1
|
Meinen-Jochum J, Skow CJ, Mellata M. Layer segmented filamentous bacteria colonize and impact gut health of broiler chickens. mSphere 2024; 9:e0049224. [PMID: 39422489 PMCID: PMC11580430 DOI: 10.1128/msphere.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In commercial poultry farms, chicks hatch away from their progenitors from which they acquire key host-specific microbiota, like segmented filamentous bacteria (SFB) involved in gut maturation in early life. This study investigated whether providing chicken SFB to newly hatched broilers would increase their gut maturation and resistance to bacteria relevant to broiler and human health. One-day-old Ross308 broilers were orally treated with either phosphate-buffered saline (CON) or layer-derived SFB (D-SFB). On days 5, 10, 17, and 24, feces were collected to detect and enumerate SFB and Enterobacteriaceae. On days 8, 15, 22, and 29, birds were euthanized, intestinal samples were collected to detect and enumerate SFB through quantitative PCR (qPCR) and microscopy and expression of genes associated with gut immune function through reverse transcription-qPCR. This study showed that, despite their host specificity, layer SFB can colonize their genetically distinct relative broilers. Ileal SFB colonization was accelerated by a week with the SFB treatment and covered the proximal, medial, and distal sections of the ileum. Colonization of the ileum by SFB in early life highly activated gene expression of intestinal barrier proteins and cytokines, e.g., IL-10 and IFNγ but not IL-17. SFB treatment reduced the level of Enterobacteriaceae in the gut and provided superior resistance to intestinal and extraintestinal pathogens as tested in vitro. Overall, early gut colonization of SFB is imperative for the maturation of the gut immune system and the establishment of a homeostatic gut environment. Improving our understanding of gut immune maturation in food-producing animals is crucial for both human and animal health.IMPORTANCEIn commercial farms, newly hatched chicks may lack host-specific microbiota that help mature their gut immune system for lifelong health benefits. Here, introducing an avian segmented filamentous bacteria (SFB) to commercially sourced chickens orally at hatch accelerated SFB colonization of the ileum. Remarkably, SFB from layers were able to colonize broilers and enhance gut immune maturation, and this immunomodulation impacted the ability to increase intestinal and extraintestinal resistance to bacteria relevant to poultry and human health. With the antibiotic restrictions in animal production, strategies that will help mitigate infections are urgently needed. In summary, we developed a live prophylactic for newly hatched chicks to improve animal health and food safety. Due to the host specificity of SFB, our data highlight the importance of investigating the molecular mechanism of SFB interaction in their own host.
Collapse
Affiliation(s)
- Jared Meinen-Jochum
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Caleb J. Skow
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
3
|
Wróblewska P, Hikawczuk T, Szuba-Trznadel A, Wiliczkiewicz A, Zinchuk A, Rusiecka A, Laszki-Szcząchor K. Effect of Triticale Grain in Diets on Performance, Development of Gastrointestinal Tract and Microflora in Crop and Ileum of Broiler Chickens. Microorganisms 2024; 12:1239. [PMID: 38930621 PMCID: PMC11205749 DOI: 10.3390/microorganisms12061239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of the research was to determine the effect of the use of a diet containing 30% triticale grain. In an experiment lasting 28 days, 180 one-day Ross-308 chickens (sex ratio 1:1) with an average initial body weight in treatment of 44.6 g were randomly assigned to 30 metabolic cages/replications, 6 birds in each. To compare the results between treatments, a one-way ANOVA was used with uneven replication numbers. The control group (I) received a standard diet containing maize and soybean meal. In the other treatments, 30% of different cereals were used: II-wheat, III-barley, and IV-triticale. Significant differences in body weight (BW) and feed conversion ratio (FCR) were observed on the 4th day of the life of broiler chickens (p < 0.05). Differences were determined between the control group (90.7 g BW and 1.32 kg of feed/kg BWG in the case of FCR) and birds receiving barley (93.0 g BW and 1.29 kg of feed/kg BWG in the case of FCR), compared to chickens fed diets with a 30% share of wheat grain (86.2 g BW and 1.53 kg feed/kg BWG in the case of FCR) and triticale (86.6 g BW and 1.53 kg feed/kg BWG in the case of FCR). Later, the differences in performance of birds between treatments did not occur (p > 0.05). In the nutrition of broiler chickens, control or 30% of the triticale diet caused a significant reduction (p < 0.01) of the number of Escherichia coli (E. coli) in the crop of broiler chickens (0 log cfu/g), compared to birds obtaining feed with 30% of wheat (1.78 log cfu/g). The diet containing triticale also reduced the number of E. coli (p < 0.05) within the ileum (0.78 log cfu/g) compared to chickens obtaining barley grain in the diet (2.12 log cfu/g). As a result of the use of triticale grain (p < 0.05), the total length of the bird intestines (199.64 cm) was compared to 30% of barley grain (209.76 cm). The increase in the length of the large intestine of broiler chickens in treatments was positively correlated (r = 0.613, p < 0.05) with the number of Lactobacillus sp. in the ileum. Triticale increased the pH in the crop of broilers chickens. The research results indicate that triticale, after longer storage, can be used in amounts of 30% of the diet without significant effect on the performance of broiler chickens, with a reduction in E. coli in crop in comparison with wheat and in ileum with barley.
Collapse
Affiliation(s)
- Patrycja Wróblewska
- Department of Animal Nutrition and Feed Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38c, 61-630 Wroclaw, Poland; (P.W.); (A.W.)
| | - Tomasz Hikawczuk
- Statistical Analysis Center, Wroclaw Medical University, Karola Marcinkowskiego 2-6, 50-368 Wroclaw, Poland; (T.H.); (A.Z.); (A.R.); (K.L.-S.)
| | - Anna Szuba-Trznadel
- Department of Animal Nutrition and Feed Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38c, 61-630 Wroclaw, Poland; (P.W.); (A.W.)
| | - Andrzej Wiliczkiewicz
- Department of Animal Nutrition and Feed Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38c, 61-630 Wroclaw, Poland; (P.W.); (A.W.)
| | - Andrii Zinchuk
- Statistical Analysis Center, Wroclaw Medical University, Karola Marcinkowskiego 2-6, 50-368 Wroclaw, Poland; (T.H.); (A.Z.); (A.R.); (K.L.-S.)
| | - Agnieszka Rusiecka
- Statistical Analysis Center, Wroclaw Medical University, Karola Marcinkowskiego 2-6, 50-368 Wroclaw, Poland; (T.H.); (A.Z.); (A.R.); (K.L.-S.)
| | - Krystyna Laszki-Szcząchor
- Statistical Analysis Center, Wroclaw Medical University, Karola Marcinkowskiego 2-6, 50-368 Wroclaw, Poland; (T.H.); (A.Z.); (A.R.); (K.L.-S.)
| |
Collapse
|
4
|
Gómez-Verduzco G, Arce-Menocal J, López-Coello C, Avila-González E, Márquez-Mota CC, Polo J, Rangel L. Feeding spray-dried plasma to broilers early in life improved their intestinal development, immunity and performance irrespective of mycotoxins in feed. Front Vet Sci 2024; 10:1321351. [PMID: 38283370 PMCID: PMC10812105 DOI: 10.3389/fvets.2023.1321351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Fungi that produce mycotoxins can grow on certain food products, such as grains and feed, and can cause a variety of health issues if consumed by animals, including chickens. The use of spray-dried plasma (SDP) is one strategy for combating the health problems caused by mycotoxins. Materials and methods In the present study, Ross 308 chickens (n = 960) were divided into four treatment groups. T1 group was given a control diet (corn-soybean meal), T2 group was given a control diet +2% SDP, T3 group was given a control diet +2% SDP + mixture mycotoxins and T4 group was givena control diet + mycotoxin mixture. Results The presence of SDP resulted in weight gain and decreased feed efficiency, whereas mycotoxins resulted in weight loss and increased feed efficiency. SDP increased the thymus' relative weight. The presence of mycotoxins increased the heterophile/lymphocyte ratio. The presence of mycotoxins reduced the production of IL-2 and macrophage inflammatory protein-3 Alpha (MIP-3a), whereas the presence of SDP increased the production of macrophage colony-stimulating Factor (M-CSF). SDP resulted in higher IgA concentrations in the intestinal and tracheal washes than mycotoxin. Finally, adding SDP to broiler diets boosts weight gain, feed efficiency, and immune system development. Discussion Our results provide information supporting that SDP is a promising tool for improving poultry immunity and performance.
Collapse
Affiliation(s)
- Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Arce-Menocal
- Departamento de Producción avícola, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Carlos López-Coello
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ernesto Avila-González
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola CEIEPAv, Tláhuac, Mexico
| | - Claudia C. Márquez-Mota
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | |
Collapse
|
5
|
Gong H, Ma Y, Wang M, Gu Y, Deng R, Deng B, Feng D, Han Y, Mi R, Huang Y, Zhang Y, Zhang W, Chen Z. Microbiota Profiles of Hen Eggs from the Different Seasons and Different Sectors of Shanghai, China. Microorganisms 2023; 11:2519. [PMID: 37894177 PMCID: PMC10609546 DOI: 10.3390/microorganisms11102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Hen eggs are one of the most popular foods worldwide, and their safety is critical. Employing 16S rRNA full-length sequencing is an effective way to identify microorganisms on or in eggs. Here, hen eggs collected from poultry farms over four seasons, as well as from markets in Shanghai, were analyzed with third-generation sequencing. Firmicutes (44.46%) and Proteobacteria (35.78%) were the two dominant phyla, and Staphylococcus, Acinetobacter, Aerococcus, Psychrobacter, and Lactobacillus were the dominant genera. The dominant genera on the eggshell surfaces from the farms varied with the seasons, and the highest contamination of Staphylococcus (32.93%) was seen in the eggs collected during the summer. For the market samples, Pseudomonas was the most abundant in content, with Staphylococcus being the most-often genera found on the eggshell surfaces. Moreover, several potential pathogenic bacteria including Riemerella anatipestifer (species), Klebsiella (genus), and Escherichia/shigella (genus) were detected in the samples. The results revealed the impacts of weather on the microbiota deposited on an eggshell's surface, as well as the impacts due to the differences between the contents and the surface. The results can help disinfect eggs and guide antibiotic selection.
Collapse
Affiliation(s)
- Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Yingqing Ma
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Min Wang
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Yumeng Gu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Ruipeng Deng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Bo Deng
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Dongsheng Feng
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Yiyi Han
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Yan Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Weiyi Zhang
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| |
Collapse
|