1
|
El Safadi M, Hayat MF, Akbar A, Nisar A, Alzahrani FM, Alzahrani KJ. Pharmacotherapeutic potential of bilobetin to combat chromium induced hepatotoxicity via regulating TLR-4, Nrf-2/Keap-1, JAK1/STAT3 and NF-κB pathway: A pharmacokinetic and molecular dynamic approach. J Trace Elem Med Biol 2024; 86:127567. [PMID: 39591719 DOI: 10.1016/j.jtemb.2024.127567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Chromium (Cr) is one of the top-notch noxious heavy metals that is documented to exert deleterious effects on various body organs including the liver. Bilobetin (BLB) is a natural flavonoid which exhibits a wide range of medicinal properties. AIM This trial was executed to investigate the pharmacotherapeutic potential of BLB to avert Cr instigated hepatotoxicity via modulating TLR4, JAK1/STAT3, Nrf-2/Keap-1 and NF-κB pathway. RESEARCH LAYOUT Our trial was executed on thirty-six male albino rats that were segregated into four equal groups including the control, Cr (10 mg/kg), Cr (10 mg/kg) + BLB (12 mg/kg) and BLB (12 mg/kg) alone treated group. Various biochemical parameters were assessed by using qRT-PCR, molecular docking, molecular dynamic simulation and histological approaches. FINDINGS Our results revealed that Cr administration significantly impaired the health of hepatic tissues by reducing the gene expression of Nrf-2 and its downregulating genes while promoting the levels of oxidative stress markers (ROS and MDA). Moreover, Cr administration upregulated the hepatic enzymes including ALT, GGT, AST, and ALP while concurrently decreasing the levels of total protein and albumin. Cr exposure also elevated the gene expression of pro-inflammatory cytokines including toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1) nuclear factor kappa B (NF-κB), Janus kinase 1 (JAK1), signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor alpha (TNF-α), C-reactive proteins, interferon-gamma inducible protein-10 (IP-10), Interleukin beta-1(IL-1β), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2). Hepatic apoptosis was observed to be elevated following the Cr intoxication. Nonetheless, BLB treatment remarkably alleviated the hepatic damages via regulating the biochemical as well as histological profile of liver. Our findings are further endorsed by molecular docking analysis that demonstrated that BLB exhibit strong binding affinity to Keap-1 and STAT3 thus supporting its efficient hepatoprotective potential. CONCLUSION BLB protected the hepatic tissues via regulating Cr induced impairments. These findings were confirmed by molecular docking and molecular dynamic simulation analysis.
Collapse
Affiliation(s)
- Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah Nisar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 2024; 21:76. [PMID: 39511615 PMCID: PMC11542427 DOI: 10.1186/s12979-024-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In the last forty years, the number of people over 60 years of age has increased significantly owing to better nutrition and lower rates of infectious diseases in developing countries. Aging significantly impacts adipose tissue, which plays crucial role in hormone regulation and energy storage. This can lead to imbalances in glucose, and overall energy homeostasis within the body. Aging is irreversible phenomena and potentially causing lipid infiltration in other organs, leading to systemic inflammation, metabolic disorders. This review investigates various pathways contributing to aging-related defects in adipogenesis, such as changes in adipose tissue function and distribution. Polyphenols, a diverse group of natural compounds, can mitigate aging effects via free radicals, oxidative stress, inflammation, senescence, and age-related diseases. Polyphenols like resveratrol, quercetin and EGCG exhibit distinct mechanisms and regulate crucial pathways, such as the TGF-β, AMPK, Wnt, PPAR-γ, and C/EBP transcription factors, and influence epigenetic modifications, such as DNA methylation and histone modification. This review highlights the critical importance of understanding the intricate relationship between aging and adipogenesis for optimizing well-being with increasing age. These findings highlight the therapeutic potential of polyphenols like quercetin and resveratrol in enhancing adipose tissue function and promoting healthy aging.
Collapse
Affiliation(s)
- Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Saadati F, Modarresi Chahardehi A, Jamshidi N, Jamshidi N, Ghasemi D. Coumarin: A natural solution for alleviating inflammatory disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100202. [PMID: 39398983 PMCID: PMC11470182 DOI: 10.1016/j.crphar.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Coumarin, a naturally occurring compound found in various plants, has a rich history of use in traditional medicine. Recent research has highlighted its anti-inflammatory properties, positioning it as a promising candidate for treating inflammatory disorders such as rheumatoid arthritis, asthma, and inflammatory bowel disease. This narrative review aims to comprehensively summarize the current knowledge regarding coumarin's pharmacological effects in alleviating inflammatory conditions by analyzing preclinical and clinical studies. The review focuses on elucidating the mechanisms through which coumarin exerts its anti-inflammatory effects, including its antioxidant activity, inhibiting pro-inflammatory cytokine production, and modulation of immune cell functions. Additionally, the paper addresses potential limitations of using coumarin, such as concerns about toxicity at high doses or with prolonged use. Before widespread clinical application, further investigation is needed to fully understand coumarin's potential benefits and risks.
Collapse
Affiliation(s)
- Farnoosh Saadati
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Negar Jamshidi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| | - Nazanin Jamshidi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| | - Darioush Ghasemi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| |
Collapse
|
4
|
Kaya K, Şahin Y, Demirel HH, Çiftçi O. Investigation of oxidative, inflammatory and apoptotic effects of favipiravir use alone and combined with vitamin C on brain tissue of elderly rats. Drug Chem Toxicol 2024; 47:640-648. [PMID: 37424396 DOI: 10.1080/01480545.2023.2233054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Favipiravir is a nucleoside analogue antiviral drug and inhibits the replication of many RNA viruses, especially influenza viruses. Favipiravir has also been used to treat patients with mild to moderate COVID-19 disease. However, various side effects, including neurological side effects, have been reported related to the use of favipiravir. Therefore, in this study, we aimed to investigate the possible effects of favipiravir alone or in combination with vitamin C on aged rats' brain tissue and the possible mechanisms of these effects. A total of 30 rats used in the study were randomly divided into 5 equal groups and the first group was kept as the control group. High-dose (100 mg/kg) or low-dose (20 mg/kg) favipiravir was administered alone or in combination with vitamin C (150 mg/kg) to other groups. Administration of both high and low doses of favipiravir significantly increased TBARS levels in brain tissue of aged rats. Similarly, both high and low doses of favipiravir led to significant increases in Bcl-2 and caspase-3 relative mRNA expression. However, only low dose favipiravir caused a significant increase in iNOS and IL-1β relative mRNA expression levels. Similar results were also observed in histopathological examinations. However, co-administration of vitamin C with favipiravir attenuated some of the adverse effects of favipiravir. In conclusion, in this study, it was shown that the use of favipiravir caused some adverse effects through oxidative, inflammatory and apoptotic processes in the brain tissue of aged rats, and the potential of vitamin C to alleviate these effects.
Collapse
Affiliation(s)
- Kürşat Kaya
- Department of Medical Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| | - Yasemin Şahin
- Department of Medical Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| | - Hasan Hüseyin Demirel
- Bayat Laborant & Veterinary Health Division, Afyon Kocatepe University, Afyon, Türkiye
| | - Osman Çiftçi
- Department of Medical Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
5
|
Abbas Z, Irshad M, Ali S, Summer M, Rasheed A, Jawad M. Radical scavenging potential of spectrophotometric, spectroscopic, microscopic, and EDX observed zinc oxide nanoparticles from leaves, buds, and flowers extract of Bauhinia Variegata Linn: A thorough comparative insight. Microsc Res Tech 2024; 87:2121-2133. [PMID: 38706225 DOI: 10.1002/jemt.24587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
The present study incorporated an environment-friendly and cost-efficient green synthesis method for fabricating zinc oxide nanoparticles (ZnO-NPs) using various parts (leaves, buds, and flowers) of Bauhinia Variegate Linn. UV-Spectrophotometric analysis was used to confirm the synthesis of ZnO-NPs, which showed an absorption band within 360-380 nm range. Further techniques like FT-IR spectroscopy and (SEM) scanning electron microscopy equipped with a novel EDX were also included to confirm the synthesis, size, and shape of ZnO-NPs. Results obtained by FT-IR showed that the phytochemicals present in the ethanolic extract successfully acted as a capping agent. SEM micrographs confirmed irregularly shaped nanoparticles with an average size of 70-80 nm. The presence of Zinc and Oxygen peaks in EDX also confirmed the successful synthesis of ZnO nanoparticles. The radical scavenging (antioxidant) potential of prepared nanoparticles was also evaluated by DPPH radical assay. The ZnO-NPs obtained from the ethanolic extract of buds showed the highest %RSA (86%) as compared to the flowers (79%) and leaves (76%). The current study findings showed the versatile morphology of all parts of the plant with significant antioxidant potential, establishing the use of Bauhinia Variegate in biological systems for various biomedical applications. RESEARCH HIGHLIGHTS: A thorough comparative analysis of the radical scavenging power of major parts of the Bauhinia Variegate, which is 1st of its kind. Extensive characterization using UV-Vis spectrophotometry, FT-IR, SEM, and EDX to observe the conformational and morphological changes. Analysis of the reduction potential of leaves, buds, and flowers of a single plant for future directions in green synthesis.
Collapse
Affiliation(s)
- Zaheer Abbas
- Faculty of Basic and Applied Sciences, Chemistry Department, University of Kotli, Kotli, Pakistan
| | - Muhammad Irshad
- Faculty of Basic and Applied Sciences, Chemistry Department, University of Kotli, Kotli, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Rasheed
- Faculty of Basic and Applied Sciences, Chemistry Department, University of Kotli, Kotli, Pakistan
| | - Muhammad Jawad
- Faculty of Basic and Applied Sciences, Chemistry Department, University of Kotli, Kotli, Pakistan
| |
Collapse
|
6
|
Saleem M, Hussain SM, Ali S, Rizwan M, Al-Ghanim KA, Yong JWH. Effects of the medicinal plant, Tamarindus indica, as a potential supplement, on growth, nutrient digestibility, body composition and hematological indices of Cyprinus carpio fingerlings. Heliyon 2024; 10:e33901. [PMID: 39027601 PMCID: PMC11255567 DOI: 10.1016/j.heliyon.2024.e33901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Tamarindus indica, a beneficial herb, has many health benefits but there is limited research on its use in fish nutrition industry. The current study investigated the effects of incorporating extracts of T. indica into the canola meal-based diets of Cyprinus carpio (common carp); following which, the growth, digestibility, carcass and hematological markers were assessed. A total of six diets were formulated with varying concentrations of T. indica extracts (TIE) viz, 0 %, 0.5 %, 1 %, 1.5 %, 2 % and 2.5 %. The fish (N = 270, 15 fish/tank with triplicates) in each tank were fed experimental diets for 70 days. The study demonstrated that TIE supplementation significantly improved the growth of common carp when compared to 0 % TIE level (control). The best results were observed at 1 % TIE level for the specific growth rate (1.68 ± 0.03 %), weight gain (15.00 ± 0.57 g), and feed conversion ratio (1.36 ± 0.05). Conversely, the 2.5 % TIE level gave the least improvement in terms of growth performance. Specifically for nutrient digestibility, the maximum values of crude protein (CP, 67.60 ± 0.83 %), crude fat (CF, 67.49 ± 0.45 %) and gross energy (GE, 70.90 ± 0.56 %) were recorded at 1 % TIE level. In addition, the best results of body composition (protein: 63.92 ± 0.06 %, ash: 18.60 ± 0.03 %, fat: 7.12 ± 0.02 % and moisture: 10.36 ± 0.04 %) and hematological indices, were measured in carps fed with 1 % supplementation level. In conclusion, the overall health of C. carpio fingerlings was improved with TIE supplementation in the diet containing 1 % TIE.
Collapse
Affiliation(s)
- Mahnoor Saleem
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
7
|
Hayat MF, Zohaib M, Ijaz MU, Batool M, Ashraf A, Almutairi BO, Atique U. Ameliorative potential of eriocitrin against cadmium instigated hepatotoxicity in rats via regulating Nrf2/keap1 pathway. J Trace Elem Med Biol 2024; 84:127445. [PMID: 38613902 DOI: 10.1016/j.jtemb.2024.127445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Cadmium (Cd) is a hazardous heavy metal that adversely affects the vital body organs particularly liver. Eriocitrin (ERCN) is a plant-based flavonoid that is well-known for its wide range of pharmacological potential. This research trial was aimed to determine the ameliorative potential of ERCN against Cd provoked hepatotoxicity in rats. METHODOLOGY Twenty-four rats (Rattus norvegicus) were apportioned into control, Cd treated (5 mg/kg), Cd (5 mg/kg) + ERCN (25 mg/kg) and only ERCN (25 mg/kg) administrated group. Expressions of Nrf2/Keap1 pathway and apoptotic markers were assessed through qRT-PCR. The levels of inflammatory and liver function markers were evaluated by using standard ELISA kits. KEY FINDINGS Cd exposure reduced the expression of Nrf2 and anti-oxidant genes as well as the activity of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione (GSH) contents while escalating the expression of Keap1. Furthermore, Cd intoxication augmented malondialdehyde (MDA) and reactive oxygen species (ROS) levels in hepatic tissues. Exposure to Cd resulted in a notable elevation in the levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST). Cd administration upregulated nuclear factor-kappa B (NF-κB), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels as well as cyclooxygenase-2 (COX-2) activity. Furthermore, Cd administration upsurged Bax and Caspase-3 expression while reducing the expression of Bcl-2. Moreover, Cd intoxication disrupted the normal architecture of hepatic tissues. However, supplementation of ERCN significantly (p < 0.05) ameliorated the aforementioned disruptions induced by Cd intoxication. CONCLUSION ERCN treatment remarkably ameliorated the hepatic tissues owing to its antioxidant, anti-inflammatory, and anti-apoptotic potentials. These findings underscore the therapeutic potential of ERCN to counteract the adverse effects of environmental pollutants on hepatic tissues.
Collapse
Affiliation(s)
- Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Moazama Batool
- Department of Zoology, Govt. College Women University, Sialkot, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Usman Atique
- College of Biological Systems, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
8
|
Iqbal U, Malik A, Sial NT, Uttra AM, Rehman MFU, Mehmood MH. Molecular insights of Eucalyptol (1,8-Cineole) as an anti-arthritic agent: in vivo and in silico analysis of IL-17, IL-10, NF-κB, 5-LOX and COX-2. Inflammopharmacology 2024; 32:1941-1959. [PMID: 38649658 DOI: 10.1007/s10787-024-01465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024]
Abstract
The monoterpene oxide, Eucalyptol (1,8-Cineole), a primary component of eucalyptus oil, has been evaluated pharmacologically for anti-inflammatory and analgesic activity. Current research aimed to evaluate Eucalyptol's anti-arthritic potential in a Complete Freund's adjuvant induced arthritis that resembles human rheumatoid arthritis. Polyarthritis developed after 0.1 mL CFA injection into the left hind footpad in rats. Oral administration of Eucalyptol at various doses (100, 200 and 400 mg/kg) significantly reduced paw edema, body weight loss, 5-LOX, PGE2 and Anti-CCP levels. Real-time PCR investigation showed significant downregulation of COX-2, TNF-α, NF-κB, IL-17, IL-6, IL-1β and upregulation of IL-4 and IL-10 in Eucalyptol treated groups. Hemoglobin and RBCs counts significantly increased post-treatment with Eucalyptol while ESR, CRP, WBCs and platelets count significantly decreased. Eucalyptol significantly increased Superoxide Dismutase, Catalase and Glutathione levels compared to CFA-induced arthritic control however, MDA significantly decreased post-treatment. Further, radiographic and histopathological examination of the ankle joints of rodents administered Eucalyptol revealed an improvement in the structure of the joints. Piroxicam was taken as standard. Furthermore, molecular docking findings supported the anti-arthritic efficacy of Eucalyptol exhibited high binding interaction against IL-17, TNF-α, IL-4, IL-10, iNOS NF-κB, 5-LOX, and COX-2. Eucalyptol has reduced the severity of CFA induced arthritis by promoting anti-inflammatory cytokines for example IL-4, IL-10 and by inhibiting pro-inflammatory cytokines such as 5-LOX, COX-2, IL-17, NF-κB, TNF-α, IL-6 and IL-1β. Therefore, Eucalyptol might be as a potential therapeutic agent because of its pronounced anti-oxidant and anti-arthritic activity.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University, Lahore, Pakistan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
9
|
Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597. [PMID: 38390501 PMCID: PMC10882267 DOI: 10.1039/d3ra08025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Glycyrrhetinic acid, a triterpenoid compound primarily sourced from licorice root, exhibits noteworthy biological attributes, including anti-inflammatory, anti-tumor, antibacterial, antiviral, and antioxidant effects. Despite these commendable effects, its further advancement and application, especially in clinical use, have been hindered by its limited druggability, including challenges such as low solubility and bioavailability. To enhance its biological activity and pharmaceutical efficacy, numerous research studies focus on the structural modification, associated biological activity data, and underlying mechanisms of glycyrrhetinic acid and its derivatives. This review endeavors to systematically compile and organize glycyrrhetinic acid derivatives that have demonstrated outstanding biological activities over the preceding decade, delineating their molecular structures, biological effects, underlying mechanisms, and future prospects for assisting researchers in finding and designing novel glycyrrhetinic acid derivatives, foster the exploration of structure-activity relationships, and aid in the screening of potential candidate compounds.
Collapse
Affiliation(s)
- Liang Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Jingwen Gong
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Xu Yong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Youbin Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Shuojin Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| |
Collapse
|
10
|
Zendejas-Hernandez U, Alcántara-Martínez N, Vivar DT, Valenzuela F, Sosa Espinoza A, Cervera Ceballos EE. Nebulized glycyrrhizin/enoxolone drug modulates IL-17A in COVID-19 patients: a randomized clinical trial. Front Immunol 2024; 14:1282280. [PMID: 38283346 PMCID: PMC10811189 DOI: 10.3389/fimmu.2023.1282280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Glycyrrhizin (GA) and its derivative Enoxolone (18β), isolated from the Glycyrrhiza glabra plant, are two potential molecules for treating viral diseases. Both demonstrate to regulate immune system with antiviral and anti-inflammatory activities, with the latter mainly due to modulation of inflammatory cytokines. The aim of this clinical trial was to evaluate the safety and efficacy of a nebulized GA/18β drug for treating COVID-19 patients. Methods An open label, randomized, placebo-controlled clinical trial was conducted in Mexico City from January-August 2022 (Registration No. PROTAP-CLI-00). Clinical and biochemical parameters were recorded. Blood samples from patients were regularly collected to evaluate interleukins IL-4, IL-2, IL-1b, TNF-α, IL-17A, IL-6, IL-10,IFN-γ, IL-12, IL-8 and TGF-β1, as well as IgM and IgG against SARS-CoV-2. Two doses of the drug were used - 30/2 mg (dose A) and 90/4 mg (dose B). Results and discussion Both GA/18β doses modulated inflammatory response by reducing mainly IL-17A expression, which in turn kept IL-1β, IL-6, IL-8 and TNF-α interleukins unchanged, indicating significant modulation of key interleukin levels to prevent exacerbation of the immune response in COVID-19 patients. Early on, dose A increased IgM, while dose B induced expression of the antiviral IFN-γ. No severe side effects were seen with either dose, indicating nebulized GA/18β is a safe treatment that could be used for COVID-19 and potentially other viral infections involving inflammatory response.
Collapse
Affiliation(s)
| | - Nemi Alcántara-Martínez
- Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico
- Science Faculty, National Autonomous University of Mexico, Mexico City, Mexico
| | - Diana Tovar Vivar
- Research and Development Department, Columbia Laboratories, Mexico City, Mexico
| | - Fermín Valenzuela
- Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico
| | | | | |
Collapse
|
11
|
Nawaz S, Irfan HM, Alamgeer, Arshad L, Jahan S. Attenuation of CFA-induced chronic inflammation by a bicyclic monoterpene fenchone targeting inducible nitric oxide, prostaglandins, C-reactive protein and urea. Inflammopharmacology 2023; 31:2479-2491. [PMID: 37689616 DOI: 10.1007/s10787-023-01333-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Fenchone (a bicyclic monoterpene) is present in the essential oils of plant species like Foeniculum vulgare and Peumus boldus and is used to treat GIT disorders. Research reports have indicated its strong anti-inflammatory, antioxidant, and anti-nociceptive properties. The present study was designed to investigate fenchone's anti-arthritic effects in a rat model of chronic joint inflammation (Complete Freud's Adjuvant-mediated inflammation [CFA]). Molecular docking analysis revealed a high binding interaction of fenchone with inducible nitric oxide synthase (iNOS), Interleukin-17, Prostaglandin E Receptor EP4, and Cycloxygenase-2 (COX-2), indicating its anti-inflammatory efficacy using computational tests. Fenchone treatment at 100 mg/kg, 200 mg/kg, and 400 mg/kg significantly enhanced the tail-flick latency when compared with the solvent-treated group. Correspondingly, the raised mRNA values of iNOS, IL-17, IL-1β, IL-6, TNF-α, and COX-2 in solvent-treated group were significantly reduced following treatment with fenchone. Moreover, fenchone significantly lowered spleen and thymus indices, Nitric oxide (NO) and PGE2 values as compared to solvent-treated group. Hence, the results of the present study indicated that fenchone has a potent anti-inflammatory effect by inhibiting pro-inflammatory markers and thus may have therapeutic potential for chronic joint inflammation as well as chronic inflammatory disorders.
Collapse
Affiliation(s)
- Shoaib Nawaz
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
- Doctor Institute of Health Sciences, Sargodha, Punjab, Pakistan
| | | | - Alamgeer
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, 54600, Pakistan
| |
Collapse
|
12
|
Assad M, Paracha RN, Siddique AB, Shaheen MA, Ahmad N, Mustaqeem M, Kanwal F, Mustafa MZU, Rehman MFU, Fatima S, Lu C. In Silico and In Vitro Studies of 4-Hydroxycoumarin-Based Heterocyclic Enamines as Potential Anti-Tumor Agents. Molecules 2023; 28:5828. [PMID: 37570800 PMCID: PMC10421012 DOI: 10.3390/molecules28155828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The present study reports the one-step synthesis of several 3-formyl-4-hydroxycouramin-derived enamines (4a-4i) in good yields (65-94%). The characterization of the synthesized compounds was carried out via advanced analytical and spectroscopic techniques, such as melting point, electron impact mass spectrometry (EI-MS), 1H-NMR, 13C-NMR, elemental analysis, FTIR, and UV-Visible spectroscopy. The reaction conditions were optimized, and the maximum yield was obtained at 3-4 h of reflux of the reactants, using 2-butanol as a solvent. The potato disc tumor assay was used to assess Agrobacterium tumefaciens-induced tumors to evaluate the anti-tumor activities of compounds (4a-4i), using Vinblastine as a standard drug. The compound 4g showed the lowest IC50 value (1.12 ± 0.2), which is even better than standard Vinblastine (IC50 7.5 ± 0.6). For further insight into their drug actions, an in silico docking of the compounds was also carried out against the CDK-8 protein. The binding energy values of compounds were found to agree with the experimental results. The compounds 4g and 4h showed the best affinities toward protein, with a binding energy value of -6.8 kcal/mol.
Collapse
Affiliation(s)
- Mediha Assad
- College of Biological Sciences and Medical Engineering, Donghua University, 2999 North Ren Min Road, Shanghai 201620, China
- Department of Chemistry, Government Graduate Islamia College for Women Cantt Lahore, Lahore 54000, Pakistan
| | | | - Abu Bakar Siddique
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (A.B.S.)
| | | | - Nadeem Ahmad
- Department of Pharmacy, Comsats University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Mustaqeem
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (A.B.S.)
| | - Fariha Kanwal
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | - Sumaya Fatima
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Changrui Lu
- College of Biological Sciences and Medical Engineering, Donghua University, 2999 North Ren Min Road, Shanghai 201620, China
| |
Collapse
|
13
|
Dinda B, Dinda M, Dinda S, De UC. An overview of anti-SARS-CoV-2 and anti-inflammatory potential of baicalein and its metabolite baicalin: Insights into molecular mechanisms. Eur J Med Chem 2023; 258:115629. [PMID: 37437351 DOI: 10.1016/j.ejmech.2023.115629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly contagious infection that breaks the healthcare systems of several countries worldwide. Till to date, no effective antiviral drugs against COVID-19 infection have reached the market, and some repurposed drugs and vaccines are prescribed for the treatment and prevention of this disease. The currently prescribed COVID-19 vaccines are less effective against the newly emergent variants of concern of SARS-CoV-2 due to several mutations in viral spike protein and obviously there is an urgency to develop new antiviral drugs against this disease. In this review article, we systematically discussed the anti-SARS-CoV-2 and anti-inflammatory efficacy of two flavonoids, baicalein and its 7-O-glucuronide, baicalin, isolated from Scutellaria baicalensis, Oroxylum indicum, and other plants as well as their pharmacokinetics and oral bioavailability, for development of safe and effective drugs for COVID-19 treatment. Both baicalein and baicalin target the activities of viral S-, 3CL-, PL-, RdRp- and nsp13-proteins, and host mitochondrial OXPHOS for suppression of viral infection. Moreover, these compounds prevent sepsis-related inflammation and organ injury by modulation of host innate immune responses. Several nanoformulated and inclusion complexes of baicalein and baicalin have been reported to increase oral bioavailability, but their safety and efficacy in SARS-CoV-2-infected transgenic animals are not yet evaluated. Future studies on these compounds are required for use in clinical trials of COVID-19 patients.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India.
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Subhajit Dinda
- Department of Chemistry, Government Degree College, Kamalpur, Dhalai, Tripura, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India
| |
Collapse
|
14
|
Raza AR, Rubab SL, Ashfaq M, Altaf Y, Tahir MN, Rehman MFU, Aziz T, Alharbi M, Alasmari AF. Evaluation of Antimicrobial, Anticholinesterase Potential of Indole Derivatives and Unexpectedly Synthesized Novel Benzodiazine: Characterization, DFT and Hirshfeld Charge Analysis. Molecules 2023; 28:5024. [PMID: 37446687 DOI: 10.3390/molecules28135024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The pharmacological effectiveness of indoles, benzoxazepines and benzodiazepines initiated our synthesis of indole fused benoxazepine/benzodiazepine heterocycles, along with enhanced biological usefulness of the fused rings. Activated indoles 5, 6 and 7 were synthesized using modified Bischler indole synthesis rearrangement. Indole 5 was substituted with the trichloroacetyl group at the C7 position, yielding 8, exclusively due to the increased nucleophilic character of C7. When trichloroacylated indole 8 was treated with basified ethanol or excess amminia, indole acid 9 and amide 10 were yielded, respectively. Indole amide 10 was expected to give indole fused benoxazepine/benzodiazepine 11a/11b on treatment with alpha halo ester followed by a coupling agent, but when the reaction was tried, an unexpectedly rearranged novel product, 1,3-bezodiazine 12, was obtained. The synthetic compounds were screened for anticholinesterase and antibacterial potential; results showed all products to be very important candidates for both activities, and their potential can be explored further. In addition, 1,3-bezodiazine 12 was explored by DFT studies, Hirshfeld surface charge analysis and structural insight to obrain a good picture of the structure and reactivity of the products for the design of derivatised drugs from the novel compound.
Collapse
Affiliation(s)
- Abdul Rauf Raza
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha, Sargodha 40100, Pakistan
| | - Syeda Laila Rubab
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Yasir Altaf
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | | | - Tariq Aziz
- Department of Agriculture, University of Ioannina, 471 32 Arta, Greece
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Nawaz S, Muhammad Irfan H, Akram M, Jahan S. Linalool: Monoterpene alcohol effectiveness in chronic synovitis through lowering Interleukin-17, spleen and thymus indices. Int Immunopharmacol 2023; 121:110517. [PMID: 37348232 DOI: 10.1016/j.intimp.2023.110517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Interleukin-17 has a positive role in the initial induction and late chronic phases of many inflammatory disorders like arthritis. This cytokine has a strong option for therapeutic targeting due to the fact that it was found in the inflamed joints of individual with rheumatoid arthritis (RA) and persuasive evidence from experimental arthritis models indicating its pro-inflammatory actions. IL-17 suppression lessened the asperity of arthritis. The present study aimed to assess the anti-arthritic potential of linalool in a model of chronic joint inflammation (CFA-mediated rheumatoid arthritis) in rats. Linalool markedly lowered spleen and thymus indices as opposed to arthritic control. The over-formation of IL-17, COX-2, TNF-α IL-1β, iNOS and IL-6 were markedly impaired in all linalool treated rats, but IL-10 was raised as compared to arthritic animals in Real time-PCR. There was reduction in associated parameters like paw volume, arthritic index, mobility score, and flexion pain score and a marked increase in stance score in CFA model as compared to the arthritic control group. Furthermore, there was improvement in body weight, hematological, tissue, and radiological parameters in the CFA-model. Molecular docking study exhibited strong binding interaction of linalool with IL-17, PGE-2, iNOS and COX-2, thus providing a good correlation among experimental and theoretical results. The current findings show that linalool reduces adjuvant arthritis by suppressing pro-inflammatory mediators, arthritic development, and spleen and thymus indices. Thus, linalool may be employed therapeutically to alleviate arthritis in humans.
Collapse
Affiliation(s)
- Shoaib Nawaz
- College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Akram
- College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore 54600, Pakistan
| |
Collapse
|
16
|
Rubab SL, Raza AR, Nisar B, Ashfaq M, Altaf Y, Hussain R, Sajjad N, Akram MS, Tahir MN, Shaheen MA, Rehman MFU, Ali HM. Synthesis, Crystal Structure, DFT Calculations, Hirshfeld Surface Analysis and In Silico Drug-Target Profiling of ( R)-2-(2-(1,3-Dioxoisoindolin-2-yl)propanamido)benzoic Acid Methyl Ester. Molecules 2023; 28:molecules28114375. [PMID: 37298851 DOI: 10.3390/molecules28114375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
The work here reflects synthesis, DFT studies, Hirshfeld charge analysis and crystal data exploration of pharmacologically important (R)-2-(2-(1,3-dioxoisoindolin-2-yl)propanamido)benzoic acid methyl ester (5) to understand its properties for further chemical transformations. The methyl anthranilate (2) was produced by the esterification of anthranilic acid in an acidic medium. The phthaloyl-protected alanine (4) was rendered by the fusion of alanine with phthalic anhydride at 150 °C, followed by coupling with (2) furnished isoindole (5). The characterization of products was performed using IR, UV-Vis, NMR and MS. Single-crystal XRD also verified the structure of (5) in which N-H⋯O bonding stabilizes the molecular configuration of (5), resulting in the formation of S(6) hydrogen-bonded loop. The molecules of isoindole (5) are connected in the form of dimers, and the π⋯π stacking interaction between aromatic rings further stabilizes the crystal packing. DFT studies suggest that HOMO is over the substituted aromatic ring, the LUMO is present mainly over the indole side, and nucleophilic and electrophilic corners point out the reactivity of the product (5). In vitro and in silico analysis of (5) shows its potential as an antibacterial agent targeting DNA gyrase and Dihydroorotase from E. coli and tyrosyl-tRNA synthetase and DNA gyrase from Staphylococcus aureus.
Collapse
Affiliation(s)
- Syeda Laila Rubab
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Abdul Rauf Raza
- Institute of Chemistry, Ibn e Sena Block, University of Sargodha, Sargodha 40100, Pakistan
| | - Bushra Nisar
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Yasir Altaf
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Riaz Hussain
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Noreen Sajjad
- Department of Chemistry, The University of Lahore, Lahore 54770, Pakistan
| | | | | | | | | | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Chaurasiya A, Shome A, Chawla PA. Molecular docking analysis of peptide-based antiviral agents against SARS-CoV-2 main protease: an approach towards drug repurposing. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Aim:
Utilizing the therapeutic potentials of previously approved medications against a new target or pharmacological response is known as drug repurposing. The health and scientific communities are under continual pressure to discover new compounds with antiviral potential due to the rising reports of viral resistance and the occurrence and re-emergence of viral outbreaks. The use of antiviral peptides has emerged as an intriguing option in this search. Here, this article includes the current United States Food and Drug Administration (FDA)-approved antiviral peptides that might be enforced for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and carried out docking study of the viral protease inhibitors.
Methods:
In silico techniques like molecular docking was carried out using Autodock Vina software.
Results:
The molecular docking studies of peptide-based antiviral agents against SARS-CoV-2 [Protein Data Bank (PDB) ID: 7P35] using docking software AutoDockTools 1.5.6. Among all the docked ligands, compound velpatasvir showed interaction with residues ILE213, GLN256, LEU141, GLN189, GLU166, HIS41, CYS145, and ASN142, and displayed the highest docking score of –8.2 kcal/mol. This medication could be a novel treatment lead or candidate for treating SARS-CoV-2.
Conclusions:
To conclude, a docking study of peptide based antiviral compounds for their binding mode in the catalytic domain of SARS-CoV-2 receptor is reported. On molecular docking, the compounds have showed remarkable binding affinity with the amino acids of receptor chain A. The compounds occupied the same binding cavity as the reference compound maintaining the interactions with conserved amino acid residues essential for significant inhibitory potential, especially for compound velpatasvir with binding score of –8.2 kcal/mol.
Collapse
Affiliation(s)
- Abhishek Chaurasiya
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, India
| |
Collapse
|
18
|
Ajaz A, Shaheen MA, Ahmed M, Munawar KS, Siddique AB, Karim A, Ahmad N, Rehman MFU. Synthesis of an amantadine-based novel Schiff base and its transition metal complexes as potential ALP, α-amylase, and α-glucosidase inhibitors. RSC Adv 2023; 13:2756-2767. [PMID: 36756442 PMCID: PMC9846949 DOI: 10.1039/d2ra07051k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
A Schiff base ligand HL, (E)-2-((adamantan-1-ylimino)methyl)-6-allylphenol, was synthesized by condensation of amantadine with 3-allyl-2-hydroxybenzaldehyde, followed by the synthesis of its Zn(ii), Co(ii), Cr(iii), and VO(iv) complexes under reflux conditions. The synthesized compounds were comprehensively elucidated by using different spectroscopic and analytical techniques: UV-Vis, 1H and 13C-NMR, FT-IR, ESI-MS, thermal, and single-crystal XRD analysis. The chemical composition of the synthesized compounds was also verified by molar conductance and elemental analysis. An octahedral geometry for Cr(iii) and Co(ii) complexes, tetrahedral for Zn(ii) complex, and square pyramidal geometry have been proposed for VO(iv) complexes. The antidiabetic activities of the synthesized compounds were also evaluated by performing in vitro α-amylase and α-glucosidase inhibition studies. The Co(ii) complex exhibited the highest α-glucosidase inhibitory activity, whereas oxovanadium(iv) and zinc(ii) complexes were also found to be effective against α-amylase. In alkaline phosphatase (ALP) inhibition studies, the HL was found to be inactive, while the complexes showed remarkable enzyme inhibition in the following order: VO > Zn > Co, in a concentration-dependent manner.
Collapse
Affiliation(s)
- Aliya Ajaz
- Institute of Chemistry, University of Sargodha 40100 Pakistan
| | | | - Maqsood Ahmed
- Materials Chemistry Laboratory, Institute of Chemistry, The Islamia University of Bahawalpur Baghdad-ul-Jadeed Campus 63100 Pakistan
| | - Khurram Shahzad Munawar
- Institute of Chemistry, University of Sargodha 40100 Pakistan .,Department of Chemistry, University of Mianwali Mianwali 42200 Pakistan
| | | | - Abdul Karim
- Institute of Chemistry, University of Sargodha 40100 Pakistan
| | - Nazir Ahmad
- Department of Chemistry, Government College University Lahore Lahore 54000 Pakistan
| | | |
Collapse
|
19
|
Malik A, Khan A, Mahmood Q, Nawaz Marth MM, Riaz M, Tabassum T, Rasool G, Rehman MFU, Batool AI, Kanwal F, Cai R. In Vivo and In Silico Assessment of the Cardioprotective Effect of Thymus linearis Extract against Ischemic Myocardial Injury. ACS OMEGA 2022; 7:43635-43646. [PMID: 36506215 PMCID: PMC9730472 DOI: 10.1021/acsomega.2c04544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Myocardial infarction is irreversible cardiac tissue necrosis due to the blockage of one of the arteries. It leads to an insufficient supply of oxygen and nutrients, creating muscular damage in the affected regions. In the present study, aqueous methanolic extract of Thymus linearis was prepared to evaluate its activity against ischemic stress due to free radical production. GC-MS analysis was performed to evaluate the phytochemicals present in the plant extract. A chemical database of 30 compounds was virtually screened against NF-κB, COX2, and MCL, where γ-cadinene, β-bisabolene, and β-caryophyllene were found to be the best interacting ligands. To systematically assess cardioprotective activity against ischemia, isoproterenol and doxorubicin were used to induce cardiotoxicity in rats. The prepared extract of T. linearis (100 mg/kg) was given daily to animals for 21 days before injecting isoproterenol (85 mg/kg of animal weight) subcutaneously in two doses on the 20th and 21st days. In the case of doxorubicin, cardiotoxicity was induced in rats by a single injection (15 mg/kg) on the seventh day, and the extract was given to animals for 10 consecutive days. Animals' blood samples were used to monitor cardiac, liver, and other marker enzymes, including LDH, CPK, and AST. Superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were also assayed in blood plasma to determine the degree of oxidative stress. H&E staining was performed to evaluate cardioprotection by plant extract, showing significant preventive effects in reducing cardiac injury induced by isoproterenol and doxorubicin.
Collapse
Affiliation(s)
- Abdul Malik
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
| | - Ajmal Khan
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
| | - Qaisar Mahmood
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
- Mukabbir
College of Pharmacy, Gujrat 50700, Pakistan
| | | | - Muhammad Riaz
- Department
of Allied Health Sciences, University of
Sargodha, Sargodha 40100, Pakistan
| | - Tahira Tabassum
- Department
of Pathology, Sargodha Medical College, Sargodha 40100, Pakistan
| | - Ghulam Rasool
- Department
of Allied Health Sciences, University of
Sargodha, Sargodha 40100, Pakistan
| | | | - Aima Iram Batool
- Department
of Zoology, University of Sargodha, Sargodha 40100, Pakistan
| | - Fariha Kanwal
- Department
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rujie Cai
- Shanghai
Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
20
|
Gomaa AA, Abdel-Wadood YA, Gomaa MA. Glycyrrhizin and boswellic acids, the golden nutraceuticals: multitargeting for treatment of mild-moderate COVID-19 and prevention of post-COVID cognitive impairment. Inflammopharmacology 2022; 30:1977-1992. [PMID: 36136251 PMCID: PMC9493173 DOI: 10.1007/s10787-022-01062-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022]
Abstract
Breakthrough infections have been reported in fully vaccinated persons. Furthermore, rebound symptoms have been reported following the new FDA granted emergency use to combat SARS-CoV-2. Glycyrrhizin (GR) and boswellic acids (BAs) combination has been shown to have highly successful actions against COVID-19 in our recent clinical trial. However, the study is limited by the small sample size, and therefore, the aim of this article is to comprehensively evaluate recent evidence on the efficacy of GR and BAs in preventing the development of COVID-19 in patients with mild and moderate infections and in preventing post-COVID-19 cognitive impairment, which is the most important symptom after recovery from Covid-19 disease. We have reviewed and discussed information published since the outbreak of the COVID-19 pandemic until July 2022 on preclinical (in vivo, in vivo and bioinformatics) and clinical studies related to the antiviral, anti-inflammatory and immunomodulatory activity of Gr and BAs. Sixteen studies were performed to determine the efficacy of GR against SARS-CoV-2. Ten studies were used primarily for in vitro and in vivo assays and six used molecular docking studies. However, the antiviral activity of BAs against SARS-CoV-2 was determined in only five studies using molecular modeling and bioinformatics. All these studies confirmed that GR n and BAs have strong antiviral activity and can be used as a therapeutic agent for COVID-19 and as a protective agent against SARS-CoV-2. They may act by inhibiting the main protease SARS-CoV-2 (Mpro) responsible for replication and blocking spike protein-mediated cell entry. Only seven rigorously designed clinical trials regarding the usefulness of GR, BAs or their combinations in the treatment of COVID-19 have been published as of July 2022. Although there is no clinical study regarding the treatment of cognitive impairment after COVID-19 that has been published so far, several preclinical and clinical studies have demonstrated the potential effect of GR and BAs in the prevention and treatment of cognitive impairment by inhibiting the activity of several molecules that activate inflammatory signaling pathway. In conclusion, the findings of our study documented the beneficial use of GR and BAs to treat SARS-CoV-2 and its variants and prevent post-COVID cognitive impairment. However, it warrants further studies with a larger randomized sample size to ensure that the studies have sufficient evidence of benefits against COVID-19 and post-COVID-19 symptoms.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Mohamed A Gomaa
- Department of Plastic Surgery, Faculty Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
21
|
Portilla-Martínez A, Ortiz-Flores M, Hidalgo I, Gonzalez-Ruiz C, Meaney E, Ceballos G, Nájera N. In silico evaluation of flavonoids as potential inhibitors of SARS-CoV-2 main nonstructural proteins (Nsps)—amentoflavone as a multitarget candidate. J Mol Model 2022; 28:404. [PMCID: PMC9707096 DOI: 10.1007/s00894-022-05391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Andrés Portilla-Martínez
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Miguel Ortiz-Flores
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Isabel Hidalgo
- Laboratorio de Investigación en Inmunología Y Salud Pública, Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria Universidad Nacional Autónoma de México, Estado de México, Mexico City, Mexico
| | - Cristian Gonzalez-Ruiz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Meaney
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Guillermo Ceballos
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Nayelli Nájera
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| |
Collapse
|
22
|
Tijjani H, Adegunloye AP, Uba A, Adebayo JO, Gyebi GA, Ibrahim IM. Pharmacoinformatic study of inhibitory potentials of selected flavonoids against papain-like protease and 3-chymotrypsin-like protease of SARS-CoV-2. CLINICAL PHYTOSCIENCE 2022. [PMCID: PMC9452863 DOI: 10.1186/s40816-022-00347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Inhibition of papain-like protease (PLpro) and 3-chymotrypsin-like protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is projected to terminate its replication. Hence, these proteases represent viable therapeutic targets. Methods Sixty-one flavonoids with reported activities against other RNA viruses were selected and docked in PLpro and 3CLpro. Flavonoids with better binding energies compared to reference inhibitors (lopinavir and ritonavir) in their interaction with PLpro and 3CLpro were selected for drug-likeness and ADMET analysis. The best representative flavonoid for each protease from the ADMET filtering analysis was subjected to molecular dynamics simulations (MDS) and clustering analysis of the trajectory files. Results Licorice, ugonin M, procyanidin, silymarin, and gallocatechin gallate had better binding energies (-11.8, -10.1, -9.8, -9.7 and -9.6 kcal/mol respectively) with PLpro compared to lopinavir and ritonavir (-9.1 and -8.5 kcal/mol respectively). Also, isonymphaeol B, baicalin, abyssinone II, tomentin A, and apigetrin had better binding energies (-8.7, -8.3, -8.2, -8.1, and -8.1 kcal/mol respectively) with 3CLpro compared to lopinavir and ritonavir (-7.3 and -7.1 kcal/mol respectively). These flavonoids interacted with the proteases via hydrogen and non-hydrogen bonding. Of these flavonoids, silymarin and isonymphaeol B demonstrated most favourable combination of attributes in terms of binding energies, compliance with Lipinski rule for drug-likeness and favourable pharmacokinetics in silico. These two flavonoids exhibited appreciable degree of structural stability, maintaining strong interaction with residues in the different representative clusters selected during the MDS run. Conclusion Silymarin and isonymphaeol B are proposed for further studies as compounds with potential activities against SARS-CoV-2. Supplementary Information The online version contains supplementary material available at 10.1186/s40816-022-00347-y. • Flavonoids displayed varying affinities for PLpro and 3CLpro of SARS-CoV-2 • They interacted via hydrogen and non-hydrogen bonds; nine and twenty-seven flavonoids had better binding affinities for PLpro and 3CLpro respectively than lopinavir and ritonavir • Silymarin and isonymphaeol B demonstrated most favourable combination of attributes in terms of binding energies, compliance with Lipinski rule for drug-likeness and favourable pharmacokinetics. • Silymarin and isonymphaeol B exhibited appreciable degree of structural stability, maintaining strong interaction with residues in the different representative clusters selected during the MDS run.
Collapse
|
23
|
The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. PLANTS 2022; 11:plants11141862. [PMID: 35890496 PMCID: PMC9319234 DOI: 10.3390/plants11141862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan, China that later spread vastly around the world, evolving into a pandemic and one of the worst global health crises in modern history. The causative agent was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically highlighted the need for developing an efficient treatment for this disease. One of the most important viral components to target for this purpose is the main protease of the coronavirus (Mpro). This enzyme is an excellent target for a potential drug, as it is essential for viral replication and has no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review describes a variety of approaches that could be applied in search of potential inhibitors among plant-derived compounds, including virtual in silico screening (a data-driven approach), which could be structure-based or fragment-guided, the classical approach of high-throughput screening, and antiviral activity cell-based assays. We will focus on several classes of compounds reported to be potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.
Collapse
|
24
|
Li J, Chen G, Meng Z, Wu Z, Gan H, Zhu X, Han P, Liu T, Wang F, Gu R, Dou G. Bioavailability Enhancement of Cepharanthine via Pulmonary Administration in Rats and Its Therapeutic Potential for Pulmonary Fibrosis Associated with COVID-19 Infection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092745. [PMID: 35566097 PMCID: PMC9104485 DOI: 10.3390/molecules27092745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023]
Abstract
Cepharanthine (CEP) has excellent anti-SARS-CoV-2 properties, indicating its favorable potential for COVID-19 treatment. However, its application is challenged by its poor dissolubility and oral bioavailability. The present study aimed to improve the bioavailability of CEP by optimizing its solubility and through a pulmonary delivery method, which improved its bioavailability by five times when compared to that through the oral delivery method (68.07% vs. 13.15%). An ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) method for quantification of CEP in rat plasma was developed and validated to support the bioavailability and pharmacokinetic studies. In addition, pulmonary fibrosis was recognized as a sequela of COVID-19 infection, warranting further evaluation of the therapeutic potential of CEP on a rat lung fibrosis model. The antifibrotic effect was assessed by analysis of lung index and histopathological examination, detection of transforming growth factor (TGF)-β1, interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and hydroxyproline level in serum or lung tissues. Our data demonstrated that CEP could significantly alleviate bleomycin (BLM)-induced collagen accumulation and inflammation, thereby exerting protective effects against pulmonary fibrosis. Our results provide evidence supporting the hypothesis that pulmonary delivery CEP may be a promising therapy for pulmonary fibrosis associated with COVID-19 infection.
Collapse
Affiliation(s)
- Jian Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
- Correspondence: (J.L.); (R.G.)
| | - Guangrui Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
| | - Peng Han
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
| | - Taoyun Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
| | - Fanjun Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
- Correspondence: (J.L.); (R.G.)
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (G.C.); (Z.M.); (Z.W.); (H.G.); (X.Z.); (P.H.); (T.L.); (F.W.); (G.D.)
| |
Collapse
|
25
|
Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front Immunol 2022; 13:834942. [PMID: 35450063 PMCID: PMC9016159 DOI: 10.3389/fimmu.2022.834942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
As the new year of 2020 approaches, an acute respiratory disease quietly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. Subsequently, COVID-19 broke out on a global scale and formed a global public health emergency. To date, the destruction that has lasted for more than two years has not stopped and has caused the virus to continuously evolve new mutant strains. SARS-CoV-2 infection has been shown to cause multiple complications and lead to severe disability and death, which has dealt a heavy blow to global development, not only in the medical field but also in social security, economic development, global cooperation and communication. To date, studies on the epidemiology, pathogenic mechanism and pathological characteristics of SARS-CoV-2-induced COVID-19, as well as target confirmation, drug screening, and clinical intervention have achieved remarkable effects. With the continuous efforts of the WHO, governments of various countries, and scientific research and medical personnel, the public's awareness of COVID-19 is gradually deepening, a variety of prevention methods and detection methods have been implemented, and multiple vaccines and drugs have been developed and urgently marketed. However, these do not appear to have completely stopped the pandemic and ravages of this virus. Meanwhile, research on SARS-CoV-2-induced COVID-19 has also seen some twists and controversies, such as potential drugs and the role of vaccines. In view of the fact that research on SARS-CoV-2 and COVID-19 has been extensive and in depth, this review will systematically update the current understanding of the epidemiology, transmission mechanism, pathological features, potential targets, promising drugs and ongoing clinical trials, which will provide important references and new directions for SARS-CoV-2 and COVID-19 research.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- The Third People’s Hospital of Hefei, The Third Clinical College of Anhui Medical University, Hefei, China
| | - Zhen Wang
- Anhui Provincial Children’s Hospital, Children’s Hospital of Fudan University-Anhui Campus, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan-Cai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
26
|
One-Pot Synthesis and Molecular Modeling Studies of New Bioactive Spiro-Oxindoles Based on Uracil Derivatives as SARS-CoV-2 Inhibitors Targeting RNA Polymerase and Spike Glycoprotein. Pharmaceuticals (Basel) 2022; 15:ph15030376. [PMID: 35337173 PMCID: PMC8954694 DOI: 10.3390/ph15030376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The first outbreak in Wuhan, China, in December 2019 was reported about severe acute coronaviral syndrome 2 (SARS-CoV-2). The global coronavirus disease 2019 (COVID-19) pandemic in 2020 resulted in an extremely high potential for dissemination. No drugs are validated in large-scale studies for significant effectiveness in the clinical treatment of COVID-19 patients, despite the worsening trends of COVID-19. This study aims to design a simple and efficient cyclo-condensation reaction of 6-aminouracil derivatives 2a–e and isatin derivatives 1a–c to synthesize spiro-oxindoles 3a–d, 4a–e, and 5a–e. All compounds were tested in vitro against the SARS-CoV-2. Four spiro[indoline-3,5′-pyrido[2,3-d:6,5-d’]dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against the SARS-CoV-2 in plaque reduction assay and were subjected to further RNA-dependent-RNA-polymerase (RdRp) and spike glycoprotein inhibition assay investigations. The four compounds exhibited potent inhibitory activity ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and 40.27 ± 0.17 to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a reference standard, which showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike glycoprotein, respectively. The computational study involving the docking studies of the binding mode inside two proteins ((RdRp) (PDB: 6m71), and (SGp) (PDB: 6VXX)) and geometrical optimization used to generate some molecular parameters were performed for the most active hybrids.
Collapse
|
27
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Inhibition of the main protease of SARS-CoV-2 (M pro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Comput Struct Biotechnol J 2022; 20:1306-1344. [PMID: 35308802 PMCID: PMC8920478 DOI: 10.1016/j.csbj.2022.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
The emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in a long pandemic, with numerous cases and victims worldwide and enormous consequences on social and economic life. Although vaccinations have proceeded and provide a valuable shield against the virus, the approved drugs are limited and it is crucial that further ways to combat infection are developed, that can also act against potential mutations. The main protease (Mpro) of the virus is an appealing target for the development of inhibitors, due to its importance in the viral life cycle and its high conservation among different coronaviruses. Several compounds have shown inhibitory potential against Mpro, both in silico and in vitro, with few of them also having entered clinical trials. These candidates include: known drugs that have been repurposed, molecules specifically designed based on the natural substrate of the protease or on structural moieties that have shown high binding affinity to the protease active site, as well as naturally derived compounds, either isolated or in plant extracts. The aim of this work is to collectively present the results of research regarding Mpro inhibitors to date, focusing on the function of the compounds founded by in silico simulations and further explored by in vitro and in vivo assays. Creating an extended portfolio of promising compounds that may block viral replication by inhibiting Mpro and by understanding involved structure-activity relationships, could provide a basis for the development of effective solutions against SARS-CoV-2 and future related outbreaks.
Collapse
Affiliation(s)
| | | | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
28
|
In Silico Screening of Potential Phytocompounds from Several Herbs against SARS-CoV-2 Indian Delta Variant B.1.617.2 to Inhibit the Spike Glycoprotein Trimer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since become a prominent variant in several Indian regions and 156 countries, including the United States of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it has sparked substantial scientific investigation into the development of effective vaccinations and anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2 Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of 603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also compared these compounds with the standard drug ceftriaxone, which was already suggested as a beneficial drug in COVID-19 treatment; these compounds were compared with other FDA-approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the analysis, the identified phytocompounds acteoside (−7.3 kcal/mol) and verbascoside (−7.1 kcal/mol), from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (−6.8 kcal/mol), progeldanamycin (−6.4 kcal/mol), and rhodoxanthin (−7.5 kcal/mol), from the plant Houttuynia cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone, signals less inhibitory effect against MT-NTD and RBD with binding affinities of −6.3 kcal/mol and −6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the plants, which contain the screened phytocompounds. Our research could be used as a lead for future drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.
Collapse
|
29
|
2,3-Dihydroquinazolin-4(1H)-one as a New Class of Anti-Leishmanial Agents: A Combined Experimental and Computational Study. CRYSTALS 2021. [DOI: 10.3390/cryst12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leishmaniasis is a neglected parasitic disease caused by various Leishmania species. The discovery of new protozoa drugs makes it easier to treat the disease; but, conventional clinical issues like drug resistance, cumulative toxicity, and target selectivity are also getting attention. So, there is always a need for new therapeutics to treat Leishmaniasis. Here, we have reported 2,3-dihydroquinazolin-4(1H)-one derivative as a new class of anti-leishmanial agents. Two derivatives, 3a (6,8-dinitro-2,2-disubstituted-2,3-dihydroquinazolin-4(1H)-ones) and 3b (2-(4-chloro-3-nitro-phenyl)-2-methyl-6,8-dinitro-2,3-dihydro-1H-quinazolin-4-one) were prepared that show promising in silico anti-leishmanial activities. Molecular docking was performed against the Leishmanial key proteins including Pyridoxal Kinase and Trypanothione Reductase. The stability of the ligand-protein complexes was further studied by 100 ns MD simulations and MM/PBSA calculations for both compounds. 3b has been shown to be a better anti-leishmanial candidate. In vitro studies also agree with the in-silico results where IC50 for 3a and 3b was 1.61 and 0.05 µg/mL, respectively.
Collapse
|
30
|
Zhang QH, Huang HZ, Qiu M, Wu ZF, Xin ZC, Cai XF, Shang Q, Lin JZ, Zhang DK, Han L. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19. Front Pharmacol 2021; 12:719758. [PMID: 34899289 PMCID: PMC8661450 DOI: 10.3389/fphar.2021.719758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge, and although vaccines have been developed, it is expected that mild to moderate patients will control their symptoms, especially in developing countries. Licorice, not only a food additive, but also a common traditional Chinese herbal medicine, which has several pharmacological effects, such as anti-inflammation, detoxification, antibacterial, antitussive, and immunomodulatory effects, especially in respiratory diseases. Since the outbreak of COVID-19, glycyrrhizin, glycyrrhizin diamine and glycyrrhizin extract have been widely studied and used in COVID-19 clinical trials. Therefore, it is a very interesting topic to explore the material basis, pharmacological characteristics and molecular mechanism of licorice in adjuvant treatment of COVID-19. In this paper, the material basis of licorice for the prevention and treatment of COVID-19 is deeply analyzed, and there are significant differences among different components in different pharmacological mechanisms. Glycyrrhizin and glycyrrhetinic acid inhibit the synthesis of inflammatory factors and inflammatory mediators by blocking the binding of ACE 2 to virus spike protein, and exert antiviral and antibacterial effects. Immune cells are stimulated by multiple targets and pathways to interfere with the pathogenesis of COVID-19. Liquiritin can prevent and cure COVID-19 by simulating type I interferon. It is suggested that licorice can exert its therapeutic advantage through multi-components and multi-targets. To sum up, licorice has the potential to adjuvant prevent and treat COVID-19. It not only plays a significant role in anti-inflammation and anti-ACE-2, but also significantly improves the clinical symptoms of fever, dry cough and shortness of breath, suggesting that licorice is expected to be a candidate drug for adjuvant treatment of patients with early / mild COVID-19.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen-Feng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhan-Chang Xin
- Gansu Qilian Mountain Pharmaceutical Limited Liability Company, Jiuquan, China
| | - Xin-Fu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Elzupir AO. Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment. Molecules 2021; 26:molecules26247458. [PMID: 34946540 PMCID: PMC8707611 DOI: 10.3390/molecules26247458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
This study demonstrates the inhibitory effect of 42 pyrimidonic pharmaceuticals (PPs) on the 3-chymotrypsin-like protease of SARS-CoV-2 (3CLpro) through molecular docking, molecular dynamics simulations, and free binding energies by means of molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) and molecular mechanics-generalized Born surface area (MM-GBSA). Of these tested PPs, 11 drugs approved by the US Food and Drug Administration showed an excellent binding affinity to the catalytic residues of 3CLpro of His41 and Cys145: uracil mustard, cytarabine, floxuridine, trifluridine, stavudine, lamivudine, zalcitabine, telbivudine, tipiracil, citicoline, and uridine triacetate. Their percentage of residues involved in binding at the active sites ranged from 56 to 100, and their binding affinities were in the range from -4.6 ± 0.14 to -7.0 ± 0.19 kcal/mol. The molecular dynamics as determined by a 200 ns simulation run of solvated docked complexes confirmed the stability of PP conformations that bound to the catalytic dyad and the active sites of 3CLpro. The free energy of binding also demonstrates the stability of the PP-3CLpro complexes. Citicoline and uridine triacetate showed free binding energies of -25.53 and -7.07 kcal/mol, respectively. Therefore, I recommend that they be repurposed for the fight against COVID-19, following proper experimental and clinical validation.
Collapse
Affiliation(s)
- Amin Osman Elzupir
- College of Science, Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
32
|
Iltaf J, Noreen S, Rehman MFU, Ghumman SA, Batool F, Mehdi M, Hasan S, Ijaz B, Akram MS, Butt H. Ficus benghalensis as Potential Inhibitor of 5 α-Reductase for Hair Growth Promotion: In Vitro, In Silico, and In Vivo Evaluation. Front Pharmacol 2021; 12:774583. [PMID: 34950034 PMCID: PMC8688993 DOI: 10.3389/fphar.2021.774583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The screening of hair follicles, dermal papilla cells, and keratinocytes through in vitro, in vivo, and histology has previously been reported to combat alopecia. Ficus benghalensis has been used conventionally to cure skin and hair disorders, although its effect on 5α-reductase II is still unknown. Currently, we aim to analyze the phytotherapeutic impact of F. benghalensis leaf extracts (FBLEs) for promoting hair growth in rabbits along with in vitro inhibition of the steroid isozyme 5α-reductase II. The inhibition of 5α-reductase II by FBLEs was assessed by RP-HPLC, using the NADPH cofactor as the reaction initiator and Minoxin (5%) as a positive control. In silico studies were performed using AutoDock Vina to visualize the interaction between 5α-reductase II and the reported phytoconstituents present in FBLEs. Hair growth in female albino rabbits was investigated by applying an oral dose of the FBLE formulation and control drug to the skin once a day. The skin tissues were examined by histology to see hair follicles. Further, FAAS, FTIR, and antioxidants were performed to check the trace elements and secondary metabolites in the FBLEs. The results of RP-HPLC and the binding energies showed that FBLEs reduced the catalytic activity of 5α-reductase II and improved cell proliferation in rabbits. The statistical analysis (p < 0.05 or 0.01) and percentage inhibition (>70%) suggested that hydroalcoholic FBLE has more potential in increasing hair growth by elongating hair follicle's anagen phase. FAAS, FTIR, and antioxidant experiments revealed sufficient concentrations of Zn, Cu, K, and Fe, together with the presence of polyphenols and scavenging activity in FBLE. Overall, we found that FBLEs are potent in stimulating hair follicle maturation by reducing the 5α-reductase II action, so they may serve as a principal choice in de novo drug designing to treat hair loss.
Collapse
Affiliation(s)
- Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | | | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Mehdi
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
33
|
Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Int J Mol Sci 2021; 22:11069. [PMID: 34681727 PMCID: PMC8539743 DOI: 10.3390/ijms222011069] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a globally leading public health concern over the past two years. Despite the development and administration of multiple vaccines, the mutation of newer strains and challenges to universal immunity has shifted the focus to the lack of efficacious drugs for therapeutic intervention for the disease. As with SARS-CoV, MERS-CoV, and other non-respiratory viruses, flavonoids present themselves as a promising therapeutic intervention given their success in silico, in vitro, in vivo, and more recently, in clinical studies. This review focuses on data from in vitro studies analyzing the effects of flavonoids on various key SARS-CoV-2 targets and presents an analysis of the structure-activity relationships for the same. From 27 primary papers, over 69 flavonoids were investigated for their activities against various SARS-CoV-2 targets, ranging from the promising 3C-like protease (3CLpro) to the less explored nucleocapsid (N) protein; the most promising were quercetin and myricetin derivatives, baicalein, baicalin, EGCG, and tannic acid. We further review promising in silico studies featuring activities of flavonoids against SARS-CoV-2 and list ongoing clinical studies involving the therapeutic potential of flavonoid-rich extracts in combination with synthetic drugs or other polyphenols and suggest prospects for the future of flavonoids against SARS-CoV-2.
Collapse
Affiliation(s)
- Ridhima Kaul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| | - Sanjay Kumar
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India; (S.K.); (V.D.D.)
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India; (S.K.); (V.D.D.)
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| |
Collapse
|