1
|
Zhang X, Han L, Sun Q, Wang X, Hu X, Lin X, Zhu Y. Exposure of individuals aged 18-44 years to personal care products in Beijing, China: Exposure profiles, possible influencing factors, and risk assessment. J Environ Sci (China) 2025; 148:691-701. [PMID: 39095201 DOI: 10.1016/j.jes.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 08/04/2024]
Abstract
Personal care products (PCPs) are a class of emerging pollutants that have attracted public concern owing to their harmful effects on humans and the environment. Biomonitoring data is valuable for insight the levels of PCPs in the human body and can be crucial for identifying potential health hazards. To gain a better understanding of timely exposure profiles and health risk of reproductive-age population to PCPs, we determined six parabens, six benzophenone-type ultraviolet filters, and three disinfectants in 256 urine samples collected from young adults aged 18-44 years in Beijing, China. The urinary levels of benzophenone-3 (BP-3) and 4-hydroxybenzophenone (4-OHBP) were significantly higher in summer compared to winter, suggesting these compounds have different seasonal usage patterns. Moreover, the total concentration of 15 PCPs in female was 430 ng/mL, approximately two times higher than that in male. P‑chloro-m-xylenol (PCMX), as a new type of antibacterial agent, has the greatest level among all target analytes, indicating the increasingly use of this antibacterial alternative recently. Five potential influencing factors that lead to the elevated exposure level of PCPs were identified. Over 19% of the target population had a high hazard index value (greater than 1) which was attributed to exposure to propyl paraben (PrP), benzophenone-1 (BP-1), BP-3 and PCMX, indicating that PCPs may pose a relatively high exposure risk at environmental levels that should be a cause for concern.
Collapse
Affiliation(s)
- Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Linxue Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; The Bureau for Health Inspection and Supervision of Haidian District, Beijing 100037, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaochen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
2
|
Duffel MW. Cytosolic sulfotransferases in endocrine disruption. Essays Biochem 2024; 68:541-553. [PMID: 38699885 PMCID: PMC11531609 DOI: 10.1042/ebc20230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
The mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of endocrine hormones as well as a broad array of drugs, environmental chemicals, and other xenobiotics. Many endocrine-disrupting chemicals (EDCs) interact with these SULTs as substrates and inhibitors, and thereby alter sulfation reactions responsible for metabolism and regulation of endocrine hormones such as estrogens and thyroid hormones. EDCs or their metabolites may also regulate expression of SULTs through direct interaction with nuclear receptors and other transcription factors. Moreover, some sulfate esters derived from EDCs (EDC-sulfates) may serve as ligands for endocrine hormone receptors. While the sulfation of an EDC can lead to its excretion in the urine or bile, it may also result in retention of the EDC-sulfate through its reversible binding to serum proteins and thereby enable transport to other tissues for intracellular hydrolysis and subsequent endocrine disruption. This mini-review outlines the potential roles of SULTs and sulfation in the effects of EDCs and our evolving understanding of these processes.
Collapse
Affiliation(s)
- Michael W Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
3
|
Đurić L, Milanović M, Drljača Lero J, Milošević N, Milić N. In silico analysis of endocrine-disrupting potential of triclosan, bisphenol A, and their analogs and derivatives. J Appl Toxicol 2024; 44:1897-1913. [PMID: 39129338 DOI: 10.1002/jat.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Owning to the increasing body of evidence about the ubiquitous exposure to endocrine disruptors (EDCs), particularly bisphenol A (BPA), and associated health effects, BPA has been gradually substituted with insufficiently tested structural analogs. The unmanaged excessive use of antimicrobial agents such as triclosan (TCS) during the COVID-19 outbreak has also raised concerns about its possible interferences with hormonal functions. The similarity of BPA and estradiol, as well as TCS and non-steroidal estrogens, imply that endocrine-disrupting properties of their analogs could be predicted based on the chemical structure. Hence, this study aimed to evaluate the endocrine-disrupting potential of BPA substitutes as well as TCS derivatives and degradation/biotransformation metabolites, in comparison to BPA and TCS based on their molecular properties, computational predictions of pharmacokinetics and binding affinities to nuclear receptors. Based on the obtained results several under-researched BPA analogs exhibited higher binding affinities for nuclear receptors than BPA. Notable analogs included compounds detected in receipts (DD-70, BTUM-70, TGSA, and BisOPP-A), along with a flame retardant, BDP. The possible health hazards linked to exposure to TCS and its mono-hydroxylated metabolites were also found. Further research is needed in order to elucidate the health impacts of these compounds and promote better regulation practices.
Collapse
Affiliation(s)
- Larisa Đurić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Maja Milanović
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Drljača Lero
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milošević
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
4
|
Varghese P, Kumar K, Sarkar P, Karmakar S, Shukla SP, Kumar S, Bharti VS, Paul T, Kantal D. Impact of Triclosan on Bacterial Biodiversity and Sediment Enzymes - A Microcosm Study. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:59. [PMID: 39438328 DOI: 10.1007/s00128-024-03969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Triclosan (TCS), a widely used antimicrobial biocide, has raised serious concern among the scientific community in recent years owing to its ubiquitous presence around the globe and toxicity to aquatic organisms. The current study investigated the alterations in bacterial diversity, nutrients, and sediment enzyme activity in TCS-exposed sediment. TCS concentrations of 3 mg/L (T1) and 6 mg/L (T2) were applied in a microcosm setup for 28 days to sediment collected from Versova Creek, Mumbai. Among sediment enzymes, dehydrogenase activity exhibited the greatest degree of variability in 3 mg/L exposed sediment. Nitrite, total nitrogen and urease exhibited higher concentrations in 6 mg/L TCS exposed sediment. The concentration of ammonia was observed to be decreasing in treatments exposed to 6 mg/L TCS. Total heterotrophic bacteria exhibited an increase in count in T1 and a decrease in T2. Metagenomics data showed a higher relative abundance of bacteria in T1 compared to T2 on the 28th day of sampling. Proteobacteria was found to be the most abundant phylum in all samples, and their relative abundance was reduced by 0.14% in T1 and 5.48% in T2. The results confirm the alterations in the composition of sediment bacterial communities and their enzymatic activities due to TCS exposure.
Collapse
Affiliation(s)
- Priya Varghese
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Kundan Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Pritam Sarkar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Sutanu Karmakar
- Department of Aquatic Environment Management, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700094, India
| | - S P Shukla
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Vidya Shree Bharti
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Tapas Paul
- Department of Aquatic Environment Management, College of Fisheries, Bihar Animal Sciences University, Kishanganj, Bihar, 855107, India
| | - Debiprasad Kantal
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| |
Collapse
|
5
|
Adegbola CA, Akhigbe TM, Adeogun AE, Tvrdá E, Pizent A, Akhigbe RE. A systematic review and meta-analysis of the impact of triclosan exposure on human semen quality. FRONTIERS IN TOXICOLOGY 2024; 6:1469340. [PMID: 39483697 PMCID: PMC11525012 DOI: 10.3389/ftox.2024.1469340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Triclosan is an antibacterial and antifungal compound that is frequently found in personal care and consumer products, and its its impact on male reproductive health is a growing concern. Despite existing experimental studies demonstrating its potential threats to male fertility, reports on its effects on human semen quality remains limited and inconsistent. Therefore, this study presents a systematic review and meta-analysis assessing the relationship between triclosan exposure and semen quality. Methods This study was registered with PROSPERO (CRD42024524192) and adhered to PRISMA guidelines. Results The study analyzed 562 screened studies, out of which five articles including 1,312 male subjects were finally included in the study. The eligible studies were geographically diverse, with three from China, one from Belgium, and one from Poland. More so, the eligible studies were both case-control and cross-sectional. The meta-analysis revealed that triclosan exposure significantly reduced sperm concentration (Standard Mean Difference (SMD) -0.42 [95% CI: -0.75, -0.10], P = 0.01) and sperm total motility (SMD -1.30 [95% CI: -2.26, -0.34], P = 0.008). Mechanistic insights from animal and in vitro studies showed that oxidative stress may mediate the adverse effects of triclosan on semen quality. Discussion This meta-analysis is the first comprehensive evaluation of the impact of triclosan on human semen quality, highlighting its potential to impair male fertility through reductions in sperm concentration and motility. However, the high heterogeneity among the included studies underscores the need for further high-quality research to establish more definitive conclusions regarding the effects of triclosan exposure on human reproductive health.
Collapse
Affiliation(s)
- Cecilia Adedeji Adegbola
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise Maryanne Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - Adetomiwa Ezekiel Adeogun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Alica Pizent
- Division of Occupational and Environmental Health, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
6
|
Pan P, Gu Y, Li T, Zhou NY, Xu Y. Deciphering the triclosan degradation mechanism in Sphingomonas sp. strain YL-JM2C: Implications for wastewater treatment and marine resources. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135511. [PMID: 39173390 DOI: 10.1016/j.jhazmat.2024.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Triclosan (TCS), an antimicrobial agent extensively incorporated into pharmaceuticals and personal care products, poses significant environmental risks because of its persistence and ecotoxicity. So far, a few microorganisms were suggested to degrade TCS, but the microbial degradation mechanism remains elusive. Here, a two-component angular dioxygenase (TcsAaAb) responsible for the initial TCS degradation was characterized in Sphingomonas sp. strain YL-JM2C. Whole-cell biotransformation and crude enzyme assays demonstrated that TcsAaAb catalyzed the conversion of TCS to 4-chlorocatechol and 3,5-dichlorocatechol rather than the commonly suggested product 2,4-dichlorophenol. Then two intermediates were catabolized by tcsCDEF cluster via an ortho-cleavage pathway. Critical residues (N262, F279, and F391) for substrate binding were identified via molecular docking and mutagenesis. Further, TcsAaAb showed activity toward methyl triclosan and nitrofen, suggesting its versatile potential for bioremediation. In addition, TCS-degrading genes were also present in diverse bacterial genomes in wastewater, ocean and soil, and a relatively high gene abundance was observed in marine metagenomes, revealing the transformation fate of TCS in environments and the microbial potential in pollutant removal. These findings extend the understanding of the microbe-mediated TCS degradation and contribute to the mining of TCS-degrading strains and enzymes, as well as their application in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Piaopiao Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yichao Gu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China.
| |
Collapse
|
7
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
8
|
Chadha J, Ahuja P, Mudgil U, Khullar L, Harjai K. Citral and triclosan synergistically silence quorum sensing and potentiate antivirulence response in Pseudomonas aeruginosa. Arch Microbiol 2024; 206:324. [PMID: 38913239 DOI: 10.1007/s00203-024-04059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Among the ESKAPE pathogens, Pseudomonas aeruginosa is an extensively notorious superbug that causes difficult-to-treat infections. Since quorum sensing (QS) directly promotes pseudomonal virulence, targeting QS circuits is a promising approach for disarming phenotypic virulence. Hence, this study scrutinizes the anti-QS, antivirulence, and anti-biofilm potential of citral (CiT; phytochemical) and triclosan (TcN; disinfectant), alone and in combination, against P. aeruginosa PAO1/PA14. The findings confirmed synergism between CiT and TcN and revealed their quorum quenching (QQ) potential. At sub-inhibitory levels, CiT-TcN combination significantly impeded pyocyanin, total bacterial protease, hemolysin, and pyochelin production alongside inhibiting biofilm formation in P. aeruginosa. Moreover, the QQ and antivirulence potential of CiT and TcN was positively correlated by molecular docking studies that predicted strong associations of the drugs with QS receptors of P. aeruginosa. Collectively, the study identifies CiT-TcN as an effective drug combination that harbors QQ, antivirulence, and anti-biofilm prospects against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna Ahuja
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
9
|
Medellín-Castillo NA, González-Fernández LA, Ocampo-Pérez R, Leyva-Ramos R, Luiz-Dotto G, Flores-Ramírez R, Navarro-Frómeta AE, Aguilera-Flores MM, Carrasco-Marín F, Hernández-Mendoza H, Aguirre-Contreras S, Sánchez-Polo M, Ocaña-Peinado FM. Efficient removal of triclosan from water through activated carbon adsorption and photodegradation processes. ENVIRONMENTAL RESEARCH 2024; 246:118162. [PMID: 38218517 DOI: 10.1016/j.envres.2024.118162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
This study investigated the application of adsorption with activated carbons (ACs) and photodegradation to reduce the concentration of triclosan (TCS) in aqueous solutions. Concerning adsorption, ACs (Darco, Norit, and F400) were characterised and batch experiments were performed to elucidate the effect of pH on equilibrium. The results showed that at pH = 7, the maximum adsorption capacity of TCS onto the ACs was 18.5 mg g-1 for Darco, 16.0 mg g-1 for Norit, and 15.5 mg g-1 for F400. The diffusional kinetic model allowed an adequate interpretation of the experimental data. The effective diffusivity varied and increased with the amount of TCS adsorbed, from 1.06 to 1.68 × 10-8 cm2 s-1. In the case of photodegradation, it was possible to ensure that the triclosan molecule was sensitive to UV light of 254 nm because the removal was over 80 % using UV light. The removal of TCS increased in the presence of sulfate radicals. It was possible to identify 2,4-dichlorophenol as one of the photolytic degradation products of triclosan, which does not represent an environmental hazard at low concentrations of triclosan in water. These results confirm that the use of AC Darco, Norit, and F400 and that photodegradation processes with UV light and persulfate radicals are effective in removing TCS from water, reaching concentration levels that do not constitute a risk to human health or environmental hazard. Both methods effectively eliminate pollutants with relatively easy techniques to implement.
Collapse
Affiliation(s)
- Nahum Andrés Medellín-Castillo
- Faculty of Engineering, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava No. 8, Zona Universitaria, 78290, San Luis Potosi, SLP, Mexico; Autonomous University of San Luis Potosi, Multidisciplinary Graduate Program in Environmental Sciences, Av. Dr. Manuel Nava 201, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico
| | - Lázaro Adrián González-Fernández
- Faculty of Engineering, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava No. 8, Zona Universitaria, 78290, San Luis Potosi, SLP, Mexico; Autonomous University of San Luis Potosi, Multidisciplinary Graduate Program in Environmental Sciences, Av. Dr. Manuel Nava 201, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico.
| | - Raúl Ocampo-Pérez
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava No.6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico
| | - Roberto Leyva-Ramos
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava No.6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico
| | - Guilherme Luiz-Dotto
- Universidade Federal de Santa Maria, Av. Roraima N° 1000, Cidade Universitária Bairro Camobi, Santa Maria, RS, CEP: 97105-900, Brazil
| | - Rogelio Flores-Ramírez
- Coordination for Innovation and Application of Science and Technology, Av. Sierra Leona #550, Lomas 2a, Sección, 78210, San Luis Potosi, SLP, Mexico
| | - Amado Enrique Navarro-Frómeta
- Technological University of Izucar de Matamoros, De Reforma 168, Campestre La Paz, 74420, Izucar de Matamoros, Puebla, Mexico
| | - Miguel Mauricio Aguilera-Flores
- Autonomous University of San Luis Potosi, Multidisciplinary Graduate Program in Environmental Sciences, Av. Dr. Manuel Nava 201, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico; National Polytechnic Institute, Blvd. Del Bote 202, Cerro Del Gato Ejido La Escondida, Ciudad Administrativa, 98160, Zacatecas, Mexico
| | | | - Héctor Hernández-Mendoza
- Desert Zones Research Institute, Altair No. 200, Col. Del Llano, 78377, San Luis Potosí, SLP, Mexico
| | - Samuel Aguirre-Contreras
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava No.6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico
| | | | | |
Collapse
|
10
|
Unterbrink P, Schulze zur Wiesche E, Meyer F, Fandrich P, Amaechi BT, Enax J. Prevention of Dental Caries: A Review on the Improvements of Toothpaste Formulations from 1900 to 2023. Dent J (Basel) 2024; 12:64. [PMID: 38534288 PMCID: PMC10969581 DOI: 10.3390/dj12030064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Modern toothpastes are complex formulations with various ingredients. The aim of this study was to analyze the improvement of toothpaste formulations from 1900 to 2023 focusing on active ingredients with remineralizing, antibacterial, or plaque-removing effects, and to discuss their influence on caries prevention. For this, worldwide patent applications were searched using the international database Espacenet from the European Patent Office. Additionally, toothpaste products were searched using the Mintel product database from 1996 to 2023. The searched ingredients were (in alphabetical order): calcium carbonate, calcium phosphates, hydrated silica, sodium fluoride, sodium lauryl sulfate, triclosan, xylitol, and zinc salts as they are known from the scientific literature to be remineralizing or antibacterial/antiplaque agents. It was shown that the number of patent applications containing these ingredients significantly increased since the 1970s. As these ingredients have remineralizing, antibacterial, or plaque-removing effects, they all can contribute to caries prevention. In conclusion, and within the limitations of this approach, this study shows that toothpaste formulations have greatly improved over the past decades by using various active anticaries ingredients.
Collapse
Affiliation(s)
- Patrick Unterbrink
- Research Department, Dr. August Wolff GmbH & Co. KG Arzneimittel, Sudbrackstr. 56, 33611 Bielefeld, Germany; (P.U.); (E.S.z.W.)
| | - Erik Schulze zur Wiesche
- Research Department, Dr. August Wolff GmbH & Co. KG Arzneimittel, Sudbrackstr. 56, 33611 Bielefeld, Germany; (P.U.); (E.S.z.W.)
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (F.M.); (P.F.)
| | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (F.M.); (P.F.)
| | - Pascal Fandrich
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (F.M.); (P.F.)
| | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA;
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (F.M.); (P.F.)
| |
Collapse
|
11
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
12
|
Liu J, Zhang L, Xu F, Zhang P, Song Y. Chronic administration of triclosan leads to liver fibrosis through hepcidin-ferroportin axis-mediated iron overload. J Environ Sci (China) 2024; 137:144-154. [PMID: 37980003 DOI: 10.1016/j.jes.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 11/20/2023]
Abstract
Triclosan (TCS) has been manufactured as an antibacterial compound for half a century. Currently, it is widely used in various personal care products; however, its potential adverse effects raise a lot of attention. Here, we create a long-term oral administration mouse model and identify the corresponding hepatotoxicity of TCS. We discover that daily intragastric administration of 10 mg/kg TCS to mice for 12 weeks results in severe hepatic fibrosis. Further study displays that hepatic iron increased 18%, 23% and 29% upon oral TCS treatment for 4, 8 and 12 weeks, respectively. Accompanied by hepatic iron variation, splenic and duodenal iron are increased, which indicates systemic iron disorder. Not only excessive iron accumulated in the liver, abnormal hepatic malondialdehyde, prostaglandin synthase 2 and glutathione peroxidase 4 are pointed to ferroptosis. Additional study uncovers that hepcidin expression increases 7%, 10%, 4% in serum and 2.4-, 4.8-, and 2.3-fold on transcriptional levels upon TCS exposure for 4, 8 and 12 weeks, individually. Taken together, the mice in the TCS-treated group show disordered systemic iron homeostasis via the upregulated hepatic hepcidin-ferroportin axis. Meanwhile, both hepatic iron overload (systemic level) and hepatocyte ferroptosis (cellular level) are accused of TCS-induced liver fibrosis. Ferriprox®, an iron scavenger, significantly ameliorates TCS-induced liver fibrosis. In summary, this study confirms the impact of TCS on liver fibrosis; a critical signal pathway is also displayed. The significance of the current study is to prompt us to reevaluate the "pros and cons" of TCS applications.
Collapse
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lecong Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China
| | - Fang Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ping Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Lee KH, Wang CY, Tsai YR, Huang SY, Huang WT, Kasimayan U, K P O M, Chiang YC. Epigallocatechin gallate-immobilized antimicrobial resin with rechargeable fluorinated synergistic composite for enhanced caries control. Dent Mater 2024; 40:407-419. [PMID: 38123384 DOI: 10.1016/j.dental.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES Given the global prevalence of dental caries, impacting 2.5 billion individuals, the development of sophisticated prevention filling materials is crucial. Streptococcus mutans, the principal caries-causing strain, produces acids that demineralize teeth and initiate dental caries. To address this issue, we aimed to develop a synergistic resin-based composite for enhancing caries control. METHODS The synergistic resin composite incorporates fluorinated kaolinite and silanized Al2O3 nanoparticle fillers into an epigallocatechin gallate (EGCG) immobilized urethane-modified epoxy acrylate (U-EA) resin matrix, referred to the as-prepared resin composite. The EGCG-modified TPGDA/U-EA network was synthesized by preparing methacrylate-functionalized isocyanate (HI), reacting it with EGCG to form HI-EGCG, and then incorporating HI-EGCG into the TPGDA/U-EA matrix. The lamellar space within the kaolinite layer was expanded through the intercalation of acrylamide into kaolinite, enhancing its capability to adsorb and release fluoride ions (F-). The layered structure of acrylamide/ kaolinite in the U-EA resin composite acts as a F- reservoir. RESULTS The physico-mechanical properties of the as-prepared resin composites are comparable to those of commercial products, exhibiting lower polymerization shrinkage, substantial F- release and recharge and favorable diametral tensile strength. The immobilized EGCG in the composite exhibits potent antimicrobial properties, effectively reducing the biofilm biomass. Furthermore, the synergistic effect of EGCG and fluorinated kaolinite efficiently counteracts acid-induced hydroxyapatite dissolution, thereby suppressing demineralization and promoting enamel remineralization. SIGNIFICANCE Our innovative EGCG and fluoride synergistic composite provides enhanced antimicrobial properties, durable anti-demineralization, and tooth remineralization effects, positioning it as a promising solution for effective caries control and long-term dental maintenance.
Collapse
Affiliation(s)
- Kuan-Han Lee
- Department of Dentistry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Chen-Ying Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Periodontology, Department of Dentistry, National Taiwan University Hospital, Taiwan
| | - Yun-Rong Tsai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Szu-Ying Huang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Wei-Te Huang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Uma Kasimayan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Mahesh K P O
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Yu-Chih Chiang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan; School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
14
|
Iacopetta D, Catalano A, Ceramella J, Pellegrino M, Marra M, Scali E, Sinicropi MS, Aquaro S. The Ongoing Impact of COVID-19 on Pediatric Obesity. Pediatr Rep 2024; 16:135-150. [PMID: 38391001 PMCID: PMC10885050 DOI: 10.3390/pediatric16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
In the developed world, pediatric obesity (PO) has been a major health concern since the last century, and this condition may lead to detrimental life-long physical and mental comorbidities. Currently, its prevalence has increased in low- and middle-income countries and in many high-income countries. Thus, the provision of effective and tailored care for children and their families has become vital. The social consequences of the COVID-19 pandemic are known everywhere, and among these, it has been argued that the COVID-19 pandemic has had a major impact on PO. Overall, the growth of PO over the last decade has been enhanced by the pandemic. During the COVID-19 pandemic, children, adolescents and young adults gained weight as the pediatric population dealt with sedentary lifestyles and changes in food habits. In this review, we want to highlight the impact that the COVID-19 pandemic had on PO.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Elisabetta Scali
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
15
|
Kiran NS, Yashaswini C, Chatterjee A. Noxious ramifications of cosmetic pollutants on gastrointestinal microbiome: A pathway to neurological disorders. Life Sci 2024; 336:122311. [PMID: 38043908 DOI: 10.1016/j.lfs.2023.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
On exposure to cosmetic pollutants, gastrointestinal dysbiosis, which is characterised by a disturbance in the gut microbiota, has come into focus as a possible contributor to the occurrence of neurotoxic consequences. It is normal practice to use personal care products that include parabens, phthalates, sulphates, triclosans/triclocarbans and micro/nano plastics. These substances have been found in a variety of bodily fluids and tissues, demonstrating their systemic dispersion. Being exposed to these cosmetic pollutants has been linked in recent research to neurotoxicity, including cognitive decline and neurodevelopmental problems. A vital part of sustaining gut health and general well-being is the gut flora. Increased intestinal permeability, persistent inflammation, and impaired metabolism may result from disruption of the gut microbial environment, which may in turn contribute to neurotoxicity. The link between gastrointestinal dysbiosis and the neurotoxic effects brought on by cosmetic pollutants may be explained by a number of processes, primarily the gut-brain axis. For the purpose of creating preventative and therapeutic measures, it is crucial to comprehend the intricate interactions involving cosmetic pollutants, gastrointestinal dysbiosis, and neurotoxicity. This review provides an in-depth understanding of the various hazardous cosmetic pollutants and its potential role in the occurrence of neurological disorders via gastrointestinal dysbiosis, providing insights into various described and hypothetical mechanisms regarding the complex toxic effects of these industrial pollutants.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India.
| |
Collapse
|
16
|
Deng S, Li C, Chen J, Cui Z, Lei T, Yang H, Chen P. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167053. [PMID: 37709070 DOI: 10.1016/j.scitotenv.2023.167053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Triclosan (TCS), a widely used broad-spectrum antibacterial agent and preservative, is commonly found in products and environments. Widespread human exposure to TCS has drawn increasing attention from researchers concerning its toxicological effect. However, minimal studies have focused on the impact of TCS exposure on human stem cells. Therefore, the aim of the present study was to evaluate the effects of TCS exposure on stem cells from human exfoliated deciduous teeth (SHED) and its molecular mechanisms. A series of experimental methods were conducted to assess cell viability, morphology, proliferation, differentiation, senescence, apoptosis, mitochondrial function, and oxidative stress after SHED exposure to TCS. Furthermore, transcriptome analysis was applied to investigate the response of SHED to different concentrations of TCS exposure and to explore the molecular mechanisms. We demonstrated that TCS has a dose-dependent proliferation and differentiation inhibition of SHED, while promoting cellular senescence, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and oxidative stress, as well as significantly induces apoptosis and autophagy flux inhibition at high concentrations. Interestingly, no significant morphological changes in SHED were observed after TCS exposure. Transcriptome analysis of normal and TCS-induced SHED suggested that SHED may use different strategies to counteract stress from different concentrations of TCS and showed significant differences. We discovered that TCS mediates cellular injury of SHED by enhancing the expression of PTEN, thereby inhibiting the phosphorylation levels of PI3K and AKT as well as mTOR expression. Collectively, our findings provide a new understanding of the toxic effects of TCS on human stem cell fate, which is important for determining the risk posed by TCS to human health.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Chen
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
17
|
Puges M, Bérard X, Vilain S, Pereyre S, Svahn I, Caradu C, Mzali F, Cazanave C. Staphylococcus aureus Adhesion and Biofilm Formation on Vascular Polyester Grafts are Inhibited In Vitro by Triclosan. Eur J Vasc Endovasc Surg 2023; 66:577-586. [PMID: 37482281 DOI: 10.1016/j.ejvs.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE This study evaluated Staphylococcus aureus adhesion and biofilm formation on vascular grafts, which has seldom been investigated. METHODS Adhesion and biofilm formation capabilities of three methicillin susceptible S. aureus strains (one biofilm forming reference strain and two clinical isolates) on five different vascular biomaterials were evaluated in vitro, including polyester (P), P + gelatin (PG), P + collagen (PC), PC + silver (PCS), and PCS + triclosan (PCST). Staphylococcus aureus adhesion on grafts was evaluated after one hour of culture and biofilm formation after 24 hours of culture by four different methods: spectrophotometry after crystal violet staining; sonicate fluid culture; metabolic assay; and scanning electron microscopy (SEM). Optical density was compared using Mann-Whitney pairwise test, and bacterial counts using Wilcoxon pairwise test. RESULTS PCST grafts were most efficient in preventing S. aureus adhesion and biofilm formation, regardless of the method used. Bacterial counts and metabolic activity were significantly lower on PCST grafts after 24 hours (5.65 vs. 9.24 [PCS], 8.99 [PC], 8.82 [PG], and 10.44 log10 CFU/mL [P]; p < .015), and only PCST grafts were bactericidal. Biofilm formation was significantly diminished on PCST grafts compared with all other grafts (p < .001). Bacterial viability and metabolic activity after 24 hours were more impaired on PG compared with PC graft, and were surprisingly higher on PCS compared with PC grafts. Biofilm biomass formed after exposure to P, PG, PC, and PCS grafts was also reduced after 24 hours of incubation with PCST grafts (p < .001). After 24 hours, few bacteria were visible by SEM on PCST grafts, whereas bacterial biofilm colonies were clearly identified on other graft surfaces. CONCLUSION Triclosan impregnated PCST grafts appeared to interfere with S. aureus adhesion from early stages of biofilm formation in vitro. Silver impregnation was not efficient in preventing biofilm formation, and collagen coating promoted S. aureus biofilm formation more than gelatin coating.
Collapse
Affiliation(s)
- Mathilde Puges
- Infectious and Tropical Diseases Department, CHU de Bordeaux, Bordeaux, France; Univ. Bordeaux, UMR 5234 CNRS, ARMYNE, Bordeaux, France.
| | - Xavier Bérard
- Vascular Surgery Department, CHU de Bordeaux, Bordeaux, France. https://twitter.com/Drake1128
| | - Sébastien Vilain
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | - Sabine Pereyre
- Univ. Bordeaux, UMR 5234 CNRS, ARMYNE, Bordeaux, France; Bacteriology Department, CHU de Bordeaux, Bordeaux, France
| | - Isabelle Svahn
- Univ. Bordeaux, Bordeaux Imaging Centre, UAR 3420 CNRS US4 INSERM, Bordeaux, France
| | - Caroline Caradu
- Vascular Surgery Department, CHU de Bordeaux, Bordeaux, France
| | - Fatima Mzali
- Univ. Bordeaux, UMR 5234 CNRS, Aquitaine microbiologie, Bordeaux, France
| | - Charles Cazanave
- Infectious and Tropical Diseases Department, CHU de Bordeaux, Bordeaux, France; Univ. Bordeaux, UMR 5234 CNRS, ARMYNE, Bordeaux, France. https://twitter.com/Drake1128
| |
Collapse
|
18
|
Balbi T, Miglioli A, Montagna M, Piazza D, Risso B, Dumollard R, Canesi L. The biocide triclosan as a potential developmental disruptor in Mytilus early larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106342-106354. [PMID: 37726635 PMCID: PMC10579167 DOI: 10.1007/s11356-023-29854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The broadly utilized biocide triclosan (TCS) is continuously discharged in water compartments worldwide, where it is detected at concentrations of ng-µg/L. Given its lipophilicity and bioaccumulation, TCS is considered potentially harmful to human and environmental health and also as a potential endocrine disruptor (ED) in different species. In aquatic organisms, TCS can induce a variety of effects: however, little information is available on its possible impact on invertebrate development. Early larval stages of the marine bivalve Mytilus galloprovincialis have been shown to be sensitive to environmental concentrations of a number of emerging contaminants, including EDs. In this work, the effects of TCS were first evaluated in the 48 h larval assay in a wide concentration range (0.001-1,000 μg/L). TCS significantly affected normal development of D-veligers (LOEC = 0.1 μg/L; EC50 = 236.1 μg/L). At selected concentrations, the mechanism of action of TCS was investigated. TCS modulated transcription of different genes involved in shell mineralization, endocrine signaling, ceramide metabolism, and biotransformation, depending on larval stage (24 and 48 h post-fertilization-hpf) and concentration (1 and 10 μg/L). At 48 hpf and 10 μg/L TCS, calcein staining revealed alterations in CaCO3 deposition, and polarized light microscopy showed the absence of shell birefringence due to the mineralized phase. Observations by scanning electron microscopy highlighted a variety of defects in shell formation from concentrations as low as 0.1 μg/L. The results indicate that TCS, at environmental exposure levels, can act as a developmental disruptor in early mussel larvae mainly by interfering with the processes of biomineralization.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
- National Biodiversity Future Center, 90133, Palermo, Italy
| | - Angelica Miglioli
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Michele Montagna
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - Davide Piazza
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - Beatrice Risso
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Remi Dumollard
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy.
- National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
19
|
Costa RC, Borges GA, Dini C, Bertolini M, Souza JGS, Mesquita MF, Barão VAR. Clinical efficacy of triclosan-containing toothpaste in peri-implant health: A systematic review and meta-analysis of randomized clinical trials. J Prosthet Dent 2023:S0022-3913(23)00508-5. [PMID: 37723004 DOI: 10.1016/j.prosdent.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2023]
Abstract
STATEMENT OF PROBLEM Recent evidence suggests that toothpaste containing 0.3% triclosan (TCS) is more effective than regular toothpaste in improving clinical periodontal conditions. However, a consensus on whether TCS favors a healthy peri-implant environment is limited. PURPOSE The purpose of this systematic review and meta-analysis of randomized clinical trials was to determine the effects of TCS-containing toothpaste on dental implant health based on clinical, immunological, and microbiological parameters, as well as on reported adverse events. MATERIAL AND METHODS Clinical studies comparing peri-implant conditions in participants by using TCS toothpaste versus conventional fluoride toothpaste (control) were extracted from 9 databases. The studies were assessed with the Cochrane risk-of-bias tool for randomized clinical trials (RoB 2). Datasets for bleeding on probing (BOP), probing depth (PD), clinical attachment level (CAL), gingival index (GI), plaque index (PI), osteo-immunoinflammatory mediators, and bacterial load were plotted, and the standard mean difference (SMD) quantitative analysis was applied by using the Rev Man 5.3 software program. Adverse effects reported by the studies were also tabulated. The certainty of evidence was assessed by using the grading of recommendations assessment, development, and evaluation approach. RESULTS Six studies were included in the meta-analyses. BOP was higher in the control group than in the TCS toothpaste group at 3 months (SMD -0.59 [-1.11, -.07] P=.002, I2=77%) and 6 months (SMD -0.59 [-0.83, -0.34] P=.009, I2=79%). PD (SMD -0.04 [-0.08, -0.00] P=.04, I2=0%) was also deeper in the control group versus TCS toothpaste at 6 months (SMD -0.41 [-0.73, -0.10] P=.04, I2=77%). CAL, GI, and PI did not differ between groups (P>.05). Among the osteo-immunoinflammatory mediators, IL-10 levels increased, and IL-1β and osteoprotegerin levels decreased in the TCS toothpaste group (P<.05). Microbiological findings found that TCS toothpaste prevented the growth of periodontal pathogens, specifically in up to approximately 20% of the Prevotella intermedia. Adverse effects were not reported after toothbrushing in either group. However, most studies had "some" or "high" risk of bias, and the certainty of the evidence was considered to be "very low." CONCLUSIONS Most studies were short-term (3 and 6 months) analyses, and the results found that, although TCS-containing toothpaste had positive osteo-immunoinflammatory and microbiologic results, clinical parameters, including CAL, GI, and PI, were not influenced.
Collapse
Affiliation(s)
- Raphael Cavalcante Costa
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Guilherme Almeida Borges
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Caroline Dini
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Martinna Bertolini
- Assistant Professor, Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Joāo Gabriel S Souza
- Professor, Dental Research Division, Guarulhos University (UnG), Guarulhos, SP, Brazil
| | - Marcelo Ferraz Mesquita
- Full Professor, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Valentim Adelino Ricardo Barão
- Associate Professor, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil..
| |
Collapse
|
20
|
Catalano A, Iacopetta D, Ceramella J, Pellegrino M, Giuzio F, Marra M, Rosano C, Saturnino C, Sinicropi MS, Aquaro S. Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic. Viruses 2023; 15:1843. [PMID: 37766250 PMCID: PMC10537211 DOI: 10.3390/v15091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Antibacterial resistance is a renewed public health plague in modern times, and the COVID-19 pandemic has rekindled this problem. Changes in antibiotic prescribing behavior, misinformation, financial hardship, environmental impact, and governance gaps have generally enhanced the misuse and improper access to antibiotics during the COVID-19 pandemic. These determinants, intersected with antibacterial resistance in the current pandemic, may amplify the potential for a future antibacterial resistance pandemic. The occurrence of infections with multidrug-resistant (MDR), extensively drug-resistant (XDR), difficult-to-treat drug-resistant (DTR), carbapenem-resistant (CR), and pan-drug-resistant (PDR) bacteria is still increasing. The aim of this review is to highlight the state of the art of antibacterial resistance worldwide, focusing on the most important pathogens, namely Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae, and their resistance to the most common antibiotics.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| |
Collapse
|
21
|
Airola C, Severino A, Porcari S, Fusco W, Mullish BH, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy. Antibiotics (Basel) 2023; 12:antibiotics12050868. [PMID: 37237771 DOI: 10.3390/antibiotics12050868] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - William Fusco
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
22
|
Antimicrobial and Antiviral Properties of Triclosan-Containing Polymer Composite: Aging Effects of pH, UV, and Sunlight Exposure. Polymers (Basel) 2023; 15:polym15051236. [PMID: 36904477 PMCID: PMC10007459 DOI: 10.3390/polym15051236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
The present study deals with the synthesis and characterization of a polymer composite based on an unsaturated ester loaded with 5 wt.% triclosan, produced by co-mixing on an automated hardware system. The polymer composite's non-porous structure and chemical composition make it an ideal material for surface disinfection and antimicrobial protection. According to the findings, the polymer composite effectively inhibited (100%) the growth of Staphylococcus aureus 6538-P under exposure to physicochemical factors, including pH, UV, and sunlight, over a 2-month period. In addition, the polymer composite demonstrated potent antiviral activity against human influenza virus strain A and the avian coronavirus infectious bronchitis virus (IBV), with infectious activities of 99.99% and 90%, respectively. Thus, the resulting triclosan-loaded polymer composite is revealed to have a high potential as a surface-coating non-porous material with antimicrobial properties.
Collapse
|
23
|
He P, Liu Z, Chen H, Huang G, Mao W, Li A. The role of triclosan-coated suture in preventing surgical infection: A meta-analysis. Jt Dis Relat Surg 2023; 34:42-49. [PMID: 36700262 PMCID: PMC9903111 DOI: 10.52312/jdrs.2023.842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/12/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES In this meta-analysis, we aimed to compare the differences in surgical site infection (SSI) between triclosan-coated and uncoated sutures after hip and knee arthroplasty. MATERIALS AND METHODS We searched PubMed, Embase, and Cochrane databases for randomized-controlled studies (RCTs) comparing triclosan-coated sutures with uncoated sutures for the prevention of SSIs after hip and knee arthroplasty. Literature screening and data curation were performed according to inclusion and exclusion criteria and the risk of bias was assessed for included research using Cochrane Handbook criteria. RESULTS Three RCTs with a total of 2,689 cases were finally included, including 1,296 cases in the triclosan-coated suture group and 1,393 cases in the control group. The overall incidence of SSI was lower in the group with triclosan antimicrobial sutures (1.9%) than in the uncoated suture group (2.5%), but the difference was statistically significant (odds ratio=0.76, 95% confidence interval: [0.45-1.27], p=0.30). The differences in the results of the incidence of superficial SSI and deep SSI were not statistically significant (p>0.05). CONCLUSION The application of triclosan antimicrobial sutures did not reduce the incidence of SSI after hip and knee arthroplasty compared to the controls, and it needs further high-quality RCT studies to be improved.
Collapse
Affiliation(s)
- Peiliang He
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Ziting Liu
- Guangzhou Red Cross Hospital, Jinan University, Operating Room, Guangzhou, China
| | - Huan Chen
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Guowei Huang
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Wei Mao
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Aiguo Li
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, 510220 Guangzhou, China.
| |
Collapse
|
24
|
Yin Y, Wu H, Jiang Z, Jiang J, Lu Z. Degradation of Triclosan in the Water Environment by Microorganisms: A Review. Microorganisms 2022; 10:1713. [PMID: 36144315 PMCID: PMC9505857 DOI: 10.3390/microorganisms10091713] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Triclosan (TCS), a kind of pharmaceuticals and personal care products (PPCPs), is widely used and has had a large production over years. It is an emerging pollutant in the water environment that has attracted global attention due to its toxic effects on organisms and aquatic ecosystems, and its concentrations in the water environment are expected to increase since the COVID-19 pandemic outbreak. Some researchers found that microbial degradation of TCS is an environmentally sustainable technique that results in the mineralization of large amounts of organic pollutants without toxic by-products. In this review, we focus on the fate of TCS in the water environment, the diversity of TCS-degrading microorganisms, biodegradation pathways and molecular mechanisms, in order to provide a reference for the efficient degradation of TCS and other PPCPs by microorganisms.
Collapse
Affiliation(s)
- Yiran Yin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenghai Jiang
- Zhejiang Haihe Environmental Technology Co., Ltd., Jinhua 321012, China
| | - Jingwei Jiang
- Zhejiang Haihe Environmental Technology Co., Ltd., Jinhua 321012, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|