1
|
Guo Q, Liu B, Guo X, Yan P, Cao B, Liu R, Liu X. Characterization and application of LysSGF2 and HolSGF2 as potential biocontrol agents against planktonic and biofilm cells of common pathogenic bacteria. Int J Food Microbiol 2024; 425:110848. [PMID: 39208563 DOI: 10.1016/j.ijfoodmicro.2024.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance represents a global health emergency, necessitating the introduction of novel antimicrobial agents. In the present study, lysozyme and holin from Shigella flexneri 1.1868 phage SGF2, named LysSGF2 and HolSGF2, respectively, were cloned, expressed, and characterized. LysSGF2 and HolSGF2 showed lytic activities against S. flexneri 1.1868 cells at 4-55 °C and pH 3.1-10.3. LysSGF2 exhibited antimicrobial activity against five gram-negative and two gram-positive bacteria. HolSGF2 showed antimicrobial activity against four gram-negative and one gram-positive species. The antibacterial activities of LysSGF2 and HolSGF2 were determined in liquid beverages, including bottled water and milk. The relative lytic activity of LysSGF2 combined with HolSGF2 against the tested bacteria was approximately 46-77 % in water. Furthermore, the combination markedly decreased the viable counts of tested bacteria by approximately 3-5 log CFU/mL. LysSGF2 and HolSGF2 could efficiently remove biofilms on polystyrene, glass, and stainless-steel. The efficacy of the LysSGF2 and HolSGF2 combination against the tested bacteria on polystyrene was 58-71 %. Combination treatment effectively killed biofilm cells formed on stainless-steel and glass by 1-4 log CFU/mL. ese results indicate that LysSGF2 and HolSGF2 can successfully control both the planktonic and biofilm cells of common pathogenic bacteria, suggesting that the combined or single use of LysSGF2 and HolSGF2 may be of great value in food processing.
Collapse
Affiliation(s)
- Qiucui Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Peihan Yan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bing Cao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Tian Y, Xu X, Ijaz M, Shen Y, Shahid MS, Ahmed T, Ali HM, Yan C, Gu C, Lu J, Wang Y, Ondrasek G, Li B. Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new Pantoea phage PA1. Front Microbiol 2024; 15:1463192. [PMID: 39507333 PMCID: PMC11538084 DOI: 10.3389/fmicb.2024.1463192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Pantoea ananatis has emerged as a significant plant pathogen affecting various crops worldwide, causing substantial economic losses. Bacteriophages and their endolysins offer promising alternatives for controlling bacterial infections, addressing the growing concerns of antibiotic resistance. Methods This study isolated and characterized the Pantoea phage PA1 and investigated the role of PA1-LRP in directly damaging bacteria and assisting endolysin PA1-Lys in cell lysis, comparing its effect to exogenous transmembrane domains following the identification and analysis of the PA1-Lys and the PA1-LRP based on whole genome analysis of phage PA1. Additionally, this study also explored how hydrophobic region of PA1-LRP (HPP) contributes to bacterial killing when combined with PA1-Lys and examined the stability and lytic spectrum of PA1-Lys under various conditions. Results and discussion Phage PA1 belonging to the Chaseviridae family exhibited a broad host range against P. ananatis strains, with a latent period of 40 minutes and a burst size of 17.17 phages per infected cell. PA1-Lys remained stable at pH 6-10 and temperatures of 20-50°C and showed lytic activity against various Gram-negative bacteria, while PA1-Lys alone could not directly lyse bacteria, its lytic activity was enhanced in the presence of EDTA. Surprisingly, PA1-LRP inhibited bacterial growth when expressed alone. After 24 h of incubation, the OD600 value of pET28a-LRP decreased by 0.164 compared to pET28a. Furthermore, the lytic effect of co-expressed PA1-LRP and PA1-Lys was significantly stronger than each separately. After 24 h of incubation, compared to pET28a-LRP, the OD600 value of pET28a-Lys-LRP decreased by 0.444, while the OD420 value increased by 3.121. Live/dead cell staining, and flow cytometry experiments showed that the fusion expression of PA1-LRP and PA1-Lys resulted in 41.29% cell death, with bacterial morphology changing from rod-shaped to filamentous. Notably, PA1-LRP provided stronger support for endolysin-mediated cell lysis than exogenous transmembrane domains. Additionally, our results demonstrated that the HPP fused with PA1-Lys, led to 40.60% cell death, with bacteria changing from rod-shaped to spherical and exhibiting vacuolation. Taken together, this study provides insights into the lysis mechanisms of Pantoea phages and identifies a novel lysis-related protein, PA1-LRP, which could have potential applications in phage therapy and bacterial disease control.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jianfei Lu
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta, Zagreb, Croatia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. Bacteriophage-mediated approaches for biofilm control. Front Cell Infect Microbiol 2024; 14:1428637. [PMID: 39435185 PMCID: PMC11491440 DOI: 10.3389/fcimb.2024.1428637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/23/2024] Open
Abstract
Biofilms are complex microbial communities in which planktonic and dormant bacteria are enveloped in extracellular polymeric substances (EPS) such as exopolysaccharides, proteins, lipids, and DNA. These multicellular structures present resistance to conventional antimicrobial treatments, including antibiotics. The formation of biofilms raises considerable concern in healthcare settings, biofilms can exacerbate infections in patients and compromise the integrity of medical devices employed during treatment. Similarly, certain bacterial species contribute to bulking, foaming, and biofilm development in water environments such as wastewater treatment plants, water reservoirs, and aquaculture facilities. Additionally, food production facilities provide ideal conditions for establishing bacterial biofilms, which can serve as reservoirs for foodborne pathogens. Efforts to combat antibiotic resistance involve exploring various strategies, including bacteriophage therapy. Research has been conducted on the effects of phages and their individual proteins to assess their potential for biofilm removal. However, challenges persist, prompting the examination of refined approaches such as drug-phage combination therapies, phage cocktails, and genetically modified phages for clinical applications. This review aims to highlight the progress regarding bacteriophage-based approaches for biofilm eradication in different settings.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Saskya E. Carrera-Pacheco
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Linda P. Guamán
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| |
Collapse
|
4
|
Pattnaik A, Pati S, Samal SK. Bacteriophage as a potential biotherapeutics to combat present-day crisis of multi-drug resistant pathogens. Heliyon 2024; 10:e37489. [PMID: 39309956 PMCID: PMC11416503 DOI: 10.1016/j.heliyon.2024.e37489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The rise of Multi-Drug Resistant (MDR) bacterial pathogens to most, if not all, currently available antibacterial agents has become a global threat. As a consequence of the antibiotic resistance epidemic, phage therapy has emerged as a potential alternative to conventional antibiotics. Despite the high therapeutic advantages of phage therapy, they have not yet been successfully used in the clinic due to various limitations of narrow host specificity compared to antibiotics, poor adhesion on biofilm surface, and susceptibility to both human and bacterial defences. This review focuses on the antibacterial effect of bacteriophage and their recent clinical trials with a special emphasis on the underlying mechanism of lytic phage action with the help of endolysin and holin. Furthermore, recent clinical trials of natural and modified endolysins and some marketed products have also been emphasized with future prospective.
Collapse
Affiliation(s)
- Ananya Pattnaik
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
- KSBT, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
| | | |
Collapse
|
5
|
Senhaji-Kacha A, Bernabéu-Gimeno M, Domingo-Calap P, Aguilera-Correa JJ, Seoane-Blanco M, Otaegi-Ugartemendia S, van Raaij MJ, Esteban J, García-Quintanilla M. Isolation and characterization of two novel bacteriophages against carbapenem-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2024; 14:1421724. [PMID: 39268483 PMCID: PMC11390652 DOI: 10.3389/fcimb.2024.1421724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The increase of antibiotic-resistant bacteria has become a global health emergency and the need to explore alternative therapeutic options arises. Phage therapy uses bacteriophages to target specific bacterial strains. Phages are highly specific and can target resistant bacteria. Currently, research in this regard is focused on ensuring reliability and safety to bring this tool into clinical practice. The first step is to conduct comprehensive preclinical research. In this work, we present two novel bacteriophages vB_Kpn_F13 and vB_Kpn_F14 isolated against clinical carbapenem-resistant Klebsiella pneumoniae strains obtained from hospital sewage. Multiple studies in vitro were conducted, such as sequencing, electron microscopy, stability, host range infectivity, planktonic effect and biofilm inhibition in order to discover their ability to be used against carbapenem-resistant K. pneumoniae pathogens causing difficult-to-treat infections.
Collapse
Affiliation(s)
- Abrar Senhaji-Kacha
- Department of Clinical Microbiology, Health Research Institute or Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBERINFEC-CIBER of Infectious Diseases, Madrid, Spain
| | - Mireia Bernabéu-Gimeno
- Institute of Biología Integrativa de Sistemas, Universitat de València-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Pilar Domingo-Calap
- Institute of Biología Integrativa de Sistemas, Universitat de València-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - John Jairo Aguilera-Correa
- Department of Clinical Microbiology, Health Research Institute or Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBERINFEC-CIBER of Infectious Diseases, Madrid, Spain
| | - Mateo Seoane-Blanco
- Department of Macromolecular Structure, Centro Nacional de Biotecnología-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Sara Otaegi-Ugartemendia
- Department of Macromolecular Structure, Centro Nacional de Biotecnología-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnología-The Spanish National Research Council or Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Health Research Institute or Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBERINFEC-CIBER of Infectious Diseases, Madrid, Spain
| | - Meritxell García-Quintanilla
- Department of Clinical Microbiology, Health Research Institute or Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBERINFEC-CIBER of Infectious Diseases, Madrid, Spain
| |
Collapse
|
6
|
Sauve K, Watson A, Oh JT, Swift S, Vila-Farres X, Abdelhady W, Xiong YQ, LeHoux D, Woodnutt G, Bayer AS, Schuch R. The Engineered Lysin CF-370 Is Active Against Antibiotic-Resistant Gram-Negative Pathogens In Vitro and Synergizes With Meropenem in Experimental Pseudomonas aeruginosa Pneumonia. J Infect Dis 2024; 230:309-318. [PMID: 38366561 PMCID: PMC11326841 DOI: 10.1093/infdis/jiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Lysins (cell wall hydrolases) targeting gram-negative organisms require engineering to permeabilize the outer membrane and access subjacent peptidoglycan to facilitate killing. In the current study, the potential clinical utility for the engineered lysin CF-370 was examined in vitro and in vivo against gram-negative pathogens important in human infections. METHODS Minimum inhibitory concentration (MICs) and bactericidal activity were determined using standard methods. An in vivo proof-of-concept efficacy study was conducted using a rabbit acute pneumonia model caused by Pseudomonas aeruginosa. RESULTS CF-370 exhibited potent antimicrobial activity, with MIC50/90 values (in µg/mL) for: P aeruginosa, 1/2; Acinetobacter baumannii, 1/1; Escherichia coli, 0.25/1; Klebsiella pneumoniae, 2/4; Enterobacter cloacae 1/4; and Stenotrophomonas maltophilia 2/8. CF-370 furthermore demonstrated bactericidal activity, activity in serum, a low propensity for resistance, anti-biofilm activity, and synergy with antibiotics. In the pneumonia model, CF-370 alone decreased bacterial densities in lungs, kidneys, and spleen versus vehicle control, and demonstrated significantly increased efficacy when combined with meropenem (vs either agent alone). CONCLUSIONS CF-370 is the first engineered lysin described with potent broad-spectrum in vitro activity against multiple clinically relevant gram-negative pathogens, as well as potent in vivo efficacy in an animal model of severe invasive multisystem infection.
Collapse
Affiliation(s)
| | | | - Jun T Oh
- ContraFect Corporation, Yonkers, New York
| | | | | | - Wessam Abdelhady
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
| | - Yan Q Xiong
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
- Geffen School of Medicine, University of California, Los Angeles
| | | | | | - Arnold S Bayer
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
- Geffen School of Medicine, University of California, Los Angeles
| | | |
Collapse
|
7
|
Park W, Park M, Chun J, Hwang J, Kim S, Choi N, Kim SM, Kim S, Jung S, Ko KS, Kweon DH. Delivery of endolysin across outer membrane of Gram-negative bacteria using translocation domain of botulinum neurotoxin. Int J Antimicrob Agents 2024; 64:107216. [PMID: 38795926 DOI: 10.1016/j.ijantimicag.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The emergence of multidrug-resistant pathogens has outpaced the development of new antibiotics, leading to renewed interest in endolysins. Endolysins have been investigated as novel biocontrol agents for Gram-positive bacteria. However, their efficacy against Gram-negative species is limited by the barrier presented by their outer membrane, which prevents endolysin access to the peptidoglycan substrate. Here, we used the translocation domain of botulinum neurotoxin to deliver endolysin across the outer membrane of Gram-negative bacteria. The translocation domain selectively interacts with and penetrates membranes composed of anionic lipids, which have been used in nature to deliver various proteins into animal cells. In addition to the botulinum neurotoxin translocation domain, we have fused bacteriophage-derived receptor binding protein to endolysins. This allows the attached protein to efficiently bind to a broad spectrum of Gram-negative bacteria. By attaching these target-binding and translocation machineries to endolysins, we aimed to develop an engineered endolysin with broad-spectrum targeting and enhanced antibacterial activity against Gram-negative species. To validate our strategy, we designed engineered endolysins using two well-known endolysins, T5 and LysPA26, and tested them against 23 strains from six species of Gram-negative bacteria, confirming that our machinery can act broadly. In particular, we observed a 2.32 log reduction in 30 min with only 0.5 µM against an Acinetobacter baumannii isolate. We also used the SpyTag/SpyCatcher system to easily attach target-binding proteins, thereby improving its target-binding ability. Overall, our newly developed endolysin engineering strategy may be a promising approach to control multidrug-resistant Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Wonbeom Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jihwan Chun
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Suhyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Nayoon Choi
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Soo Min Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - SeungJoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Sangwon Jung
- Research Center, MVRIX, Anyang, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Research Center, MVRIX, Anyang, Republic of Korea.
| |
Collapse
|
8
|
Vasina DV, Antonova NP, Gushchin VA, Aleshkin AV, Fursov MV, Fursova AD, Gancheva PG, Grigoriev IV, Grinkevich P, Kondratev AV, Kostarnoy AV, Lendel AM, Makarov VV, Nikiforova MA, Pochtovyi AA, Prudnikova T, Remizov TA, Shevlyagina NV, Siniavin AE, Smirnova NS, Terechov AA, Tkachuk AP, Usachev EV, Vorobev AM, Yakimakha VS, Yudin SM, Zackharova AA, Zhukhovitsky VG, Logunov DY, Gintsburg AL. Development of novel antimicrobials with engineered endolysin LysECD7-SMAP to combat Gram-negative bacterial infections. J Biomed Sci 2024; 31:75. [PMID: 39044206 PMCID: PMC11267749 DOI: 10.1186/s12929-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.
Collapse
Affiliation(s)
- Daria V Vasina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Nataliia P Antonova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey V Aleshkin
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Mikhail V Fursov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Anastasiia D Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Petya G Gancheva
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor V Grigoriev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Grinkevich
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Alexey V Kondratev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey V Kostarnoy
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiya M Lendel
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Valentine V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Maria A Nikiforova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei A Pochtovyi
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Timofey A Remizov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia V Shevlyagina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei E Siniavin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nina S Smirnova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander A Terechov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Artem P Tkachuk
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny V Usachev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei M Vorobev
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Victoria S Yakimakha
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Anastasia A Zackharova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir G Zhukhovitsky
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Public Health, Moscow, Russia
| | - Denis Y Logunov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L Gintsburg
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Khan FM, Rasheed F, Yang Y, Liu B, Zhang R. Endolysins: a new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front Pharmacol 2024; 15:1385261. [PMID: 38831886 PMCID: PMC11144922 DOI: 10.3389/fphar.2024.1385261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fazal Rasheed
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
10
|
Zheng T, Zhang C. Engineering strategies and challenges of endolysin as an antibacterial agent against Gram-negative bacteria. Microb Biotechnol 2024; 17:e14465. [PMID: 38593316 PMCID: PMC11003714 DOI: 10.1111/1751-7915.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.
Collapse
Affiliation(s)
- Tianyu Zheng
- Bathurst Future Agri‐Tech InstituteQingdao Agricultural UniversityQingdaoChina
| | - Can Zhang
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
11
|
Paterson DL. Antibacterial agents active against Gram Negative Bacilli in phase I, II, or III clinical trials. Expert Opin Investig Drugs 2024; 33:371-387. [PMID: 38445383 DOI: 10.1080/13543784.2024.2326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.
Collapse
Affiliation(s)
- David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
12
|
Jiang L, Xu Q, Wu Y, Zhou X, Chen Z, Sun Q, Wen J. Characterization of a Straboviridae phage vB_AbaM-SHI and its inhibition effect on biofilms of Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1351993. [PMID: 38524182 PMCID: PMC10958429 DOI: 10.3389/fcimb.2024.1351993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a popular clinical pathogen worldwide. Biofilm-associated antibiotic-resistant A. baumannii infection poses a great threat to human health. Bacteria in biofilms are highly resistant to antibiotics and disinfectants. Furthermore, inhibition or eradication of biofilms in husbandry, the food industry and clinics are almost impossible. Phages can move across the biofilm matrix and promote antibiotic penetration. In the present study, a lytic A. baumannii phage vB_AbaM-SHI, belonging to family Straboviridae, was isolated from sauce chop factory drain outlet in Wuxi, China. The DNA genome consists of 44,180 bp which contain 93 open reading frames, and genes encoding products morphogenesis are located at the end of the genome. The amino acid sequence of vB_AbaM-SHI endolysin is different from those of previously reported A. baumannii phages in NCBI. Phage vB_AbaM-SHI endolysin has two additional β strands due to the replacement of a lysine (K) (in KU510289.1, NC_041857.1, JX976549.1 and MH853786.1) with an arginine (R) (SHI) at position 21 of A. baumannii phage endolysin. Spot test showed that phage vB_AbaM-SHI is able to lyse some antibiotic-resistant bacteria, such as A. baumannii (SL, SL1, and SG strains) and E. coli BL21 strain. Additionally, phage vB_AbaM-SHI independently killed bacteria and inhibited bacterial biofilm formation, and synergistically exerted strong antibacterial effects with antibiotics. This study provided a new perspective into the potential application value of phage vB_AbaM-SHI as an antimicrobial agent.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qian Xu
- Department of Blood Transfusion, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Ying Wu
- Department of Rheumatology Immunology, The First People’s Hospital of Hefei, Hefei, Anhui, China
| | - Xianglian Zhou
- Department of Rheumatology Immunology, The First People’s Hospital of Hefei, Hefei, Anhui, China
| | - Zhu Chen
- Department of Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Li P, Shen M, Ma W, Zhou X, Shen J. LysZX4-NCA, a new endolysin with broad-spectrum antibacterial activity for topical treatment. Virus Res 2024; 340:199296. [PMID: 38065302 PMCID: PMC10755502 DOI: 10.1016/j.virusres.2023.199296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/01/2024]
Abstract
The prevalence of multidrug-resistant highly virulent Klebsiella pneumoniae (MDR-hvKP) requires the development of new therapeutic agents. Herein, a novel lytic phage vB_KpnS_ZX4 against MDR-hvKP was discovered in hospital sewage. Phage vB_KpnS_ZX4 had a short latent period (5 min) and a large burst size (230 PFU/cell). It can rapidly reduce the number of bacteria in vitro and improve survival rates of bacteremic mice in vivo from 0 to 80 % with a single injection of 108 PFU. LysZX4, an endolysin derived from vB_KpnS_ZX4, exhibits potent antimicrobial activity in vitro in combination with ethylenediaminetetraacetic acid (EDTA). The antimicrobial activity of LysZX4 was further enhanced by the fusion of KWKLFKI residues from cecropin A (LysZX4-NCA). In vitro antibacterial experiments showed that LysZX4-NCA exerts broad-spectrum antibacterial activity against clinical Gram-negative bacteria, including MDR-hvKP. Moreover, in the mouse model of MDR-hvKP skin infection, treatment with LysZX4-NCA resulted in a three-log reduction in bacterial burden on the skin compared to the control group. Therefore, the novel phages vB_KpnS_ZX4 and LysZX4-NCA are effective reagents for the treatment of systemic and local MDR-hvKP infections.
Collapse
Affiliation(s)
- Ping Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Wenjie Ma
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| | - Jiayin Shen
- The Third People's Hospital of Shenzhen, Shenzhen 518112, PR China.
| |
Collapse
|
14
|
Zhao Z, Wen S, Song N, Wang L, Zhou Y, Deng X, Wu C, Zhang G, Chen J, Tian GB, Liang M, Zhong LL. Arginine-Enhanced Antimicrobial Activity of Nanozymes against Gram-Negative Bacteria. Adv Healthc Mater 2024; 13:e2301332. [PMID: 37924312 DOI: 10.1002/adhm.202301332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/31/2023] [Indexed: 11/06/2023]
Abstract
The continuous reduction of clinically available antibiotics has made it imperative to exploit more effective antimicrobial therapies, especially for difficult-to-treat Gram-negative pathogens. Herein, it is shown that the combination of an antimicrobial nanozyme with the clinically compatible basic amino acid L-arginine affords a potent treatment for infections with Gram-negative pathogens. In particular, the antimicrobial activity of the antimicrobial nanozyme is dramatically increased by ≈1000-fold after L-arginine stimulation. Specifically, the combination therapy enhances bacterial outer and inner membrane permeability and promotes intracellular reactive oxygen species (ROS) generation. Moreover, the metabolomic and transcriptomic results reveal that combination treatment leads to the increased ROS-mediated damage by inhibiting the tricarboxylic acid cycle and oxidative phosphorylation, thereby inducing an imbalance of the antioxidant and oxidant systems. Importantly, L-arginine dramatically significantly accelerates the healing of infected wounds in mouse models of multidrug-resistant peritonitis-sepsis and skin wound infection. Overall, this work demonstrates a novel synergistic antibacterial strategy by combining the antimicrobial nanozymes with L-arginine, which substantively facilitates the nanozyme-mediated killing of pathogens by promoting ROS production.
Collapse
Affiliation(s)
- Zihan Zhao
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Clinical Laboratory, Shenzhen People' s Hospital (Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Shu'an Wen
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lixiang Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Zhou
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xue Deng
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Changbu Wu
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Guili Zhang
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guo-Bao Tian
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lan-Lan Zhong
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| |
Collapse
|
15
|
Gerstmans H, Duyvejonck L, Vázquez R, Staes I, Borloo J, Abdelkader K, Leroy J, Cremelie E, Gutiérrez D, Tamés-Caunedo H, Ruas-Madiedo P, Rodríguez A, Aertsen A, Lammertyn J, Lavigne R, Briers Y. Distinct mode of action of a highly stable, engineered phage lysin killing Gram-negative bacteria. Microbiol Spectr 2023; 11:e0181323. [PMID: 37971248 PMCID: PMC10714810 DOI: 10.1128/spectrum.01813-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Engineered lysins are considered as highly promising alternatives for antibiotics. Our previous screening study using VersaTile technology identified 1D10 as a possible lead compound with activity against Acinetobacter baumannii strains under elevated human serum concentrations. In this manuscript, we reveal an unexpected mode of action and exceptional thermoresistance for lysin 1D10. Our findings shed new light on the development of engineered lysins, providing valuable insights for future research in this field.
Collapse
Affiliation(s)
- Hans Gerstmans
- Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Lisa Duyvejonck
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ines Staes
- Department of Microbial and Molecular Systems, Leuven, Belgium
| | | | - Karim Abdelkader
- Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef, Egypt
| | - Jeroen Leroy
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Emma Cremelie
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Diana Gutiérrez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Héctor Tamés-Caunedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Leuven, Belgium
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Yves Briers
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Carratalá JV, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Design strategies for positively charged endolysins: Insights into Artilysin development. Biotechnol Adv 2023; 69:108250. [PMID: 37678419 DOI: 10.1016/j.biotechadv.2023.108250] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Endolysins are bacteriophage-encoded enzymes that can specifically degrade the peptidoglycan layer of bacterial cell wall, making them an attractive tool for the development of novel antibacterial agents. The use of genetic engineering techniques for the production and modification of endolysins offers the opportunity to customize their properties and activity against specific bacterial targets, paving the way for the development of personalized therapies for bacterial infections. Gram-negative bacteria possess an outer membrane that can hinder the action of recombinantly produced endolysins. However, certain endolysins are capable of crossing the outer membrane by virtue of segments that share properties resembling those of cationic peptides. These regions increase the affinity of the endolysin towards the bacterial surface and assist in the permeabilization of the membrane. In order to improve the bactericidal effectiveness of endolysins, approaches have been implemented to increase their net charge, including the development of Artilysins containing positively charged amino acids at one end. At present, there are no specific guidelines outlining the steps for implementing these modifications. There is an ongoing debate surrounding the optimal location of positive charge, the need for a linker region, and the specific amino acid composition of peptides for modifying endolysins. The aim of this study is to provide clarity on these topics by analyzing and comparing the most effective modifications found in previous literature.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
17
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
18
|
Shah S, Das R, Chavan B, Bajpai U, Hanif S, Ahmed S. Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens. Front Microbiol 2023; 14:1170418. [PMID: 37789862 PMCID: PMC10542408 DOI: 10.3389/fmicb.2023.1170418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotics remain the frontline agents for treating deadly bacterial pathogens. However, the indiscriminate use of these valuable agents has led to an alarming rise in AMR. The antibiotic pipeline is insufficient to tackle the AMR threat, especially with respect to the WHO critical category of priority Gram-negative pathogens, which have become a serious problem as nosocomial and community infections and pose a threat globally. The AMR pandemic requires solutions that provide novel antibacterial agents that are not only effective but against which bacteria are less likely to gain resistance. In this regard, natural or engineered phage-encoded lysins (enzybiotics) armed with numerous features represent an attractive alternative to the currently available antibiotics. Several lysins have exhibited promising efficacy and safety against Gram-positive pathogens, with some in late stages of clinical development and some commercially available. However, in the case of Gram-negative bacteria, the outer membrane acts as a formidable barrier; hence, lysins are often used in combination with OMPs or engineered to overcome the outer membrane barrier. In this review, we have briefly explained AMR and the initiatives taken by different organizations globally to tackle the AMR threat at different levels. We bring forth the promising potential and challenges of lysins, focusing on the WHO critical category of priority Gram-negative bacteria and lysins under investigation for these pathogens, along with the challenges associated with developing them as therapeutics within the existing regulatory framework.
Collapse
Affiliation(s)
- Sanket Shah
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Ritam Das
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Bhakti Chavan
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sarmad Hanif
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Syed Ahmed
- Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
19
|
Petrzik K. Peptidoglycan Endopeptidase from Novel Adaiavirus Bacteriophage Lyses Pseudomonas aeruginosa Strains as Well as Arthrobacter globiformis and A. pascens Bacteria. Microorganisms 2023; 11:1888. [PMID: 37630448 PMCID: PMC10458142 DOI: 10.3390/microorganisms11081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
A novel virus lytic for Pseudomonas aeruginosa has been purified. Its viral particles have a siphoviral morphology with a head 60 nm in diameter and a noncontractile tail 184 nm long. The dsDNA genome consists of 16,449 bp, has cohesive 3' termini, and encodes 28 putative proteins in a single strain. The peptidoglycan endopeptidase encoded by ORF 16 was found to be the lytic enzyme of this virus. The recombinant, purified enzyme was active up to 55 °C in the pH range 6-9 against all tested isolates of P. aeruginosa, but, surprisingly, also against the distant Gram-positive micrococci Arthrobacter globiformis and A. pascens. Both this virus and its endolysin are further candidates for possible treatment against P. aeruginosa and probably also other bacteria.
Collapse
Affiliation(s)
- Karel Petrzik
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branisovska 1160/31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
20
|
Jędrusiak A, Fortuna W, Majewska J, Górski A, Jończyk-Matysiak E. Phage Interactions with the Nervous System in Health and Disease. Cells 2023; 12:1720. [PMID: 37443756 PMCID: PMC10341288 DOI: 10.3390/cells12131720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The central nervous system manages all of our activities (e.g., direct thinking and decision-making processes). It receives information from the environment and responds to environmental stimuli. Bacterial viruses (bacteriophages, phages) are the most numerous structures occurring in the biosphere and are also found in the human organism. Therefore, understanding how phages may influence this system is of great importance and is the purpose of this review. We have focused on the effect of natural bacteriophages in the central nervous system, linking them to those present in the gut microbiota, creating the gut-brain axis network, as well as their interdependence. Importantly, based on the current knowledge in the field of phage application (e.g., intranasal) in the treatment of bacterial diseases associated with the brain and nervous system, bacteriophages may have significant therapeutic potential. Moreover, it was indicated that bacteriophages may influence cognitive processing. In addition, phages (via phage display technology) appear promising as a targeted therapeutic tool in the treatment of, among other things, brain cancers. The information collected and reviewed in this work indicates that phages and their impact on the nervous system is a fascinating and, so far, underexplored field. Therefore, the aim of this review is not only to summarize currently available information on the association of phages with the nervous system, but also to stimulate future studies that could pave the way for novel therapeutic approaches potentially useful in treating bacterial and non-bacterial neural diseases.
Collapse
Affiliation(s)
- Adam Jędrusiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 54-427 Wroclaw, Poland;
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| |
Collapse
|
21
|
Chen K, Guan Y, Hu R, Cui X, Liu Q. Characterization of the LysP2110-HolP2110 Lysis System in Ralstonia solanacearum Phage P2110. Int J Mol Sci 2023; 24:10375. [PMID: 37373522 DOI: 10.3390/ijms241210375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Ralstonia solanacearum, a pathogen causing widespread bacterial wilt disease in numerous crops, currently lacks an optimal control agent. Given the limitations of traditional chemical control methods, including the risk of engendering drug-resistant strains and environmental harm, there is a dire need for sustainable alternatives. One alternative is lysin proteins that selectively lyse bacteria without contributing to resistance development. This work explored the biocontrol potential of the LysP2110-HolP2110 system of Ralstonia solanacearum phage P2110. Bioinformatics analyses pinpointed this system as the primary phage-mediated host cell lysis mechanism. Our data suggest that LysP2110, a member of the Muraidase superfamily, requires HolP2110 for efficient bacterial lysis, presumably via translocation across the bacterial membrane. LysP2110 also exhibits broad-spectrum antibacterial activity in the presence of the outer membrane permeabilizer EDTA. Additionally, we identified HolP2110 as a distinct holin structure unique to the Ralstonia phages, underscoring its crucial role in controlling bacterial lysis through its effect on bacterial ATP levels. These findings provide valuable insights into the function of the LysP2110-HolP2110 lysis system and establish LysP2110 as a promising antimicrobial agent for biocontrol applications. This study underpins the potential of these findings in developing effective and environment-friendly biocontrol strategies against bacterial wilt and other crop diseases.
Collapse
Affiliation(s)
- Kaihong Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanhui Guan
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ronghua Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodong Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
23
|
Euler CW, Raz A, Hernandez A, Serrano A, Xu S, Andersson M, Zou G, Zhang Y, Fischetti VA, Li J. PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-Negative ESKAPE Pathogens. Antimicrob Agents Chemother 2023; 67:e0151922. [PMID: 37098944 PMCID: PMC10190635 DOI: 10.1128/aac.01519-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Klebsiella pneumoniae and Pseudomonas aeruginosa are two leading causes of burn and wound infections, pneumonia, urinary tract infections, and more severe invasive diseases, which are often multidrug resistant (MDR) or extensively drug resistant. Due to this, it is critical to discover alternative antimicrobials, such as bacteriophage lysins, against these pathogens. Unfortunately, most lysins that target Gram-negative bacteria require additional modifications or outer membrane permeabilizing agents to be bactericidal. We identified four putative lysins through bioinformatic analysis of Pseudomonas and Klebsiella phage genomes in the NCBI database and then expressed and tested their intrinsic lytic activity in vitro. The most active lysin, PlyKp104, exhibited >5-log killing against K. pneumoniae, P. aeruginosa, and other Gram-negative representatives of the multidrug-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumonia, Acinetobacter baumannii, P. aeruginosa, and Enterobacter species) without further modification. PlyKp104 displayed rapid killing and high activity over a wide pH range and in high concentrations of salt and urea. Additionally, pulmonary surfactants and low concentrations of human serum did not inhibit PlyKp104 activity in vitro. PlyKp104 also significantly reduced drug-resistant K. pneumoniae >2 logs in a murine skin infection model after one treatment of the wound, suggesting that this lysin could be used as a topical antimicrobial against K. pneumoniae and other MDR Gram-negative infections.
Collapse
Affiliation(s)
- Chad W. Euler
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Assaf Raz
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anaise Hernandez
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anna Serrano
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Siyue Xu
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martin Andersson
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
24
|
Sitthisak S, Manrueang S, Khongfak S, Leungtongkam U, Thummeepak R, Thanwisai A, Burton N, Dhanoa GK, Tsapras P, Sagona AP. Antibacterial activity of vB_AbaM_PhT2 phage hydrophobic amino acid fusion endolysin, combined with colistin against Acinetobacter baumannii. Sci Rep 2023; 13:7470. [PMID: 37156803 PMCID: PMC10167329 DOI: 10.1038/s41598-023-33822-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Phage lytic enzymes are promising antimicrobial agents. In this study, an endolysin derived from vB_AbaM_PhT2 (vPhT2), was identified. This endolysin represented the conserved lysozyme domain. Recombinant endolysin (lysAB- vT2) and hydrophobic fusion endolysin (lysAB-vT2-fusion) were expressed and purified. Both endolysins showed lytic activity against bacterial crude cell wall of Gram-negative bacteria. The MIC of lysAB-vT2-fusion was 2 mg/ml corresponding to 100 µM, while the MIC of lysAB-vT2 was more than 10 mg/ml (400 µM). Combination of lysAB-vT2-fusion with colistin, polymyxin B or copper was synergistic against A. baumannii (FICI value as 0.25). Antibacterial activity of lysAB-vT2-fusion plus colistin at the fractional inhibitory concentrations (FICs) revealed that it can inhibit Escherichia coli, Klebsiella pneumoniae and various strains of extremely drug-resistant A. baumannii (XDRAB) and phage resistant A. baumannii. The lysAB- vT2-fusion still retained its antibacterial activity after incubating the enzyme at 4, 20, 40 and 60 °C for 30 min. The lysAB-vT2-fusion could inhibit the mature biofilm, and incubation of lysAB-vT2-fusion with T24 human cells infected with A. baumannii led to a partial reduction of LDH release from T24 cells. In summary, our study highlights the antimicrobial ability of engineered lysAB-vT2-fusion endolysin, which can be applied for the control of A. baumannii infection.
Collapse
Affiliation(s)
- Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Suphattra Manrueang
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Supat Khongfak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Gurneet K Dhanoa
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
25
|
Luo Q, Liu N, Pu S, Zhuang Z, Gong H, Zhang D. A review on the research progress on non-pharmacological therapy of Helicobacter pylori. Front Microbiol 2023; 14:1134254. [PMID: 37007498 PMCID: PMC10063898 DOI: 10.3389/fmicb.2023.1134254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Helicobacter pylori is a pathogenic microorganism that mainly resides in the human stomach and is the major cause of chronic gastritis, peptic ulcer and gastric cancer. Up to now, the treatment of Helicobacter pylori has been predominantly based on a combination of antibiotics and proton pump inhibitors. However, the increasing antibiotic resistance greatly limits the efficacy of anti-Helicobacter pylori treatment. Turning to non-antibiotic or non-pharmacological treatment is expected to solve this problem and may become a new strategy for treating Helicobacter pylori. In this review, we outline Helicobacter pylori's colonization and virulence mechanisms. Moreover, a series of non-pharmacological treatment methods for Helicobacter pylori and their mechanisms are carefully summarized, including probiotics, oxygen-rich environment or hyperbaric oxygen therapy, antibacterial photodynamic therapy, nanomaterials, antimicrobial peptide therapy, phage therapy and modified lysins. Finally, we provide a comprehensive overview of the challenges and perspectives in developing new medical technologies for treating Helicobacter pylori without drugs.
Collapse
Affiliation(s)
- Qian Luo
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Na Liu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Sugui Pu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Ze Zhuang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Hang Gong
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, Lanzhou, China
| |
Collapse
|
26
|
Han K, Dong Y, An X, Song L, Li M, Fan H, Tong Y. Potential application of a newly isolated phage BUCT609 infecting Stenotrophomonas maltophilia. Front Microbiol 2022; 13:1001237. [PMID: 36478859 PMCID: PMC9720304 DOI: 10.3389/fmicb.2022.1001237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/31/2022] [Indexed: 08/29/2023] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is widely distributed in nature and frequently causes nosocomial infections. In this work, the biological characteristics and genome of a new S. maltophilia phage BUCT609 isolated from hospital sewage with S. maltophilia strain No. 3015 as host was analyzed and its therapeutic effect in vivo was explored. It was observed by TEM that phage BUCT609 belongs to the Podoviridae with a 10 nm tail structure and a capsid with a diameter of about 50 nm. It has a short latent period (about 10 min) and its burst size is 382 PFU /cell when multiplicity of infection (MOI) is 0.01. Furthermore, it has a high survival rate in the environment with a pH range from 3 to 10 and temperature range from 4°C to 55°C. The complete genome of phage BUCT609 is linear double-stranded DNA of 43,145 bp in length, and the GC content is 58%. The genome sequence of phage BUCT609 shares <45% homology with other phages. No virulence genes and antibiotic resistance genes were found in bacteriophage BUCT609. In vivo animal experiments showed that the survival rate of mice infected with S. maltophilia was significantly improved after the intranasal injection of phage BUCT609. Therefore, our study supports that phage BUCT609 could be used as a promising antimicrobial candidate for treating S. maltophilia infections.
Collapse
Affiliation(s)
- Ke Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuqi Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
27
|
Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential. Antibiotics (Basel) 2022; 11:antibiotics11101448. [PMID: 36290106 PMCID: PMC9598152 DOI: 10.3390/antibiotics11101448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Phage lysins are a promising alternative to common antibiotic chemotherapy. However, they have been regarded as less effective against Gram-negative pathogens unless engineered, e.g., by fusing them to antimicrobial peptides (AMPs). AMPs themselves pose an alternative to antibiotics. In this work, AMP P87, previously derived from a phage lysin (Pae87) with a presumed nonenzymatic mode-of-action, was investigated to improve its antibacterial activity. Five modifications were designed to maximize the hydrophobic moment and net charge, producing the modified peptide P88, which was evaluated in terms of bactericidal activity, cytotoxicity, MICs or synergy with antibiotics. P88 had a better bactericidal performance than P87 (an average of 6.0 vs. 1.5 log-killing activity on Pseudomonas aeruginosa strains treated with 10 µM). This did not correlate with a dramatic increase in cytotoxicity as assayed on A549 cell cultures. P88 was active against a range of P. aeruginosa isolates, with no intrinsic resistance factors identified. Synergy with some antibiotics was observed in vitro, in complex media, and in a respiratory infection mouse model. Therefore, P88 can be a new addition to the therapeutic toolbox of alternative antimicrobials against Gram-negative pathogens as a sole therapeutic, a complement to antibiotics, or a part to engineer proteinaceous antimicrobials.
Collapse
|
28
|
Islam MM, Kim D, Kim K, Park SJ, Akter S, Kim J, Bang S, Kim S, Kim J, Lee JC, Hong CW, Shin M. Engineering of lysin by fusion of antimicrobial peptide (cecropin A) enhances its antibacterial properties against multidrug-resistant Acinetobacter baumannii. Front Microbiol 2022; 13:988522. [PMID: 36225352 PMCID: PMC9549208 DOI: 10.3389/fmicb.2022.988522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Most clinical isolates of Acinetobacter baumannii, a nosocomial pathogen, are multidrug-resistant (MDR), fueling the search for alternative therapies. Bacteriophage-derived endolysins have potent antibacterial activities and are considered as alternatives to antibiotics against A. baumannii infection. Gram-negative bacteria possess outer lipid membrane that prevents direct contact between the endolysins and the cell wall. We hypothesized that the fusion of antimicrobial peptide (AMP) with endolysin could help to reduce bacterial endolysin resistance and increase antimicrobial activity by membrane permeability action. Accordingly, we fused cecropin A, a commonly used AMP, with the N-terminus of AbEndolysin, which enhances the bactericidal activity of the chimeric endolysin. The bactericidal activity of cecropin A-fused AbEndolysin increased by at least 2-8 fold for various MDR A. baumannii clinical isolates. The in vitro bactericidal activity results also showed higher bacterial lysis by the chimeric endolysin than that by the parental lysin. The engineered AbEndolysin (eAbEndolysin) showed synergistic effects with the beta-lactam antibiotics cefotaxime, ceftazidime, and aztreonam, and an additive effect with meropenem and imipenem. eAbEndolysin had no cytotoxic effect on A549 cell line and rescued mice (40% survival rate) from systemic A. baumannii infection. Together, these findings suggest the potential of lysin therapy and may prompt its use as an alternative to antibiotics.
Collapse
Affiliation(s)
- Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Dooyoung Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Su-Jin Park
- Functional Bio-material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Samia Akter
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jeongah Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seunghyeok Bang
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
29
|
A Lysozyme Murein Hydrolase with Broad-Spectrum Antibacterial Activity from Enterobacter Phage myPSH1140. Antimicrob Agents Chemother 2022; 66:e0050622. [PMID: 35950843 PMCID: PMC9487488 DOI: 10.1128/aac.00506-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages and bacteriophage-derived peptidoglycan hydrolases (endolysins) present promising alternatives for the treatment of infections caused by multidrug resistant Gram-negative and Gram-positive pathogens. In this study, Gp105, a putative lysozyme murein hydrolase from Enterobacter phage myPSH1140 was characterized in silico, in vitro as well as in vivo using the purified protein. Gp105 contains a T4-type lysozyme-like domain (IPR001165) and belongs to Glycoside hydrolase family 24 (IPR002196). The putative endolysin indeed had strong antibacterial activity against Gram-negative pathogens, including E. cloacae, K. pneumoniae, P. aeruginosa, S. marcescens, Citrobacter sp., and A. baumannii. Also, an in vitro peptidoglycan hydrolysis assay showed strong activity against purified peptidoglycans. This study demonstrates the potential of Gp105 to be used as an antibacterial protein to combat Gram-negative pathogens.
Collapse
|
30
|
Yin Y, Wang X, Mou Z, Ren H, Zhang C, Zou L, Liu H, Liu W, Liu Z. Characterization and genome analysis of Pseudomonas aeruginosa phage vB_PaeP_Lx18 and the antibacterial activity of its lysozyme. Arch Virol 2022; 167:1805-1817. [PMID: 35716268 DOI: 10.1007/s00705-022-05472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
A lytic Pseudomonas aeruginosa phage, vB_PaeP_Lx18 (Lx18), was isolated from the sewage of a dairy farm. Biological characterization revealed that Lx18 was stable from 40 °C to 60 °C and over a wide range of pH values from 4 to 10. It was able to lyse 63.6% (21/33) of the P. aeruginosa strains tested and was able to reduce and disperse biofilms, with a biofilm reduction rate of 76.8%. Whole-genome sequencing showed that Lx18 is a dsDNA virus with a genome of 42,735 bp and G+C content of 62.16%. The genome contains 54 open reading frames (ORFs), 28 of which have known functions, including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No virulence or tRNA genes were identified. Phylogenetic analysis showed that phage Lx18 belongs to the genus Phikmvvirus. The lysozyme of Lx18, Lys18, was cloned and expressed. The combined action of Lys18 and ethylenediaminetetraacetic acid (EDTA) had antibacterial activity against Pseudomonas aeruginosa. The study of phage Lx18 and its lysozyme will provide basic information for further research on the treatment of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Yin Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Xinwei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Zehua Mou
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China.
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China.
| | - Zongzhu Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| |
Collapse
|
31
|
Kim J, Kim JC, Ahn J. Assessment of bacteriophage-encoded endolysin as a potent antimicrobial agent against antibiotic-resistant Salmonella Typhimurium. Microb Pathog 2022; 168:105576. [PMID: 35561980 DOI: 10.1016/j.micpath.2022.105576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
This study was designed to evaluate the potential of using newly purified Salmonella phage-encoded endolysin LysPB32 as novel antibiotic alternative. The endolysin LysPB32 was characterized by analyzing pH and thermal stability, lytic spectrum, antimicrobial activity, and mutant frequency against Salmonella Typhimurium KCCM 40253 (STKCCM), S. Typhimurium ATCC 19585 (STATCC), S. Typhimurium CCARM 8009 (STCCARM), Klebsiella pneumoniae ATCC 23357 (KPATCC), K. pneumoniae CCARM 10237 (KPCCARM), Pseudomonas aeruginosa ATCC 27853 (PAATCC), Listeria monocytogenes ATCC 1911 (LMATCC), Staphylococcus aureus ATCC 25923 (SAATCC), and S. aureus CCARM 3080 (SACCARM). The molecular weight of LysPB32 is 17 kDa that was classified as N-acetyl-β-d-muramidase. The optimum activity of LysPB32 against the outer membrane (OM) permeabilized STKCCM, STATCC, and STCCARM was observed at 37 °C and pH 6.5. LysPB32 had a broad spectrum of muralytic activity against antibiotic-sensitive STKCCM (41 mOD/min), STATCC (32 mOD/min), and SBKACC (25 mOD/min) and antibiotic-resistant STCCARM (35 mOD/min) and KPCCARM (31 mOD/min). The minimum inhibitory concentrations (MICs) of polymyxin B against STKCCM, STCCARM, and STATCC were decreased by 4-, 4-, and 8-folds, respectively, when treated with LysPB32. The combination of LysPB32 and polymyxin B effectively inhibited the growth of STKCCM, STCCARM, and STATCC after 24 h of incubation at 37 °C, showing 4.9-, 4.4-, and 3.3-log reductions, respectively. The mutant frequency was low in STKCCM, STCCARM, and STATCC treated with combination of LysPB32-polymyxin B system. The results suggest the LysPB32-polymyxin system can be a potential candidate for alternative therapeutic agent to control antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
32
|
Phothichaisri W, Chankhamhaengdecha S, Janvilisri T, Nuadthaisong J, Phetruen T, Fagan RP, Chanarat S. Potential Role of the Host-Derived Cell-Wall Binding Domain of Endolysin CD16/50L as a Molecular Anchor in Preservation of Uninfected Clostridioides difficile for New Rounds of Phage Infection. Microbiol Spectr 2022; 10:e0236121. [PMID: 35377223 PMCID: PMC9045149 DOI: 10.1128/spectrum.02361-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Endolysin is a phage-encoded cell-wall hydrolase which degrades the peptidoglycan layer of the bacterial cell wall. The enzyme is often expressed at the late stage of the phage lytic cycle and is required for progeny escape. Endolysins of bacteriophage that infect Gram-positive bacteria often comprises two domains: a peptidoglycan hydrolase and a cell-wall binding domain (CBD). Although the catalytic domain of endolysin is relatively well-studied, the precise role of CBD is ambiguous and remains controversial. Here, we focus on the function of endolysin CBD from a recently isolated Clostridioides difficile phage. We found that the CBD is not required for lytic activity, which is strongly prevented by the surface layer of C. difficile. Intriguingly, hidden Markov model analysis suggested that the endolysin CBD is likely derived from the CWB2 motif of C. difficile cell-wall proteins but possesses a higher binding affinity to bacterial cell-wall polysaccharides. Moreover, the CBD forms a homodimer, formation of which is necessary for interaction with the surface saccharides. Importantly, endolysin diffusion and sequential cytolytic assays showed that CBD of endolysin is required for the enzyme to be anchored to post-lytic cell-wall remnants, suggesting its physiological roles in limiting diffusion of the enzyme, preserving neighboring host cells, and thereby enabling the phage progeny to initiate new rounds of infection. Taken together, this study provides an insight into regulation of endolysin through CBD and can potentially be applied for endolysin treatment against C. difficile infection. IMPORTANCE Endolysin is a peptidoglycan hydrolase encoded in a phage genome. The enzyme is attractive due to its potential use as antibacterial treatment. To utilize endolysin for the therapeutic propose, understanding of the fundamental role of endolysin becomes important. Here, we investigate the function of cell-wall binding domain (CBD) of an endolysin from a C. difficile phage. The domain is homologous to a cell-wall associating module of bacterial cell-wall proteins, likely acquired during phage-host coevolution. The interaction of CBD to bacterial cell walls reduces enzyme diffusion and thereby limits cell lysis of the neighboring bacteria. Our findings indicate that the endolysin is trapped to the cell-wall residuals through CBD and might serve as an advantage for phage replication. Thus, employing a CBD-less endolysin might be a feasible strategy for using endolysin for the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jirayu Nuadthaisong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Robert P. Fagan
- School of Biosciences, Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Vázquez R, Díez-Martínez R, Domingo-Calap P, García P, Gutiérrez D, Muniesa M, Ruiz-Ruigómez M, Sanjuán R, Tomás M, Tormo-Mas MÁ, García P. Essential Topics for the Regulatory Consideration of Phages as Clinically Valuable Therapeutic Agents: A Perspective from Spain. Microorganisms 2022; 10:microorganisms10040717. [PMID: 35456768 PMCID: PMC9025261 DOI: 10.3390/microorganisms10040717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance is one of the major challenges that humankind shall face in the short term. (Bacterio)phage therapy is a valuable therapeutic alternative to antibiotics and, although the concept is almost as old as the discovery of phages, its wide application was hindered in the West by the discovery and development of antibiotics in the mid-twentieth century. However, research on phage therapy is currently experiencing a renaissance due to the antimicrobial resistance problem. Some countries are already adopting new ad hoc regulations to favor the short-term implantation of phage therapy in clinical practice. In this regard, the Phage Therapy Work Group from FAGOMA (Spanish Network of Bacteriophages and Transducing Elements) recently contacted the Spanish Drugs and Medical Devices Agency (AEMPS) to promote the regulation of phage therapy in Spain. As a result, FAGOMA was asked to provide a general view on key issues regarding phage therapy legislation. This review comes as the culmination of the FAGOMA initiative and aims at appropriately informing the regulatory debate on phage therapy.
Collapse
Affiliation(s)
- Roberto Vázquez
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium;
| | | | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain; (P.D.-C.); (R.S.)
| | - Pedro García
- Center for Biological Research Margarita Salas (CIB-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28040 Madrid, Spain;
| | - Diana Gutiérrez
- Telum Therapeutics SL, 31110 Noáin, Spain; (R.D.-M.); (D.G.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain;
| | - María Ruiz-Ruigómez
- Internal Medicine, Infectious Diseases Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain; (P.D.-C.); (R.S.)
| | - María Tomás
- Department of Microbiology, Hospital Universitario de A Coruña (INIBIC-CHUAC, SERGAS), 15006 A Coruña, Spain;
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Ángeles Tormo-Mas
- Severe Infection Group, Hospital Universitari i Politècnic La Fe, Health Research Institute Hospital La Fe, IISLaFe, 46026 Valencia, Spain;
| | - Pilar García
- Dairy Research Institute of Asturias, IPLA-CSIC, 33300 Villaviciosa, Spain
- DairySafe Group, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| |
Collapse
|
34
|
Peng H, Rossetto D, Mansy SS, Jordan MC, Roos KP, Chen IA. Treatment of Wound Infections in a Mouse Model Using Zn 2+-Releasing Phage Bound to Gold Nanorods. ACS NANO 2022; 16:4756-4774. [PMID: 35239330 PMCID: PMC8981316 DOI: 10.1021/acsnano.2c00048] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 05/20/2023]
Abstract
Infections caused by drug-resistant bacteria, particularly Gram-negative organisms, are increasingly difficult to treat using antibiotics. A potential alternative is "phage therapy", in which phages infect and lyse the bacterial host. However, phage therapy poses serious drawbacks and safety concerns, such as the risk of genetic transduction of antibiotic resistance genes, inconsistent pharmacokinetics, and unknown evolutionary potential. In contrast, metallic nanoparticles possess precise, tunable properties, including efficient conversion of electronic excitation into heat. In this work, we demonstrate that engineered phage-nanomaterial conjugates that target the Gram-negative pathogen Pseudomonas aeruginosa are highly effective as a treatment of infected wounds in mice. Photothermal heating, performed as a single treatment (15 min) or as two treatments on consecutive days, rapidly reduced the bacterial load and released Zn2+ to promote wound healing. The phage-nanomaterial treatment was significantly more effective than systemic standard-of-care antibiotics, with a >10× greater reduction in bacterial load and ∼3× faster healing as measured by wound size reduction when compared to fluoroquinolone treatment. Notably, the phage-nanomaterial was also effective against a P. aeruginosa strain resistant to polymyxins, a last-line antibiotic therapy. Unlike these antibiotics, the phage-nanomaterial showed no detectable toxicity or systemic effects in mice, consistent with the short duration and localized nature of phage-nanomaterial treatment. Our results demonstrate that phage therapy controlled by inorganic nanomaterials can be a safe and effective antimicrobial strategy in vivo.
Collapse
Affiliation(s)
- Huan Peng
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Daniele Rossetto
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - Sheref S. Mansy
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - Maria C. Jordan
- Department
of Physiology, David Geffen School of Medicine
at the University of California, Los Angeles, California 90095, United States
| | - Kenneth P. Roos
- Department
of Physiology, David Geffen School of Medicine
at the University of California, Los Angeles, California 90095, United States
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
35
|
Heselpoth RD, Euler CW, Fischetti VA. PaP1, a Broad-Spectrum Lysin-Derived Cationic Peptide to Treat Polymicrobial Skin Infections. Front Microbiol 2022; 13:817228. [PMID: 35369520 PMCID: PMC8965563 DOI: 10.3389/fmicb.2022.817228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Most skin infections, including those complicating burns, are polymicrobial involving multiple causative bacteria. Add to this the fact that many of these organisms may be antibiotic-resistant, and a simple skin lesion or burn could soon become life-threatening. Membrane-acting cationic peptides from Gram-negative bacteriophage lysins can potentially aid in addressing the urgent need for alternative therapeutics. Such peptides natively constitute an amphipathic region within the structural composition of these lysins and function to permit outer membrane permeabilization in Gram-negative bacteria when added externally. This consequently allows the lysin to access and degrade the peptidoglycan substrate, resulting in rapid hypotonic lysis and bacterial death. When separated from the lysin, some of these cationic peptides kill sensitive bacteria more effectively than the native molecule via both outer and cytoplasmic membrane disruption. In this study, we evaluated the antibacterial properties of a modified cationic peptide from the broad-acting lysin PlyPa01. The peptide, termed PaP1, exhibited potent in vitro bactericidal activity toward numerous high priority Gram-positive and Gram-negative pathogens, including all the antibiotic-resistant ESKAPE pathogens. Both planktonic and biofilm-state bacteria were sensitive to the peptide, and results from time-kill assays revealed PaP1 kills bacteria on contact. The peptide was bactericidal over a wide temperature and pH range and could withstand autoclaving without loss of activity. However, high salt concentrations and complex matrices were found to be largely inhibitory, limiting its use to topical applications. Importantly, unlike other membrane-acting antimicrobials, PaP1 lacked cytotoxicity toward human cells. Results from a murine burn wound infection model using methicillin-resistant Staphylococcus aureus or multidrug-resistant Pseudomonas aeruginosa validated the in vivo antibacterial efficacy of PaP1. In these studies, the peptide enhanced the potency of topical antibiotics used clinically for treating chronic wound infections. Despite the necessity for additional preclinical drug development, the collective data from our study support PaP1 as a potential broad-spectrum monotherapy or adjunctive therapy for the topical treatment of polymicrobial infections and provide a foundation for engineering future lysin-derived peptides with improved antibacterial properties.
Collapse
Affiliation(s)
- Ryan D. Heselpoth
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
- *Correspondence: Ryan D. Heselpoth,
| | - Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
- Department of Medical Laboratory Sciences, Hunter College, New York, NY, United States
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
36
|
Vázquez R, Seoane-Blanco M, Rivero-Buceta V, Ruiz S, van Raaij MJ, García P. Monomodular Pseudomonas aeruginosa phage JG004 lysozyme (Pae87) contains a bacterial surface-active antimicrobial peptide-like region and a possible substrate-binding subdomain. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:435-454. [PMID: 35362467 PMCID: PMC8972805 DOI: 10.1107/s2059798322000936] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
The structure of the monomodular Pseudomonas aeruginosa bacteriophage JG004 lysin Pae87 is presented and investigated in relation to repurposing its function as an antimicrobial agent. The structure with its peptidoglycan ligand revealed a possible cell-wall-binding region. A C-terminal antimicrobial peptide-like region is shown to be important for disrupting the bacterial cell wall. Phage lysins are a source of novel antimicrobials to tackle the bacterial antibiotic-resistance crisis. The engineering of phage lysins is being explored as a game-changing technological strategy to introduce a more precise approach in the way in which antimicrobial therapy is applied. Such engineering efforts will benefit from a better understanding of lysin structure and function. In this work, the antimicrobial activity of the endolysin from Pseudomonas aeruginosa phage JG004, termed Pae87, has been characterized. This lysin had previously been identified as an antimicrobial agent candidate that is able to interact with the Gram-negative surface and disrupt it. Further evidence is provided here based on a structural and biochemical study. A high-resolution crystal structure of Pae87 complexed with a peptidoglycan fragment showed a separate substrate-binding region within the catalytic domain, 18 Å away from the catalytic site and located on the opposite side of the lysin molecule. This substrate-binding region was conserved among phylogenetically related lysins lacking an additional cell-wall-binding domain, but not among those containing such a module. Two glutamic acids were identified to be relevant for the peptidoglycan-degradation activity, although the antimicrobial activity of Pae87 was seemingly unrelated. In contrast, an antimicrobial peptide-like region within the Pae87 C-terminus, named P87, was found to be able to actively disturb the outer membrane and display antibacterial activity by itself. Therefore, an antimicrobial mechanism for Pae87 is proposed in which the P87 peptide plays the role of binding to the outer membrane and disrupting the cell-wall function, either with or without the participation of the catalytic activity of Pae87.
Collapse
|
37
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
38
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
39
|
Novel Phage Lysin Abp013 against Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:antibiotics11020169. [PMID: 35203772 PMCID: PMC8868305 DOI: 10.3390/antibiotics11020169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 01/23/2023] Open
Abstract
As antimicrobial resistance (AMR) continues to pose an ever-growing global health threat, propelling us into a post-antibiotic era, novel alternative therapeutic agents are urgently required. Lysins are bacteriophage-encoded peptidoglycan hydrolases that display great potential as a novel class of antimicrobials for therapeutics. While lysins against Gram-positive bacteria are highly effective when applied exogenously, it is challenging for lysins to access and cleave the peptidoglycan of Gram-negative bacteria due to their outer membrane. In this study, we identify a novel phage lysin Abp013 against Acinetobacter baumannii. Abp013 exhibited significant lytic activity against multidrug-resistant strains of A. baumannii. Notably, we found that Abp013 was able to tolerate the presence of human serum by up to 10%. Using confocal microscopy and LIVE/DEAD staining, we show that Abp013 can access and kill the bacterial cells residing in the biofilm. These results highlight the intrinsic bacteriolytic property of Abp013, suggesting the promising use of Abp013 as a novel therapeutic agent.
Collapse
|
40
|
Zhang Y, Huang HH, Duc HM, Masuda Y, Honjoh KI, Miyamoto T. Application of endolysin LysSTG2 as a potential biocontrol agent against planktonic and biofilm cells of Pseudomonas on various food and food contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Li C, Jiang M, Khan FM, Zhao X, Wang G, Zhou W, Li J, Yu J, Li Y, Wei H, Yang H. Intrinsic Antimicrobial Peptide Facilitates a New Broad-Spectrum Lysin LysP53 to Kill Acinetobacter baumannii In Vitro and in a Mouse Burn Infection Model. ACS Infect Dis 2021; 7:3336-3344. [PMID: 34788533 DOI: 10.1021/acsinfecdis.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance-related infections of Gram-negative pathogens pose a huge threat to global public health. Lysins, peptidoglycan hydrolases from bacteriophages, are expected as an alternative weapon against drug-resistant bacteria. In the present study, we report a new lysin LysP53 from Acinetobacter baumannii phage 53. Bioinformatic analysis revealed that LysP53 contains a positively charged N-terminal region and a putative peptidase catalytic domain. In vitro biochemical experiments showed that LysP53 is active against multiple antibiotic-resistant Gram-negative bacteria, including A. baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli, with a reduction of 5 logs in viable A. baumannii number after exposure to 100 μg/mL LysP53 for 1 h. Further studies showed that LysP53 contains a functional antimicrobial peptide, i.e., N-terminal 33 aa, with a comparable spectrum of activity to LysP53. In an A. baumannii-associated mouse model of burn infection, a single dose of 14 μg/mouse LysP53 (57.6 μM) showed higher decolonization efficacy than 4 μg/mouse minocycline- (874 μM; p < 0.05) and buffer-treated groups (p <0.001), leading to a bacterial reduction of 3 logs. Our findings collectively establish that LysP53 could be a promising candidate in the treatment of topical infections caused by multiple Gram-negative pathogens.
Collapse
Affiliation(s)
- Changchang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengwei Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Fazal Mehmood Khan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guanhua Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanli Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
43
|
Optimized Silica-Binding Peptide-Mediated Delivery of Bactericidal Lysin Efficiently Prevents Staphylococcus aureus from Adhering to Device Surfaces. Int J Mol Sci 2021; 22:ijms222212544. [PMID: 34830425 PMCID: PMC8619460 DOI: 10.3390/ijms222212544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Staphylococcal-associated device-related infections (DRIs) represent a significant clinical challenge causing major medical and economic sequelae. Bacterial colonization, proliferation, and biofilm formation after adherence to surfaces of the indwelling device are probably the primary cause of DRIs. To address this issue, we incorporated constructs of silica-binding peptide (SiBP) with ClyF, an anti-staphylococcal lysin, into functionalized coatings to impart bactericidal activity against planktonic and sessile Staphylococcus aureus. An optimized construct, SiBP1-ClyF, exhibited improved thermostability and staphylolytic activity compared to its parental lysin ClyF. SiBP1-ClyF-functionalized coatings were efficient in killing MRSA strain N315 (>99.999% within 1 h) and preventing the growth of static and dynamic S. aureus biofilms on various surfaces, including siliconized glass, silicone-coated latex catheter, and silicone catheter. Additionally, SiBP1-ClyF-immobilized surfaces supported normal attachment and growth of mammalian cells. Although the recycling potential and long-term stability of lysin-immobilized surfaces are still affected by the fragility of biological protein molecules, the present study provides a generic strategy for efficient delivery of bactericidal lysin to solid surfaces, which serves as a new approach to prevent the growth of antibiotic-resistant microorganisms on surfaces in hospital settings and could be adapted for other target pathogens as well.
Collapse
|
44
|
Marques AT, Tanoeiro L, Duarte A, Gonçalves L, Vítor JMB, Vale FF. Genomic Analysis of Prophages from Klebsiella pneumoniae Clinical Isolates. Microorganisms 2021; 9:2252. [PMID: 34835377 PMCID: PMC8617712 DOI: 10.3390/microorganisms9112252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is an increasing threat to public health and represents one of the most concerning pathogens involved in life-threatening infections. The resistant and virulence determinants are coded by mobile genetic elements which can easily spread between bacteria populations and co-evolve with its genomic host. In this study, we present the full genomic sequences, insertion sites and phylogenetic analysis of 150 prophages found in 40 K. pneumoniae clinical isolates obtained from an outbreak in a Portuguese hospital. All strains harbored at least one prophage and we identified 104 intact prophages (69.3%). The prophage size ranges from 29.7 to 50.6 kbp, coding between 32 and 78 putative genes. The prophage GC content is 51.2%, lower than the average GC content of 57.1% in K. pneumoniae. Complete prophages were classified into three families in the order Caudolovirales: Myoviridae (59.6%), Siphoviridae (38.5%) and Podoviridae (1.9%). In addition, an alignment and phylogenetic analysis revealed nine distinct clusters. Evidence of recombination was detected within the genome of some prophages but, in most cases, proteins involved in viral structure, transcription, replication and regulation (lysogenic/lysis) were maintained. These results support the knowledge that prophages are diverse and widely disseminated in K. pneumoniae genomes, contributing to the evolution of this species and conferring additional phenotypes. Moreover, we identified K. pneumoniae prophages in a set of endolysin genes, which were found to code for proteins with lysozyme activity, cleaving the β-1,4 linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in the peptidoglycan network and thus representing genes with the potential for lysin phage therapy.
Collapse
Affiliation(s)
- Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Monte da Caparica, Portugal
| | - Luisa Gonçalves
- Clinical Pathology Unit, Hospital SAMS, Cidade de Gabela, 1849-017 Lisboa, Portugal;
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| |
Collapse
|
45
|
Ramos-Vivas J, Superio J, Galindo-Villegas J, Acosta F. Phage Therapy as a Focused Management Strategy in Aquaculture. Int J Mol Sci 2021; 22:10436. [PMID: 34638776 PMCID: PMC8508683 DOI: 10.3390/ijms221910436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Joshua Superio
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway;
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
| |
Collapse
|
46
|
Gontijo MTP, Jorge GP, Brocchi M. Current Status of Endolysin-Based Treatments against Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:1143. [PMID: 34680724 PMCID: PMC8532960 DOI: 10.3390/antibiotics10101143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022] Open
Abstract
The prevalence of multidrug-resistant Gram-negative bacteria is a public health concern. Bacteriophages and bacteriophage-derived lytic enzymes have been studied in response to the emergence of multidrug-resistant bacteria. The availability of tRNAs and endolysin toxicity during recombinant protein expression is circumvented by codon optimization and lower expression levels using inducible pET-type plasmids and controlled cultivation conditions, respectively. The use of polyhistidine tags facilitates endolysin purification and alters antimicrobial activity. Outer membrane permeabilizers, such as organic acids, act synergistically with endolysins, but some endolysins permeate the outer membrane of Gram-negative bacteria per se. However, the outer membrane permeation mechanisms of endolysins remain unclear. Other strategies, such as the co-administration of endolysins with polymyxins, silver nanoparticles, and liposomes confer additional outer membrane permeation. Engineered endolysins comprising domains for outer membrane permeation is also a strategy used to overcome the current challenges on the control of multidrug-resistant Gram-negative bacteria. Metagenomics is a new strategy for screening endolysins with interesting antimicrobial properties from uncultured phage genomes. Here, we review the current state of the art on the heterologous expression of endolysin, showing the potential of bacteriophage endolysins in controlling bacterial infections.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas 13083-862, Brazil; (G.P.J.); (M.B.)
| | | | | |
Collapse
|
47
|
Kim K, Islam MM, Kim D, Yun SH, Kim J, Lee JC, Shin M. Characterization of a Novel Phage ΦAb1656-2 and Its Endolysin with Higher Antimicrobial Activity against Multidrug-Resistant Acinetobacter baumannii. Viruses 2021; 13:v13091848. [PMID: 34578429 PMCID: PMC8473069 DOI: 10.3390/v13091848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen, which is a problem worldwide due to the emergence of a difficult-to-treat multidrug-resistant A. baumannii (MDRAB). Endolysins are hydrolytic enzymes produced by a bacteriophage that can be used as a potential therapeutic agent for multidrug-resistant bacterial infection in replacing antibiotics. Here, we isolated a novel bacteriophage through prophage induction using mitomycin C from clinical A. baumannii 1656-2. Morphologically, ΦAb1656-2 was identified as a Siphoviridae family bacteriophage, which can infect MDRAB. The whole genome of ΦAb1656-2 was sequenced, and it showed that it is 50.9 kb with a G + C content of 38.6% and 68 putative open reading frames (ORFs). A novel endolysin named AbEndolysin with an N-acetylmuramidase-containing catalytic domain was identified, expressed, and purified from ΦAb1656-2. Recombinant AbEndolysin showed significant antibacterial activity against MDRAB clinical strains without any outer membrane permeabilizer. These results suggest that AbEndolysin could represent a potential antimicrobial agent for treating MDRAB clinical isolates.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Dooyoung Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Sung Ho Yun
- Bio-Chemical Analysis Team, Korea Basic Science Institute,162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28119, Korea;
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
- Correspondence: ; Tel.: +82-53-420-4841
| |
Collapse
|
48
|
Chen X, Liu M, Zhang P, Leung SSY, Xia J. Membrane-Permeable Antibacterial Enzyme against Multidrug-Resistant Acinetobacter baumannii. ACS Infect Dis 2021; 7:2192-2204. [PMID: 34232613 DOI: 10.1021/acsinfecdis.1c00222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteriophage endolysins (lysins, or murein hydrolases) are enzymes that bacteriophages utilize to degrade the cell wall peptidoglycans (PG) and subsequently disintegrate bacterial cells from within. Due to their muralytic activity, lysins are considered as potential candidates to battle against antibiotic resistance. However, most lysins in their native form lack the capability of trespassing the outer membrane (OM) of Gram-negative (G-ve) bacteria. To turn the bacteriophage enzymes into antibacterial weapons against G-ve bacteria, endowing these enzymes the capability of accessing the PG substrate underneath the OM is critical. Here we show that fusing a membrane-permeabilizing peptide CeA at the C-terminus of a muralytic enzyme LysAB2 renders a two-step mechanism of bacterial killing and increases the activity of LysAB2 against the multidrug resistant Acinetobacter baumannii by up to 100 000-folds. The engineered LysAB2, termed LysAB2-KWK here, also shows remarkable activity against A. baumannii at the stationary phase and a prominent capability to disrupt biofilm formation. In addition, the enzyme shows a broad antibacterial spectrum against G-ve bacteria, a decent tolerance to serum, and a prolonged storage life. LysAB2-KWK rescues the larva of the greater wax moth Galleria mellonella from A. baumannii infection through systemic administration. Altogether, our work equips a globular lysin with OM permeabilization activity to enable effective killing of G-ve bacteria, reveals the critical role of the C-terminus of a globular lysin in the antibacterial activity, and points toward a viable route to engineer globular lysins as antibacterial enzymes for potential clinical use against multidrug resistant G-ve bacteria.
Collapse
|
49
|
Phages in Food Industry Biocontrol and Bioremediation. Antibiotics (Basel) 2021; 10:antibiotics10070786. [PMID: 34203362 PMCID: PMC8300737 DOI: 10.3390/antibiotics10070786] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Bacteriophages are ubiquitous in nature and their use is a current promising alternative in biological control. Multidrug resistant (MDR) bacterial strains are present in the livestock industry and phages are attractive candidates to eliminate them and their biofilms. This alternative therapy also reduces the non-desirable effects produced by chemicals on food. The World Health Organization (WHO) estimates that around 420,000 people die due to a foodborne illness annually, suggesting that an improvement in food biocontrol is desirable. This review summarizes relevant studies of phage use in biocontrol focusing on treatments in live animals, plants, surfaces, foods, wastewaters and bioremediation.
Collapse
|
50
|
Cristobal-Cueto P, García-Quintanilla A, Esteban J, García-Quintanilla M. Phages in Food Industry Biocontrol and Bioremediation. Antibiotics (Basel) 2021; 10:antibiotics10070786. [PMID: 34203362 DOI: 10.3390/antibiotic6as10070786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages are ubiquitous in nature and their use is a current promising alternative in biological control. Multidrug resistant (MDR) bacterial strains are present in the livestock industry and phages are attractive candidates to eliminate them and their biofilms. This alternative therapy also reduces the non-desirable effects produced by chemicals on food. The World Health Organization (WHO) estimates that around 420,000 people die due to a foodborne illness annually, suggesting that an improvement in food biocontrol is desirable. This review summarizes relevant studies of phage use in biocontrol focusing on treatments in live animals, plants, surfaces, foods, wastewaters and bioremediation.
Collapse
Affiliation(s)
- Pablo Cristobal-Cueto
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Alberto García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Calle Profesor García Gonzalez, 2, 41012 Seville, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | | |
Collapse
|