1
|
Abed S, Beig M, Barzi SM, Shafiei M, Hashemi Shahraki A, Sadeghi S, Sohrabi A. Development of phage-containing hydrogel for treating Enterococcus faecalis-infected wounds. PLoS One 2024; 19:e0312469. [PMID: 39466731 PMCID: PMC11515978 DOI: 10.1371/journal.pone.0312469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Chronic wound infections caused by Enterococcus faecalis pose formidable challenges in clinical management, exacerbated by the emergence of vancomycin-resistant strains. Phage therapy offers a targeted approach but encounters delivery hurdles. Due to their biocompatibility and controlled release properties, hydrogels hold promise as carriers. OBJECTIVE This study aimed to fabricate phage-containing hydrogels using sodium alginate (SA), carboxymethyl cellulose (CMC), and hyaluronic acid (HA) to treat E. faecalis-infected wounds. We assessed the efficacy of these hydrogels both in vitro and in vivo. METHODS The hydrogel was prepared using SA-CMC-HA polymers. Phage SAM-E.f 12 was incorporated into the SA-CMC-HA hydrogel. The hydrogel's swelling index was measured after 24 h, and degradation was assessed over seven days. Surface morphology and composition were analyzed using Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). Antibacterial activity was tested via optical density (OD) and disk diffusion assays. Phage release and stability were evaluated over a month. In vivo efficacy was tested in mice through wound healing and bacterial count assays, with histopathological analysis. RESULTS Hydrogels exhibited a swelling index of 0.43, a water absorption rate of %30, and 23% degradation over seven days. FTIR confirmed successful polymer incorporation. In vitro studies demonstrated that phage-containing hydrogels significantly inhibited bacterial growth, with an OD of 0.3 compared to 1.1 for the controls. Hydrogels remained stable for four weeks. In vivo, phage-containing hydrogels reduced bacterial load and enhanced wound healing, as shown by improved epithelialization and tissue restoration. CONCLUSION Phage-containing hydrogels effectively treat wounds infected with E. faecalis-infected wounds, promoting wound healing through controlled phage release. These hydrogels can improve clinical outcomes in the treatment of infected wounds.
Collapse
Affiliation(s)
- Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrazagh Hashemi Shahraki
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Gainesville, Florida, United States of America
| | - Sara Sadeghi
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
| | - Aria Sohrabi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
3
|
Kapoor A, Mudaliar SB, Bhat VG, Chakraborty I, Prasad ASB, Mazumder N. Phage therapy: A novel approach against multidrug-resistant pathogens. 3 Biotech 2024; 14:256. [PMID: 39355200 PMCID: PMC11442959 DOI: 10.1007/s13205-024-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The rapid rise of multidrug-resistant (MDR) organisms has created a critical need for alternative treatment options. Phage therapy is gaining attention as an effective way to fight bacterial infections by using lytic bacteriophages to specifically target and kill harmful bacteria. This review discusses several phage therapeutic options and emphasizes new developments in phage biology. Phage treatment has proven to be successful against MDR bacteria, as evidenced by multiple human clinical trials that indicate favorable results in treating a range of diseases caused by these pathogens. Despite these promising results, challenges such as phage resistance, regulatory hurdles, and the need for standardized treatment protocols remain. To effectively combat MDR bacterial infections, future research must focus on enhancing phage effectiveness, guaranteeing safety for human usage and incorporating phage therapy into clinical practice.
Collapse
Affiliation(s)
- Arushi Kapoor
- Robert R Mcormick School of Engineering and Applied Science, Northwestern University, Illinois, USA
| | - Samriti Balaji Mudaliar
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Vyasraj G. Bhat
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
4
|
Lin YH, Dharmaraj T, Chen Q, Echterhof A, Manasherob R, Zhang LJ, de Leeuw C, Peterson NA, Stannard W, Li Z, Hajfathalian M, Hargil A, Martinez HA, Pourtois J, Chang THW, Blankenberg FG, Amanatullah D, Chaudhuri O, Bollyky PL. Optimized Dosing and Delivery of Bacteriophage Therapy for Wound Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593005. [PMID: 38766200 PMCID: PMC11100690 DOI: 10.1101/2024.05.07.593005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lytic bacteriophages, viruses that lyse (kill) bacteria, hold great promise for treating infections, including wound infections caused by antimicrobial-resistant Pseudomonas aeruginosa. However, the optimal dosing and delivery strategies for phage therapy remain unclear. In a mouse wound infection model, we investigated the impact of dose, frequency, and administration route on the efficacy of phage therapy. We find that topical but not intravenous delivery is effective in this model. High-doses of phage reduces bacterial burden more effectively than low-doses, and repeated dosing achieves the highest eradication rates. Building on these insights, we developed "HydroPhage", a hyaluronan-based hydrogel system that uses dynamic covalent crosslinking to deliver high-titre phages over one week. HydroPhage eradicates infections five times more effectively than intravenous injection. We conclude that hydrogel-based sustained phage delivery enhances the efficacy of phage therapy and offers a practical, well-tolerated option for topical application.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Redwood City, CA, USA
| | - Lucy J. Zhang
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Cas de Leeuw
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Nana A. Peterson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Whitney Stannard
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Zhiwei Li
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hunter A. Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Julie Pourtois
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tony H. W. Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Derek Amanatullah
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Redwood City, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Jokar J, Abdulabbas HT, Javanmardi K, Mobasher MA, Jafari S, Ghasemian A, Rahimian N, Zarenezhad A, ُSoltani Hekmat A. Enhancement of bactericidal effects of bacteriophage and gentamicin combination regimen against Staphylococcus aureus and Pseudomonas aeruginosa strains in a mice diabetic wound model. Virus Genes 2024; 60:80-96. [PMID: 38079060 DOI: 10.1007/s11262-023-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 02/15/2024]
Abstract
Diabetic patients are more susceptible to developing wound infections resulting in poor and delayed wound healing. Bacteriophages, the viruses that target-specific bacteria, can be used as an alternative to antibiotics to eliminate drug-resistant bacterial infections. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are among the most frequently identified pathogens in diabetic foot ulcers (DFUs). The aim of this study was assessment of bacteriophage and gentamicin combination effects on bacterial isolates from DFU infections. Specific bacteriophages were collected from sewage and animal feces samples and the phages were enriched using S. aureus and P. aeruginosa cultures. The lytic potential of phage isolates was assessed by the clarity of plaques. We isolated and characterized four lytic phages: Stp2, Psp1, Stp1, and Psp2. The phage cocktail was optimized and investigated in vitro. We also assessed the effects of topical bacteriophage cocktail gel on animal models of DFU. Results revealed that the phage cocktail significantly reduced the mortality rate in diabetic infected mice. We determined that treatment with bacteriophage cocktail effectively decreased bacterial colony counts and improved wound healing in S. aureus and P. aeruginosa infections, especially when administrated concomitantly with gentamicin. The application of complementary therapy using a phage cocktail and gentamicin, could offer an attractive approach for the treatment of wound diabetic bacterial infections.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Samawah, Al Muthann, Iraq
| | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Ali Mobasher
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shima Jafari
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
6
|
Morozova VV, Kozlova YN, Ganichev DA, Tikunova NV. Bacteriophage Treatment of Infected Diabetic Foot Ulcers. Methods Mol Biol 2024; 2734:197-205. [PMID: 38066371 DOI: 10.1007/978-1-0716-3523-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Diabetic foot ulcers occur as a common complication of diabetes. The concomitant infection significantly delays the healing of the ulcers. Antibiotic treatment of infected ulcers is complicated by the formation of microbial biofilms, which are often heterogeneous and resistant to antibiotics. Bacteriophage therapy is considered an additional approach to the treatment of infected wounds. Here, we describe the basic method of application of bacteriophages for the treatment of infected diabetic foot ulcers, including very large ones.
Collapse
Affiliation(s)
- Vera V Morozova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Laboratory of Molecular Microbiology, Novosibirsk, Russian Federation.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.
| | - Yulia N Kozlova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Laboratory of Molecular Microbiology, Novosibirsk, Russian Federation
| | | | - Nina V Tikunova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Laboratory of Molecular Microbiology, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
7
|
Ayala R, Moiseenko AV, Chen TH, Kulikov EE, Golomidova AK, Orekhov PS, Street MA, Sokolova OS, Letarov AV, Wolf M. Nearly complete structure of bacteriophage DT57C reveals architecture of head-to-tail interface and lateral tail fibers. Nat Commun 2023; 14:8205. [PMID: 38081816 PMCID: PMC10713586 DOI: 10.1038/s41467-023-43824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The T5 family of viruses are tailed bacteriophages characterized by a long non-contractile tail. The bacteriophage DT57C is closely related to the paradigmal T5 phage, though it recognizes a different receptor (BtuB) and features highly divergent lateral tail fibers (LTF). Considerable portions of T5-like phages remain structurally uncharacterized. Here, we present the structure of DT57C determined by cryo-EM, and an atomic model of the virus, which was further explored using all-atom molecular dynamics simulations. The structure revealed a unique way of LTF attachment assisted by a dodecameric collar protein LtfC, and an unusual composition of the phage neck constructed of three protein rings. The tape measure protein (TMP) is organized within the tail tube in a three-stranded parallel α-helical coiled coil which makes direct contact with the genomic DNA. The presence of the C-terminal fragment of the TMP that remains within the tail tip suggests that the tail tip complex returns to its original state after DNA ejection. Our results provide a complete atomic structure of a T5-like phage, provide insights into the process of DNA ejection as well as a structural basis for the design of engineered phages and future mechanistic studies.
Collapse
Affiliation(s)
- Rafael Ayala
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, 904-0495, Onna-son, Okinawa, Japan
| | - Andrey V Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 1 Leninskie Gory, Bld. 12, 119234, Moscow, Russia
| | - Ting-Hua Chen
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, 904-0495, Onna-son, Okinawa, Japan
| | - Eugene E Kulikov
- Faculty of Biology, Lomonosov Moscow State University, 1 Leninskie Gory, Bld. 12, 119234, Moscow, Russia
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 7/2, 60-Letiya Oktyabrya Ave, 117312, Moscow, Russia
| | - Alla K Golomidova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 7/2, 60-Letiya Oktyabrya Ave, 117312, Moscow, Russia
| | - Philipp S Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, 1 International University Park Dr, Dayun New Town, Longgang District, Shenzhen, 518172, China
| | - Maya A Street
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, 904-0495, Onna-son, Okinawa, Japan
| | - Olga S Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 1 Leninskie Gory, Bld. 12, 119234, Moscow, Russia.
- Faculty of Biology, Shenzhen MSU-BIT University, 1 International University Park Dr, Dayun New Town, Longgang District, Shenzhen, 518172, China.
| | - Andrey V Letarov
- Faculty of Biology, Lomonosov Moscow State University, 1 Leninskie Gory, Bld. 12, 119234, Moscow, Russia.
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 7/2, 60-Letiya Oktyabrya Ave, 117312, Moscow, Russia.
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, 904-0495, Onna-son, Okinawa, Japan.
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, 115, Taipei, 15, Taiwan.
| |
Collapse
|
8
|
Zielińska M, Pawłowska A, Orzeł A, Sulej L, Muzyka-Placzyńska K, Baran A, Filipecka-Tyczka D, Pawłowska P, Nowińska A, Bogusławska J, Scholz A. Wound Microbiota and Its Impact on Wound Healing. Int J Mol Sci 2023; 24:17318. [PMID: 38139146 PMCID: PMC10743523 DOI: 10.3390/ijms242417318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Wound healing is a complex process influenced by age, systemic conditions, and local factors. The wound microbiota's crucial role in this process is gaining recognition. This concise review outlines wound microbiota impacts on healing, emphasizing distinct phases like hemostasis, inflammation, and cell proliferation. Inflammatory responses, orchestrated by growth factors and cytokines, recruit neutrophils and monocytes to eliminate pathogens and debris. Notably, microbiota alterations relate to changes in wound healing dynamics. Commensal bacteria influence immune responses, keratinocyte growth, and blood vessel development. For instance, Staphylococcus epidermidis aids keratinocyte progression, while Staphylococcus aureus colonization impedes healing. Other bacteria like Group A Streptococcus spp. And Pseudomonas affect wound healing as well. Clinical applications of microbiota-based wound care are promising, with probiotics and specific bacteria like Acinetobacter baumannii aiding tissue repair through molecule secretion. Understanding microbiota influence on wound healing offers therapeutic avenues. Tailored approaches, including probiotics, prebiotics, and antibiotics, can manipulate the microbiota to enhance immune modulation, tissue repair, and inflammation control. Despite progress, critical questions linger. Determining the ideal microbiota composition for optimal wound healing, elucidating precise influence mechanisms, devising effective manipulation strategies, and comprehending the intricate interplay between the microbiota, host, and other factors require further exploration.
Collapse
Affiliation(s)
- Małgorzata Zielińska
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Agnieszka Pawłowska
- Students Research Group of Obstetrics and Gynecology Department at St. Sophia Hospital, 01-004 Warsaw, Poland; (A.P.)
| | - Anna Orzeł
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Luiza Sulej
- Students Research Group of Obstetrics and Gynecology Department at St. Sophia Hospital, 01-004 Warsaw, Poland; (A.P.)
| | - Katarzyna Muzyka-Placzyńska
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Arkadiusz Baran
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Dagmara Filipecka-Tyczka
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Paulina Pawłowska
- Students Scientific Association, Department of Hygiene and Epidemiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Nowińska
- Students Scientific Association, Department of Hygiene and Epidemiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland;
| | - Anna Scholz
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| |
Collapse
|
9
|
Al-Anany AM, Hooey PB, Cook JD, Burrows LL, Martyniuk J, Hynes AP, German GJ. Phage Therapy in the Management of Urinary Tract Infections: A Comprehensive Systematic Review. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:112-127. [PMID: 37771568 PMCID: PMC10523411 DOI: 10.1089/phage.2023.0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Urinary tract infections (UTIs) are a problem worldwide, affecting almost half a billion people each year. Increasing antibiotic resistance and limited therapeutic options have led to the exploration of alternative therapies for UTIs, including bacteriophage (phage) therapy. This systematic review aims at evaluating the efficacy of phage therapy in treating UTIs. We employed a comprehensive search strategy for any language, any animal, and any publication date. A total of 55 in vivo and clinical studies were included. Of the studies, 22% were published in a non-English language, 32.7% were before the year 1996, and the rest were after 2005. The results of this review suggest that phage therapy for UTIs can be effective; more than 72% of the included articles reported microbiological and clinical improvements. On the other hand, only 5 randomized controlled trials have been completed, and case reports and case series information were frequently incomplete for analysis. Overall, this comprehensive systematic review identifies preliminary evidence supporting the potential of phage therapy as a safe and viable option for the treatment of UTIs.
Collapse
Affiliation(s)
- Amany M. Al-Anany
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Payton B. Hooey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jonathan D. Cook
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Julia Martyniuk
- Gerstein Science Information Centre, University of Toronto, Toronto, Canada
| | - Alexander P. Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Greg J. German
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Unity Health Toronto, St. Joseph's Health Centre Chronic Infection/Phage Therapy Clinic, Toronto, Canada
| |
Collapse
|
10
|
Marshall K, Marsella R. Topical Bacteriophage Therapy for Staphylococcal Superficial Pyoderma in Horses: A Double-Blind, Placebo-Controlled Pilot Study. Pathogens 2023; 12:828. [PMID: 37375518 DOI: 10.3390/pathogens12060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Increased antimicrobial resistance highlights the need for alternatives to antibiotics. Bacteriophages, which are benign viruses that kill bacteria, are promising. We studied the efficacy of topical bacteriophages for treating equine staphylococcal superficial pyodermas. Eight Staphylococcus aureus isolates were tested against a bacteriophage bank, and a cocktail consisting of two bacteriophages was prepared. Twenty horses with clinical and cytological evidence of superficial pyoderma and confirmed S. aureus infection based on swabbed culture were enrolled in the study. Each horse received both the bacteriophage cocktail and the placebo at two different infection sites, once daily for four weeks. Clinical lesions and cytology were evaluated weekly by an investigator who was unaware of the treatment sites. All infection sites were swabbed and cultured at the end of the study. A linear mixed model showed no significant differences between the placebo and treatment sites in terms of clinical signs, cytological scores of inflammation, and bacterial counts at the end of the study. It is possible that the bacteriophage cocktail killed S. aureus, but cytology scores did not change as new populations of cocci took over. The study limitations included a small sample size and inconsistent control of the underlying causes of pyodermas.
Collapse
Affiliation(s)
- Kalie Marshall
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32610, USA
| | - Rosanna Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Diallo K, Dublanchet A. A Century of Clinical Use of Phages: A Literature Review. Antibiotics (Basel) 2023; 12:751. [PMID: 37107113 PMCID: PMC10135294 DOI: 10.3390/antibiotics12040751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Growing antibiotic resistance and the broken antibiotic market have renewed interest in the use of phages, a century-old therapy that fell into oblivion in the West after two decades of promising results. This literature review with a particular focus on French literature aims to complement current scientific databases with medical and non-medical publications on the clinical use of phages. While several cases of successful treatment with phages have been reported, prospective randomized clinical trials are needed to confirm the efficacy of this therapy.
Collapse
Affiliation(s)
- Kevin Diallo
- Department of Infective and Tropical Diseases and Internal Medicine, University Hospital of la Reunion, 97448 Saint-Pierre, France
| | - Alain Dublanchet
- Independent Researcher, 2465 Rue Céline Robert, 94300 Vincennes, France
| |
Collapse
|
12
|
Linz MS, Mattappallil A, Finkel D, Parker D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics (Basel) 2023; 12:557. [PMID: 36978425 PMCID: PMC10044708 DOI: 10.3390/antibiotics12030557] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The pathogenic bacterium Staphylococcus aureus is the most common pathogen isolated in skin-and-soft-tissue infections (SSTIs) in the United States. Most S. aureus SSTIs are caused by the epidemic clone USA300 in the USA. These infections can be serious; in 2019, SSTIs with S. aureus were associated with an all-cause, age-standardized mortality rate of 0.5 globally. Clinical presentations of S. aureus SSTIs vary from superficial infections with local symptoms to monomicrobial necrotizing fasciitis, which can cause systemic manifestations and may lead to serious complications or death. In order to cause skin infections, S. aureus employs a host of virulence factors including cytolytic proteins, superantigenic factors, cell wall-anchored proteins, and molecules used for immune evasion. The immune response to S. aureus SSTIs involves initial responders such as keratinocytes and neutrophils, which are supported by dendritic cells and T-lymphocytes later during infection. Treatment for S. aureus SSTIs is usually oral therapy, with parenteral therapy reserved for severe presentations; it ranges from cephalosporins and penicillin agents such as oxacillin, which is generally used for methicillin-sensitive S. aureus (MSSA), to vancomycin for methicillin-resistant S. aureus (MRSA). Treatment challenges include adverse effects, risk for Clostridioides difficile infection, and potential for antibiotic resistance.
Collapse
Affiliation(s)
- Matthew S. Linz
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arun Mattappallil
- Department of Pharmaceutical Services, University Hospital, Newark, NJ 07103, USA
| | - Diana Finkel
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
13
|
Durr HA, Leipzig ND. Advancements in bacteriophage therapies and delivery for bacterial infection. MATERIALS ADVANCES 2023; 4:1249-1257. [PMID: 36895585 PMCID: PMC9987412 DOI: 10.1039/d2ma00980c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/25/2023] [Indexed: 06/02/2023]
Abstract
Having co-evolved with bacteria over hundreds of millions of years, bacteriophage are effective killers of specific bacterial hosts. Therefore, phage therapies for infection are a promising treatment avenue, can provide a solution for antibiotic resistant bacterial infections, and have specified targeting of infectious bacteria while allowing the natural microbiome to survive which systemic antibiotics often wipe out. Many phages have well studied genomes that can be modified to change target, widen target range, or change mode of action of killing bacterial hosts. Phage delivery can also be designed to increase efficacy of treatment, including encapsulation and delivery via biopolymers. Increased research into phage potential for therapies can allow new avenues to develop to treat a larger range of infections.
Collapse
Affiliation(s)
- Hannah A Durr
- Department of Integrated Biosciences, University of Akron Ohio 44325 USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron Ohio 44325 USA
- Department of Integrated Biosciences, University of Akron Ohio 44325 USA
| |
Collapse
|
14
|
Canchy L, Kerob D, Demessant A, Amici JM. Wound healing and microbiome, an unexpected relationship. J Eur Acad Dermatol Venereol 2023; 37 Suppl 3:7-15. [PMID: 36635613 DOI: 10.1111/jdv.18854] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Skin wounds are common and represent a major public health and economical problem, with risks of complications and a significant negative impact on the quality of life of patients. Cutaneous wound healing is a tightly regulated process resulting in the restoration of tissue integrity. Wound healing involves the interaction of several skin, immune and vascular cells, growth factors and cytokines. However, external actors can play an important role in wound healing, such as the skin microbiome, which is the microbial commensal collection of bacteria, fungi and viruses inhabiting the skin. Indeed, recent advances have featured the interactions, within the wound environment, between different microbial species and between microbial species and the host immune system. This article reviews the relationship between the skin microbiome and the wound healing process. Although cutaneous wounds are a potential entry site for infection, the wound microbiome can have either a detrimental or a beneficial role on wound healing. Thus, targeting the skin microbiome could represent an essential part of wound healing management.
Collapse
Affiliation(s)
- Ludivine Canchy
- Laboratoire Dermatologique La Roche-Posay, Levallois-Perret, France
| | - Delphine Kerob
- Laboratoire Dermatologique La Roche-Posay, Levallois-Perret, France
| | | | - Jean-Michel Amici
- Dermatology Department, CHU Bordeaux, Hôpital Saint-André, Bordeaux, France
| |
Collapse
|
15
|
Metsemakers WJ, Onsea J, Moriarty TF, Pruidze N, Nadareishvili L, Dadiani M, Kutateladze M. Bacteriophage therapy for human musculoskeletal and skin/soft tissue infections. Clin Microbiol Infect 2023:S1198-743X(23)00033-2. [PMID: 36669559 DOI: 10.1016/j.cmi.2023.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Bacteriophage therapy has a long history in the treatment of musculoskeletal and skin/soft tissue infections, particularly in the former Soviet Union. Due to the global rise in antimicrobial resistance, phage application has experienced a resurgence of interest and expanded to many countries. OBJECTIVES This narrative review aims to provide clinical microbiologists, infectious disease specialists and surgeons a brief history of bacteriophage therapy for human musculoskeletal and soft tissue infections, as well as data on current practices and ongoing clinical studies. SOURCES A search of PubMed and Clinicaltrials.gov was performed to identify relevant studies. Search terms were 'bacteriophage therapy', 'musculoskeletal infection' and 'soft tissue infection'. The bibliography of all retrieved articles was checked for additional relevant references. CONTENT Past and current data on the use of bacteriophage therapy for human musculoskeletal, skin and soft tissue infections are evaluated. Moreover, we present the clinical trials registered in public databases. Based on current clinical experience and data, several scenarios of bacteriophage application for human therapy are examined. Finally, we discuss legislative hurdles in the regulatory approval process and present future perspectives for bacteriophage therapy. IMPLICATIONS Antimicrobial resistance is one of the most important global public health challenges. Several different alternatives to conventional antibiotics are under development; bacteriophage therapy is one of them. Currently, therapeutic use of phages is restrained by regulatory hurdles and largely limited to sporadic authorization in compassionate use or under temporary approval as new drugs in Europe and the US. Although bacteriophage therapy seems to be safe and clinical results of phage treatment are promising, future data from high-quality (randomized controlled) trials could provide a better understanding of the reasonable minimal criteria required for expansion of bacteriophage therapy.
Collapse
Affiliation(s)
- Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | | | | | | | - Mzia Kutateladze
- George Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
| |
Collapse
|
16
|
The impact of agarose immobilization on the activity of lytic Pseudomonas aeruginosa phages combined with chemicals. Appl Microbiol Biotechnol 2023; 107:897-913. [PMID: 36625915 PMCID: PMC9842590 DOI: 10.1007/s00253-022-12349-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
The implementation of non-traditional antibacterials is currently one of the most intensively explored areas of modern medical and biological sciences. One of the most promising alternative strategies to combat bacterial infections is the application of lytic phages combined with established and new antibacterials. The presented study investigates the potential of agarose-based biocomposites containing lytic Pseudomonas phages (KT28, KTN4, and LUZ19), cupric ions (Cu2+), strawberry furanone (HDMF), and gentamicin (GE) as antibacterials and anti-virulent compounds for novel wound dressings. Phages (KT28, KTN4, LUZ19, and triple-phage cocktail) alone and in combination with a triple-chemical mixture (Cu + GE + HDMF) when applied as the liquid formulation caused a significant bacterial count reduction and biofilm production inhibition of clinical P. aeruginosa strains. The immobilization in the agarose scaffold significantly impaired the bioavailability and diffusion of phage particles, depending on virion morphology and targeted receptor specificity. The antibacterial potential of chemicals was also reduced by the agarose scaffold. Moreover, the Cu + GE + HDMF mixture impaired the lytic activity of phages depending on viral particles' susceptibility to cupric ion toxicity. Therefore, three administration types were tested and the optimal turned out to be the one separating antibacterials both physically and temporally. Taken together, the additive effect of phages combined with chemicals makes biocomposite a good solution for designing new wound dressings. Nevertheless, the phage utilization should involve an application of aqueous cocktails directly onto the wound, followed by chemicals immobilized in hydrogel dressings which allow for taking advantage of the antibacterial and anti-virulent effects of all components. KEY POINTS: • The immobilization in the agarose impairs the bioavailability of phage particles and the Cu + GE + HDMF mixture. • The cupric ions are toxic to phages and are sequestrated on phage particles and agarose matrix. • The elaborated TIME-SHIFT administration effectively separates antibacterials both physically and temporally.
Collapse
|
17
|
Daubie V, Chalhoub H, Blasdel B, Dahma H, Merabishvili M, Glonti T, De Vos N, Quintens J, Pirnay JP, Hallin M, Vandenberg O. Determination of phage susceptibility as a clinical diagnostic tool: A routine perspective. Front Cell Infect Microbiol 2022; 12:1000721. [PMID: 36211951 PMCID: PMC9532704 DOI: 10.3389/fcimb.2022.1000721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
As the global burden of disease caused by multidrug resistant bacteria is a major source of concern, credible clinical alternatives to antibiotic therapy, such as personalized phage therapy, are actively explored. Although phage therapy has been used for more than a century, the issue of an easy to implement diagnostic tool for determining phage susceptibility that meets current routine clinical needs is still open. In this Review, we summarize the existing methods used for determining phage activity on bacteria, including the three reference methods: the spot test, the double agar overlay plaque assay, and the Appelmans method. The first two methods rely on the principle of challenging the overnight growth of a lawn of bacteria in an agar matrix to a known relative phage to bacteria concentration and represent good screening tools to determine if the tested phage can be used for a “passive” and or “active” treatment. Beside these methods, several techniques, based on “real-time” growth kinetics assays (GKA) have been developed or are under development. They all monitor the growth of clinical isolates in the presence of phages, but use various detection methods, from classical optical density to more sophisticated techniques such as computer-assisted imagery, flow-cytometry, quantitative real-time polymerase chain reaction (qPCR) or metabolic indicators. Practical considerations as well as information provided about phage activity are reviewed for each technique. Finally, we also discuss the analytical and interpretative requirements for the implementation of a phage susceptibility testing tool in routine clinical microbiology.
Collapse
Affiliation(s)
- Valéry Daubie
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Houssein Chalhoub
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bob Blasdel
- R&D department, Vesale Bioscience, Noville-sur-Mehaigne, Belgium
| | - Hafid Dahma
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Nathalie De Vos
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Johan Quintens
- R&D department, Vesale Bioscience, Noville-sur-Mehaigne, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Marie Hallin
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olivier Vandenberg
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
- *Correspondence: Olivier Vandenberg,
| |
Collapse
|
18
|
Feng C, Jia K, Chi T, Chen S, Yu H, Zhang L, Haidar Abbas Raza S, Alshammari AM, Liang S, Zhu Z, Li T, Qi Y, Shan X, Qian A, Zhang D, Zhang L, Sun W. Lytic Bacteriophage PZL-Ah152 as Biocontrol Measures Against Lethal Aeromonas hydrophila Without Distorting Gut Microbiota. Front Microbiol 2022; 13:898961. [PMID: 35903472 PMCID: PMC9315158 DOI: 10.3389/fmicb.2022.898961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Phage therapy is an alternative approach to overcome the problem of multidrug resistance in bacteria. In this study, a bacteriophage named PZL-Ah152, which infects Aeromonas hydrophila, was isolated from sewage, and its biological characteristics and genome were studied. The genome contained 54 putative coding sequences and lacked known putative virulence factors, so it could be applied to phage therapy. Therefore, we performed a study to (i) investigate the efficacy of PZL-Ah152 in reducing the abundance of pathogenic A. hydrophila strain 152 in experimentally infected crucian carps, (ii) evaluate the safety of 12 consecutive days of intraperitoneal phage injection in crucian carps, and (iii) determine how bacteriophages impact the normal gut microbiota. The in vivo and in vitro results indicated that the phage could effectively eliminate A. hydrophila. Administering PZL-Ah152 (2 × 109 PFU) could effectively protect the fish (2 × 108 CFU/carp). Furthermore, a 12-day consecutive injection of PZL-Ah152 did not cause significant adverse effects in the main organs of the treated animals. We also found that members of the genus Aeromonas could enter and colonize the gut. The phage PZL-Ah152 reduced the number of colonies of the genus Aeromonas. However, no significant changes were observed in α-diversity and β-diversity parameters, which suggested that the consumed phage had little effect on the gut microbiota. All the results illustrated that PZL-Ah152 could be a new therapeutic method for infections caused by A. hydrophila.
Collapse
Affiliation(s)
- Chao Feng
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Kaixiang Jia
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Teng Chi
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Shuaimin Chen
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Huabo Yu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Liang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | | | | | - Shuang Liang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Zishan Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Tingxuan Li
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Yanling Qi
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
- *Correspondence: Lei Zhang,
| | - Wuwen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
- Wuwen Sun,
| |
Collapse
|
19
|
A Narrative Review of the Potential Roles of Lipid-Based Vesicles (Vesiculosomes) in Burn Management. Sci Pharm 2022. [DOI: 10.3390/scipharm90030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burn injuries can have a lasting effect on people’s quality of life, as they negatively impact their physical and mental health. Then, they are likely to suffer psychological problems as a result. A serious problem is that deep burns are more challenging to treat due to their slow healing rate and susceptibility to microbial infection. Conventional topical medications used for burn treatment are sometimes ineffective because they cannot optimize their ability of transcutaneous absorption at the targeted site and accelerate healing. However, nanotechnology offers excellent prospects for developing current medical wound therapies and is capable of addressing issues such as low drug stability, water solubility, permeability, and bioavailability. The current review focuses on lipid-based vesicles (vesiculosomes) as an example of advanced delivery systems, showing their potential clinical applications in burn wound management. Vesiculosomes may help overcome impediments including the low bioavailability of active agents, offering the controlled release of drugs, increased drug stability, fewer side effects, and reduced dosing frequency, which will ultimately improve therapeutic efficacy and patient compliance. We discuss the application of various types of vesiculosomes such as liposomes, niosomes, ethosomes, cubosomes, transfersomes, and phytosomes in burn healing therapy, as these demonstrate superior skin penetration compared to conventional burn topical treatment. We also highlight their noteworthy uses in the formulation of natural products and discuss the current status as well as future perspectives of these carriers in burn management. Furthermore, the burn treatment options currently available in the market are also summarized.
Collapse
|
20
|
Zyman A, Górski A, Międzybrodzki R. Phage therapy of wound-associated infections. Folia Microbiol (Praha) 2022; 67:193-201. [PMID: 35028881 PMCID: PMC8933295 DOI: 10.1007/s12223-021-00946-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
Phages are viruses which can specifically infect bacteria, resulting in their destruction. Bacterial infections are a common complication of wound healing, and experimental evidence from animal models demonstrates promising potential for phage-dependent eradication of wound-associated infections. The studies discussed suggest that phage therapy may be an effective treatment, with important advantages over some current antibacterial treatments. Phage cocktails, as well as co-administration of phages and antibiotics, have been reported to minimise bacterial resistance. Further, phage-antibiotic synergism has been reported in some studies. The ideal dose of phages is still subject to debate, with evidence for both high and low doses to yield therapeutic effects. Novel delivery methods, such as hydrogels, are being explored for their advantages in topical wound healing. There are more and more Good Manufacturing Practice facilities dedicated to manufacturing phage products and phage therapy units across the world, showing the changing perception of phages which is occurring. However, further research is needed to secure the place of phages in modern medicine, with some scientists calling upon the World Health Organisation to help promote phage therapy.
Collapse
Affiliation(s)
- Anna Zyman
- Pharmacology Undergraduate Programme, School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
21
|
Vázquez R, Díez-Martínez R, Domingo-Calap P, García P, Gutiérrez D, Muniesa M, Ruiz-Ruigómez M, Sanjuán R, Tomás M, Tormo-Mas MÁ, García P. Essential Topics for the Regulatory Consideration of Phages as Clinically Valuable Therapeutic Agents: A Perspective from Spain. Microorganisms 2022; 10:microorganisms10040717. [PMID: 35456768 PMCID: PMC9025261 DOI: 10.3390/microorganisms10040717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance is one of the major challenges that humankind shall face in the short term. (Bacterio)phage therapy is a valuable therapeutic alternative to antibiotics and, although the concept is almost as old as the discovery of phages, its wide application was hindered in the West by the discovery and development of antibiotics in the mid-twentieth century. However, research on phage therapy is currently experiencing a renaissance due to the antimicrobial resistance problem. Some countries are already adopting new ad hoc regulations to favor the short-term implantation of phage therapy in clinical practice. In this regard, the Phage Therapy Work Group from FAGOMA (Spanish Network of Bacteriophages and Transducing Elements) recently contacted the Spanish Drugs and Medical Devices Agency (AEMPS) to promote the regulation of phage therapy in Spain. As a result, FAGOMA was asked to provide a general view on key issues regarding phage therapy legislation. This review comes as the culmination of the FAGOMA initiative and aims at appropriately informing the regulatory debate on phage therapy.
Collapse
Affiliation(s)
- Roberto Vázquez
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium;
| | | | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain; (P.D.-C.); (R.S.)
| | - Pedro García
- Center for Biological Research Margarita Salas (CIB-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28040 Madrid, Spain;
| | - Diana Gutiérrez
- Telum Therapeutics SL, 31110 Noáin, Spain; (R.D.-M.); (D.G.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain;
| | - María Ruiz-Ruigómez
- Internal Medicine, Infectious Diseases Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain; (P.D.-C.); (R.S.)
| | - María Tomás
- Department of Microbiology, Hospital Universitario de A Coruña (INIBIC-CHUAC, SERGAS), 15006 A Coruña, Spain;
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Ángeles Tormo-Mas
- Severe Infection Group, Hospital Universitari i Politècnic La Fe, Health Research Institute Hospital La Fe, IISLaFe, 46026 Valencia, Spain;
| | - Pilar García
- Dairy Research Institute of Asturias, IPLA-CSIC, 33300 Villaviciosa, Spain
- DairySafe Group, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| |
Collapse
|
22
|
Maurer S, Hepp Z, McCallin S, Waibel F, Romero F, Zorman Y, Lipsky B, Uçkay İ. Short and oral antimicrobial therapy for diabetic foot infection: a narrative review of current knowledge. J Bone Jt Infect 2022; 7:61-70. [PMID: 35415069 PMCID: PMC8990364 DOI: 10.5194/jbji-7-61-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot infection is a frequent complication in long-standing diabetes mellitus. For antimicrobial therapy of this infection, both the optimal duration and the route of administration are often based more on expert opinion than on published evidence. We reviewed the scientific literature, specifically seeking prospective trials, and aimed at addressing two clinical issues: (1) shortening the currently recommended antibiotic duration and (2) using oral (rather than parenteral) therapy, especially after the patient has undergone debridement and revascularization. We also reviewed some older key articles that are critical to our understanding of the treatment of these infections, particularly with respect to diabetic foot osteomyelitis. Our conclusion is that the maximum duration of antibiotic therapy for osteomyelitis should be no more than to 4-6 weeks and might even be shorter in selected cases. In the future, in addition to conducting randomized trials and propagating national and international guidance, we should also explore innovative strategies, such as intraosseous antibiotic agents and bacteriophages.
Collapse
Affiliation(s)
- Steven M. Maurer
- Orthopedic Surgery, Balgrist University Hospital, University of
Zurich, Zurich, Switzerland
| | - Zehra S. Hepp
- Orthopedic Surgery, Balgrist University Hospital, University of
Zurich, Zurich, Switzerland
- Internal Medicine, Balgrist University Hospital, University of
Zurich, Zurich, Switzerland
| | - Shawna McCallin
- Clinical and Phage Research, Balgrist University Hospital, University
of Zurich, Zurich, Switzerland
| | - Felix W. A. Waibel
- Orthopedic Surgery, Balgrist University Hospital, University of
Zurich, Zurich, Switzerland
| | - Federico C. Romero
- Department of Infectious Diseases, Sanatorio
Allende Hospital, Córdoba, Argentina
| | - Yılmaz Zorman
- Cardiovascular Surgery Department, Koç University Hospital,
Istanbul, Turkey
| | | | - İlker Uçkay
- Infectiology, Balgrist University Hospital, University of Zurich, Zurich,
Switzerland
| |
Collapse
|
23
|
Abstract
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.
Collapse
|
24
|
Pires DP, Meneses L, Brandão AC, Azeredo J. An overview of the current state of phage therapy for the treatment of biofilm-related infections. Curr Opin Virol 2022; 53:101209. [PMID: 35240424 DOI: 10.1016/j.coviro.2022.101209] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/22/2022] [Indexed: 12/19/2022]
Abstract
Bacterial biofilms are involved in many chronic and difficult-to-treat infections. Phage therapy against infectious biofilms is becoming a promising strategy, as suggested by the increasing number of publications demonstrating the efficacy of phages against in vitro formed biofilms. However, the translation between in vitro results to in vivo phage therapy outcome is not straightforward due to the complexity of phage-biofilm interactions in clinical contexts. Here, we provide a critical overview of the in vitro studies of phages for biofilm control of clinical pathogens, followed by the major outcomes and lessons learned from the recently reported case studies (between 2018 and 2021) of phage therapy against biofilm-related infections.
Collapse
Affiliation(s)
- Diana P Pires
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Luciana Meneses
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Ana C Brandão
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, 4800-122 Guimarães, Portugal.
| |
Collapse
|
25
|
Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun 2022; 13:302. [PMID: 35042848 PMCID: PMC8766457 DOI: 10.1038/s41467-021-27656-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/17/2021] [Indexed: 01/03/2023] Open
Abstract
A 30-year-old bombing victim with a fracture-related pandrug-resistant Klebsiella pneumoniae infection after long-term (>700 days) antibiotic therapy is treated with a pre-adapted bacteriophage along with meropenem and colistin, followed by ceftazidime/avibactam. This salvage therapy results in objective clinical, microbiological and radiological improvement of the patient’s wounds and overall condition. In support, the bacteriophage and antibiotic combination is highly effective against the patient’s K. pneumoniae strain in vitro, in 7-day mature biofilms and in suspensions. In this case study of a patient with fracture-related pandrug-resistant Klebsiella pneumoniae infection after long-term antibiotic therapy, the authors use a combination therapy of pre-adapted bacteriophage and antibiotics resulting in clinical, microbiological and radiological improvement.
Collapse
|
26
|
Trifonova TS, Moiseenko AV, Bourkaltseva MV, Shaburova OV, Shaytan AK, Krylov VN, Sokolova OS. [DNA mapping in the capsid of giant bacteriophage phiEL (Caudovirales: Myoviridae: Elvirus) by analytical electron microscopy]. Vopr Virusol 2022; 66:434-441. [PMID: 35019250 DOI: 10.36233/0507-4088-80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Giant phiKZ-like bacteriophages have a unique protein formation inside the capsid, an inner body (IB) with supercoiled DNA molecule wrapped around it. Standard cryo-electron microscopy (cryo-EM) approaches do not allow to distinguish this structure from the surrounding nucleic acid of the phage. We previously developed an analytical approach to visualize protein-DNA complexes on Escherichia coli bacterial cell slices using the chemical element phosphorus as a marker. In the study presented, we adapted this technique for much smaller objects, namely the capsids of phiKZ-like bacteriophages. MATERIAL AND METHODS Following electron microscopy techniques were used in the study: analytical (AEM) (electron energy loss spectroscopy, EELS), and cryo-EM (images of samples subjected to low and high dose of electron irradiation were compared). RESULTS We studied DNA packaging inside the capsids of giant bacteriophages phiEL from the Myoviridae family that infect Pseudomonas aeruginosa. Phosphorus distribution maps were obtained, showing an asymmetrical arrangement of DNA inside the capsid. DISCUSSION We developed and applied an IB imaging technique using a high angle dark-field detector (HAADF) and the STEM-EELS analytical approach. Phosphorus mapping by EELS and cryo-electron microscopy revealed a protein formation as IB within the phage phiEL capsid. The size of IB was estimated using theoretical calculations. CONCLUSION The developed technique can be applied to study the distribution of phosphorus in other DNA- or RNA-containing viruses at relatively low concentrations of the element sought.
Collapse
Affiliation(s)
- T S Trifonova
- FSAEI HE «People's Friendship University of Russia», Physical, Mathematical, and Natural Sciences Department; FSBEI HE «Lomonosov Moscow State University», Bioengineering Department, Biological Faculty
| | - A V Moiseenko
- FSBEI HE «Lomonosov Moscow State University», Bioengineering Department, Biological Faculty; FSBIS «N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences»
| | | | - O V Shaburova
- FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - A K Shaytan
- FSBEI HE «Lomonosov Moscow State University», Bioengineering Department, Biological Faculty
| | - V N Krylov
- FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - O S Sokolova
- FSBEI HE «Lomonosov Moscow State University», Bioengineering Department, Biological Faculty
| |
Collapse
|
27
|
Abedon ST, Danis-Wlodarczyk KM, Alves DR. Phage Therapy in the 21st Century: Is There Modern, Clinical Evidence of Phage-Mediated Efficacy? Pharmaceuticals (Basel) 2021; 14:1157. [PMID: 34832939 PMCID: PMC8625828 DOI: 10.3390/ph14111157] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Many bacteriophages are obligate killers of bacteria. That this property could be medically useful was first recognized over one hundred years ago, with 2021 being the 100-year anniversary of the first clinical phage therapy publication. Here we consider modern use of phages in clinical settings. Our aim is to answer one question: do phages serve as effective anti-bacterial infection agents when used clinically? An important emphasis of our analyses is on whether phage therapy-associated anti-bacterial infection efficacy can be reasonably distinguished from that associated with often coadministered antibiotics. We find that about half of 70 human phage treatment reports-published in English thus far in the 2000s-are suggestive of phage-mediated anti-bacterial infection efficacy. Two of these are randomized, double-blinded, infection-treatment studies while 14 of those studies, in our opinion, provide superior evidence of a phage role in observed treatment successes. Roughly three-quarters of these potentially phage-mediated outcomes are based on microbiological as well as clinical results, with the rest based on clinical success. Since many of these phage treatments are of infections for which antibiotic therapy had not been successful, their collective effectiveness is suggestive of a valid utility in employing phages to treat otherwise difficult-to-cure bacterial infections.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA;
| | | | - Diana R. Alves
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA;
| |
Collapse
|
28
|
Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ. Phage Cocktail Development for Bacteriophage Therapy: Toward Improving Spectrum of Activity Breadth and Depth. Pharmaceuticals (Basel) 2021; 14:1019. [PMID: 34681243 PMCID: PMC8541335 DOI: 10.3390/ph14101019] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Phage therapy is the use of bacterial viruses as antibacterial agents. A primary consideration for commercial development of phages for phage therapy is the number of different bacterial strains that are successfully targeted, as this defines the breadth of a phage cocktail's spectrum of activity. Alternatively, phage cocktails may be used to reduce the potential for bacteria to evolve phage resistance. This, as we consider here, is in part a function of a cocktail's 'depth' of activity. Improved cocktail depth is achieved through inclusion of at least two phages able to infect a single bacterial strain, especially two phages against which bacterial mutation to cross resistance is relatively rare. Here, we consider the breadth of activity of phage cocktails while taking both depth of activity and bacterial mutation to cross resistance into account. This is done by building on familiar algorithms normally used for determination solely of phage cocktail breadth of activity. We show in particular how phage cocktails for phage therapy may be rationally designed toward enhancing the number of bacteria impacted while also reducing the potential for a subset of those bacteria to evolve phage resistance, all as based on previously determined phage properties.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | | | - Daniel J. Wozniak
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
29
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
30
|
Ecale Zhou CL, Kimbrel J, Edwards R, McNair K, Souza BA, Malfatti S. MultiPhATE2: code for functional annotation and comparison of phage genomes. G3 (BETHESDA, MD.) 2021; 11:jkab074. [PMID: 33734357 PMCID: PMC8104953 DOI: 10.1093/g3journal/jkab074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/25/2021] [Indexed: 11/12/2022]
Abstract
To address a need for improved tools for annotation and comparative genomics of bacteriophage genomes, we developed multiPhATE2. As an extension of multiPhATE, a functional annotation code released previously, multiPhATE2 performs gene finding using multiple algorithms, compares the results of the algorithms, performs functional annotation of coding sequences, and incorporates additional search algorithms and databases to extend the search space of the original code. MultiPhATE2 performs gene matching among sets of closely related bacteriophage genomes, and uses multiprocessing to speed computations. MultiPhATE2 can be re-started at multiple points within the workflow to allow the user to examine intermediate results and adjust the subsequent computations accordingly. In addition, multiPhATE2 accommodates custom gene calls and sequence databases, again adding flexibility. MultiPhATE2 was implemented in Python 3.7 and runs as a command-line code under Linux or MAC operating systems. Full documentation is provided as a README file and a Wiki website.
Collapse
Affiliation(s)
- Carol L Ecale Zhou
- Global Security Computing Applications, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Jeffrey Kimbrel
- Biosciences & Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Robert Edwards
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- College of Science and Engineering, Flinders University, Bedford Park, SA 5048, Australia
| | - Katelyn McNair
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Brian A Souza
- Biosciences & Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Stephanie Malfatti
- Biosciences & Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
31
|
Abstract
Severe infections caused by multidrug-resistant Klebsiella pneumoniae sequence type 258 (ST258) highlight the need for new therapeutics with activity against this pathogen. Bacteriophage (phage) therapy is an alternative treatment approach for multidrug-resistant bacterial infections that has shown efficacy in experimental animal models and promise in clinical case reports. In this study, we assessed microbiologic, histopathologic, and survival outcomes following systemic administration of phage in ST258-infected mice. We found that prompt treatment with two phages, either individually or in combination, rescued mice with K. pneumoniae ST258 bacteremia. Among the three treatment groups, mice that received combination phage therapy demonstrated the greatest increase in survival and the lowest frequency of phage resistance among bacteria recovered from mouse blood and tissue. Our findings support the utility of phage therapy as an approach for refractory ST258 infections and underscore the potential of this treatment modality to be enhanced through strategic phage selection.
Collapse
|
32
|
Azeredo J, Pirnay JP, Pires DP, Kutateladze M, Dabrowska K, Lavigne R, Blasdel B. Phage Therapy. WIKIJOURNAL OF MEDICINE 2021. [DOI: 10.15347/wjm/2021.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage therapy refers to the use of bacteriophages (phages - bacterial viruses) as therapeutic agents against infectious bacterial diseases. This therapeutic approach emerged in the beginning of the 20th century but was progressively replaced by the use of antibiotics in most parts of the world after the second world war. More recently however, the alarming rise of multidrug-resistant bacteria and the consequent need for antibiotic alternatives has renewed interest in phages as antimicrobial agents. Several scientific, technological and regulatory advances have supported the credibility of a second revolution in phage therapy. Nevertheless, phage therapy still faces many challenges that include: i) the need to increase phage collections from reference phage banks; ii) the development of efficient phage screening methods for the fast identification of the therapeutic phage(s); iii) the establishment of efficient phage therapy strategies to tackle infectious biofilms; iv) the validation of feasible phage production protocols that assure quality and safety of phage preparations; and (v) the guarantee of stability of phage preparations during manufacturing, storage and transport. Moreover, current maladapted regulatory structures represent a significant hurdle for potential commercialization of phage therapeutics. This article describes the past and current status of phage therapy and presents the most recent advances in this domain.
Collapse
|
33
|
Liu C, Ponsero AJ, Armstrong DG, Lipsky BA, Hurwitz BL. The dynamic wound microbiome. BMC Med 2020; 18:358. [PMID: 33228639 PMCID: PMC7685579 DOI: 10.1186/s12916-020-01820-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) account for the majority of all limb amputations and hospitalizations due to diabetes complications. With 30 million cases of diabetes in the USA and 500,000 new diagnoses each year, DFUs are a growing health problem. Diabetes patients with limb amputations have high postoperative mortality, a high rate of secondary amputation, prolonged inpatient hospital stays, and a high incidence of re-hospitalization. DFU-associated amputations constitute a significant burden on healthcare resources that cost more than 10 billion dollars per year. Currently, there is no way to identify wounds that will heal versus those that will become severely infected and require amputation. MAIN BODY Accurate identification of causative pathogens in diabetic foot ulcers is a critical component of effective treatment. Compared to traditional culture-based methods, advanced sequencing technologies provide more comprehensive and unbiased profiling on wound microbiome with a higher taxonomic resolution, as well as functional annotation such as virulence and antibiotic resistance. In this review, we summarize the latest developments in defining the microbiology of diabetic foot ulcers that have been unveiled by sequencing technologies and discuss both the future promises and current limitations of these approaches. In particular, we highlight the temporal patterns and system dynamics in the diabetic foot microbiome monitored and measured during wound progression and medical intervention, and explore the feasibility of molecular diagnostics in clinics. CONCLUSION Molecular tests conducted during weekly office visits to clean and examine DFUs would allow clinicians to offer personalized treatment and antibiotic therapy. Personalized wound management could reduce healthcare costs, improve quality of life for patients, and recoup lost productivity that is important not only to the patient, but also to healthcare payers and providers. These efforts could also improve antibiotic stewardship and control the rise of "superbugs" vital to global health.
Collapse
Affiliation(s)
- Chunan Liu
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Alise J Ponsero
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - David G Armstrong
- Department of Surgery, Southwestern Academic Limb Salvage Alliance (SALSA), Keck School of Medicine of University of Southern California, Los Angeles, USA
| | - Benjamin A Lipsky
- Department of Medicine, University of Washington, Seattle, WA, USA.,Division of Medical Sciences, Green Templeton College, University of Oxford, Oxford, UK
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA. .,BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
34
|
Editorial for the Special Issue: "Phage Therapy: A Biological Approach to Treatment of Bacterial Infections". Antibiotics (Basel) 2020; 9:antibiotics9100721. [PMID: 33096717 PMCID: PMC7589103 DOI: 10.3390/antibiotics9100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
|
35
|
Uivaraseanu B, Bungau S, Tit DM, Fratila O, Rus M, Maghiar TA, Maghiar O, Pantis C, Vesa CM, Zaha DC. Clinical, Pathological and Microbiological Evaluation of Diabetic Foot Syndrome. ACTA ACUST UNITED AC 2020; 56:medicina56080380. [PMID: 32731610 PMCID: PMC7466372 DOI: 10.3390/medicina56080380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Background and objectives: Diabetic foot ulcer (DFU) is one of the serious complications of diabetes, being related to frequent and long-term hospitalisation, reduced quality of life of the patient, amputations, a high rate of morbidity and mortality. The bacterial aetiology is complex, sometimes involving more than one pathogen, playing a major role in the infection prognosis and development of microbial resistance. This study evaluated the current state of the aetiology, clinical and pathological characteristics of DFU in a single diabetes centre in order to provide some specific measures to prevent it. Materials and Methods: This retrospective study was conducted on patients with diabetes mellitus (252 individuals diagnosed with DFU) between January 2018–December 2019. All participants were assessed based on their clinical characteristics, including complications of diabetes and pathological and microbiological evaluations. Results: The present research revealed that diabetic foot ulcer prevalence was higher in males than in females and higher in type 2 diabetic patients than in type 1 diabetic patients. The patients with diabetic foot ulcer were older, had a higher body mass index (BMI), longer diabetic duration and had more diabetic complications, such as retinopathy, diabetic polyneuropathy and diabetic kidney disease, than patients without diabetic foot ulceration. Conclusions: Taking into account all factors involved, including the aetiology and the antibiotic susceptibility pattern of these isolates, planning the suitable treatment options of patients is possible.
Collapse
Affiliation(s)
- Bogdan Uivaraseanu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (B.U.); (T.A.M.); (O.M.); (C.P.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Correspondence: ; Tel.: +40-0726-776-588
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (O.F.); (M.R.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (O.F.); (M.R.)
| | - Teodor Andrei Maghiar
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (B.U.); (T.A.M.); (O.M.); (C.P.)
| | - Octavian Maghiar
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (B.U.); (T.A.M.); (O.M.); (C.P.)
| | - Carmen Pantis
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (B.U.); (T.A.M.); (O.M.); (C.P.)
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (C.M.V.); (D.C.Z.)
| | - Dana Carmen Zaha
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (C.M.V.); (D.C.Z.)
| |
Collapse
|