1
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
2
|
Cebeci T. Species prevalence, virulence genes, and antibiotic resistance of enterococci from food-producing animals at a slaughterhouse in Turkey. Sci Rep 2024; 14:13191. [PMID: 38851786 PMCID: PMC11162463 DOI: 10.1038/s41598-024-63984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
Healthy cattle, sheep, and goats can be reservoirs for gastrointestinal pathogenic fecal enterococci, some of which could be multidrug-resistant to antimicrobials. The objective of this study was to determine the prevalence and diversity of Enterococcus species in healthy sheep, goat, and cattle carcasses, as well as to analyze the antimicrobial resistance phenotype/genotype and the virulence gene content. During 2019-2020, carcass surface samples were collected from 150 ruminants in a slaughterhouse. A total of 90 enterococci, comprising five species, were obtained. The overall prevalence of enterococci was found to be 60%, out of which 37.7% were identified as Enterococcus (E.) hirae, 33.3% as E. casseliflavus, 15.5% as E. faecium, 12.2% as E. faecalis, and 1.1% as E. gallinarum. Virulence-associated genes of efaA (12.2%) were commonly observed in the Enterococcus isolates, followed by gelE (3.3%), asaI (3.3%), and ace (2.2%). High resistance to quinupristin-dalfopristin (28.8%), tetracycline (21.1%), ampicillin (20%), and rifampin (15.5%) was found in two, four, four, and five of the Enterococcus species group, respectively. The resistance of Enterococcus isolates to 11 antibiotic groups was determined and multidrug resistant (MDR) strains were found in 18.8% of Enterococcus isolates. Characteristic resistance genes were identified by PCR with an incidence of 6.6%, 2.2%, 1.1%, 1.1%, 1.1%, and 1.1% for the tetM, ermB, ermA, aac(6')Ie-aph(2")-la, VanC1, and VanC2 genes in Enterococcus isolates, respectively. Efflux pump genes causing multidrug resistance were detected in Enterococcus isolates (34.4%). The results showed that there were enterococci in the slaughterhouse with a number of genes linked to virulence that could be harmful to human health.
Collapse
Affiliation(s)
- Tugba Cebeci
- Department of Medical Services and Techniques, Espiye Vocational School, Giresun University, Giresun, Turkey.
| |
Collapse
|
3
|
Cagnoli G, Di Paolo A, Bertelloni F, Salvucci S, Buccioni A, Marzoni Fecia di Cossato M, Ebani VV. Occurrence of Antimicrobial-Resistant Enterococcus spp. in Healthy Chickens Never Exposed to Antimicrobial Agents in Central Italy. Antibiotics (Basel) 2024; 13:417. [PMID: 38786145 PMCID: PMC11117291 DOI: 10.3390/antibiotics13050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Enterococci are part of the natural flora of the gastrointestinal tract of mammals, including humans, birds and invertebrates. They can cause infection, mainly among hospitalized patients, as well as acquire and transfer antimicrobial resistance genes. The present study allowed the isolation of 98 Enterococcus (73.47% E. faecium, 23.47% E. faecalis, 3.06% E. avium) strains from 120-day-old healthy chickens that had never been treated with antimicrobials. Their antimicrobial resistance was evaluated by the agar disk diffusion method; high-level aminoglycoside (streptomycin and gentamicin) and vancomycin resistance were established using the microbroth dilution method. The highest percentages of resistant isolates were detected with quinupristin-dalfopristin (88.78%), rifampicin (64.29%), tetracyclines (45.92%), and enrofloxacin (41.84%). High percentages of susceptible strains were found with teicoplanin (100%), amoxicillin-clavulanic acid (97.96%), nitrofurantoin (94.90%), ampicillin (92.86%), chloramphenicol (90.82%), and linezolid (88.78%). About 60% of the strains were classified as MDR (multidrug-resistant). Moreover, PCR was carried out to investigate genes encoding for tetracyclines resistance determinants: tet(M), tet(L), tet(O), tet(K), and Int-Tn. Genes were detected in 68 (69.38%) strains: 36 were shown to be resistant with the agar disk diffusion method, while 28 were intermediate, and 2 were susceptible. The present study showed that chickens never treated with antimicrobials potentially harbor enterococci having phenotypic and genotypic characters of antimicrobial resistance.
Collapse
Affiliation(s)
- Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Alessia Di Paolo
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Sonia Salvucci
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Arianna Buccioni
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale Delle Cascine 18, 50144 Florence, Italy;
| | - Margherita Marzoni Fecia di Cossato
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Valentina Virginia Ebani
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
4
|
Wódz K, Chodkowska KA, Iwiński H, Różański H, Wojciechowski J. In Vitro Evaluation of Phytobiotic Mixture Antibacterial Potential against Enterococcus spp. Strains Isolated from Broiler Chicken. Int J Mol Sci 2024; 25:4797. [PMID: 38732016 PMCID: PMC11084370 DOI: 10.3390/ijms25094797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.
Collapse
Affiliation(s)
- Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland;
| | | | - Hubert Iwiński
- AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland; (H.I.); (H.R.)
| | - Henryk Różański
- AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland; (H.I.); (H.R.)
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State College in Krosno, Rynek 1, 38-400 Krosno, Poland
| | - Jakub Wojciechowski
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland;
| |
Collapse
|
5
|
Son Y, Jin YB, Cho EJ, Park AR, Flores RA, Nguyen BT, Lee SY, Altanzul B, Park KI, Min W, Kim WH. Comparative Analysis of Antibiotic Resistance and Biofilm Characteristics of Two Major Enterococcus Species from Poultry Slaughterhouses in South Korea. Vet Sci 2024; 11:180. [PMID: 38668447 PMCID: PMC11054628 DOI: 10.3390/vetsci11040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The spread of antibiotic-resistant Enterococcus in the poultry industry poses significant public health challenges due to multidrug resistance and biofilm formation. We investigated the antibiotic resistance profiles and biofilm characteristics of E. faecalis and E. faecium isolates from chicken meat in poultry slaughterhouses in South Korea. Ninety-six isolates (forty-eight each of E. faecalis and E. faecium) were collected between March and September 2022. Both species were analyzed using MALDI-TOF, PCR, antibiotic susceptibility testing, and biofilm assays. A high level of multidrug resistance was observed in E. faecalis (95.8%) and E. faecium (93.8%), with E. faecium exhibiting a broader range of resistance, particularly to linezolid (52.1%) and rifampicin (47.9%). All E. faecalis isolates formed biofilm in vitro, showing stronger biofilm formation than E. faecium with a significant difference (p < 0.001) in biofilm strength. Specific genes (cob, ccf, and sprE) were found to be correlated with biofilm strength. In E. faecium isolates, biofilm strength was correlated with resistance to linezolid and rifampicin, while a general correlation between antibiotic resistance and biofilm strength was not established. Through analysis, correlations were noted between antibiotics within the same class, while no general trends were evident in other analyzed factors. This study highlights the public health risks posed by multidrug-resistant enterococci collected from poultry slaughterhouses, emphasizing the complexity of the biofilm-resistance relationship and the need for enhanced control measures.
Collapse
Affiliation(s)
- Yongwoo Son
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| | - Eun-Jeong Cho
- Gyeongnam Veterinary Service Laboratory, Jinju 52733, Republic of Korea; (E.-J.C.); (A.R.P.)
| | - Ae Ra Park
- Gyeongnam Veterinary Service Laboratory, Jinju 52733, Republic of Korea; (E.-J.C.); (A.R.P.)
| | - Rochelle A. Flores
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| | - Binh T. Nguyen
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| | - Seung Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| | - Bujinlkham Altanzul
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| | - Kwang Il Park
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| | - Wongi Min
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| | - Woo H. Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.S.); (Y.B.J.); (R.A.F.); (B.T.N.); (S.Y.L.); (B.A.); (K.I.P.); (W.M.)
| |
Collapse
|
6
|
Wang C, Wu S, Zhou W, Hu L, Hu Q, Cao Y, Wang L, Chen X, Zhang Q. Effects of Neolamarckia cadamba leaves extract on microbial community and antibiotic resistance genes in cecal contents and feces of broilers challenged with lipopolysaccharides. Appl Environ Microbiol 2024; 90:e0110723. [PMID: 38231769 PMCID: PMC10880616 DOI: 10.1128/aem.01107-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 01/19/2024] Open
Abstract
The effects of Neolamarckia cadamba leaves extract (NCLE), with effective ingredients of flavonoids, on antibiotic resistance genes (ARGs) and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation (LPS) were investigated. LPS stimulation increased (P < 0.05) the relative abundance of ARGs and mobile genetic elements (MGEs), such as tet(W/N/W), APH(3')-IIIa, ErmB, tet (44), ANT (6)-Ia, tet(O), tet (32), Vang_ACT_CHL, myrA, ANT (6)-Ib, IncQ1, tniB, and rep2 in cecal contents. However, the difference disappeared (P > 0.05) when NCLE was added at the same time. These differential ARGs and MGEs were mainly correlated (P < 0.01) with Clostridiales bacterium, Lachnospiraceae bacterium, and Candidatus Woodwardibium gallinarum. These species increased in LPS-stimulated broilers and decreased when NCLE was applied at the same time. In feces, LPS stimulation decreased (P < 0.05) the relative abundance of tet(Q), adeF, ErmF, Mef(En2), OXA-347, tet (40), npmA, tmrB, CfxA3, and ISCrsp1, while the LPS + NCLE treated group showed no significant effect (P > 0.05) on these ARGs. These differential ARGs and MGEs in feces were mainly correlated (P < 0.01) with Clostridiales bacterium, Pseudoflavonifractor sp. An184, Flavonifractor sp. An10, Ruminococcaceae bacterium, etc. These species increased in LPS-stimulated broilers and increased when NCLE was applied at the same time. In conclusion, LPS stimulation and NCLE influenced microbial communities and associated ARGs in both cecal contents and feces of broilers. NCLE alleviated the change of ARGs and MGEs in LPS-induced broilers by maintaining the microbial balance.IMPORTANCEAntibiotics showed a positive effect on gut health regulation and growth performance improvement in livestock breeding, but the antimicrobial resistance threat and environment pollution problem are increasingly severe with antibiotics abuse. As alternatives, plant extract containing bioactive substances are increasingly used to improve immunity and promote productivity. However, little is known about their effects on diversity and abundance of ARGs. Here, we investigated the effects of NCLE, with effective ingredients of flavonoids, on ARGs and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation. We found that NCLE reduced the abundance of ARGs in cecal contents of lipopolysaccharide-induced broilers by maintaining the microbial balance. This study provides a comprehensive view of cecal and fecal microbial community, ARGs, and MGEs of broiler following LPS stimulation and NCLE treatment. It might be used to understand and control ARGs dissemination in livestock production.
Collapse
Affiliation(s)
- Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuo Wu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Lei Hu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qi Hu
- Bioinformation Center, NEOMICS Institute, Shenzhen, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Yang J, Chen Y, Dong Z, Zhang W, Liu L, Meng W, Li Q, Fu K, Zhou Z, Liu H, Zhong Z, Xiao X, Zhu J, Peng G. Distribution and association of antimicrobial resistance and virulence characteristics in Enterococcus spp. isolates from captive Asian elephants in China. Front Microbiol 2023; 14:1277221. [PMID: 37954234 PMCID: PMC10635408 DOI: 10.3389/fmicb.2023.1277221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Enterococcus spp., as an opportunistic pathogen, are widely distributed in the environment and the gastrointestinal tracts of both humans and animals. Captive Asian elephants, popular animals at tourist attractions, have frequent contact with humans. However, there is limited information on whether captive Asian elephants can serve as a reservoir of antimicrobial resistance (AMR). The aim of this study was to characterize AMR, antibiotic resistance genes (ARGs), virulence-associated genes (VAGs), gelatinase activity, hemolysis activity, and biofilm formation of Enterococcus spp. isolated from captive Asian elephants, and to analyze the potential correlations among these factors. A total of 62 Enterococcus spp. strains were isolated from fecal samples of captive Asian elephants, comprising 17 Enterococcus hirae (27.4%), 12 Enterococcus faecalis (19.4%), 8 Enterococcus faecium (12.9%), 7 Enterococcus avium (11.3%), 7 Enterococcus mundtii (11.3%), and 11 other Enterococcus spp. (17.7%). Isolates exhibited high resistance to rifampin (51.6%) and streptomycin (37.1%). 50% of Enterococcus spp. isolates exhibited multidrug resistance (MDR), with all E. faecium strains demonstrating MDR. Additionally, nine ARGs were identified, with tet(M) (51.6%), erm(B) (24.2%), and cfr (21.0%) showing relatively higher detection rates. Biofilm formation, gelatinase activity, and α-hemolysin activity were observed in 79.0, 24.2, and 14.5% of the isolates, respectively. A total of 18 VAGs were detected, with gelE being the most prevalent (69.4%). Correlation analysis revealed 229 significant positive correlations and 12 significant negative correlations. The strongest intra-group correlations were observed among VAGs. Notably, we found that vancomycin resistance showed a significant positive correlation with ciprofloxacin resistance, cfr, and gelatinase activity, respectively. In conclusion, captive Asian elephants could serve as significant reservoirs for the dissemination of AMR to humans.
Collapse
Affiliation(s)
- Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanshan Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenqing Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wanyu Meng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keyi Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jieyao Zhu
- Xishuangbanna Vocational and Technical College, Yunnan, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Bzdil J, Sladecek V, Senk D, Stolar P, Waicova Z, Kollertova N, Zouharova M, Matiaskova K, Linhart P, Nedbalcova K. Enterococci Isolated from One-Day-Old Chickens and Their Phenotypic Susceptibility to Antimicrobials in the Czech Republic. Antibiotics (Basel) 2023; 12:1487. [PMID: 37887187 PMCID: PMC10603836 DOI: 10.3390/antibiotics12101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Our study describes the prevalence and spectrum of enterococci isolated from one-day-old chickens in the Czech Republic, their level of antimicrobial resistance, and the occurrence of multiresistance. Over a 24-month period from 1 August 2021 to 31 July 2023, a total of 464 mixed samples of one-day-old chicken organs were examined during routine inspections at 12 randomly selected poultry farms in the Czech Republic. The samples were processed via cultivation methods and suspected strains were confirmed using the MALDI-TOF Mass Spectrometry method. Antimicrobial susceptibility was determined using the MIC method for eight antimicrobials. A total of 128 isolates (prevalence of 27.6%) representing 4 species of enterococci were isolated, including Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, and Enterococcus hirae, with prevalence rates of 23.3%, 1.5%, 2.2%, and 0.6%, respectively. Susceptibility tests showed a high percentage of susceptible strains among E. faecalis, E. faecium, and E. gallinarum for penicillin-based antibiotics, sulfamethoxazole with trimethoprim, and florfenicol (80-100% susceptible strains). E. hirae was an exception, displaying complete resistance to enrofloxacin (0% susceptible strains) and a high degree of resistance to other tested antimicrobials (33.3% susceptible strains). Among the isolated strains, a total of 16 isolates (12.5%) showed resistance to 3 or more antimicrobials. Complete resistance to all eight antimicrobials simultaneously was observed in four isolates (3.1%). This research shows the possible sources of pathogenic enterococci and their virulence and resistance genes. The findings hold relevance for both veterinary and human medicine, contributing to a better understanding of enterococcal circulation in the human ecosystem and food chain, as well as the development of their resistance and multiresistance.
Collapse
Affiliation(s)
- Jaroslav Bzdil
- Ptacy S.R.O., Valasska Bystrice 194, 756 27 Valašská Bystřice, Czech Republic; (J.B.); (V.S.); (D.S.); (P.S.)
| | - Vladimir Sladecek
- Ptacy S.R.O., Valasska Bystrice 194, 756 27 Valašská Bystřice, Czech Republic; (J.B.); (V.S.); (D.S.); (P.S.)
| | - David Senk
- Ptacy S.R.O., Valasska Bystrice 194, 756 27 Valašská Bystřice, Czech Republic; (J.B.); (V.S.); (D.S.); (P.S.)
| | - Petr Stolar
- Ptacy S.R.O., Valasska Bystrice 194, 756 27 Valašská Bystřice, Czech Republic; (J.B.); (V.S.); (D.S.); (P.S.)
| | - Zuzana Waicova
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192, 779 00 Olomouc, Czech Republic; (Z.W.); (N.K.)
| | - Nela Kollertova
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192, 779 00 Olomouc, Czech Republic; (Z.W.); (N.K.)
| | - Monika Zouharova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (M.Z.); (K.M.)
| | - Katarina Matiaskova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (M.Z.); (K.M.)
| | - Petr Linhart
- Institute of Animal Protection and Welfare and Public Veterinary Medicine, University of Veterinary Sciences, Palackeho 1–3, 612 42 Brno, Czech Republic;
| | - Katerina Nedbalcova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (M.Z.); (K.M.)
| |
Collapse
|
9
|
Lenchenko E, Sachivkina N, Lobaeva T, Zhabo N, Avdonina M. Bird immunobiological parameters in the dissemination of the biofilm-forming bacteria Escherichia coli. Vet World 2023; 16:1052-1060. [PMID: 37576771 PMCID: PMC10420717 DOI: 10.14202/vetworld.2023.1052-1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim With the development of industrial maintenance technology, a group of pathogens called avian pathogenic Escherichia coli (APEC) became very common. The initiation, development, and outcome of the infectious process mediated by virulent APEC strains occur through a decrease in the colonization resistance of the intestine, an immunobiological marker of homeostasis stability in susceptible species. This study focused on the pathogenetic features of colibacillosis and the morphological features of E. coli. Materials and Methods Clinical, immunological, bacteriological, and histological studies were conducted on 15-day-old white Leghorn birds (n = 20). The birds were divided into two groups: Control group (Group I; n = 10) with birds intranasally inoculated with 0.5 mL of 0.9% NaCl solution and experimental group (Group II; n = 10) with birds intranasally inoculated with 0.5 mL of an E. coli suspension at 1 billion/mL. Results During the biofilm formation, clusters of microcolonies were formed as a gel-like intercellular matrix that accumulated due to cell coagulation. The intercellular matrix "glues" heteromorphic cells together and forms a structure of densely packed heteromorphic cells arranged in an orderly manner and growing in different directions. During the experimental reproduction of E. coli, excessive growth was observed in material isolated from poultry. Pathogenic E. coli strains implementing virulence factors adhered to the receptors of erythrocytes, alveolocytes, and enterocytes. Multicellular heterogeneous biofilms, united by an intercellular matrix, were located at the apical poles of the respiratory tract alveolocytes and enterocytes of the terminal ileum villi. Many bacteria exudate containing desquamated epithelial cells with an admixture of mucus, and polymorphonuclear leukocytes were detected in the lumen of the birds' abdominal organs. Invasive bacteria damaged the epithelial layer, violated the endothelial layer of blood vessels, and developed inflammatory hyperemia of the lamina propria of the respiratory and digestive systems' mucous membrane. A correlative dependence of changes developed by the type of delayed hypersensitivity reaction was established. Signs of accidental transformation of the thymus, atrophy of the bursa of Fabricius, disseminated thrombosis, and septic spleen developed. Moreover, toxic cardiomyocyte dystrophy, signs of congestive vascular hyperemia, massive disintegration of lymphocytes, macrophage reactions, perivascular edema resulting from the release of plasma, and shaped blood elements were detected. Conclusion The development and outcome of the infectious process in escherichiosis primarily depend on the homeostasis stability of susceptible species and virulence factors of the pathogenic microorganisms. One of the selected strains, E. coli O78:K80 displayed the highest ability to form biofilms. Its strong adhesion ability to bird erythrocytes was demonstrated. Deepening the scientific knowledge of the interaction between eukaryotes and prokaryotes will contribute to a better understanding of the pathogenetic aspects of avian escherichiosis and eventually find promising anti-adhesive drugs that could reduce primary bacterial contamination in vivo and in vitro.
Collapse
Affiliation(s)
- Ekaterina Lenchenko
- Department of Veterinary Medicine, Russian Biotechnological University (BIOTECH University), 125080, Moscow, Russia
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198, Moscow, Russia
| | - Tatiana Lobaeva
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| | - Natallia Zhabo
- Department of Foreign Languages, Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198, Moscow, Russia
| | - Marina Avdonina
- Department of Linguistics and Intercultural Communication, Moscow State Linguistic University, 119034, Moscow, Russia
| |
Collapse
|
10
|
Meng X, Chen F, Xiong M, Hao H, Wang KJ. A new pathogenic isolate of Kocuria kristinae identified for the first time in the marine fish Larimichthys crocea. Front Microbiol 2023; 14:1129568. [PMID: 37180261 PMCID: PMC10167289 DOI: 10.3389/fmicb.2023.1129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
In recent years, new emerging pathogenic microorganisms have frequently appeared in animals, including marine fish, possibly due to climate change, anthropogenic activities, and even cross-species transmission of pathogenic microorganisms among animals or between animals and humans, which poses a serious issue for preventive medicine. In this study, a bacterium was clearly characterized among 64 isolates from the gills of diseased large yellow croaker Larimichthys crocea that were raised in marine aquaculture. This strain was identified as K. kristinae by biochemical tests with a VITEK 2.0 analysis system and 16S rRNA sequencing and named K. kristinae_LC. The potential genes that might encode virulence-factors were widely screened through sequence analysis of the whole genome of K. kristinae_LC. Many genes involved in the two-component system and drug-resistance were also annotated. In addition, 104 unique genes in K. kristinae_LC were identified by pan genome analysis with the genomes of this strain from five different origins (woodpecker, medical resource, environment, and marine sponge reef) and the analysis results demonstrated that their predicted functions might be associated with adaptation to living conditions such as higher salinity, complex marine biomes, and low temperature. A significant difference in genomic organization was found among the K. kristinae strains that might be related to their hosts living in different environments. The animal regression test for this new bacterial isolate was carried out using L. crocea, and the results showed that this bacterium could cause the death of L. crocea and that the fish mortality was dose-dependent within 5 days post infection, indicating the pathogenicity of K. kristinae_LC to marine fish. Since K. kristinae has been reported as a pathogen for humans and bovines, in our study, we revealed a new isolate of K. kristinae_LC from marine fish for the first time, suggesting the potentiality of cross-species transmission among animals or from marine animals to humans, from which we would gain insight to help in future public prevention strategies for new emerging pathogens.
Collapse
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ming Xiong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Ribeiro J, Silva V, Monteiro A, Vieira-Pinto M, Igrejas G, Reis FS, Barros L, Poeta P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals (Basel) 2023; 13:1362. [PMID: 37106925 PMCID: PMC10135345 DOI: 10.3390/ani13081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
In Vivo Effect of a Nisin–Biogel on the Antimicrobial and Virulence Signatures of Canine Oral Enterococci. Antibiotics (Basel) 2023; 12:antibiotics12030468. [PMID: 36978334 PMCID: PMC10044209 DOI: 10.3390/antibiotics12030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Periodontal disease is a relevant oral disease in dogs and nisin–biogel has been previously proposed to be used in its control. Enterococci, as inhabitants of the oral cavity with a high genetic versatility, are a reliable bacterial model for antimicrobial studies. Our goal was to evaluate the in vivo influence of the long-term dental application of the nisin–biogel on the virulence and antimicrobial signatures of canine oral enterococci. Twenty dogs were randomly allocated to one of two groups (treatment group—TG with nisin–biogel dental application, or control group—CG without treatment) and submitted to dental plaque sampling at day 0 and after 90 days (T90). Samples were processed for Enterococcus spp. isolation, quantification, identification, molecular typing and antimicrobial and virulence characterization. From a total of 140 enterococci, molecular typing allowed us to obtain 70 representative isolates, mostly identified as E. faecalis and E. faecium. No significant differences (p > 0.05) were observed in the virulence index of the isolates obtained from samples collected from the TG and CG at T90. At T90, a statistically significant difference (p = 0.0008) was observed in the antimicrobial resistance index between the isolates from the TC and CG. Oral enterococci were revealed to be reservoirs of high resistant and virulent phenotypes.
Collapse
|
13
|
Motamedi H, Ari MM, Shahlaei M, Moradi S, Farhadikia P, Alvandi A, Abiri R. Designing multi-epitope vaccine against important colorectal cancer (CRC) associated pathogens based on immunoinformatics approach. BMC Bioinformatics 2023; 24:65. [PMID: 36829112 PMCID: PMC9951438 DOI: 10.1186/s12859-023-05197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND It seems that several members of intestinal gut microbiota like Streptococcus bovis, Bacteroides fragilis, Helicobacter pylori, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, Peptostreptococcus anaerobius may be considered as the causative agents of Colorectal Cancer (CRC). The present study used bioinformatics and immunoinformatics approaches to design a potential epitope-based multi-epitope vaccine to prevent CRC with optimal population coverage. METHODS In this study, ten amino acid sequences of CRC-related pathogens were retrieved from the NCBI database. Three ABCpred, BCPREDS and LBtope online servers were considered for B cells prediction and the IEDB server for T cells (CD4+ and CD8+) prediction. Then, validation, allergenicity, toxicity and physicochemical analysis of all sequences were performed using web servers. A total of three linkers, AAY, GPGPG, and KK were used to bind CTL, HTL and BCL epitopes, respectively. In addition, the final construct was subjected to disulfide engineering, molecular docking, immune simulation and codon adaptation to design an effective vaccine production strategy. RESULTS A total of 19 sequences of different lengths for linear B-cell epitopes, 19 and 18 sequences were considered as epitopes of CD4+ T and CD8+ cells, respectively. The predicted epitopes were joined by appropriate linkers because they play an important role in producing an extended conformation and protein folding. The final multi-epitope construct and Toll-like receptor 4 (TLR4) were evaluated by molecular docking, which revealed stable and strong binding interactions. Immunity simulation of the vaccine showed significantly high levels of immunoglobulins, helper T cells, cytotoxic T cells and INF-γ. CONCLUSION Finally, the results showed that the designed multi-epitope vaccine could serve as an excellent prophylactic candidate against CRC-associated pathogens, but in vitro and animal studies are needed to justify our findings for its use as a possible preventive measure.
Collapse
Affiliation(s)
- Hamid Motamedi
- grid.412112.50000 0001 2012 5829Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- grid.411746.10000 0004 4911 7066Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Farhadikia
- grid.412112.50000 0001 2012 5829Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Medical Technology Research Center, Health Technology Institute,, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Fertility and Infertility Research Center, Health Technology Institute,, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Mudenda S, Matafwali SK, Malama S, Munyeme M, Yamba K, Katemangwe P, Siluchali G, Mainda G, Mukuma M, Bumbangi FN, Mirisho R, Muma JB. Prevalence and antimicrobial resistance patterns of Enterococcus species isolated from laying hens in Lusaka and Copperbelt provinces of Zambia: a call for AMR surveillance in the poultry sector. JAC Antimicrob Resist 2022; 4:dlac126. [PMID: 36570686 PMCID: PMC9772873 DOI: 10.1093/jacamr/dlac126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background The use of antimicrobials in layer poultry production for improved production, growth promotion, prophylaxis and treatment purposes has contributed to the development of antimicrobial resistance (AMR) in poultry. In Zambia, there is a paucity of information on the prevalence and AMR patterns of Enterococcus species isolated from laying hens. Objectives This study investigated the prevalence and AMR patterns of enterococci isolated in layer hens in Lusaka and Copperbelt provinces of Zambia. Methods A cross-sectional study was conducted from September 2020 to April 2021. Three hundred and sixty-five pooled cloacal swab samples were collected from 77 layer poultry farms. Enterococci identification and confirmation were performed using Analytical Profile Index (API 20 STREP) and 16S rRNA sequencing, respectively. A panel of nine antibiotics was used for antibiotic susceptibility testing and interpreted according to the CLSI 2020 guidelines. Data were analysed using SPSS version 23 and WHONET 2020. Results A total of 308 (83%) single Enterococcus species isolates were obtained and showed resistance to tetracycline (80.5%), erythromycin (53.6%), quinupristin/dalfopristin (53.2%), ampicillin (36.72%), vancomycin (32.8%), linezolid (30.2%), ciprofloxacin (11.0%), nitrofurantoin (6.5%) and chloramphenicol (3.9%). The prevalence of enterococci resistant to at least one antibiotic was 99.4% (n = 306), of which 86% (n = 265) were MDR. Conclusions This study found a high prevalence of antimicrobial-resistant enterococci. The presence of MDR requires urgent intervention and implementation of AMR surveillance strategies and antimicrobial stewardship programmes in layer poultry production in Zambia.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sydney Malama
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Patrick Katemangwe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Godfrey Siluchali
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Department of Anatomy and Physiological Sciences, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Geoffrey Mainda
- Department of Veterinary Services, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine, School of Medicine, Eden University, P.O. Box 37727, Lusaka, Zambia
| | - Robert Mirisho
- Department of Public Health, St Francis University College of Health and Allied Sciences, Ifakara, Tanzania
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
15
|
Meta-analysis of the global prevalence of Enterococcus spp. in foods: Antibiotic resistance profile of Enterococcus faecalis and Enterococcus faecium. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Aim: The objective of this study was to evaluate the prevalence and diversity of Enterococcus spp. and antibiotic-resistant Enterococcus faecalis and Enterococcus faecium isolates in different foods worldwide.
Method and Result: This study used meta-analytical methods. Besides, Web of Science (n= 705), Medline (n= 6), and Scopus (n= 1.338) were searched for studies in the years 1995-2021 using related keywords. Results showed that the pooled prevalence for Enterococcus spp. and antibiotic-resistant of E. faecalis and E. faecium isolates were found 0.41 (95% C.I. 0.34-0.47), 0.25 (95% C.I. 0.13-0.38), respectively. According to the results of the subgroup analysis, the lowest and highest prevalence of Enterococcus spp. in food types were calculated for red meat (0.56), and fermented foods (0.29). Also, as a result of subgroup analyses by country the highest prevalence of Enterococcus spp. was calculated in studies conducted in Slovakia (0.74). In contrast, the lowest prevalence was calculated in studies conducted in Georgia (0.07).
Conclusion: The meta-analyses improved our understanding of the prevalence of Enterococcus spp. and the antibiotic resistance of E. faecalis and E. faecium isolates in different foods and provided results that can be useful as input for quantitative microbiological risk evaluation modeling.
Significance and Impact of Study: We demonstrated the antibiotic resistance of E. faecalis and E. faecium in foods and gaps that could be addressed in the future. Therefore, it is believed that the results compiled herein will contribute to the epidemiological surveillance of the presence and antibiotic resistance of E. faecalis and E. faecium in foods.
Collapse
|
16
|
Di Lodovico S, Fasciana T, Di Giulio M, Cellini L, Giammanco A, Rossolini GM, Antonelli A. Spread of Multidrug-Resistant Microorganisms. Antibiotics (Basel) 2022; 11:antibiotics11070832. [PMID: 35884086 PMCID: PMC9311923 DOI: 10.3390/antibiotics11070832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.D.G.); (L.C.)
- Correspondence:
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy; (T.F.); (A.G.)
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.D.G.); (L.C.)
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.D.G.); (L.C.)
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy; (T.F.); (A.G.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
17
|
Cho S, McMillan EA, Barrett JB, Hiott LM, Woodley TA, House SL, Frye JG, Jackson CR. Distribution and Transfer of Plasmid Replicon Families among Multidrug-Resistant Enterococcus faecalis and Enterococcus faecium from Poultry. Microorganisms 2022; 10:microorganisms10061244. [PMID: 35744761 PMCID: PMC9228330 DOI: 10.3390/microorganisms10061244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
The presence and transfer of plasmids from commensal bacteria to more pathogenic bacteria may contribute to the dissemination of antimicrobial resistance. However, the prevalence of plasmids from commensal bacteria, such as the enterococci, in food animals remains largely unknown. In this study, the diversity and prevalence of plasmid families from multidrug-resistant (MDR; resistance to three or more antimicrobials) enterococci from poultry carcasses were determined. Plasmid-positive MDR enterococci were also tested for the ability to transfer plasmids to other enterococci using conjugation. MDR Enterococcus faecalis (n = 98) and Enterococcus faecium (n = 696) that were isolated from poultry carcass rinsates between 2004 and 2011 were tested for the presence of 21 plasmid replicon (rep) families using multiplex PCR. Approximately 48% of E. faecalis (47/98) and 16% of E. faecium (110/696) were positive for at least one rep-family. Fourteen rep-families were detected overall, and ten rep-families were shared between E. faecalis and E. faecium. The rep7 and rep17 families were unique to E. faecalis, while the rep5 and rep8 families were unique to E. faecium. The rep9 family was predominant in both E. faecalis and E. faecium for all the years tested. The greatest number of rep-families detected was in 2005 (n = 10), and the least was in 2009 (n = 1). Eight rep-families were transferred from E. faecalis donors to the E. faecalis JH2-2 recipient using conjugation. Results from this study showed that E. faecalis and E. faecium from poultry carcasses contain numerous and diverse rep-families that are capable of conjugal transfer.
Collapse
Affiliation(s)
- Sohyun Cho
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Elizabeth A. McMillan
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Tiffanie A. Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Sandra L. House
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
- Correspondence: ; Tel.: +1-(706)-546-3604; Fax: +1-(706)-546-3616
| |
Collapse
|