1
|
Martins RX, Gomes C, Carvalho M, Souza JADCR, Souza T, Farias D. A network toxicology and molecular docking-based approach revealed shared hepatotoxic mechanisms and targets between the herbicide 2,4-D and its metabolite 2,4-DCP. Toxicology 2025; 513:154086. [PMID: 39954767 DOI: 10.1016/j.tox.2025.154086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its major environmental metabolite 2,4-dichlorophenol (2,4-DCP) are pollutants associated with hepatotoxicity, whose molecular mechanisms remain poorly understood. This study investigated the molecular pathways and targets involved in 2,4-D and 2,4-DCP-induced hepatotoxicity using protein-protein interaction (PPI) network analyses and molecular docking. Target genes were identified using PharmMapper and SwissTargetPrediction, and cross-referenced with hepatotoxicity-related genes from GeneCards and OMIM databases. The PPI network, constructed via STRING and visualized in Cytoscape, revealed 12 critical hub nodes, including HSP90AA1, RXRA, EGFR, SRC, CREBBP, PIK3R1, ESR1, AKT1, RAF1, IGF1R, MDM2, and MAPK14. Gene Ontology (GO) analysis indicated processes such as apoptosis, oxidative stress, mitochondrial dysfunction, and lipid metabolism impairment, while Reactome pathway analysis highlighted disruptions in PI3K/AKT and nuclear receptors signaling. Molecular docking confirmed significant interactions of 2,4-D and 2,4-DCP with key proteins, including SRC, AKT, RXRA, MDM2, and HSP90AA1. These results suggest that 2,4-D and 2,4-DCP share similar toxic mechanisms, providing new insights into their hepatotoxicity pathways for the first time.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará Building 907, Campus Pici, Fortaleza 60455-970, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Cleyton Gomes
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Juliana Alves da Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará Building 907, Campus Pici, Fortaleza 60455-970, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil.
| |
Collapse
|
2
|
Ma X, Sun CY, Zhang Y, Li J, Zhao DS. The hepatoprotective effect of Lonicera japonica Flos on rats with high-fat diet-induced non-alcoholic fatty liver disease. Fitoterapia 2025; 183:106516. [PMID: 40188994 DOI: 10.1016/j.fitote.2025.106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 03/18/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Lonicerae Japonica Flos (LJF) is an edible-medicinal herb, rich in phenolic acids, flavonoids, iridoids and other bioactive ingredients, that has anti-inflammatory, antioxidant, antilipemic, and hepatoprotective effects. However, its effect on non-alcoholic fatty liver disease (NAFLD) remains to be elucidated. The aim of this study was to determine the effect of LJF on liver injury in rats with high-fat diet (HFD)-induced NAFLD. The administration of LJF extract to rats with HFD-induced NAFLD significantly improved their body weight and daily food intake, liver tissue steatosis, lipid droplet vacuolization, and inflammatory cell infiltration. In addition, the LJF extract also improved to varying degrees the serum biochemical parameters, liver lipid content, levels of inflammatory factors, and oxidative stress markers. Among the treatment groups, the LJF high-dose group (LJF-H) showed the most significant improvement effect. Additionally, the correlation matrix heatmap visualization indicated that LJF may ameliorate NAFLD mainly by lowering liver lipid content and improving serum biochemical parameters.
Collapse
Affiliation(s)
- Xue Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan 250355, China
| | - Chun-Yong Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan 250355, China
| | - Yan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan 250355, China
| | - Jia Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan 250355, China.
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan 250355, China.
| |
Collapse
|
3
|
Salolin Vargas VP, Gasbarra M, Calderon-Martinez E, Shah YR, Dahiya DS, Saenz de Sicilia MG. Non-alcoholic fatty liver disease and drug induced liver injury: A metabolic storm waiting to happen. World J Hepatol 2025; 17:105255. [PMID: 40177208 PMCID: PMC11959661 DOI: 10.4254/wjh.v17.i3.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
In this editorial, we comment on the article by Zhao et al which highlighted how patients having nonalcoholic fatty liver disease (NAFLD) were more susceptible to drug-induced lung injury (DILI). This article looked at the downstream effects of metabolic profiles and biochemical processes after medication and substance use. Although previous studies looked at how NAFLD and DILI were related, there is a lack of information on the consequences of everyday medication and substance use. NAFLD is one of the most common chronic liver diseases worldwide and it has been found to be closely related to metabolic syndrome and cardiovascular disease. The aim of this editorial is to analyze the interaction between NAFLD and DILI, what clinical manifestations can occur and what the prognosis of these patients will be.
Collapse
Affiliation(s)
| | - Marisa Gasbarra
- Department of Internal Medicine, Ross University School of Medicine, Florida, FL 11015, United States
| | - Ernesto Calderon-Martinez
- Department of Internal Medicine, The University of Texas Science Medical Center at Houston, Houston, TX 77375, United States.
| | - Yash R Shah
- Department of Internal Medicine, Trinity HealthOakland/Wayne State University, Michigan, MI 48341, United States
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology, and Motility, The University of Kansas School of Medicine, Kansas, KS 66160, United States
| | | |
Collapse
|
4
|
Santos-Sánchez G, Cruz-Chamorro I. Plant-derived bioactive peptides and protein hydrolysates for managing MAFLD: A systematic review of in vivo effects. Food Chem 2025; 481:143956. [PMID: 40147387 DOI: 10.1016/j.foodchem.2025.143956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a growing health concern worldwide. Among the pursuit of therapeutic interventions, interest in natural bioactive compounds has intensified because of their potential hepatoprotective effects. This systematic review aims to evaluate the impact of plant-derived hydrolysates and peptides on MAFLD through the current literatures, encompassing their mechanisms of action. Key outcomes evaluated included changes in liver enzymes, liver lipid content, inflammation markers, and histopathological improvements. Preliminary findings suggest a potential beneficial effect of plant-derived hydrolysates and peptides on the improvement of MAFLD-related parameters, with mechanisms implicating antioxidant, anti-inflammatory, and lipid-lowering properties. This review highlights emerging evidence supporting the potential therapeutic role of plant-derived hydrolysates and peptides in the management of MAFLD. However, more well-designed clinical trials with larger sample sizes and longer durations are warranted to elucidate their efficacy, optimal dose, and long-term safety.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), 28049 Madrid, Spain.
| | - Ivan Cruz-Chamorro
- Facultad de Enfermería, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| |
Collapse
|
5
|
Luo Q, Bai X, Li X, Liu C. The role and mechanism of selenium in the prevention and progression of hepatocellular carcinoma. Front Oncol 2025; 15:1557233. [PMID: 40182029 PMCID: PMC11965637 DOI: 10.3389/fonc.2025.1557233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of liver cancer. Despite notable advancements in therapeutic strategies, HCC continues to pose significant public health challenges due to its rising incidence and high mortality rates worldwide. Selenium is an essential trace element that playing a critical role in human health. Recent studies have highlighted its potential preventive and therapeutic benefits in the context of HCC. However, some in vitro and in vivo investigations have yielded inconsistent results, and the mechanisms by which selenium influences HCC are still not completely clear. This review begins by providing an extensive evaluation of the effects and mechanisms of selenium on the primary risk factors associated with HCC, including viral infections, metabolic abnormalities, and lifestyle factors. Subsequently, we outline the roles and mechanisms by which selenium influences the proliferation, metastasis, and immune microenvironment of HCC. Finally, we emphasize the imperative for further investigation into the optimal dosage and forms of selenium, as well as its effects on the HCC microenvironment, to inform the development of effective clinical strategies. This review thus provides a foundational framework for the potential clinical application of selenium in the treatment of HCC.
Collapse
Affiliation(s)
- Qinying Luo
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaofang Bai
- Department of Ultrasonography, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chang Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong, Shanghai, China
| |
Collapse
|
6
|
Lu MY, Wei YJ, Wang CW, Liang PC, Yeh ML, Tsai YS, Tsai PC, Ko YM, Lin CC, Chen KY, Lin YH, Jang TY, Hsieh MY, Lin ZY, Huang CF, Huang JF, Dai CY, Chuang WL, Yu ML. Mitochondrial mt12361A>G increased risk of metabolic dysfunction-associated steatotic liver disease among non-diabetes. World J Gastroenterol 2025; 31:103716. [PMID: 40093674 PMCID: PMC11886537 DOI: 10.3748/wjg.v31.i10.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Insulin resistance, lipotoxicity, and mitochondrial dysfunction contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Mitochondrial dysfunction impairs oxidative phosphorylation and increases reactive oxygen species production, leading to steatohepatitis and hepatic fibrosis. Artificial intelligence (AI) is a potent tool for disease diagnosis and risk stratification. AIM To investigate mitochondrial DNA polymorphisms in susceptibility to MASLD and establish an AI model for MASLD screening. METHODS Multiplex polymerase chain reaction was performed to comprehensively genotype 82 mitochondrial DNA variants in the screening dataset (n = 264). The significant mitochondrial single nucleotide polymorphism was validated in an independent cohort (n = 1046) using the Taqman® allelic discrimination assay. Random forest, eXtreme gradient boosting, Naive Bayes, and logistic regression algorithms were employed to construct an AI model for MASLD. RESULTS In the screening dataset, only mt12361A>G was significantly associated with MASLD. mt12361A>G showed borderline significance in MASLD patients with 2-3 cardiometabolic traits compared with controls in the validation dataset (P = 0.055). Multivariate regression analysis confirmed that mt12361A>G was an independent risk factor of MASLD [odds ratio (OR) = 2.54, 95% confidence interval (CI): 1.19-5.43, P = 0.016]. The genetic effect of mt12361A>G was significant in the non-diabetic group but not in the diabetic group. mt12361G carriers had a 2.8-fold higher risk than A carriers in the non-diabetic group (OR = 2.80, 95%CI: 1.22-6.41, P = 0.015). By integrating clinical features and mt12361A>G, random forest outperformed other algorithms in detecting MASLD [training area under the receiver operating characteristic curve (AUROC) = 1.000, validation AUROC = 0.876]. CONCLUSION The mt12361A>G variant increased the severity of MASLD in non-diabetic patients. AI supports the screening and management of MASLD in primary care settings.
Collapse
Affiliation(s)
- Ming-Ying Lu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
| | - Yu-Ju Wei
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Wen Wang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Cheng Liang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Shan Tsai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Pei-Chien Tsai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Min Ko
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ching-Chih Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Kuan-Yu Chen
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Hung Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tyng-Yuan Jang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Yen Hsieh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Zu-Yau Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chung-Feng Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
| |
Collapse
|
7
|
Li LP, Chen XY, Liu HB, Zhu Y, Xie MJ, Li YJ, Luo M, Albahde M, Zhang HY, Lou JY. Oxidative stress-induced circSOD2 inhibits osteogenesis through sponging miR-29b in metabolic-associated fatty liver disease. World J Gastroenterol 2025; 31:98027. [DOI: 10.3748/wjg.v31.i9.98027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is characterized by lipid accumulation in hepatocytes and is closely associated with oxidative stress. Increasing clinical evidence indicates that MAFLD is linked to bone metabolic disorders, including osteoporosis. Recent studies indicate that the expression profiles of liver circular RNAs (circRNAs) are altered in MAFLD. However, the effects of these changes on bone metabolism remain poorly understood.
AIM To investigate the effects and mechanism of differently expressed circRNAs secreted by the liver on osteogenic differentiation in MAFLD.
METHODS RNA sequencing was performed to identify highly expressed circRNAs in the liver, validated by quantitative real-time reverse transcription polymerase chain reaction, and localized using fluorescence in situ hybridization (FISH). A mouse model induced by a high-fat diet was used to simulate MAFLD.
RESULTS CircSOD2 was significantly upregulated in liver tissues and primary hepatocytes from subjects with MAFLD. CircSOD2 was induced by oxidative stress and attenuated by antioxidants in the mouse model. In addition, circSOD2 was delivered from hepatocytes to bone marrow mesenchymal stem cells (BMSCs). Furthermore, circSOD2 inhibited the osteogenic differentiation of BMSCs and in vivo bone formation by sponging miR-29b. Moreover, miR-29b inhibition reversed the stimulatory effect of circSOD2 silencing on osteogenic differentiation of BMSCs and in vivo bone formation. Mechanistically, the interaction between circSOD2 and miR-29b confirmed through a luciferase reporter assay and the co-localization in the cytoplasm evidenced by FISH indicated that circSOD2 acted as a sponge for miR-29b.
CONCLUSION This study provides a novel mechanism underlying the liver-bone crosstalk, demonstrating that circSOD2 upregulation in hepatocytes, induced by oxidative stress, inhibits osteogenic differentiation of BMSCs by sponging miR-29b. These findings offer a better understanding of the relationship between MAFLD and osteoporosis.
Collapse
Affiliation(s)
- Liang-Ping Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xiao-Ying Chen
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Hong-Bo Liu
- Department of General Surgery, The People’s Hospital of Songyang, Lishui 323400, Zhejiang Province, China
| | - Yi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Min-Jie Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yong-Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Meng Luo
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mugahed Albahde
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Hong-Yu Zhang
- Department of General Surgery, The People’s Hospital of Songyang, Lishui 323400, Zhejiang Province, China
| | - Jian-Ying Lou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
8
|
Nguyen MT, Lian A, Guilford FT, Venketaraman V. A Literature Review of Glutathione Therapy in Ameliorating Hepatic Dysfunction in Non-Alcoholic Fatty Liver Disease. Biomedicines 2025; 13:644. [PMID: 40149620 PMCID: PMC11940638 DOI: 10.3390/biomedicines13030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global cause of liver dysfunction. This spectrum of hepatic disorders can progress to severe conditions, such as non-alcoholic steatohepatitis (NASH) and cirrhosis, due to oxidative stress and sustained cellular injury. With limited pharmacological options, glutathione (GSH), a key antioxidant, has shown promising potential in reducing oxidative stress, maintaining redox balance, and improving liver function. This literature review examines studies from 2014-2024 exploring GSH therapy in NAFLD patients. Eligible studies assessed GSH as the primary intervention for NAFLD in human subjects, reporting outcomes such as liver function or oxidative stress markers. Randomized clinical trials (RCTs) were eligible, while combination therapy studies were included if GSH's effect could be isolated. Exclusions applied to non-NAFLD studies, animal/in vitro models, and non-GSH antioxidant interventions. Analysis of three studies (totaling 109 participants) demonstrated consistent improvements in alanine transaminase (ALT) levels and reductions in oxidative stress markers like 8-hydroxy-2-deoxyguanosine (8-OHdG). However, small sample sizes and inconsistent protocols limit generalizability. Further large-scale RCTs are required to confirm GSH's efficacy, determine optimal dosing, and assess long-term effects. This literature review highlights GSH's potential as a novel NAFLD therapeutic strategy while emphasizing the need for further studies to refine its clinical application.
Collapse
Affiliation(s)
- Michelle Thuy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| | - Andrew Lian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| |
Collapse
|
9
|
Hu Z, Yue H, Jiang N, Qiao L. Diet, oxidative stress and MAFLD: a mini review. Front Nutr 2025; 12:1539578. [PMID: 40104813 PMCID: PMC11913703 DOI: 10.3389/fnut.2025.1539578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Globally, metabolic dysfunction-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), is a common chronic liver disease. The progression of MAFLD leads to a vicious cycle in which oxidative stress results from the disease that is augmenting de-novo lipid levels and increases steatosis. Most non-enzymatic antioxidants are present in food. Therefore, the present review summarizes the findings of studies on food-derived antioxidants and presents an oxidative stress-related regulatory network in MAFLD, offering new ideas for MAFLD prevention and treatment.
Collapse
Affiliation(s)
- Zenan Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hanxun Yue
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Na Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
10
|
He F, Du W, Liu Y, Ling Y, Xu M, Liu J, Song P, Fang Z, Yue Z, Duan J, Wang L. Exosome-equipped TNF antisense oligodeoxynucleotide or 2-deoxy-D-glucose ameliorated nonalcoholic steatohepatitis by modulating superoxide dismutase 1 in mice. Redox Biol 2025; 80:103488. [PMID: 39778469 PMCID: PMC11763583 DOI: 10.1016/j.redox.2025.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Inflammatory mediators tumor necrosis factor (TNF) and interleukin 1 beta (IL1β), primarily derived from hepatic macrophages in the liver, play a crucial role in the progression of nonalcoholic steatohepatitis (NASH). Meanwhile, intravenously injected exosomes are mainly distributed in the liver and predominantly taken up by hepatic macrophage. Herein, we aimed to evaluate the feasibility of targeted inhibition of TNF and IL1β expression in hepatic macrophages via exosomes as a potential therapeutic strategy for NASH. In this study, we demonstrated that antisense oligodeoxynucleotide targeting TNF (ASO-TNF) or 2-deoxy-d-glucose (2DG) effectively suppressed the expression of TNF and/or IL1β in macrophages. Exosomes loaded with ASO-TNF or 2DG were able to suppress the expression of TNF and/or IL1β in macrophages in vitro or in vivo. Furthermore, infusion of Exo/ASO-TNF or Exo/2DG significantly attenuated experimental steatohepatitis in choline deficient amino acid-defined (CDAA) or methionine and choline deficient (MCD) diet-fed mice. RNA-seq results showed that treatment with Exo/ASO-TNF or Exo/2DG significantly inhibited pro-inflammatory signaling pathways. Mechanistically, we observed that administration of Exo/ASO-TNF or Exo/2DG could attenuate NASH progression by up-regulating the expression of superoxide dismutase 1 (Sod1). Combined, our findings demonstrated that infusion of exosomes loaded with ASO-TNF or 2DG alleviated experimental steatohepatitis in murine models. Thus, infusion of exosomes loaded with anti-inflammatory agents holds promise as a potential therapeutic strategy for NASH treatment.
Collapse
Affiliation(s)
- Fei He
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Wei Du
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Yingying Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Yuwei Ling
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Ming Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Jingjing Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Ping Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Zhensheng Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
11
|
Basha EH, Hegab II, Ismail R, Atef MM, El-Deeb OS, Ibrahim RR, Ghanem HB, Eissa R, Taha MS, Mwafy SE, Rizk FH, Salem OM, Ghafar MTA, Hafez YM, Mashal S, Tabaa MME, El-Harty YM. Protective effects of Kaempferol on hepatic apoptosis via miR-26a-5p enhancement and regulation of TLR4/NF-κB and PKCδ in a rat model of nonalcoholic fatty liver. J Nutr Biochem 2025; 137:109833. [PMID: 39701472 DOI: 10.1016/j.jnutbio.2024.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to evaluate kaempferol's, a dietary flavonoid widely present in plants, potential impact on nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms. In this study, 60 adult male rats were used and divided into a control group receiving a standard pellet diet, a kaempferol-treated group receiving kaempferol (250 mg/kg), a high-fat diet (HFD) group receiving HFD, and a kaempferol-treated HFD group. At the end of the experiment, the total lipid profile and liver enzymes were assayed in the serum. Additionally, oxidative stress (malondialdehyde and superoxide dismutase), inflammatory (tumor necrosis factor-alpha), apoptotic (caspase 3) markers, and nuclear factor-κB (NF-κB) and Toll-like receptor 4 (TLR4) concentrations were assayed in the liver tissues. Furthermore, miR-26a and PKCδ gene expression and beclin 1 immunohistochemical expression were determined in liver tissues. Our findings revealed that kaempferol significantly protects against the development of NAFLD in rats as well as inflammatory, oxidative, and apoptotic changes in their liver tissues by inhibiting PKCδ and the TLR-4/NF-κB signaling pathway while enhancing autophagy (Beclin 1 expression) via upregulating miR-26a expression. Accordingly, kaempferol holds promise as a complementary medication for the prevention of NAFLD. Nonetheless, more research is needed to fully understand its additional effects on liver tissue and to develop novel medications that activate miR-26a. A link between lipid metabolic abnormalities and miRNAs was demonstrated as upregulating miR-26a-5p by kaempferol mitigates the inflammation, apoptosis, and disrupted autophagy via regulating TLR4/NF-κB pathway and PKC in NAFLD.
Collapse
Affiliation(s)
- Eman H Basha
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Basic Medical Sciences, Physiology, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman 16197, Jordan
| | - Islam Ibrahim Hegab
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Physiology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Radwa Ismail
- Departments of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa Mohamed Atef
- Departments of Medical biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia Safwat El-Deeb
- Departments of Medical biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Rowida Rafaat Ibrahim
- Departments of Medical biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba Bassiony Ghanem
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia; Departments of Medical biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa Eissa
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Tanta University Tanta, Egypt
| | - Marwa S Taha
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Tanta University Tanta, Egypt; Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shorouk E Mwafy
- Departemnt of Pathology, Faculty of Medicine, Tanta University Tanta, Egypt
| | - Fatma H Rizk
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ola M Salem
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasser Mostafa Hafez
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shimaa Mashal
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat, Menoufia, Egypt
| | - Yasmeen M El-Harty
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Guo X, Li J, Li X, Sun J, Zou X, Ji J, Qu H, Shu D, Luo C. Synergy of genetics and lipid metabolism driving feed utilization efficiency in chickens. Poult Sci 2025; 104:104885. [PMID: 39978204 PMCID: PMC11880708 DOI: 10.1016/j.psj.2025.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
Residual feed intake (RFI) is a key indicator of feed efficiency, critical for enhancing the economic sustainability of poultry production. However, the genetic and metabolic regulatory mechanisms of RFI remain unclear. This study analyzed the genome, liver transcriptome, metabolome, and lipidome of hens with low and high feed efficiency (N = 60) from the previously established RFI divergent broiler lines (F15). Our results revealed pronounced genetic differentiation between low RFI (LRFI) and high RFI (HRFI) lines and identified genomic signatures of selection associated with feed efficiency. Transcriptomic analysis showed differential expression of genes involved in neural regulation and lipid metabolism. Notably, LRFI chickens exhibited reduced hepatic lipid accumulation, which was associated with decreased fatty acid metabolism and increased cholesterol metabolism (P < 0.05). The lipidomic analysis uncovered distinct profiles of glycerophospholipids (e.g., PE-P and PC-O) and sphingolipids (e.g., ceramides), which were more abundant in LRFI chickens (P < 0.05) and strongly correlated with key lipid metabolism processes (P < 0.05). Despite improved feed efficiency, LRFI chickens demonstrated signs of increased oxidative stress. Moreover, integrative analyses revealed that genes such as MGAT5, GABRA4, and LRRC4C, exhibiting strong selection signatures and higher expression in the LRFI line (P < 0.05), were identified as key regulators of lipid metabolism, potentially contributing to the observed differences in feed efficiency. This comprehensive study highlights the synergistic effect of genetics and lipid metabolism in driving feed utilization efficiency in chickens, establishing a scientific foundation for breeding strategies aimed at improving feed efficiency in poultry production.
Collapse
Affiliation(s)
- Xiaoli Guo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Jianbo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Jia Sun
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Xian Zou
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Dingming Shu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China.
| |
Collapse
|
13
|
Patterson WB, Young ND, Holzhausen EA, Lurmann F, Liang D, Walker DI, Jones DP, Liao J, Chen Z, Conti DV, Chatzi L, Goodrich JA, Alderete TL. Oxidative gaseous air pollutant exposure interacts with PNPLA3-I148M genotype to influence liver fat fraction and multi-omics profiles in young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125692. [PMID: 39864653 PMCID: PMC11859754 DOI: 10.1016/j.envpol.2025.125692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
PNPLA3-I148M genotype is the strongest predictive single-nucleotide polymorphism for liver fat. We examine whether PNPLA3-I148M modifies associations between oxidative gaseous air pollutant exposure (Oxwt) with i) liver fat and ii) multi-omics profiles of miRNAs and metabolites linked to liver fat. Participants were 69 young adults (17-22 years) from the Meta-AIR cohort. Prior-month residential Oxwt exposure (redox-weighted oxidative capacity of nitrogen dioxide and ozone) was spatially interpolated from monitoring stations via inverse-distance-squared weighting. Liver fat fraction was assessed by MRI. Serum miRNAs and metabolites were assayed via NanoString nCounter and LC-HRMS, respectively. Multi-omics factor analysis (MOFA) was used to identify latent factors with shared variance across omics layers. Multivariable linear regression models adjusted for age, sex, body mass index, and genotype with liver fat or MOFA factors as an outcome and examined PNPLA3 (rs738409; CC/CG vs. GG) as a multiplicative interaction term. Overall, a standard deviation difference in Oxwt exposure was associated with 8.9% relative increase in liver fat (p = 0.04) and this relationship differed by PNPLA3 genotype (p-value for interaction term: pintx<0.001), whereby relative increases in liver fat for GG and CC/CG participants were 71.8% and 2.4%, respectively. There was no main effect of Oxwt on MOFA Factor 1 expression (p = 0.85), but there was an interaction with PNPLA3 genotype (pintx = 0.01), whereby marginal slopes were 0.211 and -0.017 for GG and CC/CG participants, respectively. MOFA Factor 1 in turn was associated with liver fat (p = 0.006). MOFA Factor 1 miRNAs targeted genes in Fatty Acid Biosynthesis and Metabolism and Lysine Degradation pathways. MOFA Factor 9 was also associated with liver fat and was comprised of branched-chain keto acid and amino acid metabolites. The effects of Oxwt exposure on liver fat is exacerbated in young adults with two PNPLA3 risk alleles, potentially through differential effects on miRNA and/or metabolite profiles.
Collapse
Affiliation(s)
- William B Patterson
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nathan D Young
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth A Holzhausen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
14
|
Moolsup F, Suttithumsatid W, Woonnoi W, Chonpathompikunlert P, Tanasawet S, Sukketsiri W. Passion Fruit Seed Extract Attenuates Hepatic Steatosis in Oleic Acid-Treated HepG2 Cells through Modulation of ERK1/2 and Akt Signaling Pathways. Cell Biochem Biophys 2025:10.1007/s12013-025-01706-5. [PMID: 40025286 DOI: 10.1007/s12013-025-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Hepatic steatosis, commonly referred to as fatty liver disease, is defined by the abnormal buildup of fat within liver cells. Currently, primary treatments mainly focus on lifestyle changes, underscoring a lack of direct pharmacological options. Passion fruit seed extract (PFSE) has been reported to decrease hepatosteatosis; however, the mechanism underlying this effect has not been clarified. Therefore, the objective of this research was to investigate the effects and mechanisms of action of PFSE against oleic acid (OA)-induced hepatosteatosis in HepG2 cells. OA-induced HepG2 cells were analyzed by using various cell-based experiments, including assessments of cytotoxicity, reactive oxygen species (ROS) production, apoptosis, and protein and gene expression. LC-MS-MS analysis showed that PFSE contains a variety of phytochemical compounds such as alkaloids, flavonoids, stilbenoids, coumarins, terpenoids, lipids, and fatty acid derivatives, which have the potential to exhibit various pharmacological activities. In this study, PFSE demonstrated antioxidant, anti-inflammatory, and lipid metabolism-regulating activities. It also influenced key genes related to lipid metabolism, including SREBP-1c, ACC, FASN, PPARα, CPT-1A, LPL, SCD1, and LDLR. The positive effects of PFSE on OA-induced hepatic steatosis in HepG2 cells were modulated through the Akt and ERK signaling pathways, suggesting that PFSE may offer a comprehensive approach to managing hepatic steatosis.
Collapse
Affiliation(s)
- Furoida Moolsup
- Laboratory Animal Service Center, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Wiwit Suttithumsatid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Thailand
| | - Wanwipha Woonnoi
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pennapa Chonpathompikunlert
- Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, Thailand
| | - Supita Tanasawet
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
15
|
Stegmann SK, Vohlen C, Im NG, Niehues J, Selle J, Janoschek R, Kuiper-Makris C, Lang S, Demir M, Steffen HM, Quaas A, Lackmann JW, Nierhoff D, Neumann-Haefelin C, Dötsch J, Alejandre Alcazar MA, Kasper P. Perinatal obesity primes the hepatic metabolic stress response in the offspring across life span. Sci Rep 2025; 15:6416. [PMID: 39984579 PMCID: PMC11845730 DOI: 10.1038/s41598-025-90082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/22/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Perinatal obesity is associated with an increased risk of metabolic diseases and hepatic dysfunction in offspring. However, the underlying mechanisms of this metabolic programming remain incompletely understood. This study aimed to elucidate the influence of maternal obesity and early life exposure to high-fat diet on offspring liver phenotype, hepatokine profile, and key components of hepatic metabolism. To this end, we employed a murine high-fat diet-induced perinatal obesity model, investigating the offspring in early life and late adulthood. After exposure to perinatal obesity, the offspring showed a significantly increased body weight in early life with no histological signs of steatosis, but a dysregulated hepatokine profile. Proteomic profiling, followed by molecular analyses, revealed a decreased lipogenesis and increased fatty acid oxidation, suggesting a protective mechanism against the development of steatosis. These changes were accompanied by increased markers of lipid peroxidation and DNA damage, indicating increased oxidative stress. Concomitantly, the antioxidative enzymes catalase and superoxide dismutase 2 were significantly reduced and oxidative phosphorylation was impaired, implying an altered oxidative stress response. While changes in oxidative stress level were only detected in early life, the lipid metabolism was altered across life span. This metabolic programming could determine the resilience and susceptibility to chronic liver disease later in life.
Collapse
Affiliation(s)
- Sarah K Stegmann
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Nam Gyu Im
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jana Niehues
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jaco Selle
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Celien Kuiper-Makris
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sonja Lang
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Berlin, Germany
| | - Hans-Michael Steffen
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Neumann-Haefelin
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Martín-Grau M, Casanova P, Moreno-Morcillo L, Morales JM, Marrachelli VG, Monleón D. Microbiota Co-Metabolism Alterations Precede Changes in the Host Metabolism in the Early Stages of Diet-Induced MASLD in Wistar Rats. Int J Mol Sci 2025; 26:1288. [PMID: 39941056 PMCID: PMC11818068 DOI: 10.3390/ijms26031288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) affects around 30% of the global population. The sexual dimorphism and gut microbiota play an important role in the early development of MASLD. The main objective of this research was to investigate metabolic changes during the early subclinical MASLD progression, for identifying the sequence of events and evaluating the impact of sexual dimorphism and the microbiota on the initial stages of MASLD development. Male and female Wistar rats 18 weeks old were randomly divided into different groups and fed a chow diet or a 45% high-fat diet for 21 weeks. Every three weeks, samples of serum, urine, and faeces were collected and studied by metabolomics. Furthermore, the liver was analysed at the endpoint. In addition, the gut microbiota was analysed from faecal samples over time using 16S rRNA gene-targeted group-specific primers. Our results revealed that three weeks on an HFD reduced the bacterial diversity in the faecal microbiota of Wistar rats, accompanied by changes in the faecal and urine metabolome. The HFD-induced alterations in microbiota-related co-metabolites in the liver, blood, urine, and faeces indicate a significant role of host-microbiota co-metabolism changes in the early stages of MASLD. In this study, we provide a comprehensive longitudinal analysis, detailing the sequence of events in the early development of MASLD. Our findings suggest that alterations in the gut microbiota diversity and co-metabolism occur before changes in host metabolism in the early onset of liver steatosis, a subclinical phase of MASLD.
Collapse
Affiliation(s)
- María Martín-Grau
- Departament de Patologia, Universitat de València, 46010 Valencia, Spain; (P.C.); (L.M.-M.); (J.M.M.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
| | - Pilar Casanova
- Departament de Patologia, Universitat de València, 46010 Valencia, Spain; (P.C.); (L.M.-M.); (J.M.M.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
| | - Laura Moreno-Morcillo
- Departament de Patologia, Universitat de València, 46010 Valencia, Spain; (P.C.); (L.M.-M.); (J.M.M.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
| | - José Manuel Morales
- Departament de Patologia, Universitat de València, 46010 Valencia, Spain; (P.C.); (L.M.-M.); (J.M.M.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
| | - Vannina G. Marrachelli
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
- Departament de Fisiologia, Universitat de València, 46010 Valencia, Spain
| | - Daniel Monleón
- Departament de Patologia, Universitat de València, 46010 Valencia, Spain; (P.C.); (L.M.-M.); (J.M.M.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
| |
Collapse
|
17
|
He Y, Ye M, Xia Y, Zhong Z, Li Q. Antioxidants and the risk of metabolic dysfunction-associated steatotic liver disease: results of National Health and Nutrition Examination Survey and two-sample Mendelian randomization analyses. Eur J Gastroenterol Hepatol 2025; 37:230-239. [PMID: 39621882 DOI: 10.1097/meg.0000000000002898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
BACKGROUND The link between antioxidants and metabolic dysfunction-associated steatotic liver disease (MASLD) is a topic of considerable discussion in the field of observational studies, with the exact causal connections still being unclear. METHODS In this investigation, a cohort consisting of 17 061 participants from the National Health and Nutrition Examination Surveys was studied. Initially, a cross-sectional analysis was carried out to examine the relationship between the CDAI and MASLD. Further, Mendelian randomization (MR) was utilized to assess the possible causal links between antioxidant levels in the bloodstream and MASLD. RESULTS The association between the CDAI and MASLD was found to be significant in the fully adjusted logistic regression model, showing an OR of 0.95 [95% confidence interval (CI): 0.94-0.97; P < 0.001]. The use of restricted cubic spline regression revealed no significant nonlinear association between the CDAI and the occurrence of MASLD ( Pnonlinearity = 0.321). Additionally, MR findings did not suggest any causal connections between circulating levels of various antioxidants and MASLD. These antioxidants included vitamin A (retinol) (IVW: OR: 0.67, 95% CI: 0.33-1.36, P = 0.272), vitamin C (ascorbate) (IVW: OR: 0.61, 95% CI: 0.34-1.09, P = 0.094), vitamin E (α-tocopherol) (IVW: OR: 0.55, 95% CI: 0.13-2.25, P = 0.407), vitamin E (γ-tocopherol) (IVW: OR: 0.89, 95% CI: 0.36-2.23, P = 0.806), zinc (IVW: OR: 0.95, 95% CI: 0.82-1.09, P = 0.449), selenium (IVW: OR: 0.98, 95% CI: 0.84-1.16, P = 0.855), and carotene (IVW: OR: 0.80, 95% CI: 0.36-1.81, P = 0.596). CONCLUSION The findings highlight a significant negative linear relationship between CDAI and MASLD prevalence in the observational component of the study. However, the MR analysis did not indicate any causal effects of circulating antioxidant levels on MASLD.
Collapse
Affiliation(s)
- Yijia He
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
18
|
Bartlett AM, Boone AM, Bays JA, Kim Y, Palle SK, Short KR. Oxidized high-density lipoprotein and low-density lipoprotein in adolescents with obesity and metabolic dysfunction-associated steatotic liver disease. Pediatr Obes 2025; 20:e13194. [PMID: 39676567 PMCID: PMC11793203 DOI: 10.1111/ijpo.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is increasingly common in the pediatric population and may increase risk for developing cardiovascular disease (CVD) in people with MASLD. Oxidized high-density lipoprotein (oxHDL) and oxidized low-density lipoprotein (oxLDL) are modified, pro-atherosclerotic lipoproteins that are increased in adults with MASLD and CVD but have not been reported in adolescents with MASLD. PURPOSE To determine if oxLDL and oxHDL are increased in adolescents with MASLD. METHODS Fasting oxHDL and oxLDL were measured in adolescents (11-20 years) with obesity and biopsy-confirmed MASLD (n = 47), and peers without MASLD but with obesity (Ob; n = 28), or normal weight (NW; n = 29). RESULTS oxHDL was 27% higher (p < 0.05) in the MASLD group (mean ± SD: 11.9 ± 4.7 ng/mL) compared to the Ob group (9.3 ± 3.7 ng/mL, p < 0.05) but only 7% higher than the NW group (11.1 ± 3.8 ng/mL, p > 0.05). However, HDL-C was 19% and 32% lower in the MASLD group than in the Ob and NW groups, respectively. Thus, oxHDL/HDL-C ratio was 55% and 66% higher in MASLD compared to the Ob group (p < 0.004) and the NW group (p < 0.001), respectively. oxLDL (52.4 ± 16.0, 46.7 ± 10.1 and 47.1 ± 15.2 U/L for MASLD, Ob and NW, respectively), LDL-C and the oxLDL/LDL-C ratio did not differ among groups. CONCLUSIONS The elevated oxHDL and oxHDL/HDL-C in adolescents with MASLD compared to peers with Ob or NW suggests that there is some oxidative stress in MASLD independent of obesity and potential for increased CVD risk in the future.
Collapse
Affiliation(s)
- Alyssa M. Bartlett
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center
| | - Ali M. Boone
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center
| | - Jordan A. Bays
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center
| | - Youngsil Kim
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center
| | - Sirish K. Palle
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, University of Oklahoma Health Sciences Center
| | - Kevin R. Short
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center
| |
Collapse
|
19
|
Arroyave-Ospina JC, Martínez M, Buist-Homan M, Palasantzas V, Arrese M, Moshage H. Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes. Antioxidants (Basel) 2025; 14:175. [PMID: 40002362 PMCID: PMC11851918 DOI: 10.3390/antiox14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes. METHODS Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated. RESULTS CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production. CONCLUSIONS CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation.
Collapse
Affiliation(s)
- Johanna C. Arroyave-Ospina
- Department of Fisiología y Bioquímica and Grupo de Gastrohepatología, Facultad de Medicina Universidad de Antioquia, Medellín 050010, Colombia
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Magnolia Martínez
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Victoria Palasantzas
- Department of Genetics and Department of Pediatrics, University Medical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands;
| | - Marco Arrese
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| |
Collapse
|
20
|
Smiriglia A, Lorito N, Bacci M, Subbiani A, Bonechi F, Comito G, Kowalik MA, Perra A, Morandi A. Estrogen-dependent activation of TRX2 reverses oxidative stress and metabolic dysfunction associated with steatotic disease. Cell Death Dis 2025; 16:57. [PMID: 39890799 PMCID: PMC11785963 DOI: 10.1038/s41419-025-07331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of hepatic disorders, ranging from simple steatosis to steatohepatitis, with the most severe outcomes including cirrhosis, liver failure, and hepatocellular carcinoma. Notably, MASLD prevalence is lower in premenopausal women than in men, suggesting a potential protective role of estrogens in mitigating disease onset and progression. In this study, we utilized preclinical in vitro models-immortalized cell lines and hepatocyte-like cells derived from human embryonic stem cells-exposed to clinically relevant steatotic-inducing agents. These exposures led to lipid droplet (LD) accumulation, increased reactive oxygen species (ROS) levels, and mitochondrial dysfunction, along with decreased expression of markers associated with hepatocyte functionality and differentiation. Estrogen treatment in steatotic-induced liver cells resulted in reduced ROS levels and LD content while preserving mitochondrial integrity, mediated by the upregulation of mitochondrial thioredoxin 2 (TRX2), an antioxidant system regulated by the estrogen receptor. Furthermore, disruption of TRX2, either pharmacologically using auranofin or through genetic interference, was sufficient to counteract the protective effects of estrogens, highlighting a potential mechanism through which estrogens may prevent or slow MASLD progression.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy.
| |
Collapse
|
21
|
Salek F, Guest A, Johnson C, Kastelic JP, Thundathil J. Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle. Animals (Basel) 2025; 15:344. [PMID: 39943114 PMCID: PMC11815730 DOI: 10.3390/ani15030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Increasing global demand for animal proteins warrants improved productivity by genetic selection of superior cattle and faster dissemination of genetics. Availability of more progeny for genomic selection should maximize chances of identifying animals with desirable traits and increase selection pressure. OPU and IVP of embryos using these oocytes will substantially increase calves produced compared to conventional embryo transfer (ET). The OPU-IVP technology not only supports genetic improvement but also contributes to reducing environmental impacts of livestock production systems by improving efficiency and optimizing resources, aligning with the Sustainable Development Goals of the United Nations. However, there are several factors influencing the success of OPU-IVP. This review is focused on these factors and the impacts of in vitro culture conditions on the lipid content of embryos and potential role of L-carnitine, a lipolytic agent, on developmental competence of IVP embryos. The documented effects of L-carnitine and current knowledge regarding regulation of the Hippo signaling pathway suggest that supplementation of embryo culture media with L-carnitine will increase post-thaw survival of IVP embryos and their subsequent developmental competence by regulating lipid metabolism, production of reactive oxygen species, and Hippo signaling. Therefore, this review highlights current advancements in the field of OPU-IVP and potential areas for refining culture conditions to yield developmentally competent embryos that survive cryopreservation procedures.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada (C.J.); (J.P.K.)
| |
Collapse
|
22
|
Ionescu VA, Gheorghe G, Bacalbasa N, Diaconu CC. Metabolic Dysfunction-Associated Steatotic Liver Disease: Pathogenetic Links to Cardiovascular Risk. Biomolecules 2025; 15:163. [PMID: 40001466 PMCID: PMC11852489 DOI: 10.3390/biom15020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is correlated with an increased cardiovascular risk, independent of other traditional risk factors. The mechanisms underlying this pathogenic link are complex yet remain incompletely elucidated. Among these, the most significant are visceral adiposity, low-grade inflammation and oxidative stress, endothelial dysfunction, prothrombotic status, insulin resistance, dyslipidemia and postprandial hyperlipemia, gut dysbiosis, and genetic mutations. Cardiovascular diseases are the leading cause of death in patients with MASLD. These patients have an increased incidence of coronary artery disease, carotid artery disease, structural and functional cardiac abnormalities, and valvulopathies, as well as arrhythmias and cardiac conduction disorders. In this review, we present the latest data on the association between MASLD and cardiovascular risk, focusing on the pathogenic mechanisms that explain the correlation between these two pathologies. Given the high rates of cardiovascular morbidity and mortality among patients with MASLD, we consider it imperative to raise awareness of the risks associated with this condition within the general population. Further research is essential to clarify the mechanisms underlying the increased cardiovascular risk linked to MASLD. This understanding may facilitate the identification of new diagnostic and prognostic biomarkers for these patients, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania;
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania;
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Nicolae Bacalbasa
- Department of Visceral Surgery, Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania;
- Department of Surgery, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania;
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
23
|
Zhang M, Yang A. Association between oxidative balance score and gallstone disease: a population-based study from NHANES. Front Nutr 2025; 12:1539969. [PMID: 39911802 PMCID: PMC11796620 DOI: 10.3389/fnut.2025.1539969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Background Oxidative stress has been reported to participant in the pathogenesis of gallstones. Oxidative balance score (OBS) represents pro-oxidant and antioxidant exposures to diet and lifestyle, closely associated with multiple metabolic disorders. However, the relationship between OBS and gallstones remains unclear. Methods This study analyzed cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020. OBS was calculated based on the 24-h recall interviews or questionnaires. We used weighted logistic regression, restricted cubic splines (RCS), weighted quantile sum (WQS) regression and the Bayesian kernel machine regression (BKMR) model to identify the relationship between OBS and gallstones. Subgroup analysis and sensitivity analysis were used to explore potential heterogeneity and stability of the results. Mediation analysis was performed to assess the mediating effects of serum lipid in the association between OBS and gallstones. Results A total of 7,618 participants were finally included in this study. Weighted logistics regression showed that total OBS was associated with gallstones risk (OR = 0.98, p = 0.03), particularly in individuals who were under 60 years old, Hispanic, educated below high school, non-smokers, had hypertension or malignancy. Dietary and lifestyle OBS independently contribute to the protection against gallstones. RCS analysis indicated a non-linear relationship between OBS and gallstones (p = 0.03). WQS and BKMR model identified that BMI, vitamin E, vitamin B6, magnesium and carotene played relatively important role among 20 components. Mediation analysis showed serum TG and HDL as mediators of the association between OBS and gallstones. Conclusion Higher OBS or increased oxidative balance are positively associated with reduction of gallstone risk. This findings provide valuable insights for surveillance and interventions targeting for antioxidant-rich diet and lifestyle for gallstone disease.
Collapse
Affiliation(s)
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Pourmontaseri H, Bazmi S, Sepehrinia M, Mostafavi A, Arefnezhad R, Homayounfar R, Vahid F. Exploring the application of dietary antioxidant index for disease risk assessment: a comprehensive review. Front Nutr 2025; 11:1497364. [PMID: 39885868 PMCID: PMC11781229 DOI: 10.3389/fnut.2024.1497364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Oxidative stress contributes to the development of cardiometabolic diseases and cancers. Numerous studies have highlighted the adverse effects of high reactive oxygen species (ROS) levels in the progression of chronic noncommunicable diseases and also during infections. On the other hand, antioxidants play a crucial role in preventing oxidative stress or postponing cell damage via the direct scavenging of free radicals or indirectly via the Keap1/Nrf2/ARE pathway, among others. Dietary antioxidants can be obtained from various sources, mainly through a plant-based diet, including fruits and vegetables. The dietary antioxidant index (DAI) has been developed to assess total antioxidant intake from diet. This review delineated the performance of DAI in the risk assessment of different diseases. It is suggested that a high DAI score prevents obesity-related diseases, including diabetes mellitus, hyperuricemia, dyslipidemia, and metabolic (dysfunction)-associated steatotic liver disease (MASLD). Additionally, DAI is negatively associated with Helicobacter pylori and Human papillomavirus infection, thus reducing the risk of gastric and cervical cancer. Also, a high intake of antioxidants prevents the development of osteoporosis, miscarriage, infertility, and mental illnesses. However, further prospective observations and clinical trials are warranted to confirm the application of DAI in preventing diseases that have been studied.
Collapse
Affiliation(s)
| | - Sina Bazmi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Matin Sepehrinia
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ayda Mostafavi
- Department of Psychology, Panjab University, Chandigarh, India
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Homayounfar
- National Nutrition and Food Technology Research Institute (WHO Collaborating Center), Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
25
|
Huang Z, Chen J, Liu S, Xiang X, Long Y, Tan P, Fu W. MAP17 is a Novel NASH Progression Biomarker Associated with Macrophage Infiltration, Immunotherapy Response, and Oxidative Stress. J Inflamm Res 2025; 18:601-619. [PMID: 39839187 PMCID: PMC11747966 DOI: 10.2147/jir.s497737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) has recently garnered increased attention due to immune infiltration. However, the role of membrane-associated protein 17 (MAP17) in NASH remains unclear, which prompted this study to explore its relationship with immune infiltration and its regulatory mechanisms. Methods We employed weighted correlation network analysis (WGCNA) to construct a gene co-expression network aimed at identifying key genes associated with NASH progression. Our further analyses included differential expression evaluation, protein-protein interaction (PPI) network analysis, and Venn diagram analysis to discover novel targets. The CIBERSORT algorithm assessed the correlation between MAP17 and immune cell infiltration within the tumor microenvironment (TME), while the TIDE algorithm predicted responses to immunotherapy. Additionally, we conducted gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) to elucidate the mechanisms by which MAP17 operates. The expression of MAP17 was validated using liver tissues obtained from NASH patients and mice with diet-induced NASH or CCl4-induced liver fibrosis. Results Our findings identified MAP17 as a novel target in the progression of NASH. Correlation analyses demonstrated a positive association between MAP17 and M1 macrophage infiltration, as well as a negative association with M2 infiltration. TIDE results positioned MAP17 as a potential biomarker for predicting responses to immune checkpoint blockade. Mechanistic studies revealed that MAP17 induced oxidative stress, which subsequently activated the p53, PI3K-AKT, and Wnt signaling pathways. Validation analyses confirmed that MAP17 levels significantly increased in liver tissues of mice with diet-induced NASH or CCl4-induced liver fibrosis, as well as in NASH patients. Conclusion MAP17 is a novel biomarker linked to macrophage infiltration and immunotherapy responses in NASH patients. The oxidative stress induced by MAP17 activates the p53, PI3K-AKT, and Wnt pathways, all of which contribute to the progression of NASH.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xin Xiang
- Department of General Surgery, The First People’s Hospital of Neijiang, Neijiang, 641000, People’s Republic of China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Peng Tan
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
26
|
Cammisotto V, Valeriani E, Pignatelli P, Violi F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2025; 14:83. [PMID: 39857417 PMCID: PMC11763266 DOI: 10.3390/antiox14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by lipid accumulation in the liver due to an excess in their supplies or an impairment in their management. While some patients remain stable for years, a proportion of them progress up to steatohepatitis (MASH). MASLD links with systemic pathways being associated with metabolic and non-metabolic diseases. Although liver lipid accumulation represents the first hit for MASLD, the pathophysiology of its development and progression to MASH remains not completely understood. Oxidative stress has received particular attention in recent years, as most of the oxidative process occurs in the liver, which is also the target of oxidative stress-induced damage. Growing evidence linked the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) to the increased liver production of reactive oxygen species up to liver damage and fibrosis. NOX acts both in hepatocytes and in non-parenchymal hepatic cells, contributing to hepatocyte lipotoxicity, impaired hepatic microcirculation, hepatic stellate, and mesenchymal stem cells activation and proliferation. This review aims to summarize the current knowledge on the involvement of oxidative stress in the MASLD-MASH transition, focusing on the role of NOX isoforms, and to suggest targeting NOX as a therapeutic approach in MASLD.
Collapse
Affiliation(s)
- Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (V.C.); (P.P.); (F.V.)
| | - Emanuele Valeriani
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, 00185 Rome, Italy
- Department of Infectious Disease, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (V.C.); (P.P.); (F.V.)
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (V.C.); (P.P.); (F.V.)
| |
Collapse
|
27
|
Michalopoulou E, Thymis J, Lampsas S, Pavlidis G, Katogiannis K, Vlachomitros D, Katsanaki E, Kostelli G, Pililis S, Pliouta L, Kountouri A, Papanikolaou IS, Lambadiari V, Ikonomidis I. The Triad of Risk: Linking MASLD, Cardiovascular Disease and Type 2 Diabetes; From Pathophysiology to Treatment. J Clin Med 2025; 14:428. [PMID: 39860434 PMCID: PMC11765821 DOI: 10.3390/jcm14020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern, and it is not only the keystone precursor of eventual liver-related morbidity, but it also places patients at considerably higher cardiovascular risk, which is still a leading cause of death in these patients. The most important common underlying pathophysiological mechanisms in these diseases are primarily related to insulin resistance, chronic inflammation and oxidative stress. The presence of MASLD with cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) elevates the risk for poor outcomes, thus this review highlights a method to the therapeutic approaches. Given the intertwined nature of MASLD, T2DM, and CVD, there is an urgent need for therapeutic strategies that address all three conditions. Although lifestyle changes are important as treatment, medication plays a crucial role in managing hyperglycemia, enhancing liver function and lowering cardiovascular risk. The onset and progression of MASLD should be addressed through a multifaceted therapeutic approach, targeting inflammatory, immune, metabolic, oxidative stress, hormonal and gutaxis pathways, alongside the treatment strategies for T2DM. In this review, we discuss the effects of antidiabetic drugs with an impact on both liver outcomes and cardiovascular risk in patients affected by MASLD, T2DM and CDV.
Collapse
Affiliation(s)
- Eleni Michalopoulou
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - George Pavlidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Konstantinos Katogiannis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Dimitrios Vlachomitros
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Eleni Katsanaki
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Gavriella Kostelli
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ioannis S. Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Rimini 1, Chaidari, 12462 Athens, Greece;
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| |
Collapse
|
28
|
Sotoudeheian M. Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role. Curr Protein Pept Sci 2025; 26:6-21. [PMID: 38982921 DOI: 10.2174/0113892037315931240618085529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.
Collapse
|
29
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2025; 99:1-22. [PMID: 39443317 PMCID: PMC11748479 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
30
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Dong JX, Jiang LL, Liu YP, Zheng AX. Association between composite dietary antioxidant index and metabolic dysfunction-associated fatty liver disease: a cross-sectional study from NHANES. BMC Gastroenterol 2024; 24:465. [PMID: 39702023 DOI: 10.1186/s12876-024-03556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a typical hepatic steatosis with metabolic dysfunction. The composite dietary antioxidant index (CDAI) measures individual antioxidant capacity, and the relationship with MAFLD has received little attention. Our goal is to explore the association of CDAI with MAFLD. METHODS Participants were selected from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2020. CDAI was calculated basing on six dietary antioxidants, including zinc, selenium, carotenoids, and vitamins A, C, and E. Univariate regression and multivariable logistic regression analysis were conducted to evaluate the correlation between CDAI and MAFLD. We performed subgroup analysis to study the correlation in various populations. RESULTS A total of 18,163 participants, including 13,969 MAFLD and 4,194 non-MAFLD, were included. CDAI was significantly negatively correlated with MAFLD. After adjusting for all confounders (including age, gender, race, marital status, poverty ratio, education level, drinking status, smoking status, and physical activity), individuals in the highest quartile of CDAI exhibited a 27% lower likelihood of developing MAFLD than those in the lowest quartile (OR = 0.73; 95% CI [0.66, 0.81], p < 0.001). Physical activity subgroup analysis showed that this negative association was significant in the moderate-intensity physical exercise population (Model 3 in Q4, OR = 0.72; 95% CI [0.58-0.89], p < 0.001). Additionally, the changes in vitamins C were independently associated with MAFLD (Model 3, OR = 0.90; 95% CI [0.86-0.93], p < 0.001). CONCLUSIONS We found a negative relationship between higher CDAI scores and MAFLD. This study provided a new reference for exploring dietary interventions that affect MAFLD to reduce its incidence.
Collapse
Affiliation(s)
- Jia-Xin Dong
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China
| | - Li-Li Jiang
- Department of Internal Medicine, The Fourth People's Hospital of Zibo City, No. 139 Haidaidadao Road, Economic Development Zone, Zibo, 255036, P.R. China
| | - Yan-Peng Liu
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China
| | - Ai-Xi Zheng
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China.
| |
Collapse
|
32
|
Santos PQD, Rocha R, Daltro CHDC, Andrade SCDS, Cotrim HP. Serum glutathione peroxidase is associated with nonalcoholic fatty liver disease in children and adolescents. NUTR HOSP 2024; 41:1165-1171. [PMID: 39446125 DOI: 10.20960/nh.05105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Introduction Background and aims: oxidative stress is an important factor in the pathophysiology of non-alcoholic fatty liver disease (NAFLD). This study aimed to compare the serum levels of malondialdehyde (MDA), glutathione peroxidase (GPx) and antioxidant micronutrients in children and adolescents with and without NAFLD. Methods: a cross-sectional study with patients between 8-18 years old, of both sexes. Diagnosis of NAFLD: presence of steatosis on ultrasound and absence of history of ethanol consumption and other liver diseases. Anthropometric measures, MDA, GPx, Interleukin-6, serum levels of vitamins A, C and E, selenium, zinc, and copper were evaluated. Results: eighty-nine children with mean age of 12 (3) years, 57.3 % female and 24 % with NAFLD were evaluated. Those with NAFLD had more frequent abdominal obesity (high waist-height ratio: 81.0 % x 48.5 %; p = 0.009). After logistic regression NAFLD was associated with high body mass index/age (p-adjusted = 0.021) and with reduced serum GPx (p-adjusted = 0.034). There was a positive correlation between MDA and copper (r = 0.288; p = 0.006), IL-6 (r = 0.357; p = 0.003) and a negative one with vitamin A (r = -0.270; p = 0.011). Conclusions: oxidative stress is present in children with NAFLD and non-invasive markers such as GPx and BMI can be used in clinical practice and help in the early screening of NAFLD.
Collapse
Affiliation(s)
| | - Raquel Rocha
- Department of Nutrition Sciences. Escola de Nutrição. Universidade Federal da Bahia (UFBA)
| | | | | | - Helma Pinchemel Cotrim
- Postgraduate Program in Medicine and Health. Faculdade de Medicina da Bahia. Universidade Federal da Bahia (UFBA)
| |
Collapse
|
33
|
CHONPATHOMPIKUNLERT P, YINGTHONGCHAI P, TATEING S, AMATACHAYA A, KAEWBUTRA S, CHAIYAWAN N, LEKCHAOUM T, CHAIPANYA C, MALAKUL W, KHONGRUM J. Administration of a probiotic supplement attenuates nonalcoholic fatty liver disease by reducing hepatic lipid accumulation, oxidative stress, and inflammation. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 44:160-170. [PMID: 40171392 PMCID: PMC11957757 DOI: 10.12938/bmfh.2024-074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 04/03/2025]
Abstract
Due to the requirement for a novel and effective treatment for non-alcoholic fatty liver disease (NAFLD), this study aimed to determine the effects of a novel supplement containing Lactocaseibacillus zeae and Limosilactobacillus reuteri on oxidative stress, inflammation, glucose and lipid metabolism, lipid accumulation, and liver function in the fructose-induced NAFLD rat model. To investigate the involvement of molecular pathways and validate a preclinical study, NAFLD was induced by feeding them fructose-containing drinking water (20% w/v) for 12 consecutive weeks. The fructose-induced male rats were administered a mixture of L. zeae TISTR 2529 and L. reuteri TISTR 2736 at a dose of 2 × 108 CFU/mL during weeks 0 to 12, daily. Weight and food intake were recorded daily. The production of oxidative stress, expression of the TNF-α, SREBP-1c, liver enzymes, and lipid profiles, including the densities of lipid droplets in liver cells, were also evaluated. The results revealed that fructose-induced rats co-treated with the mixed probiotics had significantly decreased body weights, triglycerides, cholesterol, and liver enzymes. Furthermore, the expression of TNF-α, MDA, and SREBP-1c and the densities of lipid droplets in the liver tissue were reduced. Based on the results, the novel probiotic supplement containing L. zeae TISTR 2529 and L. reuteri TISTR 2736 might alleviate NAFLD by normalizing oxidative stress, inflammation, lipid metabolism, and lipid accumulation in the liver of NAFLD-induced model rats.
Collapse
Affiliation(s)
- Pennapa CHONPATHOMPIKUNLERT
- Biodiversity Research Centre (BRC), Thailand Institute of
Scientific and Technological Research (TISTR), Pathumthani 12120, Thailand
- Pre-clinical and Clinical Research Service Unit (P2CRSU), A
Division of Research and Development Group for Bio-Industries, Thailand Institute of
Scientific and Technological Research (TISTR), Pathumthani 12120, Thailand
| | | | - Suriya TATEING
- Department of Plant and Soil Sciences, Faculty of
Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anuwat AMATACHAYA
- Department of Biology, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
| | - Sasalux KAEWBUTRA
- Department of Medical Science, Amnatcharoen Campus, Mahidol
University, Amnat Charoen 37000, Thailand
| | - Neungnut CHAIYAWAN
- Biodiversity Research Centre (BRC), Thailand Institute of
Scientific and Technological Research (TISTR), Pathumthani 12120, Thailand
| | - Thanyarat LEKCHAOUM
- Biodiversity Research Centre (BRC), Thailand Institute of
Scientific and Technological Research (TISTR), Pathumthani 12120, Thailand
- Pre-clinical and Clinical Research Service Unit (P2CRSU), A
Division of Research and Development Group for Bio-Industries, Thailand Institute of
Scientific and Technological Research (TISTR), Pathumthani 12120, Thailand
| | - Chaivarakun CHAIPANYA
- Biodiversity Research Centre (BRC), Thailand Institute of
Scientific and Technological Research (TISTR), Pathumthani 12120, Thailand
| | - Wachirawadee MALAKUL
- Department of Physiology, Faculty of Medical Science,
Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Naresuan
University, Phitsanulok 65000, Thailand
| | - Jurairat KHONGRUM
- Multidisciplinary Research Institute, Chiang Mai University,
Chiang Mai 50200, Thailand
- Functional Food Research Center for Well-Being, Chiang Mai
University, Chiang Mai 50200, Thailand
| |
Collapse
|
34
|
Mignini I, Galasso L, Piccirilli G, Calvez V, Termite F, Esposto G, Borriello R, Miele L, Ainora ME, Gasbarrini A, Zocco MA. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1532. [PMID: 39765860 PMCID: PMC11727446 DOI: 10.3390/antiox13121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress has been described as one of the main drivers of intracellular damage and metabolic disorders leading to metabolic syndrome, a major health problem worldwide. In particular, free radicals alter lipid metabolism and promote lipid accumulation in the liver, existing in the hepatic facet of metabolic syndrome, the metabolic dysfunction-associated steatotic liver disease (MASLD). Recent literature has highlighted how nicotine, especially if associated with a high-fat diet, exerts a negative effect on the induction and progression of MASLD by upregulating inflammation and increasing oxidative stress, abdominal fat lipolysis, and hepatic lipogenesis. Moreover, considerable evidence shows the central role of intestinal dysbiosis in the pathogenesis of MASLD and the impact of nicotine-induced oxidative stress on the gut microbiome. This results in an intricate network in which oxidative stress stands at the intersection point between gut microbiome, nicotine, and MASLD. The aim of this review is to delve into the molecular mechanisms linking tobacco smoking and MASLD, focusing on nicotine-induced microbiota modifications and their impact on MASLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (L.G.); (G.P.); (V.C.); (F.T.); (G.E.); (R.B.); (L.M.); (M.E.A.); (A.G.)
| |
Collapse
|
35
|
Zhu Q, Liu J, Mei W, Zeng C. Unveiling functionality and conducting two-sample mendelian randomization on WGCNA-identified oxidative stress-related hub genes in metabolic dysfunction-associated fatty liver disease. Biochem Biophys Rep 2024; 40:101829. [PMID: 39376593 PMCID: PMC11456910 DOI: 10.1016/j.bbrep.2024.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) shows accelerated development under the impact of oxidative stress (OS). There is an imperative to identify OS-related biomarkers in MAFLD and explore their potential mechanistic insights. The objective of this study was to identify OS-related biomarkers in MAFLD and explore their potential mechanisms. DEG analysis was performed using GSE17470 and GSE24807 datasets. An investigative exploration utilizing WGCNA was executed to elucidate hub OS-related genes. The intersection of OS-related hub genes identified by WGCNA and DEGs was systematically employed for thorough analyses. A mendelian randomization (MR) study examined the causal effect of C-reactive protein (CRP) on MAFLD. 59 OS-related DEGs were identified in MAFLD. WGCNA revealed 100 OS-related hub genes in MAFLD. Sixteen OS-related genes have been delineated as critical components in MAFLD. Enrichment analyses, employing GO and KEGG pathways, revealed pathways enriched with these genes. Following PPI analyses, the highest-ranking ten hub genes demonstrating abnormal expression were determined. Ultimately, a two-sample MR analysis demonstrated a causal link between the hub gene CRP and the occurrence of MAFLD. In this study, we harnessed WGCNA to formulate a co-expression network and identified hub OS-related DEGs in MAFLD. Additionally, the hub gene CRP exhibited a significant correlation with the predisposition to MAFLD. These findings offer innovative perspectives on the applications of OS-associated genes in individuals afflicted with MAFLD.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Jiaqi Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| |
Collapse
|
36
|
Suryaningtyas IT, Je JY. Therapeutic effects of blue mussel-derived peptides (PIISVYWK and FSVVPSPK) on non-alcoholic fatty liver disease by modulating lipid metabolism and inflammation in high-fat diet-induced mice. Tissue Cell 2024; 91:102630. [PMID: 39579737 DOI: 10.1016/j.tice.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition, advancing from simple hepatic lipid accumulation to inflammation, fibrosis, and increased risk of mortality. This study explores the therapeutic efficacy of bioactive peptides PIISVYWK (P1) and FSVVPSPK (P2) in ameliorating NAFLD in both oleic acid-treated HepG2 cells and high-fat diet (HFD)-induced mice. Our findings demonstrated that P1 and P2 significantly reduced hepatic fat deposition, enhanced lipolysis by promoting the release of free glycerol and free fatty acids, and suppressed key de novo lipogenesis-related proteins, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1 (SREBP-1), and fatty acid synthase (FAS). Furthermore, both peptides stimulated fatty acid oxidation via phosphorylation of AMP-activated protein kinase (AMPK) and hormone-sensitive lipase (HSL). Notably, reductions in body and liver weight, along with improved cholesterol profiles and liver function markers (alanine transaminase and aspartate aminotransferase), were observed in HFD mice. Additionally, P1 and P2 significantly attenuated the production of pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in both in vitro and in vivo models. Collectively, these results highlight the potent therapeutic potential of P1 and P2 in mitigating NAFLD progression, offering a promising intervention for this increasingly prevalent metabolic disorder.
Collapse
Affiliation(s)
- Indyaswan Tegar Suryaningtyas
- Department of Nutrition, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
37
|
Zou P, Li X, Wang L, She Y, Xiao C, Peng Y, Qian X, Luo P, Wei S. Grifola frondosa Polysaccharide Ameliorates Inflammation by Regulating Macrophage Polarization of Liver in Type 2 Diabetes Mellitus Rats. Mol Nutr Food Res 2024; 68:e2400392. [PMID: 39587947 DOI: 10.1002/mnfr.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Indexed: 11/27/2024]
Abstract
SCOPE Grifola frondosa polysaccharide (GFP) has a positive effect in regulating type 2 diabetes mellitus (T2DM), but the understanding of its regulatory mechanism is still limited. Accumulating evidence suggests that hepatic inflammation is crucial in the onset and progression of insulin resistance (IR) and T2DM. However, the question of whether GFP can modulate T2DM via regulating hepatic inflammation and the underlying mechanism has not yet been reported. METHODS AND RESULTS High-fat diet (HFD) fed combined with streptozocin (STZ) injections rat model and Lipopolysaccharides (LPS)-treated bone marrow-derived macrophages (BMDM) model are used. The results showed that GFP intervention reduces weight loss and hyperglycemia symptoms, besides lowers FINS, HOMA-IR, IPGTT-AUC, and IPITT-AUC in T2DM rats. Meanwhile, GFP intervention reduces the secretion level of inflammatory factors and increases the secretion level of anti-inflammatory factors in the liver tissue of T2DM rats. Furthermore, GFP reduces macrophage infiltration in liver tissue, inhibits macrophage M1-type polarization, and promotes M2-type polarization. CONCLUSIONS These results suggest that GFP intervention could attenuate the hepatic inflammatory and insulin resistance in T2DM rats by inhibiting hepatic macrophage infiltration and modulating M1/M2 polarization. The findings provide new evidence for GFP in the early prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Pei Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xueyan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Liping Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Ying She
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Chenyang Xiao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical, University, Guiyang, 561113, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| |
Collapse
|
38
|
Mousa AM, Alrumaihi FA. Putative role of 6-chogaol against tramadol-induced hepatotoxicity in albino rats via anti-inflammatory, antifibrotic, and antiapoptotic effects. Tissue Cell 2024; 91:102562. [PMID: 39276486 DOI: 10.1016/j.tice.2024.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Tramadol is a commonly used drug to relieve pain and avoid premature ejaculation in males with hepatotoxic effects, and 6-chogaol has potent anti-inflammatory and hepatoprotective properties. The work impetus is probing the hepatoprotective mechanisms of 6-chogaol against tramadol hepatoxicity. Twenty adult male rats were enrolled to obtain four equal groups [control group (G1), 6-chogaol group (G2), tramadol group (G3), and 6-chogaol+tramadol group (G4)]. Liver specimens were excised and processed to evaluate hepatocyte injury through histopathological (HP), immunohistochemical (IHC), flow cytometry, and biochemical investigations. The HP study exhibited hepatic injury in G3 hepatocytes (inflammatory cell infiltration, hepatic fibrosis, and disturbed liver structure). The IHC study showed a significant rise in caspase-3 and reduced PCNA immuno-expression (IE). Likewise, the flow cytometry and biochemical experiments exhibited a substantial elevation of apoptotic hepatocytes and the serum levels of IL-1β, IL-6, TNF-α, ALP, ALT, and AST in G3. In contrast, G4 rats significantly improved in all HP, IHC, flow cytometry, and biochemical parameters. Collectively, tramadol intake exerted harmful toxic effects on hepatocytes, whereas 6-Shogaol hampered these changes and served as a natural hepatoprotective agent. Therefore, we advise concurrent intake of 6-Shogaol supplement with tramadol to preserve the integrity of hepatic tissues.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Faris A Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
39
|
Yang Y, Shu X, Javed HU, Wu Q, Liu H, Han J, Zhou H. Dietary supplementation of poly-dihydromyricetin-fused zinc nanoparticles alleviates fatty liver hemorrhagic syndrome by improving antioxidant capacity, intestinal health and lipid metabolism of laying hens. Poult Sci 2024; 103:104301. [PMID: 39306955 PMCID: PMC11447411 DOI: 10.1016/j.psj.2024.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Fatty liver hemorrhagic syndrome is the main cause of noninfectious death of laying hens and results in substantial economic losses to the poultry industry. This study focused on evaluating the effects of Poly-dihydromyricetin-fused zinc nanoparticles (PDMY-Zn NPs) on antioxidant capacity, liver lipid metabolism, and intestinal health in laying hens. A total of 288 Jingfen laying hens (52 wk old) with similar body weights were randomly divided into 4 dietary groups with 6 replicates in each group for 8 wk. The control group received a basal diet, while the treatment groups were supplemented with PDMY-Zn NPs at levels of 200, 400, and 600 mg/kg, respectively. The results indicate that PDMY-Zn NPs supplementation can enhance antioxidant parameters (P < 0.05) in the blood and liver of laying hens. Simultaneously, it can mitigate vacuolar degeneration and inflammatory necrosis in hepatocytes, improve the relative expression level of related parameters associated with liver lipid metabolism and key regulatory genes (P < 0.05). Furthermore, it has been observed to reshape the composition and diversity of cecum microbes by increasing beneficial probiotics such as Lactobacillus and Prevotella, while also enhancing villi height and villi/crypt ratio in the duodenum and ileum (P < 0.05). Additionally, it elevates liver bile acid content along with the relative expression of key genes involved in liver synthesis (P < 0.05). In summary, PDMY-Zn NPs showed potential to alleviate fatty liver hemorrhagic syndrome by enhancing antioxidant capacity, regulating liver lipid metabolism, and maintaining intestinal health.
Collapse
Affiliation(s)
- Yuanting Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou 510225, China
| | - Hafiz Umer Javed
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Qun Wu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Jiancheng Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China.
| |
Collapse
|
40
|
Jin H, Ma J, Xu B, Xu S, Hu T, Jin X, Wang J, Wang G, Zhen L. Thio-ProTide strategy: A novel H 2S donor-drug conjugate (DDC) alleviates hepatic injury via innate lysosomal targeting. Acta Pharm Sin B 2024; 14:5341-5356. [PMID: 39807337 PMCID: PMC11725097 DOI: 10.1016/j.apsb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
Hydrogen sulfide (H2S) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of H2S donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new H2S DDCs achieved hepatic co-delivery of H2S and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure. The potent hepatoprotective effects were also attributed to the H2S-mediated multipronged intervention in lipid peroxidation both at the whole cellular and lysosomal levels. Lysosomal H2S accumulation and H2S DDC activation were facilitated by the hydrolysis through the specific lysosomal hydrolase, representing a distinct mechanism for lysosomal targeting independent of the classical basic moieties. These findings provided a novel pattern for the design of optimally therapeutic H2S DDC and organelle-targeting functional molecules.
Collapse
Affiliation(s)
- Haowen Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Ma
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Bixin Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Sitao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
41
|
Zhuang X, Shi W, Shen T, Cheng X, Wan Q, Fan M, Hu D. Research Updates and Advances on Flavonoids Derived from Dandelion and Their Antioxidant Activities. Antioxidants (Basel) 2024; 13:1449. [PMID: 39765778 PMCID: PMC11672681 DOI: 10.3390/antiox13121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
As a common medicinal and edible plant, dandelion plays a crucial and significant role in the fields of traditional Chinese medicines, functional foods, healthcare products, daily chemicals, and feed additives, which are closely related to its rich chemical constituents and remarkable biological activities. Modern studies have demonstrated that dandelion contains all kinds of bioactive constituents, including flavonoids, amino acids, fatty acids, organic acids, phenolic acids, coumarins, lignans, polysaccharides, phytosterols, terpenes, glycoproteins, oligosaccharides, alkaloids, etc. Meanwhile, dandelion has been proven to possess antioxidant, antibacterial, anti-inflammatory, antitumor, antivirus, hypoglycemic, and hypolipidemic properties, as well as the ability to regulate hormone levels and protect some visceral organs. Among them, flavonoids derived from dandelion and their antioxidant activities have received considerable attention. This study reviews dandelion flavonoids and their in vitro and in vivo antioxidant activities by consulting and organizing relevant domestic and international works of literature to provide a scientific and theoretical basis for further research, development, and utilization of dandelion.
Collapse
Affiliation(s)
- Xiaocui Zhuang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Wei Shi
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Tao Shen
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Xiaoyang Cheng
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Qilin Wan
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Dongbao Hu
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| |
Collapse
|
42
|
Wang K, Jiang Z, Zhou Q, Tang H. The associations between oxidative balance score and serum Klotho level in the U.S. population aged 40-79 years. Sci Rep 2024; 14:28909. [PMID: 39572760 PMCID: PMC11582585 DOI: 10.1038/s41598-024-80464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
The relationship between the oxidative balance score (OBS) and the serum Klotho level has yet to be defined. We sought to investigate the potential relationship between OBS and the serum Klotho level in the U.S. population aged 40-79 years. This study included 8,145 participants from the National Health and Nutrition Examination Surveys (NHANES) database spanning from 2007 to 2016. The OBS consisted of the dietary OBS and the lifestyle OBS, based on 16 dietary components and 4 lifestyle components. Weighted multiple linear regressions were performed to explore the association between OBS and serum Klotho level. Furthermore, nonlinear relationships were analyzed through the application of restricted cubic splines (RCS). In the multivariate linear regression model with adjustment for such as demographics, economic income and dietary intake, a higher OBS was associated with a higher serum Klotho, with the beta estimate and 95%CI of 2.85 (1.03-4.68, p < 0.01). Compared with the lowest tertile group, the highest group was associated with a higher Klotho level (30.35, 3.43-57.28, p < 0.05). Furthermore, higher dietary OBS and lifestyle OBS were similarly associated with higher Klotho level (beta (95%CI): 1.27 (0.79-3.32); 14.23 (9.53-18.92), respectively). The RCS exhibited a linear dose-response association between OBS, dietary OBS and lifestyle OBS with serum Klotho concentration (Pnon-linearity>0.05). The association between OBS and serum Klotho level was consistent across age, sex, education, marital status, energy intake and poverty income ratio (PIR) (Pinteraction>0.05). The study reported significant association between OBS and klotho, indicating that adherence to antioxidant behaviors may be linked to slower aging and better health.
Collapse
Affiliation(s)
- Kang Wang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhongbiao Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qin Zhou
- Department of General Surgery, Clinical Research Center for Breast Disease in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Hanfen Tang
- Department of Nutrition, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
43
|
Dong J, Li Z, Wang C, Zhang R, Li Y, Liu M, Chen Q, Bai Y, Lv W. Dietary folate intake and all-cause mortality and cardiovascular mortality in American adults with non-alcoholic fatty liver disease: Data from NHANES 2003 to 2018. PLoS One 2024; 19:e0314148. [PMID: 39570932 PMCID: PMC11581259 DOI: 10.1371/journal.pone.0314148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The relationship between dietary folate intake and prior mortality in adult patients with Non-alcoholic Fatty Liver Disease (NAFLD) has not been clearly studied. We aimed to examine the relationship between dietary folate intake and all-cause and cardiovascular (CVD) mortality in adult NAFLD patients in the US. METHODS Using data from National Health and Nutrition Examination Survey (NHANES) 2003-2018 and associated mortality data we conducted a cohort study of US adult NAFLD subjects. Multivariable Cox proportional hazards regression models were used to evaluate the relationship between dietary folate intake and both all-cause mortality and CVD mortality, accounting for potential confounders. The study employed restricted cubic spline analysis to investigate the non-linear association between dietary folate levels and mortality from all causes and cardiovascular disease. RESULTS Our final cohort consisted of 3,266 NAFLD patients, with a median follow-up of 10.3 years, 691 deaths were observed, including 221 cardiovascular deaths. Compared to participants with a folate intake in Quartile 1 (≤250 μg/d), those in Quartile 4 (≥467.5 μg/d) had multivariable-adjusted hazard ratios of 0.69 (95% CI, 0.51-0.94) for all-cause mortality (p for trend = 0.028) and 0.55 (95% CI, 0.29-1.04) for CVD mortality (p for trend = 0.107). A non-linear relationship between dietary intake and risk of death was not observed. CONCLUSION Greater dietary folate intake is associated with a reduced risk of all-cause in American adults with NAFLD. Higher dietary folate intake not found to be associated with lower CVD mortality. These findings suggest that dietary folate may improve the prognosis of adult NAFLD patients. The measured-response relationship between dietary folate intake and mortality in patients with NAFLD requires further investigation.
Collapse
Affiliation(s)
- Jinsheng Dong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqiang Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Chenlu Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Runshun Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yilin Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingkun Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuye Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuning Bai
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenliang Lv
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Kim Y, Kim J, Seo EJ, Kim KT, Lee JW, Kim J, Kang HT. Association Between Fatty Liver Index and Incidence of Cataract Surgery in Individuals Aged 50 Years and Older Based on the Korean National Health Insurance Service-Health Screening Cohort (NHIS-HEALS) Data: Longitudinal Retrospective Cohort Study. JMIR Public Health Surveill 2024; 10:e57168. [PMID: 39541585 PMCID: PMC11581417 DOI: 10.2196/57168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cataract is a leading cause of vision impairment. Obesity-related risk factors, including insulin resistance, increase the risk of cataract. The fatty liver index (FLI) is a biomarker for noninvasive fat layer prediction of nonalcoholic fatty liver disease. The FLI has been used to evaluate the metabolic contribution in other organs besides the eye. However, no study exists on the FLI and eye disease. Objective This retrospective cohort study for the association between the FLI and incidence of cataract surgery in individuals older than 50 years was designed to show that a higher FLI is associated with an increased incidence of cataract surgery in individuals aged 50 years and older. Methods This study was retrospectively designed based on the Korean National Health Insurance Service-Health Screening Cohort (NHIS-HEALS) cohort (median follow-up of 9.8 years). Participants were assigned to 1 of 3 groups based on the FLI: low (FLI<30), intermediate (FLI 30-59), or high (FLI≥60). Kaplan-Meier survival analysis was performed on the cumulative incidence of all-cataract and senile-cataract surgery. Multivariable Cox proportional hazards regression models were used to study the association between the FLI group and cataract surgery after adjusting for potential confounders. Results Of the 138,347 included participants, the incidence of cataract surgery was 12.49% (4779/38,274), 13.95% (6680/47,875), and 14.16% (7496/52,930) in the low, intermediate, and high FLI groups, respectively. After adjusting for all confounding factors, hazard ratios (HRs; 95% CIs) in the high FLI group for all-cataract surgery were 1.111 (1.028-1.199) and 1.184 (1.101-1.274) in men and women, respectively, when compared with the low FLI group. HRs (95% CIs) in the high FLI group for senile-cataract surgery were 1.106 (1.022-1.197) and 1.147 (1.065-1.237) in men and women, respectively, when compared with the low FLI group. The project was conducted between August 2023 and February 2024 without donations from external bodies. Conclusions Individuals with a higher FLI had a higher risk of all-cataract surgery. This association was maintained even after limiting the analyses to senile-cataract surgery.
Collapse
Affiliation(s)
- Yonghwan Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Jeongsook Kim
- Clinical Research Team Hyundai Pharm Co., Seoul, Republic of Korea
| | - Eoi Jong Seo
- Department of Ophthalmology, College of Medicine, Chungbuk National University Hospital, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Kyung Tae Kim
- Department of Ophthalmology, College of Medicine, Chungbuk National University Hospital, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jae-woo Lee
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Family Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Joungyoun Kim
- Department of Artificial Intelligence, University of Seoul, Seoul, Republic of Korea
| | - Hee-Taik Kang
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea, 82 2-2228-2330, 82 2-362-2330
| |
Collapse
|
45
|
Scarpellini E, Scarcella M, Tack JF, Scarlata GGM, Zanetti M, Abenavoli L. Gut Microbiota and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:1386. [PMID: 39594528 PMCID: PMC11591341 DOI: 10.3390/antiox13111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The gut microbiota constitutes a complex microorganism community that harbors bacteria, viruses, fungi, protozoa, and archaea. The human gut bacterial microbiota has been extensively proven to participate in human metabolism, immunity, and nutrient absorption. Its imbalance, namely "dysbiosis", has been linked to disordered metabolism. Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the features of deranged human metabolism and is the leading cause of liver cirrhosis and hepatocellular carcinoma. Thus, there is a pathophysiological link between gut dysbiosis and MASLD. Aims and Methods: We aimed to review the literature data on the composition of the human bacterial gut microbiota and its dysbiosis in MASLD and describe the concept of the "gut-liver axis". Moreover, we reviewed the approaches for gut microbiota modulation in MASLD treatment. Results: There is consolidated evidence of particular gut dysbiosis associated with MASLD and its stages. The model explaining the relationship between gut microbiota and the liver has a bidirectional organization, explaining the physiopathology of MASLD. Oxidative stress is one of the keystones in the pathophysiology of MASLD and fibrosis generation. There is promising and consolidated evidence for the efficacy of pre- and probiotics in reversing gut dysbiosis in MASLD patients, with therapeutic effects. Few yet encouraging data on fecal microbiota transplantation (FMT) in MASLD are available in the literature. Conclusions: The gut dysbiosis characteristic of MASLD is a key target in its reversal and treatment via diet, pre/probiotics, and FMT treatment. Oxidative stress modulation remains a promising target for MASLD treatment, prevention, and reversal.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Translational Research in Gastroeintestinal Disorders, Gasthuisberg University Hospital, KULeuven, Herestraat 49, 3000 Lueven, Belgium;
| | - Marialaura Scarcella
- Anesthesia, Intensive Care and Nutritional Science-Azienda Ospedaliera “Santa Maria”, Via Tristano di Joannuccio, 05100 Terni, Italy;
| | - Jan F. Tack
- Translational Research in Gastroeintestinal Disorders, Gasthuisberg University Hospital, KULeuven, Herestraat 49, 3000 Lueven, Belgium;
| | | | - Michela Zanetti
- Geriatrics Department, Nutrition and Malnutrition Unit, Azienda Sanitario-Universitaria Giuliano Isontina, Ospedale Maggiore, piazza dell’Ospitale 1, 34100 Triste, Italy;
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (G.G.M.S.); (L.A.)
| |
Collapse
|
46
|
Svobodová G, Šadibolová M, Velecká E, Mráziková L, Vaculová P, Matoušková P, Kuneš J, Maletínská L, Boušová I. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Accompanied by Increased Activities of Superoxide Dismutase, Catalase, and Carbonyl Reductase 1 and Levels of miR-200b-3p in Mouse Models. Antioxidants (Basel) 2024; 13:1371. [PMID: 39594513 PMCID: PMC11591148 DOI: 10.3390/antiox13111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disorders, is characterized by hepatic lipid accumulation. MASLD causes alterations in the antioxidant defense system, lipid, and drug metabolism, resulting in impaired antioxidant status, hepatic metabolic processes, and clearance of therapeutic drugs, respectively. In the MASLD pathogenesis, dysregulated epigenetic mechanisms (e.g., histone modifications, DNA methylation, microRNAs) play a substantial role. In this study, the development of MASLD was investigated in mice fed a high-fat, high-fructose, and high-cholesterol (FFC) diet from 2 months of age, mice treated neonatally with monosodium glutamate (MSG) on a standard diet (STD), and mice treated with MSG on an FFC diet at 7 months of age and compared to control mice (C) on STD. Changes in liver histology, detoxification enzymes, epigenetic regulation, and genes involved in lipid metabolism were characterized and compared. The strong liver steatosis was observed in MSG STD, C FFC, and MSG FFC, with significant fibrosis in the latter one. Moreover, substantial alterations in hepatic lipid metabolism, epigenetic regulatory factors, and expressions and activities of various detoxification enzymes (namely superoxide dismutase, catalase, and carbonyl reductase 1) were observed in MASLD mice compared to control mice. miR-200b-3p, highly significantly upregulated in both FFC groups, could be considered as a potential diagnostic marker of MASLD. The MSG mice fed FFC seem to be a suitable model of MASLD characterized by both liver steatosis and fibrosis and substantial metabolic dysregulation.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Petra Vaculová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
- Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| |
Collapse
|
47
|
Porto-Barbosa T, Ramos LF, Pansa CC, Molica LR, Malaspina O, Moraes KCM. Inhibition of the miR-1914-5p increases the oxidative metabolism in cellular model of steatosis by modulating the Sirt1-PGC-1α pathway and systemic cellular activity. PLoS One 2024; 19:e0313185. [PMID: 39514580 PMCID: PMC11548759 DOI: 10.1371/journal.pone.0313185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is considered an indicator of metabolic syndrome, which affects millions of people around the world and no effective treatment is currently available. MAFLD involves a wide spectrum of liver damage, that initiates from steatosis (fatty live) and may progress to more complex pathophysiology. Then, details in lipid metabolism controlling should be explored aiming to control the fatty liver. In this context, the miR-1914-5p can be considered a potential biotechnology tool to control lipid metabolism in hepatic cells. This miRNA finds potential mRNA binding sequences in more than 100 molecules correlated with energy production and lipid metabolism pointed in bioinformatic platforms. The present study addressed the miR-1914-5p effects in hepatic HepG2/LX-2 co-cultured cells in a in vitro steatotic environment stablished by the addition of 400 μM of a mixture of oleic and palmitic acids. The analyses demonstrated that the inhibition of the miRNA reduced energetic metabolites such as total lipids, triglycerides, cholesterol and even glucose. In addition, the miR-inhibitor-transfected cells did not present any deleterious effect in cellular environment by controlling reactive oxygen species production (ROS), mitochondrial membrane potential (ΔΨm) and even the pro-inflammatory environment. Moreover, the functional effect of the investigated miR, suggested its close connection to the modulation of Sirt-1-PGC1-α pathway, a master switch metabolic route that controlls cellular energetic metabolism. Our assays also suggested a synergistic effect of this miR-1914-5p in cell metabolism, which should be considered as a strong candidate to control steatotic environment in future clinical trials.
Collapse
Affiliation(s)
- Thais Porto-Barbosa
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”—Campus Rio Claro, Rio Claro, SP, Brazil
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”–Graduate Program in Biotecnology, Campus Araraquara, Araraquara, SP, Brazil
| | - Letícia Ferreira Ramos
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”—Campus Rio Claro, Rio Claro, SP, Brazil
- Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”–Graduate Program in Cellular, Molecular and Microbiology, Campus Rio Claro, Rio Claro SP, Brazil
| | - Camila Cristiane Pansa
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”—Campus Rio Claro, Rio Claro, SP, Brazil
- Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”–Graduate Program in Cellular, Molecular and Microbiology, Campus Rio Claro, Rio Claro SP, Brazil
| | - Letícia Ramos Molica
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”—Campus Rio Claro, Rio Claro, SP, Brazil
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”–Graduate Program in Biotecnology, Campus Araraquara, Araraquara, SP, Brazil
| | - Osmar Malaspina
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”—Campus Rio Claro, Rio Claro, SP, Brazil
- Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”–Graduate Program in Cellular, Molecular and Microbiology, Campus Rio Claro, Rio Claro SP, Brazil
| | - Karen C. M. Moraes
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”—Campus Rio Claro, Rio Claro, SP, Brazil
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”–Graduate Program in Biotecnology, Campus Araraquara, Araraquara, SP, Brazil
- Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”–Graduate Program in Cellular, Molecular and Microbiology, Campus Rio Claro, Rio Claro SP, Brazil
| |
Collapse
|
48
|
Cabral AP, Maia FPDS, Magliano DC, Graceli JB, Soares P, Morris EAR, Miranda-Alves L. Pyriproxyfen, villain or good guy? A brief review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240154. [PMID: 39876972 PMCID: PMC11771759 DOI: 10.20945/2359-4292-2024-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Pyriproxyfen (PPF) acts as a juvenile growth regulator, interfering with normal metamorphosis and blocking the development of insects into adulthood. Although the World Health Organization (WHO) considers the use of PPF at a concentration of 0.01 mg/L as unlikely to pose health risks, recent studies have unveiled potential risks associated with PPF exposure to non-target organisms. Exposure to PPF disrupts insect development primarily by mimicking juvenile hormones; therefore, concerns linger over its impact on unintended species. Studies have highlighted the adverse effects of PPF on aquatic invertebrates, fish, and amphibians and revealed mortality and developmental abnormalities in non-target mosquito species exposed to PPF-treated water. Moreover, PPF may act as an endocrine disruptor, interfering with hormonal pathways crucial for growth, reproduction, and behavior in exposed organisms. Amphibians, for instance, display altered reproductive physiology and developmental abnormalities due to disruptions in endocrine signaling pathways caused by PPF. The ecological ramifications of PPF extend beyond direct toxicity to non-target species. Indirect effects include shifts in food web dynamics and ecosystem functioning. Reductions in insect populations, induced by PPF, can disrupt food availability for higher trophic levels, potentially destabilizing community structure and ecosystem equilibrium. Given mounting evidence of unintended consequences, robust risk assessment and regulatory oversight are imperative. Accurate classification of PPF by regulatory bodies is essential to balancing its role in disease control and pest management benefits with the need to safeguard non-target species and maintain ecosystem health. Future research must prioritize comprehensive assessments of PPF's ecological impact across various habitats and taxa to inform evidence-based policymaking.
Collapse
Affiliation(s)
- Andressa Pereira Cabral
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilPrograma de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fabrício Pereira dos Santos Maia
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - D’Angelo Carlo Magliano
- Universidade Federal FluminenseCentro de Morfologia e MetabolismoNiteróiRJBrasilCentro de Morfologia e Metabolismo, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Jones Bernardes Graceli
- Universidade Federal do Espírito SantoLaboratório de Endocrinologia e Toxicologia CelularDepartamento de MorfologiaEspírito SantoESBrasilLaboratório de Endocrinologia e Toxicologia Celular, Departamento de Morfologia, Universidade Federal do Espírito Santo, Espírito Santo, ES, Brasil
| | - Paula Soares
- Universidade do PortoInstituto de Investigação e Inovação em SaúdeGrupo de Sinalização e Metabolismo CelularPortoPortugalGrupo de Sinalização e Metabolismo Celular, i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Eduardo Andrés Rios Morris
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Leandro Miranda-Alves
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilPrograma de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade do PortoInstituto de Investigação e Inovação em SaúdeGrupo de Sinalização e Metabolismo CelularPortoPortugalGrupo de Sinalização e Metabolismo Celular, i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
49
|
Markowska J, Kasprzak-Drozd K, Niziński P, Dragan M, Kondracka A, Gondek E, Oniszczuk T, Oniszczuk A. Quercetin: A Promising Candidate for the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Molecules 2024; 29:5245. [PMID: 39598636 PMCID: PMC11596905 DOI: 10.3390/molecules29225245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a chronic liver disease. The development of MASLD is influenced by a multitude of diseases associated with modern lifestyles, including but not limited to diabetes mellitus, hypertension, hyperlipidaemia and obesity. These conditions are often consequences of the adoption of unhealthy habits, namely a sedentary lifestyle, a lack of physical activity, poor dietary choices and excessive alcohol consumption. The treatment of MASLD is primarily based on modifying the patient's lifestyle and pharmacological intervention. Despite the absence of FDA-approved pharmacological agents for the treatment of MASLD, several potential therapeutic modalities have demonstrated efficacy in reversing the histopathological features of the disease. Among the botanical ingredients belonging to the flavonoid group is quercetin (QE). QE has been demonstrated to possess a number of beneficial physiological effects, including anti-inflammatory, anticancer and antifungal properties. Additionally, it functions as a natural antioxidant. Preclinical evidence indicates that QE may play a beneficial role in reducing liver damage and improving metabolic health. Early human studies also suggest that QE may be an effective treatment for MASLD due to its antioxidant, anti-inflammatory, and lipid-regulating properties. This review aims to summarize the available information on the therapeutic effects of QE in MASLD.
Collapse
Affiliation(s)
- Julia Markowska
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland; (J.M.); (M.D.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland;
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Magdalena Dragan
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland; (J.M.); (M.D.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Ewa Gondek
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
50
|
Li N, Hao L, Li S, Deng J, Yu F, Zhang J, Nie A, Hu X. The NRF-2/HO-1 Signaling Pathway: A Promising Therapeutic Target for Metabolic Dysfunction-Associated Steatotic Liver Disease. J Inflamm Res 2024; 17:8061-8083. [PMID: 39512865 PMCID: PMC11542495 DOI: 10.2147/jir.s490418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder with a rising prevalence. It begins with lipid accumulation in hepatocytes and gradually progresses to Metabolic-associated steatohepatitis (MASH), fibrosis, cirrhosis, and potentially hepatocellular carcinoma (HCC). The pathophysiology of MASLD is complex and involves multiple factors, with oxidative stress playing a crucial role. Oxidative stress drives the progression of MASLD by causing cellular damage, inflammatory responses, and fibrosis, making it a key pathogenic mechanism. The Nuclear Factor Erythroid 2-Related Factor 2 / Heme Oxygenase-1 (Nrf2/HO-1) signaling axis provides robust multi-organ protection against a spectrum of endogenous and exogenous insults, particularly oxidative stress. It plays a pivotal role in mediating antioxidant, anti-inflammatory, and anti-apoptotic responses. Many studies indicate that activating the Nrf2/HO-1 signaling pathway can significantly mitigate the progression of MASLD. This article examines the role of the Nrf2/HO-1 signaling pathway in MASLD and highlights natural compounds that protect against MASLD by targeting Nrf2/HO-1 activation. The findings indicate that the Nrf2/HO-1 signaling pathway holds great promise as a therapeutic target for MASLD.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Aiyu Nie
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|