1
|
Pradhan UK, Naha S, Das R, Gupta A, Parsad R, Meher PK. RBProkCNN: Deep learning on appropriate contextual evolutionary information for RNA binding protein discovery in prokaryotes. Comput Struct Biotechnol J 2024; 23:1631-1640. [PMID: 38660008 PMCID: PMC11039349 DOI: 10.1016/j.csbj.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
RNA-binding proteins (RBPs) are central to key functions such as post-transcriptional regulation, mRNA stability, and adaptation to varied environmental conditions in prokaryotes. While the majority of research has concentrated on eukaryotic RBPs, recent developments underscore the crucial involvement of prokaryotic RBPs. Although computational methods have emerged in recent years to identify RBPs, they have fallen short in accurately identifying prokaryotic RBPs due to their generic nature. To bridge this gap, we introduce RBProkCNN, a novel machine learning-driven computational model meticulously designed for the accurate prediction of prokaryotic RBPs. The prediction process involves the utilization of eight shallow learning algorithms and four deep learning models, incorporating PSSM-based evolutionary features. By leveraging a convolutional neural network (CNN) and evolutionarily significant features selected through extreme gradient boosting variable importance measure, RBProkCNN achieved the highest accuracy in five-fold cross-validation, yielding 98.04% auROC and 98.19% auPRC. Furthermore, RBProkCNN demonstrated robust performance with an independent dataset, showcasing a commendable 95.77% auROC and 95.78% auPRC. Noteworthy is its superior predictive accuracy when compared to several state-of-the-art existing models. RBProkCNN is available as an online prediction tool (https://iasri-sg.icar.gov.in/rbprokcnn/), offering free access to interested users. This tool represents a substantial contribution, enriching the array of resources available for the accurate and efficient prediction of prokaryotic RBPs.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| |
Collapse
|
2
|
Li Y, Yuan K, Deng C, Tang H, Wang J, Dai X, Zhang B, Sun Z, Ren G, Zhang H, Wang G. Biliary stents for active materials and surface modification: Recent advances and future perspectives. Bioact Mater 2024; 42:587-612. [PMID: 39314863 PMCID: PMC11417150 DOI: 10.1016/j.bioactmat.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Demand for biliary stents has expanded with the increasing incidence of biliary disease. The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures. However, these stents are nondegradable and prone to restenosis. Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis. To overcome these shortcomings, improvements were made to the materials and surfaces used for the stents. First, this paper reviews the advantages and limitations of nondegradable stents. Second, emphasis is placed on biodegradable polymer and biodegradable metal stents, along with functional coatings. This also encompasses tissue engineering & 3D-printed stents were highlighted. Finally, the future perspectives of biliary stents, including pro-epithelialization coatings, multifunctional coated stents, biodegradable shape memory stents, and 4D bioprinting, were discussed.
Collapse
Affiliation(s)
- Yuechuan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Hui Tang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Jinxuan Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Bing Zhang
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziru Sun
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Guiying Ren
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Basak P, Dastidar DG, Ghosh D, Chakraborty T, Sau S, Chakrabarti G. Staphylococcus aureus major cell division protein FtsZ assembly is inhibited by silibinin, a natural flavonolignan that also blocked bacterial growth and biofilm formation. Int J Biol Macromol 2024; 279:135252. [PMID: 39222779 DOI: 10.1016/j.ijbiomac.2024.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The bacterial cell division protein FtsZ has been considered a potential therapeutic target due to its rapid treadmilling that induces cellular wall construction in bacteria. The current study discovered a novel antimicrobial compound, silibinin, a natural flavonolignan and its impact on the recombinant S. aureus FtsZ (SaFtsZ). Silibinin inhibited S. aureus Newman growth in a dose-dependent manner. The IC50 and MIC values for silibinin were 75 μM and 200 μM, respectively. It had no cytotoxicity against HEK293 cells in vitro. Silibinin also enlarged the bacterial cell morphology by ∼40 folds and showed antibiofilm property. It perturbed the S. aureus membrane potential both at IC50 conc. and at MIC conc. Further, it inhibited both the polymerization and GTPase activity of SaFtsZ. It did not inhibit tubulin assembly, a eukaryotic FtsZ homolog. A fluorescence quenching study yielded the Kd value for SaFtsZ-Silibinin interaction and binding stoichiometry 0.857 ± 0.188 μM and 1:1, respectively. Both in silico study and competition assay indicated that silibinin binds at the GTP binding site on SaFtsZ. The Ki value for the silibinin-mediated inhibition of SaFtsZ was 8.8 μM. Therefore, these findings have comprehensively shown the antimicrobial behavior of silibinin on S. aureus Newman cells targeting SaFtsZ.
Collapse
Affiliation(s)
- Prithvi Basak
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science & Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Dipanjan Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Tushar Chakraborty
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Gopal Chakrabarti
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India.
| |
Collapse
|
4
|
Vadakkan K, Hemapriya J, Ngangbam AK, Sathishkumar K, Mapranathukaran VO. Biofilm inhibition of Staphylococcus aureus by silver nanoparticles derived from Hellenia speciosa rhizome extract. Microb Pathog 2024; 196:106933. [PMID: 39270757 DOI: 10.1016/j.micpath.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Staphylococcus aureus is the most common cause of serious health conditions because of the formation of biofilm, which lowers antibiotic efficacy and enhances infection transmission and tenacious behavior. This bacteria is a major threat to the worldwide healthcare system. Silver nanoparticles have strong antibacterial characteristics and emerged as a possible alternative. This work is most relevant since it investigates the parameters influencing the biogenic nanoparticle-assisted control of bacterial biofilms by Staphylococcus aureus. Nanoparticles were fabricated utilizing Hellenia speciosa rhizome extracts, which largely comprised physiologically active components such as spirost-5-en-3-yl acetate, thymol, stigmasterol, and diosgenin, enhanced with the creation of silver nanocomposites. GC-MS, XRD, DLS, SEM, EDX, FTIR and TEM were used to investigate the characteristics of nanoparticles. The microtiter plate experiment showed that nanoparticles destroyed biofilms by up to 92.41 % at doses that ranged from 0 to 25 μg/ml. Fluorescence microscopy and SEM demonstrated the nanoparticles' capacity to prevent bacterial surface adhesion. EDX research revealed that the organic extract efficiently formed silver nanoparticles with considerable oxygen incorporation, which was attributed to phytochemicals that stabilize AgNPs and prevent accumulation. FTIR spectroscopy indicated the existence of hydroxyl, carbonyl, and carboxylate groups, which are essential for nanoparticle stability. TEM revealed that the AgNPs were spheroidal, with diameters ranging from 40 to 60 nm and an average of 46 nm. These results demonstrate the efficacy of H. speciosa extract in creating stable, well-defined AgNPs suited for a variety of applications. This work underlines the potential of green-synthesized AgNPs in biomedical applications, notably in the treatment of S. aureus biofilm-associated illnesses. The thorough characterization gives important information on the stability and efficiency of these biogenic nanoparticles.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala, 680020, India; Manipur International University, Imphal, Manipur, 795140, India.
| | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu, 632001, India
| | | | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | | |
Collapse
|
5
|
Mahendran MIMS, Gopalakrishnan V, Saravanan V, Dhamodharan R, Jothimani P, Balasubramanian M, Singh AK, Vaithianathan R. Managing drug therapy-related problems and assessment of chronic diabetic wounds. Curr Med Res Opin 2024:1-17. [PMID: 39402701 DOI: 10.1080/03007995.2024.2414893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM), responsible for most diabetes cases recorded worldwide, increases the risk of chronic wounds and amputation. Patients with T2DM appear to be more susceptible to delayed wound healing due to their treatment adherence. This review explores the specifics of polypharmacy, side effects, possible drug interactions and the importance of medication adherence for therapeutic efficacy. We discuss the effects of anti-diabetes medications on wound healing as well as the role that biofilms and microbial infections play in diabetic wounds. Inconsistent use of medications can lead to poor glycaemic control, which negatively affects the healing process of diabetic foot ulcers. Managing chronic wounds represents a substantial portion of healthcare expenditures. Biofilm-associated infections are difficult for the immune system to treat and respond inconsistently to antibiotics as these infections are slow growing and persistent. Additionally, we emphasize the critical role pharmacists play in enhancing patient adherence and optimizing diabetes treatment by offering comprehensive coverage of drugs associated with problems related to pharmacological therapy in type 2 diabetes.
Collapse
Affiliation(s)
| | - Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Ramasamy Dhamodharan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Pradeep Jothimani
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - M Balasubramanian
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Abhimanyu Kumar Singh
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Rajan Vaithianathan
- Department of Surgery, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| |
Collapse
|
6
|
Milli G, Pellegrini A, Listro R, Fasolini M, Pagano K, Ragona L, Pietrocola G, Linciano P, Collina S. New LsrK Ligands as AI-2 Quorum Sensing Interfering Compounds against Biofilm Formation. J Med Chem 2024; 67:18139-18156. [PMID: 39384180 PMCID: PMC11513922 DOI: 10.1021/acs.jmedchem.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Antimicrobial resistance (AMR) represents a critical global health crisis. An innovative strategy to deal with AMR is to interfere with biofilm formation and bacterial quorum sensing (QS). In this study, newly designed autoinducer-2 (AI-2)-inspired compounds in targeting biofilm-associated infections were evaluated for their ability to inhibit biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa. The most effective compounds, 5d, 5e, and 7b, exhibited potent antibiofilm activity with minimal inhibitory concentrations in the low microgram per mL range. Detailed biological assays confirmed that the antibiofilm activity was primarily driven through AI-2 QS inhibition rather than direct antimicrobial effects. The combination of different spectroscopic techniques, such as differential scanning fluorimetry, intrinsic tryptophan fluorescence, circular dichroism, and nuclear magnetic resonance, elucidated the binding between the compounds and the LsrK enzyme, a key player in AI-2 mediated QS. Our findings highlight the potential of these novel QS inhibitors as promising therapeutic agents against biofilm-associated infections.
Collapse
Affiliation(s)
- Giorgio Milli
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Angelica Pellegrini
- Department
of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marina Fasolini
- Nerviano
Medical Sciences s.r.l., Viale Pasteur 10, Nerviano, Milano 20014, Italy
| | - Katiuscia Pagano
- NMR
Laboratory, Istituto di Scienze e Tecnologie Chimiche “Giulio
Natta”, CNR, via Alfonso Corti, 12, Milano 20133, Italy
| | - Laura Ragona
- NMR
Laboratory, Istituto di Scienze e Tecnologie Chimiche “Giulio
Natta”, CNR, via Alfonso Corti, 12, Milano 20133, Italy
| | - Giampiero Pietrocola
- Department
of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
7
|
Lalitha MM, Banerjee S, Jayaraj A, Kamath A, Divakaran D, Yadav V, Lakavathu M, Sajimon J, Anil P, Shaijumon MM, Singh NS, Kurapati R. Two-Dimensional Materials/Biopolymer-Based Antimicrobial Coatings to Thwart Biofilm Formation on Medical Implants. ACS APPLIED BIO MATERIALS 2024; 7:6332-6342. [PMID: 39305253 DOI: 10.1021/acsabm.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Infections associated with medical implants due to bacterial adhesion and biofilm formation are a serious problem, leading to acute health risks to patients by compromising their immune system. Therefore, suppressing biofilm formation on biomedical implants is a challenging task, especially for overcoming the drug resistance of bacterial biofilms. Herein, a synergistic efficient surface coating method was developed to inhibit biofilm formation on a model medical implant by combining the antimicrobial property of trimethyl chitosan (TMC) with either 2D material graphene oxide (GO) or black phosphorus (BP) sheets using layer-by-layer (LbL) self-assembly. The multilayer coatings of TMC/GO and TMC/BP were optimized on the glass surface (a model implant) and characterized by using spectroscopic and microscopy techniques. Next, we investigated the antibiofilm formation properties of the TMC/GO and TMC/BP coatings on glass surfaces against both Gram-negative, Escherichia coli (E. coli), and Gram-positive, Bacillus subtilis (B. subtilis), bacteria. The antibiofilm formation was studied using crystal violet (CV) and live/dead assays. Both the live/dead and the CV assays confirmed that the TMC/2D material (2DM)-coated surfaces prevented biofilm formation much more effectively compared to the uncoated surfaces. Scanning electron microscopy analyses revealed that the bacteria were affected physically by incubating with TMC/2DM-coated surfaces due to membrane perturbation, thereby preventing cell attachment and biofilm formation. Further, BP composite coatings (TMC/BP) showed a much better ability to thwart biofilm formation than GO composite coatings (TMC/GO). Also, multilayer coatings showed superior cytocompatibility with human foreskin fibroblast (HFF). Our results demonstrate that the developed coatings TMC/2DMs could be potential candidates for thwarting biofilm formation on medical implants.
Collapse
Affiliation(s)
- Mahesh M Lalitha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Sourav Banerjee
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Arya Jayaraj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Adithi Kamath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Deepika Divakaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Vipin Yadav
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Manikrishna Lakavathu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Jyothilakshmi Sajimon
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Parvathy Anil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Manikoth M Shaijumon
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - N Sadananda Singh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695551, Kerala, India
| |
Collapse
|
8
|
Ghaleb RN, Bhosale HJ, Siddiqui MM, Jadhav SB, Mamdapure SV, Shirure NU, Shinde SS, Mundhe PP, Chame AL, Dhonge AR. 2,4-Di-Tert-Butylphenol of Streptomyces luridiscabiei MMS-10 Inhibits Biofilm Forming Cariogenic Streptococcus mutans ULSP-2. Curr Microbiol 2024; 81:413. [PMID: 39414638 DOI: 10.1007/s00284-024-03931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Dental caries is a common chronic infectious disease of the oral cavity that affects the overall oral health of the individual. Cariogenic bacteria have long been recognized for their role in developing chronic dental infections. Drug-resistant bacteria represent a global challenge to effective pathogen control in caries. The present study aimed to isolate and identify soil actinomycetes for their antibacterial and anti-biofilm activities against antibiotic-resistant and biofilm-forming cariogenic bacteria. Thirteen caries bacteria isolated from infected tooth samples were evaluated for antibiotic resistance and biofilm formation. The isolate ULSP-2 showed the highest antibiotic resistance score (0.714) and was found to be a strong biofilm producer when tested by congo red agar and microtiter plate assays. The bacterium was identified as Streptococcus mutans based on morphological, biochemical, and molecular characterization. The effect of ethyl acetate extracts from 20 soil actinomycetes on the growth and biofilm formation ability of S. mutans was evaluated. The MMS-10 extract strongly inhibited growth (18.5 ± 0.5 mm) and biofilm formation (56.46 ± 0.32%) of S. mutans at 100 µg/mL. The isolate MMS-10 was identified at the molecular level as Streptomyces luridiscabiei. Based on FTIR, NMR, and GC-MS analysis, the purified MMS-10 extract was characterized and identified as 2,4-Di-tert-butylphenol. The metabolite's physiological, physicochemical, and pharmacokinetic properties were analyzed using the Swiss ADME web server and found to satisfy the criteria of drug-likenessof a molecule. The study revealed the significance of soil actinomycetes in controlling growth and biofilm formation in cariogenic S. mutans.
Collapse
Affiliation(s)
- Rania N Ghaleb
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Hemlata J Bhosale
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India.
| | - Mujahed M Siddiqui
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India
| | - Sunil B Jadhav
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India
| | - Shailesh V Mamdapure
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India
| | - Nikita U Shirure
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India
| | - Shivani S Shinde
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India
| | - Pratiksha P Mundhe
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India
| | - Ashwini L Chame
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, Swami Ramanand Teerth Marathwada University, Latur Road, Vishnupuri, Nanded, Maharashtra, 431606, India
| | - Anukriti R Dhonge
- Department of Oral Medicine and Radiology, Nanded Rural Dental College and Research Centre, Nanded, Maharashtra, India
| |
Collapse
|
9
|
Muñiz Pedrogo DA, Sears CL, Melia JMP. Colorectal Cancer in Inflammatory Bowel Disease: A Review of the Role of Gut Microbiota and Bacterial Biofilms in Disease Pathogenesis. J Crohns Colitis 2024; 18:1713-1725. [PMID: 38703073 DOI: 10.1093/ecco-jcc/jjae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
The risk of colorectal cancer [CRC] is increased in patients with inflammatory bowel disease [IBD], particularly in extensive ulcerative colitis [UC] and Crohn's colitis. Gut microbiota have been implicated in the pathogenesis of CRC via multiple mechanisms, including the release of reactive oxygen species and genotoxins, and induction of inflammation, as well as activation of the immune response. Gut microbiota can enhance their carcinogenic and proinflammatory properties by organising into biofilms, potentially making them more resistant to the host's immune system and to antibiotics. Colonic biofilms have the capacity to invade colonic tissue and accelerate tumorigenesis in tumour-prone models of mice. In the context of IBD, the prevalence of biofilms has been estimated to be up to 95%. Although the relationship between chronic inflammation and molecular mediators that contribute to IBD-associated CRC is well established, the role of gut microbiota and biofilms in this sequence is not fully understood. Because CRC can still arise in the absence of histological inflammation, there is a growing interest in identifying chemopreventive agents against IBD-associated CRC. Commonly used in the treatment of UC, 5-aminosalicylates have antimicrobial and anticarcinogenic properties that might have a role in the chemoprevention of CRC via the inhibition or modulation of carcinogenic gut microbiota and potentially of biofilm formation. Whether biologics and other IBD-targeted therapies can decrease the progression towards dysplasia and CRC, via mechanisms independent of inflammation, is still unknown. Further research is warranted to identify potential new microbial targets in therapy for chemoprevention of dysplasia and CRC in IBD.
Collapse
Affiliation(s)
- David A Muñiz Pedrogo
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joanna M P Melia
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi, a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB, encoding trimeric autotransporter adhesins (TAAs) and mltA, encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro, biofilm formation was reduced in ΔstaB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (ΔstaA and ΔmltA) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sylvia L. Tanguma
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Rizkinata D, Waturangi DE, Yulandi A. Synergistic action of bacteriophage and metabolites of Pseudomonas fluorescens JB3B and Streptomyces thermocarboxydus 18PM against Enterotoxigenic Escherichia coli and Bacillus cereus and their biofilm. BMC Microbiol 2024; 24:398. [PMID: 39385119 PMCID: PMC11463113 DOI: 10.1186/s12866-024-03557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Foodborne disease and food spoilage are the prime public health issue and food security round the globe. Significant disease outbreaks mostly linked to the existence of pathogenic bacteria that extremely challenging due to the persistence of biofilm-forming. Proteins and bacterial metabolites have been shown to have good antibacterial activity and effectively removal bacterial biofilm. Recently, bacteriophage and their encoded lytic proteins such as lysin have attracted attention as potential alternative agent to control undesirable pathogens in human body infection, increasing food safety as advance preservations and medical treatment such as phage therapy. For these reasons, the efficacy of bacteriophage and their potential in combination with bacterial metabolites from Phyllosphere and Actinomycetes bacteria (Pseudomonas fluorescens JB3B and Streptomyces thermocarboxydus 18PM crude extracts) was the aim of this present study. RESULTS In this study, bacteriophage BC-VP (1.28 ± 0.29 × 1011 PFU/ml) and ETEC-phage-TG (8.9 ± 2.19 × 108 PFU/ml) isolated from artificial lake water from previous study showed potential activity to control Bacillus cereus (BC) and Enterotoxigenic Escherichia coli (ETEC) population. The combination of BC-VP with metabolite (P. fluorescens JB3B and S. thermocarboxydus 18PM) which were known from previous study had antibiofilm activities were able to inhibit (86.1%; 83.3%) and destruct (41%; 45.5%) biofilm formation of B. cereus respectively. Likewise, the synergy of bacteriophage ETEC-phage-TG with the same crude extract also showed promising activity against biofilm of ETEC with percentage of inhibition (81.9%; 76.4%) and percentage of destruction (54.1%; 44.4%). Application in various food, combination of BC-VP and bacterial metabolite extract (P. fluorescens JB3B; S. thermocarboxydus 18PM) were able to reduce Bacillus cereus population in mashed potato (99.6%; 99.4%) at cold temperature (4 °C) and (68.9%; 56.6%) at room temperature (28 °C), boiled pasta (99.5%; 99.4%) and (84.7%; 75.7%), also soymilk (96.9%; 96.7%) and (42.4%; 39.4%) respectively. Likewise, combination of ETEC-phage-TG and bacterial metabolite (P. fluorescens JB3B; S. thermocarboxydus 18PM) potentially reduced ETEC population after two different temperatures (4 °C and 28 °C) incubation in bean sprouts (TFTC; TFTC) and (47.5%; 49.1%), chicken meat (TFTC; TFTC) and (58.1%; 54%), also minced beef (99.5%; 99.4%) and (41.1%; 28%). GC-MS determination performed, oxalic acid, phenol, phenylethyl alcohol, N-hexadecanoic acid, and pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl was the most active compound in P. fluorescens JB3B. 2,4-Di-tert-butylphenol, phenyl acetic acid, N-Hexadecanoic acid, pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl, and Bis(2-ethylhexyl) phthalate was most active compound in the S. thermocarboxydus 18PM isolates. CONCLUSIONS The combination of isolated bacteriophages and bacterial metabolite showed promising results to be used as biocontrol candidate to overcome biofilm formed by foodborne and food spoilage bacteria using their ability to produce antibiofilm compounds and lytic activity. In addition, this combination also potentially reduces the use or replace the drawbacks of common application such as antibiotic treatment.
Collapse
Affiliation(s)
- Denny Rizkinata
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia.
| | - Adi Yulandi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| |
Collapse
|
12
|
Dhadwal S, Handa S, Chatterjee M, Banat IM. Sophorolipid: An Effective Biomolecule for Targeting Microbial Biofilms. Curr Microbiol 2024; 81:388. [PMID: 39367190 DOI: 10.1007/s00284-024-03892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Biofilms are microbial aggregates encased in a matrix that is attached to biological or nonbiological surfaces and constitute serious problems in food, medical, and marine industries and can have major negative effects on both health and the economy. Biofilm's complex microbial community provides a resistant environment that is difficult to eradicate and is extremely resilient to antibiotics and sanitizers. There are various conventional techniques for combating biofilms, including, chemical removal, physical or mechanical removal, use of antibiotics and disinfectants to destroy biofilm producing organisms. In contrast to free living planktonic cells, biofilms are very resistant to these methods. Hence, new strategies that differ from traditional approaches are urgently required. Microbial world offers a wide range of effective "green" compounds such as biosurfactants. They outperform synthetic surfactants in terms of biodegradability, superior stabilization, and reduced toxicity concerns. They also have better antiadhesive and anti-biofilm capabilities which can be used to treat biofilm-related problems. Sophorolipids (SLs) are a major type of biosurfactants that have gained immense interest in the healthcare industries because of their antiadhesive and anti-biofilm properties. Sophorolipids may therefore prove to be attractive substances that can be used in biomedical applications as adjuvant to other antibiotics against some infections through growth inhibition and/or biofilm disruption.
Collapse
Affiliation(s)
- Sunidhi Dhadwal
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India
| | - Shristi Handa
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Ibrahim M Banat
- Faculty of Life & Health Sciences, University of Ulster, Coleraine, BT52 1SA, UK.
| |
Collapse
|
13
|
Hindieh P, Yaghi J, Assaf JC, Chokr A, Atoui A, Louka N, Khoury AE. Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents. AMB Express 2024; 14:112. [PMID: 39361085 PMCID: PMC11450114 DOI: 10.1186/s13568-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.
Collapse
Affiliation(s)
- Pamela Hindieh
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
- Ecole Doctorale "Sciences et Santé", Université Saint-Joseph de Beyrouth, Campus des Sciences Médicales et Infirmières, Riad El Solh, Beirut, Lebanon
| | - Joseph Yaghi
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Ali Atoui
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| |
Collapse
|
14
|
Jaligam MM, Takahashi C, Heidt B, Shen AQ. Enhanced antibacterial efficacy: rapid analysis of silver-decorated azithromycin-infused Soluplus® nanoparticles against E. coli and S. epidermidis biofilms. NANOSCALE 2024; 16:17877-17885. [PMID: 39246196 DOI: 10.1039/d4nr02583k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The escalating threat of antibiotic-resistant bacterial biofilms necessitates innovative antimicrobial strategies. This study introduces silver-decorated azithromycin-infused Soluplus® nanoparticles (Ag-AZI-Sol NPs) synthesized via a controlled emulsion diffusion method to ensure sustained release of antimicrobial silver ions for over six hours-a critical factor for continuous antibacterial efficacy. The efficacy of these nanoparticles was evaluated against biofilms formed by Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), pathogens that cause hospital-acquired infections. Concentrations of 5 and 10 μg mL-1 of Ag-AZI-Sol NPs induced significant morphological changes within the biofilms, disrupting the bacterial extracellular matrix as observed using scanning electron microscopy (SEM). This disruption peaked between two and six hours, coinciding with damage to bacterial cells by the silver ions. Antibacterial assay measurements confirmed a significant reduction in the growth rate among the Ag-AZI-Sol NP-treated bacteria compared with controls. Electrochemical analysis using laser-induced graphene (LIG) and chronoamperometry revealed a decline in current, indicating an effective antibacterial effect. This innovative biosensing technique makes use of the high conductivity and surface area of LIG to detect changes in bacterial activity quickly and sensitively. Our findings highlight the potent microbicidal properties of Ag-AZI-Sol NPs and suggest diverse applications from food processing to medical device coatings.
Collapse
Affiliation(s)
- Murali Mohan Jaligam
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Chisato Takahashi
- National Institute of Advanced Industrial Science and Technology (AIST), 205 Sakurazaka 4-chome, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
| | - Benjamin Heidt
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
15
|
Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:27. [PMID: 39364333 PMCID: PMC11445061 DOI: 10.1038/s44259-024-00046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Most bacteria in nature exist in aggregated communities known as biofilms, and cells within a biofilm demonstrate major physiological changes compared to their planktonic counterparts. Biofilms are associated with many different types of infections which can have severe impacts on patients. Infections involving a biofilm component are often chronic and highly recalcitrant to antibiotic therapy as a result of intrinsic physical factors including extracellular matrix production, low growth rates, altered antibiotic target production and efficient exchange of resistance genes. This review describes the biofilm lifecycle, phenotypic characteristics of a biofilm, and contribution of matrix and persister cells to biofilms intrinsic tolerance to antimicrobials. We also describe how biofilms can evolve antibiotic resistance and transfer resistance genes within biofilms. Multispecies biofilms and the impacts of various interactions, including cooperation and competition, between species on tolerance to antimicrobials in polymicrobial biofilm communities are also discussed.
Collapse
Affiliation(s)
- Ho Yu Liu
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| | - Emma L Prentice
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| |
Collapse
|
16
|
Biswas T, Ahmed M, Mondal S. Mixed species biofilm: Structure, challenge and its intricate involvement in hospital associated infections. Microb Pathog 2024; 195:106866. [PMID: 39159773 DOI: 10.1016/j.micpath.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Hospital associated infections or healthcare associated infections (HAIs) are a major threat to healthcare and medical management, mostly because of their recalcitrant nature. The primary cause of these HAIs is bacterial associations, especially the interspecies interactions. In interspecies interactions, more than one species co-exists in a common platform of extracellular polymeric substances (EPS), establishing a strong interspecies crosstalk and thereby lead to the formation of mixed species biofilms. In this process, the internal microenvironment and the surrounding EPS matrix of the biofilms ensure the protection of the microorganisms and allow them to survive under antagonistic conditions. The communications between the biofilm members as well as the interactions between the bacterial cells and the matrix polymers, also aid in the rigidity of the biofilm structure and allow the microorganisms to evade both the host immune response and a wide range of anti-microbials. Therefore, to design a treatment protocol for HAIs is difficult and it has become a growing point of concern. This review therefore first aims to discuss the role of microenvironment, molecular structure, cell-cell communication, and metabolism of mixed species biofilms in manifestation of HAIs. In addition, we discuss the electrochemical properties of mixed-species biofilms and their mechanism in developing drug resistance. Then we focus on the most dreaded bacterial HAI including oral and gut multi-species infections, catheter-associated urinary tract infections, surgical site infections, and ventilator-associated pneumonia. Further, we highlight the challenges to eradication of the mixed species biofilms and the current and prospective future strategies for the treatment of mixed species-associated HAI. Together, the review presents a comprehensive understanding of mixed species biofilm-mediated infections in clinical scenario, and summarizes the current challenge and prospect of therapeutic strategies against HAI.
Collapse
Affiliation(s)
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
17
|
Tran MD, Ngo H, Fawzy A. High-Intensity Focused Ultrasound in Dentistry: A Literature Review. Int Dent J 2024; 74:1168-1173. [PMID: 38609759 DOI: 10.1016/j.identj.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/14/2024] Open
Abstract
Although high-intensity focused ultrasound (HIFU) has been applied widely in medicine, utilising its non-invasive dual ablation and thermal coagulation properties, its application in dentistry has primarily remained in the research phase, predominantly in in vitro studies. Nonetheless, there has been a consistent increase in the number of publications on this subject in recent decades, focusing on areas such as remineralisation of dentine surfaces, removal of smear layers, drug delivery, and microbial elimination. The number of advantages HIFU can offer, such as its non-surgical nature, absence of ionising radiation, lack of residue, and absence of aerosols, is driving this upward trend, indicating the potential for HIFU in clinical dentistry and ongoing efforts towards developing HIFU-based devices for routine dental use. This succinct review aims to outline the historical context, operational mechanisms of HIFU, summarise recent dental research, and provide a forward-looking perspective on the role of HIFU in modern clinical dentistry.
Collapse
Affiliation(s)
- Minh Dien Tran
- Restorative Dentistry/Dental Biomaterials Research Group, UWA Dental School/The University of Western Australia, Perth, Australia.
| | - Hien Ngo
- Restorative Dentistry/Dental Biomaterials Research Group, UWA Dental School/The University of Western Australia, Perth, Australia
| | - Amr Fawzy
- Restorative Dentistry/Dental Biomaterials Research Group, UWA Dental School/The University of Western Australia, Perth, Australia
| |
Collapse
|
18
|
Perret JL, Idrose NS, Walters EH, Bui DS, Lowe AJ, Lodge CJ, Fernandez AR, Yao V, Feather I, Zeng XW, Thompson BR, Erbas B, Abramson MJ, Dharmage SC. Childhood infections, asthma and allergy trajectories, and chronic rhinosinusitis in middle age: A prospective cohort study across six decades. Allergy 2024; 79:2717-2731. [PMID: 38987868 DOI: 10.1111/all.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Evidence on the early life risk factors of adult CRS, and the history of asthma and allergies across the life course, is limited. AIM To investigate relationships between respiratory infective/allergic conditions in childhood, and asthma and allergies across the life course and CRS in middle age. METHODS Data were from the population-based Tasmanian Longitudinal Health Study (TAHS) cohort, first studied in 1968 when aged 6-7 years (n = 8583) and serially followed into middle age (n = 3609). Using a well-accepted epidemiological definition, participants were assigned a CRS-severity subtype at age 53: no sinusitis/CRS (reference); past doctor diagnosis only; current symptoms without doctor diagnosis; and doctor-diagnosed CRS with current symptoms. Relationships with infective/allergic respiratory illnesses at age 7, and previously published asthma-allergy trajectories from 7 to 53 years, were examined using multinominal regression. RESULTS In middle age, 5.8% reported current CRS symptoms with 2.5% doctor-diagnosed. Childhood conditions associated with symptomatic doctor-diagnosed CRS included frequent head colds (multinomial odds ratio [mOR] = 2.04 (95% confidence interval [95% CI]: 1.24, 3.37)), frequent tonsillitis (mOR = 1.61 [95% CI: 1.00, 2.59]) and current childhood asthma (mOR = 2.23 [95% CI: 1.25, 3.98]). Life course trajectories that featured late-onset or persistent asthma and allergies were associated with all CRS subtypes in middle age; early-onset persistent asthma and allergies (mOR = 6.74, 95% CI: 2.76, 16.4); late-onset asthma allergies (mOR = 15.9, 95% CI: 8.06, 31.4), and late-onset hayfever (mOR = 3.02, 95% CI: 1.51, 6.06) were associated with symptomatic doctor-diagnosed CRS. CONCLUSION Current asthma, frequent head colds and tonsillitis at age 7 could signal a susceptible child who is at higher risk for CRS in mid-adult life and who might benefit from closer monitoring and/or proactive management. Concurrent asthma and allergies were strongly associated and are potential treatable traits of adult CRS.
Collapse
Affiliation(s)
- Jennifer L Perret
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
- The Institute for Breathing and Sleep (IBAS), Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Hospital, Melbourne, Victoria, Australia
| | - N Sabrina Idrose
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anne R Fernandez
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Vivian Yao
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Iain Feather
- Gold Coast University Hospital, Southport, Queensland, Australia
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bruce R Thompson
- School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bircan Erbas
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre of Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
20
|
Mayer P, Smith AC, Hurlow J, Morrow BR, Bohn GA, Bowler PG. Assessing Biofilm at the Bedside: Exploring Reliable Accessible Biofilm Detection Methods. Diagnostics (Basel) 2024; 14:2116. [PMID: 39410520 PMCID: PMC11475494 DOI: 10.3390/diagnostics14192116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION Biofilm is linked through a variety of mechanisms to the pathogenesis of chronic wounds. However, accurate biofilm detection is challenging, demanding highly specialized and technically complex methods rendering it unapplicable for most clinical settings. This study evaluated promising methods of bedside biofilm localization, fluorescence imaging of wound bacterial loads, and biofilm blotting by comparing their performance against validation scanning electron microscopy (SEM). METHODS In this clinical trial, 40 chronic hard-to-heal wounds underwent the following assessments: (1) clinical signs of biofilm (CSB), (2) biofilm blotting, (3) fluorescence imaging for localizing bacterial loads, wound scraping taken for (4) SEM to confirm matrix encased bacteria (biofilm), and (5) PCR (Polymerase Chain Reaction) and NGS (Next Generation Sequencing) to determine absolute bacterial load and species present. We used a combination of SEM and PCR microbiology to calculate the diagnostic accuracy measures of the CSB, biofilm blotting assay, and fluorescence imaging. RESULTS Study data demonstrate that 62.5% of wounds were identified as biofilm-positive based on SEM and microbiological assessment. By employing this method to determine the gold truth, and thus calculate accuracy measures for all methods, fluorescence imaging demonstrated superior sensitivity (84%) and accuracy (63%) compared to CSB (sensitivity 44% and accuracy 43%) and biofilm blotting (sensitivity 24% and accuracy 40%). Biofilm blotting exhibited the highest specificity (64%), albeit with lower sensitivity and accuracy. Using SEM alone as the validation method slightly altered the results, but all trends held constant. DISCUSSION This trial provides the first comparative assessment of bedside methods for wound biofilm detection. We report the diagnostic accuracy measures of these more feasibly implementable methods versus laboratory-based SEM. Fluorescence imaging showed the greatest number of true positives (highest sensitivity), which is clinically relevant and provides assurance that no pathogenic bacteria will be missed. It effectively alerted regions of biofilm at the point-of-care with greater accuracy than standard clinical assessment (CSB) or biofilm blotting paper, providing actionable information that will likely translate into enhanced therapeutic approaches and better patient outcomes.
Collapse
Affiliation(s)
- Perry Mayer
- The Mayer Institute (TMI), Hamilton, ON L8R 2R3, Canada
| | - Allie Clinton Smith
- Department of Honors Studies, Texas Tech University, Lubbock, TX 79409, USA;
| | - Jennifer Hurlow
- Consultant Wound Care Specialized Nurse Practitioner, Memphis, TN 38120, USA;
| | - Brian R. Morrow
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gregory A. Bohn
- The American Professional Wound Care Association (APWCA), American Board of Wound Healing, Milwaukee, WI 53214, USA
| | | |
Collapse
|
21
|
de Campos Kajimoto N, de Paiva Buischi Y, Mohamadzadeh M, Loomer P. The Oral Microbiome of Peri-Implant Health and Disease: A Narrative Review. Dent J (Basel) 2024; 12:299. [PMID: 39452426 PMCID: PMC11506630 DOI: 10.3390/dj12100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Peri-implantitis disease has increased significantly over the last years, resulting in increased failure of implants. Many factors may play a role in implant complications and failure, including ones related to the oral microbiota. This literature review aims to summarize the current knowledge of microbiome of implants in health and disease, focusing not only on the presence/absence of specific microbiota or on their relative abundance, but also on their phenotypic expression and their complex relationships with the host. The authors examined the MEDLINE database and identified key topics about peri-implant oral microbiome in health and disease. The peri-implant microbiome differs from that of the tooth, both in health and disease, as they are structurally and chemically different. The adhesion and formation of the peri-implant biofilm can be affected by the surface energy, topography, wettability, and electrochemical charges of the implant surface. In addition, the morphogenesis of the tissues surrounding the dental implant also differs from the tooth, making the dental implant more susceptible to bacterial infection. This interplay between the microbiome and the host immune system in peri-implant infections still needs to be elucidated.
Collapse
Affiliation(s)
- Natalia de Campos Kajimoto
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| | - Yvonne de Paiva Buischi
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter Loomer
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| |
Collapse
|
22
|
Brashears MM, Jimenez RL, Portillo RM, Bueno R, Montoya BD, Echeverry A, Sanchez MX. Innovative approaches to controlling Salmonella in the meat industry. Meat Sci 2024; 219:109673. [PMID: 39353366 DOI: 10.1016/j.meatsci.2024.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Salmonella, a Gram-negative, rod-shaped bacterium from the Enterobacteriaceae family, is a significant cause of illnesses in humans and animals. It resides in the digestive tracts of livestock, poultry, and other warm-blooded animals and can contaminate various environments and foods through fecal matter. Salmonella enterica, the main species that affects humans, is widespread in cattle, pigs, and poultry. Despite efforts to control pathogens in meat systems, over 1.4 million human salmonellosis cases occur annually in the U.S., with serotypes S. enteritidis and S. typhimurium being predominant. Advances in meat processing have targeted pathogen reduction at multiple stages, but more innovative approaches are needed for substantial public health impact. This paper discusses current and future strategies to minimize Salmonella in the food supply. It emphasizes pre- and post-harvest Salmonella prevalence by biomapping it through the whole processing chain, focusing on beef and pork interventions such as probiotics. These interventions have shown promise in reducing pathogen loads in cattle manure and lymph nodes. Techniques such as microbiome, whole genome sequencing (WGS), and electron microscopy (EM) provide detailed insights into Salmonella's genetic and bacterial structural-morphological characteristics, aiding in the development of targeted interventions. Integrating rapid detection, biomapping, and enviromapping enhances pathogen tracking in meat production, reducing Salmonella prevalence and improving risk assessment and food safety. The advanced, current, and innovative techniques allow for timely identification, detailed spatial and quantitative data, and more effective interventions. This leads to safer food products and reduces foodborne illnesses.
Collapse
Affiliation(s)
- M M Brashears
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - R L Jimenez
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - R M Portillo
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - R Bueno
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - B D Montoya
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - A Echeverry
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - M X Sanchez
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
23
|
Mattos MMG, Filho SA, Martins GR, Venturi LS, Canetti VB, Ferreira FA, Foguel D, Silva ASD. Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications. Crit Rev Microbiol 2024:1-24. [PMID: 39301598 DOI: 10.1080/1040841x.2024.2404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Procyanidins (PCs) have emerged as agents with potential antimicrobial and antibiofilm activities, although their mechanisms of action and structure-activity relationships remain poorly understood. This review assessed the potential mechanisms of action and applications of these compounds to explore these aspects. Studies on the antimicrobial properties of PCs suggest that they are involved in osmotic imbalance, DNA interactions and metabolic disruption. Although less studied, their antibiofilm activities include antiadhesive effects and the modulation of mobility and quorum sensing. However, most research has used uncharacterized plant extracts for in vitro assays, limiting the understanding of the structure-activity relationships of PCs and their in vivo mechanisms. Clinical trials on the antimicrobial and antibiofilm properties of PCs have not clarified these issues due to nonstandardized methodologies, inadequate chemical characterization, and the limited number of studies, preventing a consensus and evaluation of the in vivo effects. Additionally, patent analysis revealed that technological developments in the antimicrobial and antibiofilm uses of PCs are concentrated in health care and dental care, but new biotechnological uses are emerging. Therefore, while PCs are promising antimicrobial and antibiofilm compounds, further research into their chemical structures and mechanisms of action is crucial for evidence-based applications in biotechnology and health care.
Collapse
Affiliation(s)
- Mariana M G Mattos
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Antunes Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R Martins
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lara Souza Venturi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Benjamim Canetti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayla Sant'Ana da Silva
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Tanwar SN, Parauha YR, There Y, Ameen F, Dhoble SJ. Inorganic nanoparticles: An effective antibiofilm strategy. LUMINESCENCE 2024; 39:e4878. [PMID: 39223925 DOI: 10.1002/bio.4878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Biofilm is a common problem associated with human health. Pathogenicity and increase in resistance of bacteria require urgent development of effective ways for the treatment of bacterial diseases. Different strategies have been developed for the treatment of bacterial infections among which nanoparticles have shown greater prospects in battling with infections. Biofilms are resistant microbial colonies that possess resistance and, hence, cannot be killed by conventional drugs. Nanoparticles offer new avenues for treating biofilm-related infections involving multi-drug resistant organisms. They possess great antibiofilm properties, disrupting cell architecture and preventing colony formation. Green-synthesised nanoparticles are more effective and less toxic to human cells than commercially available or chemically synthesised antibiofilm nanoparticles. This review summarises the antibiofilm efficiency of plant-mediated nanoparticles and knowledge about biofilm inhibition.
Collapse
Affiliation(s)
- Shruti Nandkishor Tanwar
- Department of Microbiology, Taywade College, Mahadula-Koradi, Nagpur, India
- Department of Physics, R.T.M., Nagpur University, Nagpur, India
| | - Yatish Ratn Parauha
- Department of Physics, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
- Ramdeobaba University, Nagpur, India
| | - Yogesh There
- Department of Microbiology, Taywade College, Mahadula-Koradi, Nagpur, India
| | - Faud Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arbia
| | | |
Collapse
|
26
|
Montoya-Hinojosa EI, Villarreal-Treviño L, Bocanegra-Ibarias P, Camacho-Ortiz A, Flores-Treviño S. Drug Resistance in Biofilm and Planktonic Cells of Achromobacter spp., Burkholderia spp., and Stenotrophomonas maltophilia Clinical Isolates. Microb Drug Resist 2024; 30:354-362. [PMID: 39029506 DOI: 10.1089/mdr.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Background: Biofilm production in nonfermenting Gram-negative bacteria influences drug resistance. The aim of this work was to evaluate the effect of different antibiotics on biofilm eradication of clinical isolates of Achromobacter, Burkholderia, and Stenotrophomonas maltophilia. Methods: Clinical isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry in a third-level hospital in Monterrey, Mexico. Crystal violet staining was used to determine biofilm production. Drug susceptibility testing was determined by broth microdilution in planktonic cells and biofilm cells. Results: Resistance in planktonic cells was moderate to trimethoprim-sulfamethoxazole, and low to chloramphenicol, minocycline, levofloxacin (S. maltophilia and Burkholderia), ceftazidime, and meropenem (Burkholderia and Achromobacter). Biofilm eradication required higher drug concentrations of ceftazidime, chloramphenicol, levofloxacin, and trimethoprim-sulfamethoxazole than planktonic cells (p < 0.05). Levofloxacin showed biofilm eradication activity in S. maltophilia, minocycline and meropenem in Burkholderia, and meropenem in Achromobacter. Conclusions: Drug resistance increased due to biofilm production for some antibiotics, particularly ceftazidime and trimethoprim-sulfamethoxazole for all three pathogens, chloramphenicol for S. maltophilia and Burkholderia, and levofloxacin for Burkholderia. Some antibiotics could be used for the treatment of biofilm-associated infections in our population, such as levofloxacin for S. maltophilia, minocycline and meropenem for Burkholderia, and meropenem for Achromobacter.
Collapse
Affiliation(s)
- Edeer Iván Montoya-Hinojosa
- Departament of Microbiology, School of Biological Sciences, Autonomous University of Nuevo Leon, Avenida Pedro de Alba, San Nicolás de los Garza, Mexico
| | - Licet Villarreal-Treviño
- Departament of Microbiology, School of Biological Sciences, Autonomous University of Nuevo Leon, Avenida Pedro de Alba, San Nicolás de los Garza, Mexico
| | - Paola Bocanegra-Ibarias
- Department of Infectious Diseases, University Hospital "Dr. José E. González" and School of Medicine, Autonomous University of Nuevo Leon, Avenida Madero S/N esq Avenida Gonzalitos, Mitras Centro, Monterrey, Mexico
| | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, University Hospital "Dr. José E. González" and School of Medicine, Autonomous University of Nuevo Leon, Avenida Madero S/N esq Avenida Gonzalitos, Mitras Centro, Monterrey, Mexico
| | - Samantha Flores-Treviño
- Department of Infectious Diseases, University Hospital "Dr. José E. González" and School of Medicine, Autonomous University of Nuevo Leon, Avenida Madero S/N esq Avenida Gonzalitos, Mitras Centro, Monterrey, Mexico
| |
Collapse
|
27
|
Giorgi L, Ponti V, Boriani F, Margara A. Nonabsorbable Barbed Sutures for Diastasis Recti. A Useful Device with Unexpected Risk: Two Case Reports. Arch Plast Surg 2024; 51:474-479. [PMID: 39346000 PMCID: PMC11436327 DOI: 10.1055/a-2181-8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2024] Open
Abstract
The introduction of nonabsorbable barbed sutures in plastic surgery has allowed the achievement of significant results in terms of efficacy and short- and long-term outcomes. However, a nonabsorbable material with no antibacterial coating could act as a substrate for subclinical bacterial colonization and thereby determine recurrent subacute and chronic infective-inflammatory processes. The authors report a clinical experience of subacute infectious complications after two cases of diastasis recti surgical correction. The authors present a two-case series in which a nonabsorbable barbed suture was used for the repair of diastasis recti. The postoperative course was complicated by surgical site infection. The origin of the infectious process was clearly localized in the fascial suture used for diastasis correction. The suture was colonized by bacteria resulting in the formation of multiple granulomas of the abdominal wall a few months postoperatively. In both the reported cases, the patients partially responded to the antibiotic targeted therapy and reoperation was required. The microbiological analyses confirmed the colonization of sutures by Staphylococcus aureus . Barbed nonabsorbable sutures should be avoided for diastasis recti surgical correction to minimize the risk of infectious suture-related complications. The paper's main novel aspect is that this is the first clinical report describing infectious complications after surgical correction of diastasis recti with barbed polypropylene sutures. The risk of microbiological subclinical colonization of polypropylene suture untreated with antibacterial coating, therefore, should be taken into account.
Collapse
Affiliation(s)
- Lorenzo Giorgi
- Division of General Surgery, Department of Surgery, Humanitas S. Pio X Hospital, Milan, IT, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Veronica Ponti
- Plastic Surgery Service, Humanitas S. Pio X Hospital, Milan, IT, Italy
| | - Filippo Boriani
- Department of Plastic Surgery and Microsurgery, University Hospital of Cagliari, University of Cagliari, Monserrato, CA, Italy
| | - Andrea Margara
- Plastic Surgery Service, Humanitas S. Pio X Hospital, Milan, IT, Italy
| |
Collapse
|
28
|
Çali A, Çelik C. Determination of in vitro synergy and antibiofilm activities of antimicrobials and essential oil components. BIOFOULING 2024; 40:483-498. [PMID: 39069795 DOI: 10.1080/08927014.2024.2381587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Using existing adrentimicrobials with essential oil components to prevent antimicrobial resistance is an alternative strategy. This study aimed to evaluate the resistance status, synergistic combinations, and in vitro biofilm formation activities of clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), Stenotrophomonas maltophilia and Candida albicans against antimicrobial agents and cinnamaldehyde, carvacrol, eugenol, limonene and eucalyptol. Antimicrobial activities were evaluated by microdilution, cytotoxicity by XTT, synergy by checkerboard and time-kill, and biofilm inhibition by microplate methods. Cinnamaldehyde and carvacrol showed strong antimicrobial activity. Synergistic effects were observed when using all essential oils with antimicrobials. Only two C. albicans isolates showed antagonism with cinnamaldehyde and fluconazole. The constituents showed cytotoxic effects in the L929 cell line (except limonene). A time-kill analysis revealed a bacteriostatic effect on S. maltophilia and MRSA isolates and a fungicidal effect on C. albicans isolates. These results are important for further research to improve antimicrobial efficacy or to develop new agents.
Collapse
Affiliation(s)
- Abdulhamit Çali
- Medical Laboratory Techniques, Vocational School of Health Services, Lokman Hekim University, Ankara, Turkey
| | - Cem Çelik
- Department of Medical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
29
|
Talapko J, Erić S, Meštrović T, Stipetić MM, Juzbašić M, Katalinić D, Bekić S, Muršić D, Flam J, Belić D, Lešić D, Fureš R, Markanović M, Škrlec I. The Impact of Oral Microbiome Dysbiosis on the Aetiology, Pathogenesis, and Development of Oral Cancer. Cancers (Basel) 2024; 16:2997. [PMID: 39272855 PMCID: PMC11394246 DOI: 10.3390/cancers16172997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Although the oral cavity is an easily accessible area for visual examination, the OSCC is more often detected at an advanced stage. The global prevalence of OSCC is around 6%, with increasing trends posing a significant health problem due to the increase in morbidity and mortality. The oral cavity microbiome has been the target of numerous studies, with findings highlighting the significant role of dysbiosis in developing OSCC. Dysbiosis can significantly increase pathobionts (bacteria, viruses, fungi, and parasites) that trigger inflammation through their virulence and pathogenicity factors. In contrast, chronic bacterial inflammation contributes to the development of OSCC. Pathobionts also have other effects, such as the impact on the immune system, which can alter immune responses and contribute to a pro-inflammatory environment. Poor oral hygiene and carbohydrate-rich foods can also increase the risk of developing oral cancer. The risk factors and mechanisms of OSCC development are not yet fully understood and remain a frequent research topic. For this reason, this narrative review concentrates on the issue of dysbiosis as the potential cause of OSCC, as well as the underlying mechanisms involved.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
- Department for Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marinka Mravak Stipetić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dora Muršić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dino Belić
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Rajko Fureš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Gynecology and Obstetrics, Zabok General Hospital and Croatian Veterans Hospital, 49210 Zabok, Croatia
| | - Manda Markanović
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
30
|
da Silva AT, Rosa DS, Tavares MRS, Souza RDFS, Navarro DMDAF, de Aguiar JCRDOF, da Silva MV, da Costa MM. Essential oils of Eugenia spp. (myrtaceae) show in vitro antibacterial activity against Staphylococcus aureus isolates from bovine mastitis. Braz J Microbiol 2024:10.1007/s42770-024-01489-6. [PMID: 39190260 DOI: 10.1007/s42770-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Bovine mastitis, an inflammation of the mammary glands, is mainly caused by bacteria such as Staphylococcus aureus. While antibiotics are the primary treatment for this disease, their effectiveness is often diminished due to resistant strains and biofilm formation, creating the need for safer and more efficient therapies. Plant-based oil therapies, particularly those derived from the genus Eugenia, are gaining popularity due to their pharmacological potential and historical use. In this study, we evaluated the antibacterial, antibiofilm, and synergistic potential of essential oils (EOs) from four species of the genus Eugenia (E. brejoensis, E. gracillima, E. pohliana, and E. stictopetala) against S. aureus isolates from bovine mastitis. The EO of E. stictopetala was obtained by hydrodistillation, and its composition was analyzed using gas chromatography coupled with mass spectrometry. The experiment employed seven clinical isolates from mastitis and two control strains: ATCC 33591 (methicillin-resistant S. aureus - MRSA) and ATCC 25923 (methicillin-susceptible and biofilm producer). A broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the EOs and oxacillin. The EO of E. stictopetala contained (E)-caryophyllene (18.01%), β-pinene (8.84%), (E)-nerolidol (8.24%), and α-humulene (6.14%) as major compounds. In the MIC assay, all essential oils showed bactericidal and bacteriostatic effects, especially the species E. brejoensis and E. pohliana, which had MICs ranging from 64 to 256 µg/mL. Regarding the antibiofilm effect, all essential oils were capable of interfering with biofilm formation at subinhibitory concentrations of ½ and ¼ of the MIC. However, they did not significantly affect pre-established biofilms. Additionally, a synergistic interaction was detected between the EOs and oxacillin, with a reduction of 75-93.75% in the antimicrobial MIC. Molecular docking studies indicated that the phytochemicals β-(E)-caryophyllene, (E)-nerolidol, Δ-elemene, and α-cadinol present in the EOs formed more stable complexes with penicillin-binding proteins, indicating a possible mechanism of antibacterial action. Therefore, these results show that the essential oils of Eugenia spp. are promising sources for the development of new therapeutic methods, opening new perspectives for a more effective treatment of bovine mastitis.
Collapse
Affiliation(s)
- Alisson Teixeira da Silva
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | - Danillo Sales Rosa
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | - Marcio Rennan Santos Tavares
- Federal Institute of the Sertão Pernambucano (IF Sertão), Campus Petrolina Rural Area, Petrolina, Pernambuco, CEP 56302-970, Brazil
| | - Renata de Faria Silva Souza
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | | | | | - Márcia Vanusa da Silva
- Department of Biochemistry, Federal University of Pernambuco (UFPE), Recife, Pernambuco, CEP 50670-901, Brazil
| | - Mateus Matiuzzi da Costa
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil.
| |
Collapse
|
31
|
Evangeline WP, Rajalakshmi E, Mahalakshmi S, Ramya V, Devkiran B, Saranya E, Ramya M. Impact of eugenol on biofilm development in Shigella flexneri 1457: a plant terpenoid based-approach to inhibit food-borne pathogen. Arch Microbiol 2024; 206:384. [PMID: 39168903 DOI: 10.1007/s00203-024-04108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Shigella flexneri is a gram-negative bacterium responsible for shigellosis and bacterial dysentery. Despite using various synthetic antimicrobial agents and antibiotics, their efficacy is limited, prompting concerns over antibiotic resistance and associated health risks. This study investigated eugenol, a polyphenol with inherent antioxidant and antibacterial properties, as a potential alternative treatment. We aimed to evaluate eugenol's antibacterial effects and mechanisms of action against S. flexneri and its impact on biofilm formation. We observed significant growth suppression of S. flexneri with eugenol concentrations of 8-10 mM (98.29%). Quantitative analysis using the Crystal Violet assay demonstrated a marked reduction in biofilm formation at 10 mM (97.01 %). Assessment of Cell Viability and morphology via Fluorescence-Activated Cell Sorting and Scanning Electron Microscopy confirmed these findings. Additionally, qPCR analysis revealed the downregulation of key genes responsible for adhesion (yebL), quorum sensing (rcsC, sdiA), and EPS production (s0482) associated with bacterial growth and biofilm formation. The present study suggests eugenol could offer a promising alternative to conventional antibiotics for treating shigellosis caused by S. flexneri.
Collapse
Affiliation(s)
- Wilson Pearl Evangeline
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Elumalai Rajalakshmi
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Singaravel Mahalakshmi
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Vasudevan Ramya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Banik Devkiran
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Elangovan Saranya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Mohandass Ramya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
32
|
Gong Y, Wang H, Sun J. AMP-Mimetic Antimicrobial Polymer-Involved Synergic Therapy with Various Coagents for Improved Efficiency. Biomacromolecules 2024; 25:4619-4638. [PMID: 38717069 DOI: 10.1021/acs.biomac.3c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The misuse of antibiotics contributes to the emergence of multidrug-resistant (MDR) bacteria. Infections caused by MDR bacteria are rapidly evolving into a significant threat to global healthcare due to the lack of effective and safe treatments. Antimicrobial peptides (AMPs) with broad-spectrum antibacterial activity kill bacteria generally through a membrane disruption mechanism; hence, they tend not to induce resistance readily. However, AMPs exhibit disadvantages, such as high cost and susceptibility to proteolytic degradation, which limit their clinical application. AMP-mimetic antimicrobial polymers, with low cost, stability to proteolysis, broad-spectrum antimicrobial activity, negligible antimicrobial resistance, and rapid bactericidal effect, have received extensive attention as a new type of antibacterial drugs. Lately, AMP-mimetic polymer-involved synergic therapy provides a superior alternative to combat MDR bacteria by distinct mechanisms. In this Review, we summarize the AMP-mimetic antimicrobial polymers involved in synergic therapy, particularly focusing on the different combinations between the polymers with commercially available antimicrobials, organic small molecule photosensitizers, inorganic nanomaterials, and nitric oxide.
Collapse
Affiliation(s)
- Yiyu Gong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hepeng Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P. R. China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
33
|
Mashal S, Siddiqua A, Ullah N, Baloch R, Khan M, Hasnain SZU, Imran Aziz M, Huseynov E, Selakovic D, Rosic G, Makhkamov T, Yuldashev A, Islamov S, Abdullayeva N, Khujanazarov U, Amin A. Bioactive plant waste components targeting oral bacterial pathogens as a promising strategy for biofilm eradication. Front Chem 2024; 12:1406869. [PMID: 39185371 PMCID: PMC11341444 DOI: 10.3389/fchem.2024.1406869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
The significance of this study lies in its exploration of bioactive plant extracts as a promising avenue for combating oral bacterial pathogens, offering a novel strategy for biofilm eradication that could potentially revolutionize oral health treatments. Oral bacterial infections are common in diabetic patients; however, due to the development of resistance, treatment options are limited. Considering the excellent antimicrobial properties of phenolic compounds, we investigated them against isolated oral pathogens using in silico and in vitro models. We performed antibiogram studies and minimum inhibitory concentration (MIC), antibiofilm, and antiquorum sensing activities covering phenolic compounds. Bacterial strains were isolated from female diabetic patients and identified by using 16S rRNA sequencing as Pseudomonas aeruginosa, Bacillus chungangensis, Bacillus paramycoides, and Paenibacillus dendritiformis. Antibiogram studies confirmed that all strains were resistant to most tested antibiotics except imipenem and ciprofloxacin. Molecular docking analysis revealed the significant interaction of rutin, quercetin, gallic acid, and catechin with transcription regulator genes 1RO5, 4B2O, and 5OE3. All tested molecules followed drug-likeness rules except rutin. The MIC values of the tested compounds varied from 0.0625 to 0.5 mg/mL against clinical isolates. Significant antibiofilm activity was recorded in the case of catechin (73.5% ± 1.6% inhibition against B. paramycoides), cinnamic acid (80.9% ± 1.1% inhibition against P. aeruginosa), and vanillic acid and quercetin (65.5% ± 1.7% and 87.4% ± 1.4% inhibition, respectively, against B. chungangensis) at 0.25-0.125 mg/mL. None of the phenolic compounds presented antiquorum sensing activity. It was, therefore, concluded that polyphenolic compounds may have the potential to be used against oral bacterial biofilms, and further detailed mechanistic investigations should be performed.
Collapse
Affiliation(s)
- Saima Mashal
- Gomal Center of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
- Natural Products Research Lab, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Aisha Siddiqua
- Gomal Center of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Ullah
- Natural Products Research Lab, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Rabia Baloch
- Allama Iqbal Teaching Hospital, Dera Ghazi Khan, Pakistan
| | - Momin Khan
- Department of Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Syed Zia Ul Hasnain
- Department of Pharmacognosy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran Aziz
- Natural Products Research Lab, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | | | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Trobjon Makhkamov
- Department of Forestry and Land Scape Design, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | - Akramjon Yuldashev
- Department of Ecology and Botany Andijan State University, Andijan, Uzbekistan
| | - Sokhib Islamov
- Department of Technology of Storage and Processing of Agricultural Products, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | - Nilufar Abdullayeva
- Department of Biology Teaching Methodology, Jizzakh State Pedagogical University, Jizzakh, Uzbekistan
| | - Uktam Khujanazarov
- Department of Botany and Ecology, Tashkent State Pedagogical University, Tashkent, Uzbekistan
| | - Adnan Amin
- Natural Products Research Lab, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
34
|
Ray M, Ashwini M, Halami PM. The Occurrence of Colistin Resistance in Potential Lactic Acid Bacteria of Food-Producing Animals in India. Curr Microbiol 2024; 81:297. [PMID: 39105865 DOI: 10.1007/s00284-024-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The overuse of colistin, the last-resort antibiotic, has led to the emergence of colistin-resistant bacteria, which is a major concern. Lactic acid bacteria which are generally regarded as safe are known to be reservoirs of antibiotic resistance that possibly pose a threat to human and animal health. Therefore, this study assessed the prevalence of colistin antimicrobial resistance in livestock in India, that is lactic acid bacteria in healthy chickens, sheep, beef, and swine of Mysore. Diverse phenotypic and genotypic colistin resistance were examined among the lactic acid bacterial species (n = 84) isolated from chicken (n = 44), sheep (n = 16), beef (n = 14), and swine (n = 10). Hi-comb, double-disk diffusion tests, Minimum Inhibitory Concentration (MIC), and biofilm formation were assessed for phenotypic colistin resistance. Specific primers for colistin-resistant genes were used for the determination of genotypic colistin resistance. Around 20%, 18%, and 1% were colistin-resistant Lactobacillus, Enterococcus, and Pediococcus species, respectively. Among these, 66.67% exhibited MDR phenotypes, including colistin antibiotic. The identified resistant isolates are Levilactobacillus brevis LBA and LBB (2), Limosilactobacillus fermentum LBF (1), and Pediococcus acidilactici CHBI (1). The mcr-1 and mcr-3 genes were detected in Levilactobacillus brevis LBA, LBB, and Pediococcus acidilactici CHBI isolated from chicken and sheep intestines respectively. The study identified colistin resistance determinants in lactobacilli from food animals, emphasizing the need for enhanced surveillance and monitoring of resistance spread. These findings underscore colistin resistance as a significant medical concern and should be integrated into India's ongoing antimicrobial resistance monitoring programs.
Collapse
Affiliation(s)
- Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India
| | - M Ashwini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Prakash M Halami
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
35
|
Pan D, Wu H, Li JJ, Wang B, Jia AQ. Two cinnamoyl hydroxamates as potential quorum sensing inhibitors against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1424038. [PMID: 39165918 PMCID: PMC11333444 DOI: 10.3389/fcimb.2024.1424038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is a ubiquitous pathogen that causes various infectious diseases through the regulation of quorum sensing (QS). The strategy of interfering with the QS systems of P. aeruginosa, coupled with a reduction in the dosage of conventional antibiotics, presents a potential solution to treating infection and mitigating antibiotic resistance. In this study, seven cinnamoyl hydroxamates were synthesized to evaluate their inhibitory effects on QS of P. aeruginosa. Among these cinnamic acid derivatives, we found cinnamoyl hydroxamic acid (CHA) and 3-methoxy-cinnamoyl hydroxamic acid (MCHA) were the two most effective candidates. Furtherly, the effect of CHA and MCHA on the production of virulence factors and biofilm of P. aeruginosa were evaluated. Ultimately, our study may offer promising potential for treating P. aeruginosa infections and reducing its virulence. Methods The disc diffusion test were conducted to evaluate inhibitory effects on QS of seven cinnamoyl hydroxamates. The influence of CHA and MCHA on the production of virulence and flagellar motility of P. aeruginosa was furtherly explored. Scanning electron microscopy (SEM) experiment were conducted to evaluate the suppression of CHA and MCHA on the formed biofilm of P. aeruginosa. RT-qPCR was used to detect rhlI, lasA, lasB, rhlA, rhlB, and oprL genes in P. aeruginosa. In silico docking study was performed to explore the molecular mechanism of CHA and MCHA. The synergistic effects of CHA with gentamicin were detected on biofilm cell dispersal. Result After treatment of CHA or MCHA, the production of multiple virulence factors, including pyocyanin, proteases, rhamnolipid, and siderophore, and swimming and swarming motilities in P. aeruginosa were inhibited significantly. And our results showed CHA and MCHA could eliminate the formed biofilm of P. aeruginosa. RT-qPCR revealed that CHA and MCHA inhibited the expression of QS related genes in P. aeruginosa. Molecular docking indicated that CHA and MCHA primarily inhibited the RhlI/R system in P. aeruginosa by competing with the cognate signaling molecule C4-HSL.Additionally, CHA exhibited potent synergistic effects with gentamicin on biofilm cell dispersal. Discussion P. aeruginosa is one of the most clinically and epidemiologically important bacteria and a primary cause of catheter-related urinary tract infections and ventilator-associated pneumonia. This study aims to explore whether cinnamoyl hydroxamates have inhibitory effects on QS. And our results indicate that CHA and MCHA, as two novel QSIs, offer promising potential for treating P. aeruginosa infections and reducing its virulence.
Collapse
Affiliation(s)
- Deng Pan
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hua Wu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jun-Jian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
36
|
Hassan Abd El-Ghany SS, Azmy AF, Osama EL-Gendy A, Abd El-Baky RM, Mustafa A, Abourehab MAS, El‐Beeh ME, Ibrahem RA. Antimicrobial and Antibiofilm Activity of Monolaurin against Methicillin-Resistant Staphylococcus aureus Isolated from Wound Infections. Int J Microbiol 2024; 2024:7518368. [PMID: 39129910 PMCID: PMC11315973 DOI: 10.1155/2024/7518368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major pathogens associated with life-threatening infections, showing resistance to various antibiotics. This study aimed to assess the influence of monolaurin on biofilm-forming MRSA. Methods The agar dilution method determined the minimum inhibitory concentration (MIC) of monolaurin against MRSA isolates and explored its impact on the resistance profile of selected antibiotics. The assessment of combined therapy involving monolaurin and antibiotics was conducted using fractional inhibitory concentration (FIC). The tissue culture plate strategy appraised monolaurin's antibiofilm activity and its inhibitory concentration (IC50), with assessment via scanning electron microscopy. Reverse transcription polymerase chain reaction (RT-PCR) discerned a monolaurin effect on the expression of the icaD gene. Results Monolaurin exhibited MIC values ranging from 500 to 2000 μg/mL. FIC index showed a synergistic effect of monolaurin with β-lactam antibiotics ranging from 0.0039 to 0.25 (p < 0.001). Among the 103 investigated MRSA isolates, 44 (44.7%) displayed moderate biofilm formation, while 59 (55.3%) were strong biofilm producers. Antibiofilm activity demonstrated concentration dependence, confirming monolaurin's capacity to inhibit biofilm formation and exhibited strong eradicating effects against preformed MRSA biofilms with IC50 values of 203.6 μg/mL and 379.3 μg/mL, respectively. Scanning electron microscope analysis revealed reduced cell attachments and diminished biofilm formation compared to the control. The expression levels of the icaD gene were remarkably reduced at monolaurin concentrations of 250 and 500 μg/mL. Conclusion Monolaurin had significant inhibitory effects on MRSA pre-existing biofilms as well as biofilm development. So, it can be employed in the treatment of severe infections, particularly those associated with biofilm formation including catheter-associated infections.
Collapse
Affiliation(s)
- Shimaa Salah Hassan Abd El-Ghany
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni-Suef University, Beni-Suef 62514, Egypt
- Department of Microbiology and ImmunologyFaculty of PharmacyDeraya University, Minia 11566, Egypt
| | - Ahmed Farag Azmy
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed Osama EL-Gendy
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni-Suef University, Beni-Suef 62514, Egypt
| | - Rehab Mahmoud Abd El-Baky
- Department of Microbiology and ImmunologyFaculty of PharmacyDeraya University, Minia 11566, Egypt
- Department of Microbiology and ImmunologyFaculty of PharmacyMinia University, Minia 61519, Egypt
| | - Ahmad Mustafa
- Faculty of EngineeringOctober University for Modern Science and Arts (MSA), Giza, Egypt
| | - Mohammed A. S. Abourehab
- Department of PharmaceuticsFaculty of PharmacyMinia University, Minia 61519, Egypt
- Department of PharmaceuticsFaculty of PharmacyUmm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed E. El‐Beeh
- Biology DepartmentAl‐Jumum University CollegeUmm Al‐Qura University, Makkah 21955, Saudi Arabia
| | - Reham Ali Ibrahem
- Department of Microbiology and ImmunologyFaculty of PharmacyMinia University, Minia 61519, Egypt
| |
Collapse
|
37
|
Clapperton M, Kunanandam T, Florea CD, Douglas CM, McConnell G. Multimodal optical mesoscopy reveals the quantity and spatial distribution of Gram-positive biofilms in ex vivo tonsils. J Microsc 2024; 295:121-130. [PMID: 38296824 DOI: 10.1111/jmi.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Biofilms are known to be present in tonsils, but little is known about their spatial location and size distribution throughout the tonsil. Studies of the location and distribution of biofilms in tonsil specimens have thus far been limited to either high-magnification methods such as electron microscopy, which enables high-resolution imaging but only from a tiny tissue volume, or lower magnification techniques such as light microscopy, which allow imaging of larger specimens but with poor spatial resolution. To overcome these limitations, we report the use of multimodal optical mesoscopy to visualise and quantify the number and spatial distribution of Gram-positive biofilms in fresh, excised paediatric tonsils. This methodology supports simultaneous imaging of both the tonsil host and biofilms in whole mounts of tissue up to 5 mm × 5 mm × 3 mm with subcellular resolution throughout. A quantitative assessment of 36 tonsil specimens revealed no statistically significant difference between biofilm presence on the tonsil surface and the interior of the tonsil. This new quantitative mesoscale imaging approach may prove useful in understanding the role of biofilms in tonsillar diseases and other infections.
Collapse
Affiliation(s)
- Megan Clapperton
- Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Tash Kunanandam
- Department of Otolaryngology - Head and Neck Surgery, Royal Hospital for Children, Glasgow, UK
| | - Catalina D Florea
- Department of Otolaryngology - Head and Neck Surgery, Royal Hospital for Children, Glasgow, UK
| | - Catriona M Douglas
- Department of Otolaryngology - Head and Neck Surgery, Queen Elizabeth University Hospital, Glasgow, UK
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
38
|
Lucca V, Borges KA, Furian TQ, Chitolina GZ, Streck AF, da Rocha DT, de Souza Moraes HL, Nascimento VP. Phenotypic and molecular characterisation of Salmonella spp. isolates in healthy poultry. Br Poult Sci 2024; 65:415-423. [PMID: 38717314 DOI: 10.1080/00071668.2024.2337180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/05/2024] [Indexed: 07/27/2024]
Abstract
1. Epidemiological surveillance of Salmonella spp. serves as a primary tool for maintaining the health of poultry flocks. Characterising circulating serotypes is crucial for implementing control and prevention measures. This study conducted phenotypic and molecular characterisation of S. enterica Pullorum, S. enterica Heidelberg, and S. enterica Corvalis isolated from broiler chickens during slaughtering.2. All strains were susceptible to gentamicin, neomycin and norfloxacin. However, resistance rates exceeded 50% for ciprofloxacin and tiamulin, irrespective of the serotype. Approximately 64% of strains were classified as multidrug-resistant, with S. enterica Heidelberg strains exhibiting significantly higher overall resistance. The isolates demonstrated the ability to adhere and produce biofilm at a minimum of three temperatures, with S. enterica Pullorum capable of biofilm production at all temperatures encountered during poultry rearing.3. Each strain possessed between two and seven different virulence-associated genes. Genetic similarity, as indicated by pulsed field gel electrophoresis, exceeded 90% for all three serotypes and strains were classified in the R5 ribotype by PCR, regardless of serotype. Sequencing revealed high similarity among all strains, with homology ranging from 99.61 to 100% and all were classified to a single cluster.4. The results suggested a clonal relationship among the strains, indicating the possible circulation of a unique clonal group of S. enterica Pullorum in the southern region of Brazil.
Collapse
Affiliation(s)
- V Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - K A Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - T Q Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - G Z Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - A F Streck
- Departamento de Medicina Veterinária, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - D T da Rocha
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - H L de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - V P Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
39
|
Sivarajan K, Ravindhiran R, Sekar JN, Murugesan R, Chidambaram K, Dhandapani K. Deciphering the impact of Acinetobacter baumannii on human health, and exploration of natural compounds as efflux pump inhibitors to treat multidrug resistance. J Med Microbiol 2024; 73. [PMID: 39212030 DOI: 10.1099/jmm.0.001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an ESKAPE pathogen and threatens human health by generating infections with high fatality rates. A. baumannii leads to a spectrum of infections such as skin and wound infections, endocarditis, meningitis pneumonia, septicaemia and urinary tract infections. Recently, strains of A. baumannii have emerged as multidrug-resistant (MDR), meaning they are resistant to at least three different classes of antibiotics. MDR development is primarily intensified by widespread antibiotic misuse and inadequate stewardship. The World Health Organization (WHO) declared A. baumannii a precarious MDR species. A. baumannii maintains the MDR phenotype via a diverse array of antimicrobial metabolite-hydrolysing enzymes, efflux of antibiotics, impermeability and antibiotic target modification, thereby complicating treatment. Hence, a deeper understanding of the resistance mechanisms employed by MDR A. baumannii can give possible approaches to treat antimicrobial resistance. Resistance-nodulation-cell division (RND) efflux pumps have been identified as the key contributors to MDR determinants, owing to their capacity to force a broad spectrum of chemical substances out of the bacterial cell. Though synthetic inhibitors have been reported previously, their efficacy and safety are of debate. As resistance-modifying agents, phytochemicals are ideal choices. These natural compounds could eliminate the bacteria or interact with pathogenicity events and reduce the bacteria's ability to evolve resistance. This review aims to highlight the mechanism behind the multidrug resistance in A. baumannii and elucidate the utility of natural compounds as efflux pump inhibitors to deal with the infections caused by A. baumannii.
Collapse
Affiliation(s)
- Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, School of Pharmacy, King Khalid University, Abha 652529, Saudi Arabia
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| |
Collapse
|
40
|
Yang X, Liu Z, Zhang Y, Shi X, Wu Z. Dinoflagellate-Bacteria Interactions: Physiology, Ecology, and Evolution. BIOLOGY 2024; 13:579. [PMID: 39194517 DOI: 10.3390/biology13080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
Dinoflagellates and heterotrophic bacteria are two major micro-organism groups within marine ecosystems. Their coexistence has led to a co-evolutionary relationship characterized by intricate interactions that not only alter their individual behaviors but also exert a significant influence on the broader biogeochemical cycles. Our review commenced with an analysis of bacterial populations, both free-living and adherent to dinoflagellate surfaces. Members of Alphaproteobacteria, Gammaproteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group are repeatedly found to be associated with dinoflagellates, with representation by relatively few genera, such as Methylophaga, Marinobacter, and Alteromonas. These bacterial taxa engage with dinoflagellates in a limited capacity, involving nutrient exchange, the secretion of pathogenic substances, or participation in chemical production. Furthermore, the genomic evolution of dinoflagellates has been profoundly impacted by the horizontal gene transfer from bacteria. The integration of bacterial genes into dinoflagellates has been instrumental in defining their biological characteristics and nutritional strategies. This review aims to elucidate the nuanced interactions between dinoflagellates and their associated bacteria, offering a detailed perspective on their complex relationship.
Collapse
Affiliation(s)
- Xiaohong Yang
- Guangzhou Marine Geological Survey, Guangzhou 511458, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Yanwen Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xinguo Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
41
|
Li M, Kim JB, Sastry BKS, Chen M. Infective endocarditis. Lancet 2024; 404:377-392. [PMID: 39067905 DOI: 10.1016/s0140-6736(24)01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 07/30/2024]
Abstract
First described more than 350 years ago, infective endocarditis represents a global health concern characterised by infections affecting the native or prosthetic heart valves, the mural endocardium, a septal defect, or an indwelling cardiac device. Over recent decades, shifts in causation and epidemiology have been observed. Echocardiography remains pivotal in the diagnosis of infective endocarditis, with alternative imaging modalities gaining significance. Multidisciplinary management requiring expertise of cardiologists, cardiovascular surgeons, infectious disease specialists, microbiologists, radiologists and neurologists, is imperative. Current recommendations for clinical management often rely on observational studies, given the limited number of well conducted randomised controlled trials studying infective endocarditis due to the rarity of the disease. In this Seminar, we provide a comprehensive overview of optimal clinical practices in infective endocarditis, highlighting key aspects of pathophysiology, pathogens, diagnosis, management, prevention, and multidisciplinary approaches, providing updates on recent research findings and addressing remaining controversies in diagnostic accuracy, prevention strategies, and optimal treatment.
Collapse
Affiliation(s)
- Mingfang Li
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Joon Bum Kim
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - B K S Sastry
- Department of Cardiology, Renova Century Hospital, Hyderabad, Telangana, India
| | - Minglong Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
42
|
Sharma MH, Palamae S, Yingkajorn M, Benjakul S, Singh A, Buatong J. Multidrug-Resistance of Vibrio Species in Bivalve Mollusks from Southern Thailand: Isolation, Identification, Pathogenicity, and Their Sensitivity toward Chitooligosaccharide-Epigallocatechin-3-Gallate Conjugate. Foods 2024; 13:2375. [PMID: 39123565 PMCID: PMC11311814 DOI: 10.3390/foods13152375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Vibrio spp. is a Gram-negative bacteria known for its ability to cause foodborne infection in association with eating raw or undercooked seafood. The majority of these foodborne illnesses are caused by mollusks, especially bivalves. Thus, the prevalence of Vibrio spp. in blood clams (Tegillarca granosa), baby clams (Paphia undulata), and Asian green mussels (Perna viridis) from South Thailand was determined. A total of 649 Vibrio spp. isolates were subjected to pathogenicity analysis on blood agar plates, among which 21 isolates from blood clams (15 isolates), baby clams (2 isolates), and green mussels (4 isolates) showed positive β-hemolysis. Based on the biofilm formation index (BFI) of β-hemolysis-positive Vibrio strains, nine isolates exhibited a strong biofilm formation capacity, with a BFI in the range of 1.37 to 10.13. Among the 21 isolates, 6 isolates (BL18, BL82, BL84, BL85, BL90, and BL92) were tlh-positive, while trh and tdh genes were not detected in all strains. Out of 21 strains, 5 strains showed multidrug resistance (MDR) against amoxicillin/clavulanic acid, ampicillin/sulbactam, cefotaxime, cefuroxime, meropenem, and trimethoprim/sulfamethoxazole. A phylogenetic analysis of MDR Vibrio was performed based on 16s rDNA sequences using the neighbor-joining method. The five MDR isolates were identified to be Vibrio neocaledonicus (one isolate), Vibrio fluvialis (one isolate) and, Vibrio cidicii (three isolates). In addition, the antimicrobial activity of chitooligosaccharide-epigallocatechin gallate (COS-EGCG) conjugate against MDR Vibrio strains was determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-EGCG conjugate were in the range of 64-128 µg/mL. The antimicrobial activity of the conjugate was advocated by the cell lysis of MDR Vibrio strains, as elucidated by scanning electron microscopic images. Vibrio spp. isolated from blood clams, baby clams, and Asian green mussels were highly pathogenic, exhibiting the ability to produce biofilm and being resistant to antibiotics. However, the COS-EGCG conjugate could be used as a potential antimicrobial agent for controlling Vibrio in mollusks.
Collapse
Affiliation(s)
- Mruganxi Harshad Sharma
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (M.H.S.); (S.P.); (S.B.); (J.B.)
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (M.H.S.); (S.P.); (S.B.); (J.B.)
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (M.H.S.); (S.P.); (S.B.); (J.B.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (M.H.S.); (S.P.); (S.B.); (J.B.)
| | - Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (M.H.S.); (S.P.); (S.B.); (J.B.)
| |
Collapse
|
43
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
44
|
Loffredo MR, Cappiello F, Cappella G, Capuozzo E, Torrini L, Diaco F, Di YP, Mangoni ML, Casciaro B. The pH-Insensitive Antimicrobial and Antibiofilm Activities of the Frog Skin Derived Peptide Esc(1-21): Promising Features for Novel Anti-Infective Drugs. Antibiotics (Basel) 2024; 13:701. [PMID: 39200001 PMCID: PMC11350779 DOI: 10.3390/antibiotics13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The number of antibiotic-resistant microbial infections is dramatically increasing, while the discovery of new antibiotics is significantly declining. Furthermore, the activity of antibiotics is negatively influenced by the ability of bacteria to form sessile communities, called biofilms, and by the microenvironment of the infection, characterized by an acidic pH, especially in the lungs of patients suffering from cystic fibrosis (CF). Antimicrobial peptides represent interesting alternatives to conventional antibiotics, and with expanding properties. Here, we explored the effects of an acidic pH on the antimicrobial and antibiofilm activities of the AMP Esc(1-21) and we found that it slightly lost activity (from 2- to 4-fold) against the planktonic form of a panel of Gram-negative bacteria, with respect to a ≥ 32-fold of traditional antibiotics. Furthermore, it retained its activity against the sessile form of these bacteria grown in media with a neutral pH, and showed similar or higher effectiveness against the biofilm form of bacteria grown in acidic media, simulating a CF-like acidic microenvironment, compared to physiological conditions.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Floriana Cappiello
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Giacomo Cappella
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Elisabetta Capuozzo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Luisa Torrini
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Fabiana Diaco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| |
Collapse
|
45
|
Vasina DV, Antonova NP, Gushchin VA, Aleshkin AV, Fursov MV, Fursova AD, Gancheva PG, Grigoriev IV, Grinkevich P, Kondratev AV, Kostarnoy AV, Lendel AM, Makarov VV, Nikiforova MA, Pochtovyi AA, Prudnikova T, Remizov TA, Shevlyagina NV, Siniavin AE, Smirnova NS, Terechov AA, Tkachuk AP, Usachev EV, Vorobev AM, Yakimakha VS, Yudin SM, Zackharova AA, Zhukhovitsky VG, Logunov DY, Gintsburg AL. Development of novel antimicrobials with engineered endolysin LysECD7-SMAP to combat Gram-negative bacterial infections. J Biomed Sci 2024; 31:75. [PMID: 39044206 PMCID: PMC11267749 DOI: 10.1186/s12929-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.
Collapse
Affiliation(s)
- Daria V Vasina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Nataliia P Antonova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey V Aleshkin
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Mikhail V Fursov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Anastasiia D Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Petya G Gancheva
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor V Grigoriev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Grinkevich
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Alexey V Kondratev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey V Kostarnoy
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiya M Lendel
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Valentine V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Maria A Nikiforova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei A Pochtovyi
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Timofey A Remizov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia V Shevlyagina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei E Siniavin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nina S Smirnova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander A Terechov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Artem P Tkachuk
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny V Usachev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei M Vorobev
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Victoria S Yakimakha
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Anastasia A Zackharova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir G Zhukhovitsky
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Public Health, Moscow, Russia
| | - Denis Y Logunov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L Gintsburg
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
46
|
Artesani L, Ciociola T, Vismarra A, Bacci C, Conti S, Giovati L. Activity of Synthetic Peptide KP and Its Derivatives against Biofilm-Producing Escherichia coli Strains Resistant to Cephalosporins. Antibiotics (Basel) 2024; 13:683. [PMID: 39199983 PMCID: PMC11350827 DOI: 10.3390/antibiotics13080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Bacterial resistance to β-lactam antibiotics, particularly new generation cephalosporins, is a major public health concern. In Escherichia coli, resistance to these antibiotics is mainly mediated by extended-spectrum β-lactamases (ESBL), which complicates a range of health-threatening infections. These infections may also be biofilm-related, making them more difficult to treat because of the higher tolerance to conventional antibiotics and the host immune response. In this study, we tested as potential new drug candidates against biofilm-forming ESBL-producing E. coli four antimicrobial peptides previously shown to have antifungal properties. The peptides proved to be active in vitro at micromolar concentrations against both sensitive and ESBL-producing E. coli strains, effectively killing planktonic cells and inhibiting biofilm formation. Quantitative fluorescence intensity analysis of three-dimensional reconstructed confocal laser scanning microscopy (CLSM) images of mature biofilm treated with the most active peptide showed significant eradication and a reduction in viable bacteria, while scanning electron microscopy (SEM) revealed gross morphological alterations in treated bacteria. The screening of the investigated peptides for antibacterial and antibiofilm activity led to the selection of a leading candidate to be further studied for developing new antimicrobial drugs as an alternative treatment against microbial infections, primarily associated with biofilms.
Collapse
Affiliation(s)
- Lorenza Artesani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Alice Vismarra
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (A.V.); (C.B.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (A.V.); (C.B.)
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
47
|
Feltham L, Moran J, Goldrick M, Lord E, Spiller DG, Cavet JS, Muldoon M, Roberts IS, Paszek P. Bacterial aggregation facilitates internalin-mediated invasion of Listeria monocytogenes. Front Cell Infect Microbiol 2024; 14:1411124. [PMID: 39045131 PMCID: PMC11263170 DOI: 10.3389/fcimb.2024.1411124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Dissemination of food-borne L. monocytogenes in the host relies on internalin-mediated invasion, but the underlying invasion strategies remain elusive. Here we use live-cell microscopy to follow single cell interactions between individual human cells and L. monocytogenes and elucidate mechanisms associated with internalin B (InlB)-mediated invasion. We demonstrate that whilst a replicative invasion of nonphagocytic cells is a rare event even at high multiplicities of invasion, L. monocytogenes overcomes this by utilising a strategy relaying on PrfA-mediated ActA-based aggregation. We show that L. monocytogenes forms aggregates in extracellular host cell environment, which promote approximately 5-fold more host cell adhesions than the non-aggregating actA-ΔC mutant (which lacks the C-terminus coding region), with the adhering bacteria inducing 3-fold more intracellular invasions. Aggregation is associated with robust MET tyrosine kinase receptor clustering in the host cells, a hallmark of InlB-mediated invasion, something not observed with the actA-ΔC mutant. Finally, we show via RNA-seq analyses that aggregation involves a global adaptive response to host cell environment (including iron depletion), resulting in metabolic changes in L. monocytogenes and upregulation of the PrfA virulence regulon. Overall, our analyses provide new mechanistic insights into internalin-mediated host-pathogen interactions of L. monocytogenes.
Collapse
Affiliation(s)
- Liam Feltham
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Josephine Moran
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Ian. S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
48
|
Marmiroli M, Villani M, Scarponi P, Carlo S, Pagano L, Sinisi V, Lazzarini L, Pavlicevic M, Marmiroli N. Green Synthesis of CuO Nanoparticles from Macroalgae Ulva lactuca and Gracilaria verrucosa. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1157. [PMID: 38998762 PMCID: PMC11243669 DOI: 10.3390/nano14131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Macroalgae seaweeds such as Ulva lactuca and Gracilaria verrucosa cause problems on the northern coast of the Italian Adriatic Sea because their overabundance hinders the growth of cultivated clams, Rudatapes philippinarum. This study focused on the green synthesis of CuO nanoparticles from U. lactuca and G. verrucosa. The biosynthesized CuO NPs were successfully characterized using FTIR, XRD, HRTEM/EDX, and zeta potential. Nanoparticles from the two different algae species are essentially identical, with the same physical characteristics and almost the same antimicrobial activities. We have not investigated the cause of this identity, but it seems likely to arise from the reaction of Cu with the same algae metabolites in both species. The study demonstrates that it is possible to obtain useful products from these macroalgae through a green synthesis approach and that they should be considered as not just a cause of environmental and economic damage but also as a potential source of income.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (P.S.); (M.P.)
| | - Marco Villani
- Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR IMEM), Parco Area delle Scienze, 43124 Parma, Italy; (M.V.); (V.S.); (L.L.)
| | - Paolina Scarponi
- Department Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (P.S.); (M.P.)
| | - Silvia Carlo
- Department Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (P.S.); (M.P.)
| | - Luca Pagano
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (L.P.); (N.M.)
| | - Valentina Sinisi
- Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR IMEM), Parco Area delle Scienze, 43124 Parma, Italy; (M.V.); (V.S.); (L.L.)
| | - Laura Lazzarini
- Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR IMEM), Parco Area delle Scienze, 43124 Parma, Italy; (M.V.); (V.S.); (L.L.)
| | - Milica Pavlicevic
- Department Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (P.S.); (M.P.)
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (L.P.); (N.M.)
| |
Collapse
|
49
|
Niazy AA, Lambarte RNA, Sumague TS, Vigilla MGB, Bin Shwish NM, Kamalan R, Daeab EK, Aljehani NM. FTY720 Reduces the Biomass of Biofilms in Pseudomonas aeruginosa in a Dose-Dependent Manner. Antibiotics (Basel) 2024; 13:621. [PMID: 39061303 PMCID: PMC11273553 DOI: 10.3390/antibiotics13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa, a nosocomial pathogen, has strong biofilm capabilities, representing the main source of infection in the human body. Repurposing existing drugs has been explored as an alternative strategy to combat emerging antibiotic-resistant pathogens. Fingolimod hydrochloride (FTY720), an immunomodulatory drug for multiple sclerosis, has shown promising antimicrobial effects against some ESKAPE pathogens. Therefore, the effects of FTY720 on the biofilm capabilities of Pseudomonas aeruginosa were investigated in this study. It was determined that FTY720 inhibited the growth of P. aeruginosa PAO1 at 100 µM. The significant reduction in PAO1 cell viability was observed to be dose-dependent. Additional cytotoxicity analysis on human cell lines showed that FTY720 significantly reduced viabilities at sub-inhibitory concentrations of 25-50 µM. Microtiter assays and confocal analysis confirmed reductions in biofilm mass and thickness and the cell survivability ratio in the presence of FTY720. Similarly, virulence production and biofilm-related gene expression (rhlA, rhlB, pilA, pilI, fliC, fliD and algR) were determined. The results demonstrate that pigment production was affected and quantitative real-time PCR analysis showed a variable degree of reduced gene expression in response to FTY720 at 12.5-50 µM. These findings suggest that FTY720 could be repurposed as an alternative antibiofilm agent against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Terrence S. Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Mary Grace B. Vigilla
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Najla M. Bin Shwish
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Ranan Kamalan
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eid Khulaif Daeab
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Nami M. Aljehani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
50
|
Hu Z, Yin X, Fan G, Liao X. Global Trends in Orthopedic Biofilm Research: A Bibliometric Analysis of 1994-2022. J Multidiscip Healthc 2024; 17:3057-3069. [PMID: 38974376 PMCID: PMC11227867 DOI: 10.2147/jmdh.s465632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
Objective Bibliometric analysis is commonly used to visualize the knowledge foundation, trends, and patterns in a specific scientific field by performing a quantitative evaluation of the relevant literature. The purpose of this study was to perform a bibliometric analysis of recent studies in the field of orthopedic biofilm research and identify its current trends and hotspots. Methods Research studies were retrieved from the Web of Science Core Collection and Scopus databases and analyzed in bibliometrix with R package (4.2.2). Results A total of 2426 literature were included in the study. Journal of orthopaedic research and Clinical orthopaedics and related research ranked first in terms of productivity and impact, with 57 published articles and 32 h-index, respectively. Trampuz A, Ohio State Univ and the United States ranked as the most productive authors, institutions, and countries. Biofilm formation, role of sonication, biomaterial mechanism and antibiotic loading have been investigated as the trend and hotspots in the field of orthopedic biofilm research. Conclusion This study provides a thorough overview of the state of the art of current orthopedic biofilm research and offers valuable insights into recent trends and hotspots in this field.
Collapse
Affiliation(s)
- Zhouyang Hu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People’s Republic of China
| | - Xiaobing Yin
- Nursing Department, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Guoxin Fan
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People’s Republic of China
| | - Xiang Liao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People’s Republic of China
| |
Collapse
|