cases.
Collapse
Affiliation(s)
- Laurence Daigle
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada.
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada.
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada.
| | - Hattaw Khalid
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center - FRQ, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Julie Arsenault
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Dorothee Bienzle
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah-Kim Bisson
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Marie-Claude Blais
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - José Denis-Robichaud
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Independent Researcher, Amqui, QC, Canada
| | - Caroline Forest
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Valérie Grenier St-Sauveur
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Marika Koszegi
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Jennifer MacNicol
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Nicolas Nantel-Fortier
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Charlotte Nury
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Natalie Prystajecky
- BC Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erin Fraser
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Hélène Carabin
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada
| | - Cécile Aenishaenslin
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada
| |
Collapse
|
3
|
Yaglom HD, Roth A, Alvarez C, Corbus E, Ghai RR, Ferguson S, Ritter JM, Hecht G, Rekant S, Engelthaler DM, Venkat H, Tygielski S. DETECTION OF SARS-COV-2 IN A SQUIRREL MONKEY ( SAIMIRI SCIUREUS): A ONE HEALTH INVESTIGATION AND RESPONSE. J Zoo Wildl Med 2024; 55:471-478. [PMID: 38875205 PMCID: PMC11247420 DOI: 10.1638/2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 06/16/2024] Open
Abstract
Through collaborative efforts, One Health partners have responded to outbreaks of COVID-19 among animals, including those in human care at zoos. Zoos have been faced with numerous challenges, including the susceptibility of many mammalian species, and therefore the need to heighten biosecurity measures rapidly. Robust One Health collaborations already exist in Arizona to address endemic and emerging zoonoses, but these have rarely included zoos. The pandemic shed light on this, and Arizona subsequently expanded its SARS-CoV-2 surveillance efforts to include zoo animals. Testing and epidemiologic support was provided to expedite the detection of and response to zoonotic SARS-CoV-2 infection in zoo animals, as well as to understand possible transmission events. Resulting from this program, SARS-CoV-2 was detected from a rectal swab collected from an 8-yr-old squirrel monkey (Saimiri sciureus) from a zoo in Southern Arizona. The animal had rapidly become ill with nonrespiratory symptoms and died in July 2022. Genomic sequencing from the swab revealed mutations consistent with the Omicron (BA.2) lineage. An epidemiologic investigation identified an animal caretaker in close proximity to the affected squirrel monkey who tested positive for COVID-19 the same day the squirrel monkey died. Critical One Health partners provided support to the zoo through engagement of local, state, and federal agencies. Necropsy and pathologic evaluation showed significant necrotizing colitis; the overall clinical and histopathological findings did not implicate SARS-CoV-2 infection alone as a causal or contributing factor in the squirrel monkey's illness and death. This report documents the first identification of SARS-CoV-2 in a squirrel monkey and highlights a successful and timely One Health investigation conducted through multisectoral collaboration.
Collapse
Affiliation(s)
- Hayley D Yaglom
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA,
| | | | | | | | - Ria R Ghai
- One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sylvia Ferguson
- Veterinary Diagnostic Pathology Center, Midwestern University, Glendale, AZ 85308, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Gavriella Hecht
- Arizona Department of Health Services, Office of Infectious Disease Control, Phoenix, AZ 85007, USA
| | - Steven Rekant
- Office of Interagency Coordination, United States Department of Agriculture, Animal and Plant Health Inspection Service, Riverdale, MD 20737, USA
| | - David M Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA
| | - Heather Venkat
- Arizona Department of Health Services, Office of Infectious Disease Control, Phoenix, AZ 85007, USA
- Center for Preparedness and Response, Career Epidemiology Field Officer Program, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | |
Collapse
|
4
|
Venkat H, Yaglom HD, Hecht G, Goedderz A, Ely JL, Sprenkle M, Martins T, Jasso-Selles D, Lemmer D, Gesimondo J, Ruberto I, Komatsu K, Engelthaler DM. Investigation of SARS-CoV-2 Infection among Companion Animals in Households with Confirmed Human COVID-19 Cases. Pathogens 2024; 13:466. [PMID: 38921764 PMCID: PMC11206992 DOI: 10.3390/pathogens13060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
We aimed to characterize SARS-CoV-2 infection in companion animals living in households with COVID-19-positive people and understand the dynamics surrounding how these animals become infected. Public health investigators contacted households with at least one confirmed, symptomatic person with COVID-19 for study recruitment. Blood, nasal, and rectal swab specimens were collected from pet dogs and cats and a questionnaire was completed. Specimens were tested for SARS-CoV-2 by RT-PCR, and for neutralizing antibodies; genomic sequencing was performed on viral-positive samples. A total of 36.4% of 110 pets enrolled had evidence of infection with SARS-CoV-2. Pets were more likely to test positive if the pet was immunocompromised, and if more than one person in the home was positive for COVID-19. Among 12 multi-pet households where at least one pet was positive, 10 had at least one other pet test positive. Whole-genome sequencing revealed the genomes of viral lineages circulating in the community during the time of sample collection. Our findings suggest a high likelihood of viral transmission in households with multiple pets and when pets had very close interactions with symptomatic humans. Further surveillance studies are needed to characterize how new variants impact animals and to understand opportunities for infection and spillover in susceptible species.
Collapse
Affiliation(s)
- Heather Venkat
- Arizona Department of Health Services, Phoenix, AZ 85007, USA; (G.H.); (I.R.); (K.K.)
- Career Epidemiology Field Officer Program, Center for Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Hayley D. Yaglom
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA (D.L.); (D.M.E.)
| | - Gavriella Hecht
- Arizona Department of Health Services, Phoenix, AZ 85007, USA; (G.H.); (I.R.); (K.K.)
| | - Andrew Goedderz
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA (D.L.); (D.M.E.)
| | - Jennifer L. Ely
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA (D.L.); (D.M.E.)
| | - Michael Sprenkle
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA (D.L.); (D.M.E.)
| | - Taylor Martins
- Arizona Department of Health Services, Phoenix, AZ 85007, USA; (G.H.); (I.R.); (K.K.)
| | - Daniel Jasso-Selles
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA (D.L.); (D.M.E.)
| | - Darrin Lemmer
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA (D.L.); (D.M.E.)
| | | | - Irene Ruberto
- Arizona Department of Health Services, Phoenix, AZ 85007, USA; (G.H.); (I.R.); (K.K.)
| | - Kenneth Komatsu
- Arizona Department of Health Services, Phoenix, AZ 85007, USA; (G.H.); (I.R.); (K.K.)
| | - David M. Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA (D.L.); (D.M.E.)
| |
Collapse
|
5
|
Mūrniece G, Šteingolde Ž, Cvetkova S, Valciņa O, Zrelovs Ņ, Brīvība M, Kloviņš J, Birzniece L, Megnis K, Fridmanis D, Bērziņš A, Kovaļčuka L, Kovaļenko K. Prevalence of SARS-CoV-2 in domestic cats (Felis catus) during COVID-19 pandemic in Latvia. Vet Med Sci 2024; 10:e1338. [PMID: 38140758 PMCID: PMC10951624 DOI: 10.1002/vms3.1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The causative agent of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of zoonotic origin and has shown reverse zoonotic transmissibility. OBJECTIVES The aim of this cross-sectional study was to investigate the serological and molecular prevalence of SARS-CoV-2 infection in the domestic cat (Felis catus) population from Latvia in natural conditions and subsequently perform viral genome analysis. METHODS Oropharyngeal and rectal swabs and blood samples were collected from 273 domestic cats during the second wave of COVID-19 infection in Latvia. Molecular prevalence was determined by using reverse transcriptase-polymerase chain reaction (RT-PCR). Serum samples were analysed via double antigen enzyme-linked immunosorbent assay targeting the antibody against the nucleocapsid protein of SARS-CoV-2. Positive swab samples were analysed using whole viral genome sequencing and subsequent phylogenetic analysis of the whole genome sequencing data of the samples was performed. RESULTS The overall SARS-CoV-2 RT-PCR positivity and seroprevalence was 1.1% (3/273) and 2.6% (7/273), respectively. The SARS-CoV-2 genome sequences from three RT-PCR positive cats were assigned to the three common lineages (PANGOLIN lineage S.1.; B.1.177.60. and B.1.1.7.) circulating in Latvia during the particular period of time. CONCLUSIONS These findings indicate that feline infection with SARS-CoV-2 occurred during the second wave of the COVID-19 pandemic in Latvia, yet the overall prevalence was low. In addition, it seems like no special 'cat' pre-adaptations were necessary for successful infection of cats by the common lineages of SARS-CoV-2.
Collapse
Affiliation(s)
- Gundega Mūrniece
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| | - Žanete Šteingolde
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Svetlana Cvetkova
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Olga Valciņa
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | | | - Monta Brīvība
- Latvian Biomedical Research and Study CentreRigaLatvia
| | - Jānis Kloviņš
- Latvian Biomedical Research and Study CentreRigaLatvia
| | | | | | | | - Aivars Bērziņš
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Līga Kovaļčuka
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| | - Kaspars Kovaļenko
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| |
Collapse
|
6
|
Heydarifard Z, Chegeni AM, Heydarifard F, Nikmanesh B, Salimi V. An overview of SARS-CoV2 natural infections in companion animals: A systematic review of the current evidence. Rev Med Virol 2024; 34:e2512. [PMID: 38282405 DOI: 10.1002/rmv.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
This systematic review provides a comprehensive overview of natural SARS-CoV-2 infections in companion animals. The findings show that these infections are relatively rare. Among the examined dogs, only 1.32% tested positive for SARS-CoV-2, while for cats, the rate was 1.55%. Infections in rabbits and ferrets were even less common, at less than 1%. These results support previous research indicating the infrequency of natural infections in companion animals. The review also includes updated studies that involved various pets, such as cats, dogs, ferrets, and rabbits. The majority of the studies analyzed were primarily concerned with screening pets that visited veterinary clinics, regardless of whether they showed any specific signs of SARS-CoV-2 infection. Only a limited number of studies investigated infections in animals suspected of being in contact with owners or other animals that had COVID-19 or were exhibiting symptoms. The most common variant identified among the SARS-CoV-2 variants in the reviewed studies was B.1.1.7 (alpha), followed by B.1.617.2 (delta), B.1.526 (Iota), and others. The emergence of these variants raises concerns about their potential for increased transmissibility and virulence, highlighting the importance of ongoing monitoring of SARS-CoV-2 infections in both humans and animals. Furthermore, most of the reviewed studies indicated that infected pets either showed no symptoms or experienced mild symptoms. This aligns with previous reports suggesting that animals infected with SARS-CoV-2 generally have less severe illness compared to humans. However, it is essential to recognize the possibility of severe illness or death in animals, particularly those with underlying health conditions. Continuous surveillance of SARS-CoV-2 infections in companion animals is crucial for better understanding the virus's epidemiology in animals and developing effective strategies to protect both animal and human health.
Collapse
Affiliation(s)
- Zahra Heydarifard
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ardalan Maleki Chegeni
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Heydarifard
- Department of Veterinary, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Bahram Nikmanesh
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Zoonoses Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Zoonoses Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Castillo AP, Miranda JVO, Fonseca PLC, Silva SDO, Lopes REN, Spanhol VC, Moreira RG, Nicolino RR, Queiroz DC, de Araújo E Santos LCG, Dos Santos APS, Rivetti HAA, Martins-Duarte ES, de Almeida Vitor RW, Dos Reis JKP, Aguiar RS, da Silveira JAG. Evidence of SARS-CoV-2 infection and co-infections in stray cats in Brazil. Acta Trop 2024; 249:107056. [PMID: 37913970 DOI: 10.1016/j.actatropica.2023.107056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The zoonotic virus SARS-CoV-2, which causes severe acute respiratory syndrome in humans (COVID-19), has been identified in cats. Notably, most positive cases were in cats that had close contact with infected humans, suggesting a role for humans in animal transmission routes. Previous studies have suggested that animals with immune depletion are more susceptible to SARS-CoV-2 infection. To date, there is limited evidence of SARS-CoV-2 infections in stray and free-range cats affected by other pathogens. In this study, we investigated infections caused by SARS-CoV-2, Leishmania spp., Toxoplasma gondii, Mycoplasma spp., Bartonella spp., Feline leukemia virus (FeLV), and Feline immunodeficiency virus (FIV) in stray cats from an urban park in Brazil during the COVID-19 pandemic. From February to September 2021, 78 mixed-breed cats were tested for SARS-CoV-2 and hemopathogens using molecular analysis at Américo Renné Giannetti Municipal Park, Belo Horizonte, Minas Gerais, Brazil. An enzyme-linked immunosorbent assay (ELISA) was used to detect IgG in T. gondii. None of the animals in this study showed any clinical signs of infections. The SARS-CoV-2 virus RNA was detected in 7.7 % of cats, and a whole virus genome sequence analysis revealed the SARS-CoV-2 Delta lineage (B.1.617.2). Phylogenetic analysis showed that SARS-CoV-2 isolated from cats was grouped into the sublineage AY.99.2, which matches the epidemiological scenario of COVID-19 in the urban area of our study. Leishmania infantum was detected and sequenced in 9 % of cats. The seroprevalence of T. gondii was 23.1 %. Hemotropic Mycoplasma spp. was detected in 7.7 % of the cats, with Mycoplasma haemofelis and Candidatus Mycoplasma haemominutum being the most common. Bartonella henselae and Bartonella clarridgeiae were detected in 38.5 % of the cats, FeLV was detected in 17,9 %, and none of the cats studied tested positive for FIV. This study reports, for the first time, the SARS-CoV-2 infection with whole-genome sequencing in stray cats in southeastern Brazil and co-infection with other pathogens, including Bartonella spp. and Feline leukemia virus. Our study observed no correlation between SARS-CoV-2 and the other detected pathogens. Our results emphasize the importance of monitoring SARS-CoV-2 in stray cats to characterize their epidemiological role in SARS-CoV-2 infection and reinforce the importance of zoonotic disease surveillance.
Collapse
Affiliation(s)
- Anisleidy Pérez Castillo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil; Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Joao Victor Oliveira Miranda
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Paula Luize Camargos Fonseca
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Soraia de Oliveira Silva
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Rosálida Estevam Nazar Lopes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Viviane Campos Spanhol
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rennan Garcias Moreira
- Centro de Laboratórios Multiusuários, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Rafael Romero Nicolino
- Departamento de Epidemiologia e Defesa Sanitária Animal, Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Luiza Campos Guerra de Araújo E Santos
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Anna Pio Soares Dos Santos
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Hugo Adriano Araújo Rivetti
- Centro de Controle de Zoonoses, Prefeitura de Belo Horizonte, R. Édna Quintel, 173 - São Bernardo, Belo Horizonte, MG 31270-705, Brazil
| | - Erica S Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Ricardo Wagner de Almeida Vitor
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Jenner Karlisson Pimenta Dos Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Santana Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Júlia Angélica Gonçalves da Silveira
- Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
8
|
Zhao J, Kang M, Wu H, Sun B, Baele G, He WT, Lu M, Suchard MA, Ji X, He N, Su S, Veit M. Risk assessment of SARS-CoV-2 replicating and evolving in animals. Trends Microbiol 2024; 32:79-92. [PMID: 37541811 DOI: 10.1016/j.tim.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.
Collapse
Affiliation(s)
- Jin Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Wu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Bowen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Guy Baele
- Department of Microbiology, Immunology, and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wan-Ting He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Meng Lu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Morozov I, Gaudreault NN, Trujillo JD, Indran SV, Cool K, Kwon T, Meekins DA, Balaraman V, Artiaga BL, Madden DW, McDowell C, Njaa B, Retallick J, Hainer N, Millership J, Wilson WC, Tkalcevic G, Vander Horst H, Burakova Y, King V, Hutchinson K, Hardham JM, Schwahn DJ, Kumar M, Richt JA. Preliminary Study on the Efficacy of a Recombinant, Subunit SARS-CoV-2 Animal Vaccine against Virulent SARS-CoV-2 Challenge in Cats. Vaccines (Basel) 2023; 11:1831. [PMID: 38140233 PMCID: PMC10747320 DOI: 10.3390/vaccines11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this work was to evaluate the safety and efficacy of a recombinant, subunit SARS-CoV-2 animal vaccine in cats against virulent SARS-CoV-2 challenge. Two groups of cats were immunized with two doses of either a recombinant SARS-CoV-2 spike protein vaccine or a placebo, administered three weeks apart. Seven weeks after the second vaccination, both groups of cats were challenged with SARS-CoV-2 via the intranasal and oral routes simultaneously. Animals were monitored for 14 days post-infection for clinical signs and viral shedding before being humanely euthanized and evaluated for macroscopic and microscopic lesions. The recombinant SARS-CoV-2 spike protein subunit vaccine induced strong serologic responses post-vaccination and significantly increased neutralizing antibody responses post-challenge. A significant difference in nasal and oral viral shedding, with significantly reduced virus load (detected using RT-qPCR) was observed in vaccinates compared to mock-vaccinated controls. Duration of nasal, oral, and rectal viral shedding was also significantly reduced in vaccinates compared to controls. No differences in histopathological lesion scores were noted between the two groups. Our findings support the safety and efficacy of the recombinant spike protein-based SARS-CoV-2 vaccine which induced high levels of neutralizing antibodies and reduced nasal, oral, and rectal viral shedding, indicating that this vaccine will be efficacious as a COVID-19 vaccine for domestic cats.
Collapse
Affiliation(s)
- Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Sabarish V. Indran
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Bradley Njaa
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (B.N.)
| | - Jamie Retallick
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (B.N.)
| | | | | | - William C. Wilson
- Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, United States Department of Agriculture, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| |
Collapse
|
10
|
Mabry ME, Fanelli A, Mavian C, Lorusso A, Manes C, Soltis PS, Capua I. The panzootic potential of SARS-CoV-2. Bioscience 2023; 73:814-829. [PMID: 38125826 PMCID: PMC10728779 DOI: 10.1093/biosci/biad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2. Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species, extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2 receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term panzootic could be a more appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management of this worldwide event.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Carla Mavian
- Emerging Pathogens Institute and with the Department of Pathology, University of Florida, Gainesville, Florida, United States
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Costanza Manes
- Department of Wildlife Ecology and Conservation and with the One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
- School of International Advanced Studies, Johns Hopkins University, Bologna, Italy
| |
Collapse
|
11
|
Aplasca AC, Martinez MP, Evans SJM, Martinez ME, Cianciolo RE, Bundschuh M, Puchulu-Campanella E, Chen X, Yan P, Bundschuh R, Seeley KE, Bapodra-Villaverde P, Garner MM, Junge RE. AN OUTBREAK OF FELINE INFECTIOUS PERITONITIS IN THREE RELATED SAND CATS ( FELIS MARGARITA) IN HUMAN CARE. J Zoo Wildl Med 2023; 54:628-638. [PMID: 37817630 DOI: 10.1638/2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 10/12/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a systemic disease in felid species caused by infection with mutated forms of feline coronavirus (FCoV), and outbreaks can devastate exotic felid populations in human care. Feline infectious peritonitis was diagnosed in three of four related juvenile sand cats (Felis margarita) from a single institution over a 6-wk period. Case 1 was a 7-mon-old male found deceased with no premonitory signs. Case 2, an 8-mon-old male (littermate to Case 1), and Case 3, a 6-mon-old male (from a different litter with identical parentage), were evaluated for lethargy and anorexia 1 mon after Case 1. Both exhibited transient anisocoria and progressive lethargy, anorexia, and dehydration despite antibiotic and supportive treatment. Approximately 1 wk after initial presentation, Case 2 was humanely euthanized, and Case 3 was found deceased. Necropsy findings included intrathoracic and/or intra-abdominal lymphadenopathy (3/3 cases), bicavitary effusion (2/3), multifocal tan hepatic and intestinal nodules (1/3), and multifocal yellow renal nodules (1/3). Histologically, all cats had severe pyogranulomatous vasculitis in multiple organs, and the presence of FCoV antigen was confirmed using immunohistochemical staining. Next-generation sequencing of the virus from Case 3's affected kidney demonstrated ∼93% homology to the UG-FH8 virus, a serotype 1 feline alphacoronavirus isolated from Denmark. Future research will focus on comparative viral genomic sequencing with the goals of identifying potential sources of FCoV infection and identifying features that may have contributed to the development of FIP in this species.
Collapse
Affiliation(s)
- Andrea C Aplasca
- Columbus Zoo and Aquarium, Powell, OH 43065, USA,
- The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Michael P Martinez
- The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Samantha J M Evans
- The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Margaret E Martinez
- The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Rachel E Cianciolo
- The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Mark Bundschuh
- The Ohio State University Department of Physics, Columbus, OH 43210, USA
| | | | - Xi Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Pearlly Yan
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- The Ohio State University Division of Hematology, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- The Ohio State University Department of Physics, Columbus, OH 43210, USA
- The Ohio State University Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State University Division of Hematology, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
12
|
Jones S, Tyson GB, Orton RJ, Smollett K, Manna F, Kwok K, Suárez NM, Logan N, McDonald M, Bowie A, Filipe ADS, Willett BJ, Weir W, Hosie MJ. SARS-CoV-2 in Domestic UK Cats from Alpha to Omicron: Swab Surveillance and Case Reports. Viruses 2023; 15:1769. [PMID: 37632111 PMCID: PMC10459977 DOI: 10.3390/v15081769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Although domestic cats are susceptible to infection with SARS-CoV-2, the role of the virus in causing feline disease is less well defined. We conducted a large-scale study to identify SARS-CoV-2 infections in UK pet cats, using active and passive surveillance. Remnant feline respiratory swab samples, submitted for other pathogen testing between May 2021 and February 2023, were screened using RT-qPCR. In addition, we appealed to veterinarians for swab samples from cats suspected of having clinical SARS-CoV-2 infections. Bespoke testing for SARS-CoV-2 neutralising antibodies was also performed, on request, in suspected cases. One RT-qPCR-positive cat was identified by active surveillance (1/549, 0.18%), during the Delta wave (1/175, 0.57%). Passive surveillance detected one cat infected with the Alpha variant, and two of ten cats tested RT-qPCR-positive during the Delta wave. No cats tested RT-qPCR-positive after the emergence of Omicron BA.1 and its descendants although 374 were tested by active and eleven by passive surveillance. We describe four cases of SARS-CoV-2 infection in pet cats, identified by RT-qPCR and/or serology, that presented with a range of clinical signs, as well as their SARS-CoV-2 genome sequences. These cases demonstrate that, although uncommon in cats, a variety of clinical signs can occur.
Collapse
Affiliation(s)
- Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Federica Manna
- Bath Vet Referrals, Rosemary Lodge Veterinary Hospital, Wellsway, Bath BA2 5RL, UK
| | - Kirsty Kwok
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Andrea Bowie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| |
Collapse
|
13
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Vreman S, van der Heijden EMDL, Ravesloot L, Ludwig IS, van den Brand JMA, Harders F, Kampfraath AA, Egberink HF, Gonzales JL, Oreshkova N, Broere F, van der Poel WHM, Gerhards NM. Immune Responses and Pathogenesis following Experimental SARS-CoV-2 Infection in Domestic Cats. Viruses 2023; 15:v15051052. [PMID: 37243138 DOI: 10.3390/v15051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Several reports demonstrated the susceptibility of domestic cats to SARS-CoV-2 infection. Here, we describe a thorough investigation of the immune responses in cats after experimental SARS-CoV-2 inoculation, along with the characterization of infection kinetics and pathological lesions. Specific pathogen-free domestic cats (n = 12) were intranasally inoculated with SARS-CoV-2 and subsequently sacrificed on DPI (days post-inoculation) 2, 4, 7 and 14. None of the infected cats developed clinical signs. Only mild histopathologic lung changes associated with virus antigen expression were observed mainly on DPI 4 and 7. Viral RNA was present until DPI 7, predominantly in nasal and throat swabs. The infectious virus could be isolated from the nose, trachea and lungs until DPI 7. In the swab samples, no biologically relevant SARS-CoV-2 mutations were observed over time. From DPI 7 onwards, all cats developed a humoral immune response. The cellular immune responses were limited to DPI 7. Cats showed an increase in CD8+ cells, and the subsequent RNA sequence analysis of CD4+ and CD8+ subsets revealed a prominent upregulation of antiviral and inflammatory genes on DPI 2. In conclusion, infected domestic cats developed a strong antiviral response and cleared the virus within the first week after infection without overt clinical signs and relevant virus mutations.
Collapse
Affiliation(s)
- Sandra Vreman
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Elisabeth M D L van der Heijden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Lars Ravesloot
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Irene S Ludwig
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Andries A Kampfraath
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Herman F Egberink
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Jose L Gonzales
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Nora M Gerhards
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| |
Collapse
|
15
|
Michelitsch A, Allendorf V, Conraths FJ, Gethmann J, Schulz J, Wernike K, Denzin N. SARS-CoV-2 Infection and Clinical Signs in Cats and Dogs from Confirmed Positive Households in Germany. Viruses 2023; 15:v15040837. [PMID: 37112817 PMCID: PMC10144952 DOI: 10.3390/v15040837] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
On a global scale, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to the health of the human population. Not only humans can be infected, but also their companion animals. The antibody status of 115 cats and 170 dogs, originating from 177 German households known to have been SARS-CoV-2 positive, was determined by enzyme-linked immunosorbent assay (ELISA), and the results were combined with information gathered from a questionnaire that was completed by the owner(s) of the animals. The true seroprevalences of SARS-CoV-2 among cats and dogs were 42.5% (95% CI 33.5–51.9) and 56.8% (95% CI 49.1–64.4), respectively. In a multivariable logistic regression accounting for data clustered in households, for cats, the number of infected humans in the household and an above-average contact intensity turned out to be significant risk factors; contact with humans outside the household was a protective factor. For dogs, on the contrary, contact outside the household was a risk factor, and reduced contact, once the human infection was known, was a significant protective factor. No significant association was found between reported clinical signs in animals and their antibody status, and no spatial clustering of positive test results was identified.
Collapse
|
16
|
Agnelli S, Capua I. Pandemic or Panzootic—A Reflection on Terminology for SARS-CoV-2 Infection. Emerg Infect Dis 2022; 28. [PMCID: PMC9707580 DOI: 10.3201/eid2812.220819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As of October 2022, a total of 675 natural outbreaks of SARS-CoV-2 infection have occurred in animal species worldwide. Here, we provide a linguistic and etymologic critique of the term “pandemic” being used to describe the COVID-19 health crisis, as opposed to the term “panzootic,” and discuss policy ramifications of more inclusive terminology.
Collapse
|
17
|
Infección natural por SARS-CoV-2 en gatos y perros domésticos de personas con diagnóstico de COVID-19 en el Valle de Aburrá, Antioquia. BIOMÉDICA 2022; 42:48-58. [DOI: 10.7705/biomedica.6407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/07/2022]
Abstract
Introducción. El síndrome respiratorio agudo grave causado por el nuevo coronavirus SARSCoV-2 es causa de la emergencia sanitaria por la pandemia de COVID-19. Si bien el humano es el el principal huésped vulnerable, en estudios experimentales y reportes de infección natural, se han encontrado casos de zoonosis inversa de SARS-CoV-2 en animales.Objetivo. Evaluar la infección natural por SARS-CoV-2 en gatos y perros de propietarios con diagnóstico de COVID-19 en el Valle de Aburrá, Antioquia, Colombia.Materiales y métodos. La circulación del SARS-CoV-2 se evaluó por RT-qPCR y RT-PCR en muestras de frotis nasofaríngeos y orofaríngeos de gatos y perros cuyos propietarios se encontraban dentro del periodo de los 14 días de aislamiento. Los casos positivos se verificaron amplificando fragmentos de los genes RdRp, N y E; se secuenció el gen RdRp y se analizó filogenéticamente.Resultados. De 80 animales evaluados, seis gatos y tres perros fueron casos confirmados de infección natural por SARS-CoV-2. Los animales no presentaron signos clínicos y sus propietarios, que padecían la infección, reportaron únicamente signos leves de la enfermedad sin complicaciones clínicas. En el análisis de una de las secuencias, se encontró un polimorfismo de un solo nucleótido (SNP) con un cambio en la posición 647, con sustitución del aminoácido serina (S) por una isoleucina (I). Los casos se presentaron en los municipios de Caldas, Medellín y Envigado.Conclusiones. Se infiere que la infección natural en los gatos y perros se asocia al contacto directo con un paciente con COVID-19. No obstante, no es posible determinar la virulencia del virus en este huésped, ni su capacidad de transmisión zoonótica o entre especie.
Collapse
|
18
|
Doliff R, Martens P. Cats and SARS-CoV-2: A Scoping Review. Animals (Basel) 2022; 12:1413. [PMID: 35681877 PMCID: PMC9179433 DOI: 10.3390/ani12111413] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, various animal species were found to be susceptible to SARS-CoV-2 infection. The close contact that exists between humans and cats warrants special attention to the role of this species. Therefore, a scoping review was performed to obtain a comprehensive overview of the existing literature, and to map key concepts, types of research, and possible gaps in the research. A systematic search of the databases PubMed, Google Scholar, and Scopus and the preprint servers medRxiv and bioRxiv was performed. After a two-step screening process, 27 peer-reviewed articles, 8 scientific communication items, and 2 unpublished pre-prints were included. The main themes discussed were susceptibility to SARS-CoV-2, induced immunity, prevalence of infection, manifestation of infection, interspecies transmission between humans and cats, and lastly, intraspecies transmission between cats. The main gaps in the research identified were a lack of large-scale studies, underrepresentation of stray, feral, and shelter cat populations, lack of investigation into cat-to-cat transmissions under non-experimental conditions, and the relation of cats to other animal species regarding SARS-CoV-2. Overall, cats seemingly play a limited role in the spread of SARS-CoV-2. While cats are susceptible to the virus and reverse zoonotic transmission from humans to cats happens regularly, there is currently no evidence of SARS-CoV-2 circulation among cats.
Collapse
Affiliation(s)
| | - Pim Martens
- University College Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
19
|
Hoyte A, Webster M, Ameiss K, Conlee DA, Hainer N, Hutchinson K, Burakova Y, Dominowski PJ, Baima ET, King VL, Rosey EL, Hardham JM, Millership J, Kumar M. Experimental veterinary SARS-CoV-2 vaccine cross neutralization of the Delta (B.1.617.2) variant virus in cats. Vet Microbiol 2022; 268:109395. [PMID: 35339817 PMCID: PMC8915440 DOI: 10.1016/j.vetmic.2022.109395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 10/25/2022]
Abstract
SARS-CoV-2 has exhibited varying pathogenesis in a variety of Mammalia family's including Canidae, Mustelidae, Hominidae, Cervidae, Hyaenidae, and Felidae. Novel SARS-CoV-2 variants characterized by spike protein mutations have recently resulted in clinical and epidemiological concerns, as they potentially have increased infectious rates, increased transmission, or reduced neutralization by antibodies produced via vaccination. Many variants have been identified at this time, but the variant of continuing concern has been the Delta variant (B.1.617.2), due to its increased transmissibility and infectious rate. Felines vaccinated using an experimental SARS-CoV-2 spike protein-based veterinary vaccine mounted a robust immune response to the SARS-CoV-2 spike protein. Using a reporter virus particle system and feline serum, we have verified that vaccinated felines produce antibodies that neutralize the SARS-CoV-2 Wuhan strain and variant B.1.617.2 at comparable levels.
Collapse
|
20
|
Mastutik G, Rohman A, I'tishom R, Ruiz-Arrondo I, de Blas I. Experimental and natural infections of severe acute respiratory syndrome-related coronavirus 2 in pets and wild and farm animals. Vet World 2022; 15:565-589. [PMID: 35497948 PMCID: PMC9047133 DOI: 10.14202/vetworld.2022.565-589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
Abstract
The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has spread globally and has led to extremely high mortality rates. In addition to infecting humans, this virus also has infected animals. Experimental studies and natural infections showed that dogs have a low susceptibility to SARS-CoV-2 infection, whereas domesticated cats and other animals in the family Felidae, such as lions, tigers, snow leopards, and cougars, have a high susceptibility to viral infections. In addition, wild white-tailed deer, gorillas, and otters have been found to be infected by SARS-CoV-2. Furry farm animals, such as minks, have a high susceptibility to SARS-CoV-2 infection. The virus appears to spread among minks and generate several new mutations, resulting in increased viral virulence. Furthermore, livestock animals, such as cattle, sheep, and pigs, were found to have low susceptibility to the virus, whereas chicken, ducks, turkeys, quail, and geese did not show susceptibility to SARS-CoV-2 infection. This knowledge can provide insights for the development of SARS-CoV-2 mitigation strategies in animals and humans. Therefore, this review focuses on experimental (both replication and transmission) in vitro, ex vivo, and in vivo studies of SARS-CoV-2 infections in pets and in wild and farm animals, and to provide details on the mechanism associated with natural infection.
Collapse
Affiliation(s)
- Gondo Mastutik
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Reny I'tishom
- Department of Medical Biology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Ignacio Ruiz-Arrondo
- Center for Rickettsioses and Arthropod-Borne Diseases, Hospital Universitario San Pedro–CIBIR, Logroño, Spain
| | - Ignacio de Blas
- Department of Animal Pathology, Faculty of Veterinary Sciences, Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Spain
| |
Collapse
|
21
|
Evolutionary Analysis of Mammalian ACE2 and the Key Residues Involved in Binding to the Spike Protein Revealed Potential SARS-CoV-2 Hosts. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Sweet AN, André NM, Stout AE, Licitra BN, Whittaker GR. Clinical and Molecular Relationships between COVID-19 and Feline Infectious Peritonitis (FIP). Viruses 2022; 14:481. [PMID: 35336888 PMCID: PMC8954060 DOI: 10.3390/v14030481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) has led the medical and scientific community to address questions surrounding the pathogenesis and clinical presentation of COVID-19; however, relevant clinical models outside of humans are still lacking. In felines, a ubiquitous coronavirus, described as feline coronavirus (FCoV), can present as feline infectious peritonitis (FIP)-a leading cause of mortality in young cats that is characterized as a severe, systemic inflammation. The diverse extrapulmonary signs of FIP and rapidly progressive disease course, coupled with a closely related etiologic agent, present a degree of overlap with COVID-19. This paper will explore the molecular and clinical relationships between FIP and COVID-19. While key differences between the two syndromes exist, these similarities support further examination of feline coronaviruses as a naturally occurring clinical model for coronavirus disease in humans.
Collapse
Affiliation(s)
- Arjun N. Sweet
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole M. André
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Alison E. Stout
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Beth N. Licitra
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| |
Collapse
|
23
|
Muñoz M, Patiño LH, Ballesteros N, Castañeda S, Luna N, Delgado L, Hernandez-Pereira C, Shaban MV, Muñoz SA, Paniz-Mondolfi A, Ramírez JD. Striking lineage diversity of severe acute respiratory syndrome coronavirus 2 from non-human sources. One Health 2021; 14:100363. [PMID: 34931174 PMCID: PMC8673956 DOI: 10.1016/j.onehlt.2021.100363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Due to the necessity to control human-to-human spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the overwhelming majority of the generated data on this virus was solely related to the genomic characteristics of strains infecting humans; conversely, this work aimed to recover and analyze the diversity of viral genomes from non-human sources. From a set of 3595 publicly available SARS-CoV-2 genome sequences, 128 lineages were identified in non-human hosts, the majority represented by the variants of concern Delta (n = 1105, 30.7%) and Alpha (n = 466, 12.9%), followed by B.1.1.298 lineage (n = 458, 12.7%). Environment, Neovison vison, Odocoileus virginianus and Felis catus were the non-human sources with the highest number of lineages (14, 12 and 10, respectively). Phylogenomic analyses showed viral clusters from environmental sources, N. vison, O. virginianus, Panthera tigris, and Panthera leo. These clusters were collectively related to human viruses as well as all other non-human sources that were heterogeneously distributed in the phylogenetic tree. Further, the genetic details of viral genomes from bats and pangolins were independently investigated owing to their high divergence, revealing five distinct clusters. Cluster 4 exclusively included bat-sourced genomes and the SARS-CoV-2 reference strain Wuhan-01. In summary, this study identified new genetic landmarks of SARS-CoV-2 evolution. We propose potential interspecies transmission routes of SARS-CoV-2 between animals and humans, which should be considered in order to establish better pathogen surveillance and containment strategies.
Collapse
Affiliation(s)
- Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lourdes Delgado
- Instituto de Investigaciones Biomédicas IDB/Incubadora Venezolana de la Ciencia, Barquisimeto, Venezuela
| | - Carlos Hernandez-Pereira
- Instituto de Investigaciones Biomédicas IDB/Incubadora Venezolana de la Ciencia, Barquisimeto, Venezuela
| | - Maryia V Shaban
- Instituto de Investigaciones Biomédicas IDB/Incubadora Venezolana de la Ciencia, Barquisimeto, Venezuela
| | - Shirly Alexandra Muñoz
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia.,Unidad de Salud de Ibagué (USI) E.S.E., Ibagué, Colombia
| | - Alberto Paniz-Mondolfi
- Instituto de Investigaciones Biomédicas IDB/Incubadora Venezolana de la Ciencia, Barquisimeto, Venezuela.,Microbiology Division, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Microbiology Division, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
24
|
Flegr J. Toxoplasmosis is a risk factor for acquiring SARS-CoV-2 infection and a severe course of COVID-19 in the Czech and Slovak population: a preregistered exploratory internet cross-sectional study. Parasit Vectors 2021; 14:508. [PMID: 34583758 PMCID: PMC8477627 DOI: 10.1186/s13071-021-05021-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Latent toxoplasmosis, i.e. a lifelong infection with the protozoan parasite Toxoplasma gondii, affects about a third of the human population worldwide. In the past 10 years, numerous studies have shown that infected individuals have a significantly higher incidence of mental and physical health problems and are more prone to exhibiting the adverse effects of various diseases. Methods A cross-sectional internet study was performed on a population of 4499 (786 Toxoplasma-infected) participants and looked for factors which positively or negatively affect the risk of SARS-CoV-2 infection and likelihood of a severe course of COVID-19. Results Logistic regression and partial Kendall correlation controlling for sex, age, and size of the place of residence showed that latent toxoplasmosis had the strongest effect on the risk of infection (OR = 1.50) before sport (OR = 1.30) and borreliosis (1.27). It also had the strongest effect on the risk of severe course of infection (Tau = 0.146), before autoimmunity, immunodeficiency, male sex, keeping a cat, being overweight, borreliosis, higher age, or chronic obstructive pulmonary disease. Toxoplasmosis augmented the adverse effects of other risk factors but was not the proximal cause of the effect of cat-keeping on higher likelihood of COVID infection and higher severity of the course of infection because the effect of cat-keeping was also observed (and in particular) in a subset of Toxoplasma-infected respondents (Tau = 0.153). Effects of keeping a cat were detected only in respondents from multi-member families, suggesting that a cat could be a vector for the transmission of SARS-CoV-2 within a family. Conclusions Toxoplasmosis is currently not considered a risk factor for COVID-19, and Toxoplasma-infected individuals are neither informed about their higher risk nor prioritised in vaccination programs. Because toxoplasmosis affects a large segment of the human population, its impact on COVID-19-associated effects on public health could be considerable. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jaroslav Flegr
- Laboratory of Evolutionary Biology, Division of Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic. .,National Institute of Mental Health, Klecany, 250 67, Czech Republic.
| |
Collapse
|
25
|
Bonilla-Aldana DK, García-Barco A, Jimenez-Diaz SD, Bonilla-Aldana JL, Cardona-Trujillo MC, Muñoz-Lara F, Zambrano LI, Salas-Matta LA, Rodriguez-Morales AJ. SARS-CoV-2 natural infection in animals: a systematic review of studies and case reports and series. Vet Q 2021; 41:250-267. [PMID: 34406913 PMCID: PMC8428274 DOI: 10.1080/01652176.2021.1970280] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
COVID-19 pandemic is essentially a zoonotic disease. In this context, early in 2020, transmission from humans to certain animals began reporting; the number of studies has grown since. To estimate the pooled prevalence of SARS-CoV-2 natural infection in animals and to determine differences in prevalence between countries, years, animal types and diagnostic methods (RT-PCR or serological tests). A systematic literature review with meta-analysis using eight databases. Observational studies were included but analyzed separately. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95% CI) for prevalence studies and case series. After the screening, 65 reports were selected for full-text assessment and included for qualitative and quantitative analyses. A total of 24 reports assessed SARS-CoV-2 infection by RT-PCR, combining a total of 321,785 animals, yielding a pooled prevalence of 12.3% (95% CI 11.6%–13.0%). Also, a total of 17 studies additionally assessed serological response against SARS-CoV-2, including nine by ELISA, four by PRTN, one by MIA, one by immunochromatography (rest, two studies, the method was not specified), combining a total of 5319 animals, yielding a pooled prevalence of 29.4% (95% CI 22.9%–35.9%). A considerable proportion of animals resulted infected by SARS-CoV-2, ranking minks among the highest value, followed by dogs and cats. Further studies in other animals are required to define the extent and importance of natural infection due to SARS-CoV-2. These findings have multiple implications for public human and animal health. One Health approach in this context is critical for prevention and control.
Collapse
Affiliation(s)
- D Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación GISCA, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia
| | - Alejandra García-Barco
- Grupo Colaborativo de Investigación en Enfermedades Transmitidas por vectores, Zoonóticas y tropicales de Risaralda, Pereira, Risaralda, Colombia
| | - S Daniela Jimenez-Diaz
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación GISCA, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia
| | - Jorge Luis Bonilla-Aldana
- School of Veterinary Medicine and Zootechnics, Universidad de la Amazonia, Florencia, Caquetá, Colombia
| | - Maria C Cardona-Trujillo
- Grupo Colaborativo de Investigación en Enfermedades Transmitidas por vectores, Zoonóticas y tropicales de Risaralda, Pereira, Risaralda, Colombia
| | - Fausto Muñoz-Lara
- Department of Internal Medicine, Faculty of Medical Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras.,Department of Internal Medicine, Hospital Escuela, Tegucigalpa, Honduras
| | - Lysien I Zambrano
- Unit of Scientific Research, School of Medicine, Faculty of Medical Sciences, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa, Honduras
| | | | - Alfonso J Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Perú.,Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia.,School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia
| |
Collapse
|