1
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
2
|
Saliba ASMC, Sartori AGDO, Rosalen PL, Lazarini JG, do Amaral JEPG, da Luz CFP, Martarello NS, Torres LCR, de Souza LM, de Alencar SM. Bee pollen from bracatinga (Mimosa scabrella): Effects of gastrointestinal digestion and epithelial transport in vitro on phenolic profile and bioactivities. Food Res Int 2024; 196:115142. [PMID: 39614590 DOI: 10.1016/j.foodres.2024.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 12/01/2024]
Abstract
The main objective of the present work was to assess the phenolic profile of bracatinga (Mimosa scabrella) bee pollen, and its antioxidant and anti-inflammatory activities after gastrointestinal digestion in vitro and epithelial transport in a Caco-2 cell monolayer model. The botanical origin of bee pollen was confirmed by optical microscopy and scanning electron microscopy. As major results, 34 phenolic compounds (13 phenylamides, 14 flavonols, and 7 flavanones) were tentatively identified in the extract of bracatinga bee pollen by HPLC-ESI-QTOF-MS. The aglycone forms of quercetin and p-coumaric acid were identified only after digestion, indicating the breakage of flavonols and phenylamides, respectively. These compounds may have contributed to the decrease in NF-κΒ activation up to 54% and in the release of TNF-α and CXCL2/MIP-2 by 26% and 21%, respectively, in raw 264.7 murine macrophages activated with microbial lipopolysaccharide and treated with the digested fraction. Among all tentatively identified phenolic compounds, five of them were found in the basolateral fraction. These compounds, represented by four aglycone flavonoids (quercetin, kaempferol, naringenin, and herbacetin methyl ether) and a phenolic acid (p-coumaric acid) may be responsible for its outstanding antioxidant activity in Caco-2 cells, as well as for its remaining capacity in mitigating CXCL2/MIP-2 release after transport through the Caco-2 cell monolayer, as an intestinal barrier model. Therefore, our work sheds light on the phenolic profile and bioactivities of an interesting functional food produced by bees throughout a simulated gastrointestinal system.
Collapse
Affiliation(s)
| | - Alan Giovanini de Oliveira Sartori
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil; Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Pedro Luiz Rosalen
- Faculdade de Odontologia, Universidade Estadual de Campinas, Piracicaba, SP, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, MG, Brazil
| | - Josy Goldoni Lazarini
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | | | | | | | - Leila Muriel de Souza
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Severino Matias de Alencar
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil; Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
3
|
Peña-Portillo GC, Acuña-Nelson SM, Bastías-Montes JM. From Waste to Wealth: Exploring the Bioactive Potential of Wine By-Products-A Review. Antioxidants (Basel) 2024; 13:992. [PMID: 39199237 PMCID: PMC11351921 DOI: 10.3390/antiox13080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The present paper explores the biological potential of bioactive compounds present in wine industry wastes, highlighting their valorization to promote sustainability and circular economy. Wine by-products, such as grape pomace and vine shoots, contain a high concentration of polyphenols, flavonoids, anthocyanins and other phytochemicals with antioxidant, anti-inflammatory and anticarcinogenic properties. Both conventional extraction methods, such as solid-liquid extraction, and emerging technologies, including enzyme-assisted extraction, ultrasound-assisted extraction, supercritical fluid extraction, microwave-assisted extraction, pressurized liquid extraction, high-hydrostatic-pressure extraction, and deep natural solvent-assisted extraction (NaDES), are discussed. In addition, the preservation of polyphenolic extracts by microencapsulation, a key technique to improve the stability and bioavailability of bioactive compounds, is addressed. The combination of advanced extraction methods and innovative preservation techniques offers a promising perspective for the valorization of bioactive compounds from wine residues, driving sustainability and innovation in the industry.
Collapse
Affiliation(s)
| | - Sergio-Miguel Acuña-Nelson
- Departamento de Ingeniería en Alimentos, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, Chile; (G.-C.P.-P.); (J.-M.B.-M.)
| | | |
Collapse
|
4
|
Anjum SI, Ullah A, Gohar F, Raza G, Khan MI, Hameed M, Ali A, Chen CC, Tlak Gajger I. Bee pollen as a food and feed supplement and a therapeutic remedy: recent trends in nanotechnology. Front Nutr 2024; 11:1371672. [PMID: 38899322 PMCID: PMC11186459 DOI: 10.3389/fnut.2024.1371672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.
Collapse
Affiliation(s)
- Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Plant Protection, Ministry of National Food Security and Research, Karachi, Pakistan
| | - Faryal Gohar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Muhammad Ilyas Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Kostić AŽ, Arserim-Uçar DK, Materska M, Sawicka B, Skiba D, Milinčić DD, Pešić MB, Pszczółkowski P, Moradi D, Ziarati P, Bienia B, Barbaś P, Sudagıdan M, Kaur P, Sharifi-Rad J. Unlocking Quercetin's Neuroprotective Potential: A Focus on Bee-Collected Pollen. Chem Biodivers 2024; 21:e202400114. [PMID: 38386539 DOI: 10.1002/cbdv.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
In the quest to evade side effects associated with synthetic drugs, mankind is continually exploring natural sources. In recent decades, neurodegenerative disorders (NDDs) have surged dramatically compared to other human diseases. Flavonoids, naturally occurring compounds, have emerged as potential preventers of NDD development. Notably, quercetin and its derivatives demonstrated excellent antioxidant properties in the fight against NDDs. Recognizing bee-collected pollen (BP) as a well-established excellent source of quercetin and its derivatives, this review seeks to consolidate available data on the prevalence of this flavonoid in BP, contingent upon its botanical and geographical origins. It aims to advocate for BP as a superb natural source of "drugs" that could serve as preventative measures against NDDs. Examination of numerous published articles, detailing the phenolic profile of BP, suggests that it can be a great source of quercetin, with an average range of up to 1000 mg/kg. In addition to quercetin, 24 derivatives (with rutin being the most predominant) have been identified. Theoretical calculations, based on the recommended dietary intake for quercetin, indicate that BP can fulfil from 0.1 to over 100 % of the requirement, depending on BP's origin and bioaccessibility/bioavailability during digestion.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Dılhun Keriman Arserim-Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bingöl University, Bingöl, 12000, Türkiye
| | - Małgorzata Materska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950, Lublin, Poland
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Danijel D Milinčić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Mirjana B Pešić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Piotr Pszczółkowski
- Experimental Department of Cultivar Assessment, Research Centre for Cultivar Testing, Uhnin, 21-211, Dębowa Kłoda, Poland
| | - Donya Moradi
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Ziarati
- Department of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bernadetta Bienia
- Food Production and Safety Department, National Academy of Applied Sciences, Rynek 1 str., 38-400, Krosno, Poland
| | - Piotr Barbaś
- Department Agronomy of Potato, Plant Breeding and Acclimatization Institute - National Research Institute, Branch Jadwisin, 05-140, Serock, Poland
| | - Mert Sudagıdan
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| | - Preetinder Kaur
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Punjab Agricultural University, Ludhiana, 141004, Punjab
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, 14-008, Cuenca, Ecuador
| |
Collapse
|
6
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Ilie CI, Spoiala A, Geana EI, Chircov C, Ficai A, Ditu LM, Oprea E. Bee Bread: A Promising Source of Bioactive Compounds with Antioxidant Properties-First Report on Some Antimicrobial Features. Antioxidants (Basel) 2024; 13:353. [PMID: 38539885 PMCID: PMC10968473 DOI: 10.3390/antiox13030353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Bee bread has received attention due to its high nutritional value, especially its phenolic composition, which enhances life quality. The present study aimed to evaluate the chemical and antimicrobial properties of bee bread (BB) samples from Romania. Initially, the bee bread alcoholic extracts (BBEs) were obtained from BB collected and prepared by Apis mellifera carpatica bees. The chemical composition of the BBE was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and the total phenols and flavonoid contents were determined. Also, a UHPLC-DAD-ESI/MS analysis of phenolic compounds (PCs) and antioxidant activity were evaluated. Furthermore, the antimicrobial activity of BBEs was evaluated by qualitative and quantitative assessments. The BBs studied in this paper are provided from 31 families of plant species, with the total phenols content and total flavonoid content varying between 7.10 and 18.30 mg gallic acid equivalents/g BB and between 0.45 and 1.86 mg quercetin equivalents/g BB, respectively. Chromatographic analysis revealed these samples had a significant content of phenolic compounds, with flavonoids in much higher quantities than phenolic acids. All the BBEs presented antimicrobial activity against all clinical and standard pathogenic strains tested. Salmonella typhi, Candida glabrata, Candida albicans, and Candida kefyr strains were the most sensitive, while BBEs' antifungal activity on C. krusei and C. kefyr was not investigated in any prior research. In addition, this study reports the BBEs' inhibitory activity on microbial (bacterial and fungi) adhesion capacity to the inert substratum for the first time.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Elisabeta-Irina Geana
- National R&D Institute for Cryogenics and Isotopic Technologies (ICIT), 240050 Râmnicu Vâlcea, Romania;
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
- Academy of Romanian Scientists, 010719 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, Research Institute, University of Bucharest, 060101 Bucharest, Romania; (L.-M.D.)
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, Research Institute, University of Bucharest, 060101 Bucharest, Romania; (L.-M.D.)
| |
Collapse
|
8
|
Degirmenci A, Yildiz O, Boyraci GM, Er Kemal M, Simsek O. The process of pollen transformation into bee bread: changes in bioactivity, bioaccessibility, and microbial dynamics. Food Funct 2024; 15:2550-2562. [PMID: 38348773 DOI: 10.1039/d3fo04466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Bee pollen and bee bread go hand in hand with health-promoting functional food consumption. Although many studies report high bioactivities of those products, the biotransformation of pollen into bee bread has not been fully understood. Limited findings are available about polyphenol bioaccessibility and microbiological interactions during the fermentation process. This study evaluated the microbial flora, antioxidant properties, and polyphenol and soluble protein bioaccessibility of pollen and bee bread harvested from the same apiary over a certain timeline. Total phenolic content, antioxidant activity and soluble protein content were reported using an in vitro digestion model involving post-gastric, serum-available, and colon-available fractions. The results obtained with the in vitro digestion model refer to the effect of the harvesting period on greater bioaccessibility of polyphenols in bee bread than in pollen at the same apiary. Lactic acid bacteria and yeast found in the samples were mostly identified as Lactobacillus kunkeei, Leuconostoc pseudomesenteroides, and Candida magnoliae using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). The discrimination between the pollen and bee bread samples collected in the same apiary and at different harvesting periods was also revealed by Principal Component Analysis (PCA). A harvesting time-based approach was applied to the biotransformation process of pollen and bee bread, and insights into microbial dynamics and bioaccessibility were revealed for the first time under the same beehive conditions.
Collapse
Affiliation(s)
- Atiye Degirmenci
- Department of Food Processing, Maçka Vocational School, Karadeniz Technical University, 61750, Macka, Trabzon, Turkey
| | - Oktay Yildiz
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey.
- Okta Natural R&D Engineering Services Inc., 61080, Trabzon, Turkey
| | - Gulsum Merve Boyraci
- Department of Food Processing, Maçka Vocational School, Karadeniz Technical University, 61750, Macka, Trabzon, Turkey
| | - Mehtap Er Kemal
- Department of Food Processing, Maçka Vocational School, Karadeniz Technical University, 61750, Macka, Trabzon, Turkey
| | - Omer Simsek
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34210, İstanbul, Turkey
| |
Collapse
|
9
|
Qiao J, Zhang Y, Haubruge E, Wang K, El-Seedi HR, Dong J, Xu X, Zhang H. New insights into bee pollen: Nutrients, phytochemicals, functions and wall-disruption. Food Res Int 2024; 178:113934. [PMID: 38309905 DOI: 10.1016/j.foodres.2024.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Bee pollen is hailed as a treasure trove of human nutrition and has progressively emerged as the source of functional food and medicine. This review conducts a compilation of nutrients and phytochemicals in bee pollen, with particular emphasis on some ubiquitous and unique phenolamides and flavonoid glycosides. Additionally, it provides a concise overview of the diverse health benefits and therapeutic properties of bee pollen, particularly anti-prostatitis and anti-tyrosinase effects. Furthermore, based on the distinctive structural characteristics of pollen walls, a substantial debate has persisted in the past concerning the necessity of wall-disruption. This review provides a comprehensive survey on the necessity of wall-disruption, the impact of wall-disruption on the release and digestion of nutrients, and wall-disruption techniques in industrial production. Wall-disruption appears effective in releasing and digesting nutrients and exploiting bee pollen's bioactivities. Finally, the review underscores the need for future studies to elucidate the mechanisms of beneficial effects. This paper will likely help us gain better insight into bee pollen to develop further functional foods, personalized nutraceuticals, cosmetics products, and medicine.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Jie Dong
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
10
|
Giovanini de Oliveira Sartori A, Martelli Chaib Saliba AS, Sêneda Martarello N, Goldoni Lazarini J, Pedroso Gomes do Amaral JE, Fernandes Pinto da Luz C, Alencar SMD. Changes in phenolic profile and anti-inflammatory activity of Baccharis beebread during gastrointestinal digestion/intestinal permeability in vitro. Food Chem 2024; 432:137234. [PMID: 37634341 DOI: 10.1016/j.foodchem.2023.137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Knowledge about the fate of beebread bioactive compounds throughout the human gastrointestinal tract are scarce. The present study aimed at assessing the effects of gastrointestinal digestion followed by intestinal permeability in vitro on phenolic profile and anti-inflammatory activity of Baccharis beebread. Palynological analysis confirmed the beebread is predominantly composed by pollen grains from Baccharis species, which are endemic in south and southeast Brazil. Flavonols and phenylamides were found in beebread hydroalcoholic extract by HPLC-ESI-QTOF-MS analysis. Moreover, simulated digestion lead to compounds' breakage, releasing both aglycones from glycosylated flavonols and p-coumaric acid, but not caffeic acid from phenylamides. Only spermidines crossed the Caco-2 cell monolayer, possibly due to spermine oxidation. Free p-coumaric acid was released after digestion, and epithelial transport. Concomitantly, NF-κΒ activation and TNF-α level was decreased by beebread even after Caco-2 transport, which indicates spermidines conjugated with p-coumaric acid may be bioavailable compounds with anti-inflammatory activity.
Collapse
Affiliation(s)
| | | | - Natalia Sêneda Martarello
- Instituto de Pesquisas Ambientais, Secretaria de Meio Ambiente, Infraestrutura e Logística de São Paulo, São Paulo, SP, Brazil
| | - Josy Goldoni Lazarini
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Cynthia Fernandes Pinto da Luz
- Instituto de Pesquisas Ambientais, Secretaria de Meio Ambiente, Infraestrutura e Logística de São Paulo, São Paulo, SP, Brazil
| | - Severino Matias de Alencar
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil; Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
11
|
Larbi S, Aylanc V, Rodríguez-Flores MS, Calhelha RC, Barros L, Rezouga F, Seijo MC, Falcão SI, Vilas-Boas M. Differentiating between Monofloral Portuguese Bee Pollens Using Phenolic and Volatile Profiles and Their Impact on Bioactive Properties. Molecules 2023; 28:7601. [PMID: 38005324 PMCID: PMC10673211 DOI: 10.3390/molecules28227601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Nowadays, bee products are commended by consumers for their medicinal and dietary properties. This study aimed to differentiate between monofloral bee pollens originating from Portugal using phenolic and volatile profiles and investigate their antioxidant and cytotoxic activity. Total phenolic and flavonoid compounds were recorded between 2.9-35.8 mg GAE/g and 0.7-4.8 mg QE/g, respectively. The LC/DAD/ESI-MSn analytical results allowed us to identify and quantify a total of 72 compounds, including phenolic and phenylamide compounds, whereas GC-MS results revealed the presence of 49 different compounds, mostly ketones, aldehydes, esters, hydrocarbons, and terpenes. The highest DPPH• radical scavenging activity, EC50: 0.07 mg/mL, was recorded in the sample dominated by Castanae sp. pollen, whereas the Rubus sp. (1.59 mM Trolox/mg) and Cistaceae sp. (0.09 mg GAE/g) pollen species exhibited the highest antioxidant activity in ABTS•+ and reducing power assays, respectively. Regarding the anti-carcinogenic activity, only Carduus sp. showed remarkable cytotoxic potential against MCF-7.
Collapse
Affiliation(s)
- Samar Larbi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Département de Génies Biologique et Agroalimentaire, Université Libre de Tunis, 30 Avenue Kheireddine Pacha, Tunis 1002, Tunisia;
| | - Volkan Aylanc
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | | | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Feriel Rezouga
- Département de Génies Biologique et Agroalimentaire, Université Libre de Tunis, 30 Avenue Kheireddine Pacha, Tunis 1002, Tunisia;
| | - Maria Carmen Seijo
- Facultad de Ciencias, Universidad de Vigo, Campus As Lagoas, 36310 Vigo, Spain; (M.S.R.-F.); (M.C.S.)
| | - Soraia I. Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
12
|
Tirla A, Timar AV, Becze A, Memete AR, Vicas SI, Popoviciu MS, Cavalu S. Designing New Sport Supplements Based on Aronia melanocarpa and Bee Pollen to Enhance Antioxidant Capacity and Nutritional Value. Molecules 2023; 28:6944. [PMID: 37836785 PMCID: PMC10574696 DOI: 10.3390/molecules28196944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
With a high number of athletes using sport supplements targeting different results, the need for complex, natural and effective formulations represents an actual reality, while nutrition dosing regimens aiming to sustain the health and performance of athletes are always challenging. In this context, the main goal of this study was to elaborate a novel and complex nutraceutical supplement based on multiple bioactive compounds extracted from Aronia melanocarpa and bee pollen, aiming to support physiological adaptations and to minimize the stress generated by intense physical activity in the case of professional or amateur athletes. Our proposed formulations are based on different combinations of Aronia and bee pollen (A1:P1, A1:P2 and A2:P1), offering personalized supplements designed to fulfill the individual requirements of different categories of athletes. The approximate composition, fatty acid profile, identification and quantification of individual polyphenols, along with the antioxidant capacity of raw biological materials and different formulations, was performed using spectrophotometric methods, GS-MS and HPLC-DAD-MS-ESI+. In terms of antioxidant capacity, our formulations based on different ratios of bee pollen and Aronia were able to act as complex and powerful antioxidant products, highlighted by the synergic or additional effect of the combinations. Overall, the most powerful synergism was obtained for the A1:P2 formulation.
Collapse
Affiliation(s)
- Adrian Tirla
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Adrian Vasile Timar
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Anca Becze
- INCDO-INOE 2000 Subsidiary Research Institute for Analytical Instrumentation ICIA, 67 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Adriana Ramona Memete
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Simona Ioana Vicas
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| |
Collapse
|
13
|
Jorquera B, Mayorga A, Quintero-Pertuz H, Mejía J, Núñez G, Núñez Pizarro P, Arias-Santé MF, Montenegro G, Costa de Camargo A, Bridi R. Phenolics from Chilean Bee Bread Exhibit Antioxidant and Antibacterial Properties: The First Prospective Study. Chem Biodivers 2023; 20:e202301015. [PMID: 37624683 DOI: 10.1002/cbdv.202301015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023]
Abstract
Bee bread (BB) is a beehive product generated upon fermentation of pollen combined with flower nectar and glandular secretions. The potential application of BB is related to its nutritional and functional components, including phenolic compounds. This is the first prospective study on palynological parameters, phenolics, antioxidant, and antibacterial activity of Chilean bee bread in vitro. The tested material exhibited high levels of phenolics (1340±186 mg GAE/100 g BB) and showed antioxidant capacity as determined by the FRAP (51±2 μmol Trolox equivalent/g BB) and ORAC-FL (643±64 μmol Trolox equivalent/g BB) and antibacterial activity against Streptococcus pyogenes. Furthermore, the phenolic acids and flavonoids was determined using liquid chromatography-mass spectrometry, and the concentration was determined using liquid chromatography with diode array detection. Kaempferol, quercetin, ferulic acid, and rutin were the main phenolics found. This study demonstrates the bioactive potential of Chilean BB and supports the evidence that this bee product is a promising source of antioxidants and antimicrobial compounds.
Collapse
Affiliation(s)
- Bairon Jorquera
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Dr. Carlos Lorca Tobar 964, Santiago, 8380000, Chile
| | - Ailin Mayorga
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Dr. Carlos Lorca Tobar 964, Santiago, 8380000, Chile
| | - Helena Quintero-Pertuz
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Dr. Carlos Lorca Tobar 964, Santiago, 8380000, Chile
| | - Jessica Mejía
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda Vicuña Mackenna 4860, Santiago, 7820436, Chile
| | - Gabriel Núñez
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda Vicuña Mackenna 4860, Santiago, 7820436, Chile
| | - Paula Núñez Pizarro
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda Vicuña Mackenna 4860, Santiago, 7820436, Chile
| | | | - Gloria Montenegro
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda Vicuña Mackenna 4860, Santiago, 7820436, Chile
| | - Adriano Costa de Camargo
- Nutrition and Food Technology Institute, University of Chile, El Líbano 5524, Santiago, 7830490, Chile
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Dr. Carlos Lorca Tobar 964, Santiago, 8380000, Chile
| |
Collapse
|
14
|
Ertosun S, Aylanc V, Falcão SI, Vilas-Boas M. Thermal Stability and Antioxidant Activity of Bioactive Compounds in Bread Enriched with Bee Pollen and Bee Bread. Antioxidants (Basel) 2023; 12:1691. [PMID: 37759993 PMCID: PMC10525282 DOI: 10.3390/antiox12091691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Bee pollen (BP) and bee bread (BB) are natural food sources containing a wide variety of bioactive compounds, complementing their rich nutritional composition. These bee products are being explored to empower functional foods, with the term functionality being dependent on the bioactive compounds added to the food matrix. However, there is not enough evidence of the effect of heat on these compounds during food processing and production and how it impacts their biological activity. Here, we enriched traditional bread by adding BP and BB at different proportions of 1 to 5% and tested the thermal stability of their bioactive compounds through several spectroscopic and chromatographic analyses. Adding bee pollen and bee bread to bread resulted in a 4 and 5-fold increase in total phenolic content, respectively. While not all the 38 phenolic and phenolamide compounds identified in the raw BP and BB were detected in the processed bread, phenolamides were found to be more resilient to baking and heat treatment than flavonoids. Still, the enriched bread's antioxidant activity improved with the addition of BP and BB. Therefore, incorporating bee products into heat-treated products could enhance the functionality of staple foods and increase the accessibility to these natural products.
Collapse
Affiliation(s)
- Seymanur Ertosun
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.E.); (V.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, LAQV-REQUIMTE, Universidade do Porto, 4169-007 Porto, Portugal
| | - Volkan Aylanc
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.E.); (V.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, LAQV-REQUIMTE, Universidade do Porto, 4169-007 Porto, Portugal
| | - Soraia I. Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.E.); (V.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.E.); (V.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
15
|
Miłek M, Mołoń M, Kielar P, Sidor E, Bocian A, Marciniak-Lukasiak K, Pasternakiewicz A, Dżugan M. The Comparison of Honey Enriched with Laboratory Fermented Pollen vs. Natural Bee Bread in Terms of Nutritional and Antioxidant Properties, Protein In Vitro Bioaccessibility, and Its Genoprotective Effect in Yeast Cells. Molecules 2023; 28:5851. [PMID: 37570819 PMCID: PMC10420809 DOI: 10.3390/molecules28155851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of the study was to compare the nutritional value and bioactivity of honey enriched with a 10% addition of natural bee bread and its substitutes obtained as a result of laboratory fermentation of bee pollen. Physicochemical parameters, antioxidant properties, as well as the bioaccessibility of proteins using an in vitro static digestion model were analyzed. The bioactivity of the obtained enriched honeys was tested using the yeast model. The research indicates the similarity of honeys with the addition of "artificial bee bread" to honey with natural ones. During in vitro digestion, good bioaccessibility of the protein from the tested products was demonstrated. The ability of the products to protect yeast cells against hydrogen superoxide-induced oxidative stress was demonstrated using a qualitative spot test, which was stronger in the case of enriched honey than in pure rapeseed control honey. Significant inhibition of the growth of both strains of yeast exposed to bee pollen-enriched honeys was also demonstrated. Furthermore, all tested samples showed significant genoprotective activity against the genotoxic effect of zeocin and the reduction of the number of DNA double-strand breaks by a minimum of 70% was observed.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (A.P.); (M.D.)
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszów, 35-601 Rzeszów, Poland; (M.M.); (P.K.)
| | - Patrycja Kielar
- Institute of Biology, University of Rzeszów, 35-601 Rzeszów, Poland; (M.M.); (P.K.)
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (A.P.); (M.D.)
- Doctoral School, University of Rzeszów, Rejtana 16c, 35-959 Rzeszów, Poland
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszow, Poland;
| | - Katarzyna Marciniak-Lukasiak
- Institute of Food Sciences, Faculty of Food Assessment and Technology, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Anna Pasternakiewicz
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (A.P.); (M.D.)
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (A.P.); (M.D.)
| |
Collapse
|
16
|
Kostić AŽ, Milinčić DD, Špirović Trifunović B, Nedić N, Gašić UM, Tešić ŽL, Stanojević SP, Pešić MB. Monofloral Corn Poppy Bee-Collected Pollen-A Detailed Insight into Its Phytochemical Composition and Antioxidant Properties. Antioxidants (Basel) 2023; 12:1424. [PMID: 37507962 PMCID: PMC10376007 DOI: 10.3390/antiox12071424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to compile a detailed phytochemical profile and assess the antioxidant properties of bee-collected pollen (PBP) obtained from corn poppy (Papaver rhoeas L.) plants. To achieve this, a lipid fraction was prepared for quantifying fatty acids using GC-FID. Extractable and alkaline-hydrolysable PBP fractions (obtained from a defatted sample) were used to determine the qualitative and quantitative profiles of phenolic compounds, phenylamides and alkaloids using UHPLC/Q-ToF-MS. Additionally, various spectrophotometric assays (TAC, FRP, CUPRAC, DPPH⦁) were conducted to evaluate the antioxidant properties. Phenolic compounds were more present in the extractable fraction than in the alkaline-hydrolysable fraction. Luteolin was the predominant compound in the extractable fraction, followed by tricetin and various derivatives of kaempferol. This study presents one of the first reports on the quantification of tricetin aglycone outside the Myrtaceae plant family. The alkaline-hydrolysable fraction exhibited a different phenolic profile, with a significantly lower amount of phenolics. Kaempferol/derivatives, specific compounds like ferulic and 5-carboxyvanillic acids, and (epi)catechin 3-O-gallate were the predominant compounds in this fraction. Regarding phenylamides, the extractable fraction demonstrated a diverse range of these bioactive compounds, with a notable abundance of different spermine derivatives. In contrast, the hydrolysable fraction contained six spermine derivatives and one spermidine derivative. The examined fractions also revealed the presence of seventeen different alkaloids, belonging to the benzylisoquinoline, berberine and isoquinoline classes. The fatty-acid profile confirmed the prevalence of unsaturated fatty acids. Furthermore, both fractions exhibited significant antioxidant activity, with the extractable fraction showing particularly high activity. Among the assays conducted, the CUPRAC assay highlighted the exceptional ability of PBP's bioactive compounds to reduce cupric ions.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Danijel D Milinčić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Bojana Špirović Trifunović
- Department for Pesticides and Herbology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nebojša Nedić
- Department for Breeding and Reproduction of Domestic and Bred Animals, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Živoslav Lj Tešić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Sladjana P Stanojević
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Mirjana B Pešić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
17
|
Aylanc V, Falcão SI, Vilas-Boas M. Bee pollen and bee bread nutritional potential: Chemical composition and macronutrient digestibility under in vitro gastrointestinal system. Food Chem 2023; 413:135597. [PMID: 36791664 DOI: 10.1016/j.foodchem.2023.135597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Bee pollen (BP) and bee bread (BB) have been often investigated as potential functional foods. Both bee products are generally characterized by their high nutritional content, with BB being referred as more digestible than BP, however, there is a lack of scientific studies proving this claim. Here, we present a comparative evaluation of the macronutrient digestibility of BP and BB after applying a simulated in vitro gastrointestinal digestive system, together with the evaluation of its nutritional value and chemical composition. The digestibility scores for protein content were calculated on average as 69% and 76% for BP and BB, respectively, whereas digestibility scores for soluble sugars varied depending on bee product and sugar type. The results demonstrated that the nutritional values of both bee products changed depending on their botanical origin but BB is more accessible in the intestinal lumen, especially regarding protein.
Collapse
Affiliation(s)
- Volkan Aylanc
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Soraia I Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal.
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal.
| |
Collapse
|
18
|
Pecio Ł, Kozachok S, Saber FR, Garcia-Marti M, El-Amier Y, Mahrous EA, Świątek Ł, Boguszewska A, Skiba A, Elosaily AH, Skalicka-Woźniak K, Simal-Gandara J. Metabolic profiling of Ochradenus baccatus Delile. utilizing UHPLC-HRESIMS in relation to the in vitro biological investigations. Food Chem 2023; 412:135587. [PMID: 36739726 DOI: 10.1016/j.foodchem.2023.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Ochradenus baccatus Delile (Resedaceae) is a desert plant with edible fruits native to the Middle East. Few investigators have reported antibacterial, antiparasitic and anti-cancer activities of the plant. Herein we evaluated the cytotoxic activity of O. baccatus using four cell lines and a zebrafish embryo model. Additionally, liquid chromatography coupled with mass spectroscopy was performed to characterize the extract's main constituents. The highest cytotoxicity was observed against human cervical adenocarcinoma (HeLa), with CC50 of 39.1 µg/mL and a selectivity index (SI) of 7.23 (p < 0.01). Metabolic analysis of the extract resulted in the annotation of 57 metabolites, including fatty acids, flavonoids, glucosinolates, nitrile glycosides, in addition to organic acids. The extract showed an abundance of hydroxylated fatty acids (16 peaks). Further, 3 nitrile glycosides have been identified for the first time in Ochradenus sp., in addition to 2 glucosinolates. These identified phytochemicals may partially explain the cytotoxic activity of the extract. We propose O. baccatus as a possible safe food source for further utilization to partially contribute to the increasing food demand specially in Saharan countries.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; Department of Natural Products Chemistry, Medical University of Lublin, Lublin 20-093, Poland.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland.
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Maria Garcia-Marti
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| | - Yasser El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Engy A Mahrous
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, Poland.
| | | | - Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin 20-093, Poland.
| | - Ahmed H Elosaily
- Department of Pharmacognosy, Faculty of Pharmacy, Ahram Canadian University, Giza 12573, Egypt
| | | | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
19
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:nu15102413. [PMID: 37242296 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
20
|
Çobanoğlu DN, Şeker ME, Temizer İK, Erdoğan A. Investigation of Botanical Origin, Phenolic Compounds, Carotenoids, and Antioxidant Properties of Monofloral and Multifloral Bee Bread. Chem Biodivers 2023; 20:e202201124. [PMID: 36730100 DOI: 10.1002/cbdv.202201124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
Bee bread is a unique natural product made by bees and good for human health. It has many bioactive molecules that can treat or prevent diseases. In this study, melissopalynological methods were used to examine five bee bread samples. Major plant sources found in bee bread were Lotus spp., Trifolium spp., and Xeranthemum spp., which are from the Fabaceae and Asteraceae families. Then, the amount of phenolic compounds and major carotenoids in bee bread (BB) samples were quantified. Gallic acid, caffeic acid, quercetin, and kaempferol were found in all BB samples, with β-carotene being the most abundant carotenoid in all but BB1. In addition, the total phenolic/flavonoid content and antioxidant activities of all BB samples were determined. Total flavonoid, total phenolic, DPPH⋅, and ABTS⋅+ values were varied between 5.6-10.00 mg GAE/g DW, 1.2-4.3 mg QE/g DW, 1.2-5.5 mg TEAC/g DW, and 2.6-15.4 mg TEAC/g DW, respectively.
Collapse
Affiliation(s)
- Duygu Nur Çobanoğlu
- Department of Crop and Animal Production, Vocational School of Food, Agriculture and Livestock, Bingöl University, 12000, Bingöl, Turkey
| | - Mehmet Emin Şeker
- Department of Crop and Animal Production, Espiye Vocational School, Giresun University, Espiye, Giresun, 28600, Turkey
| | | | - Ayşegül Erdoğan
- Ege University Application and Research Center For Testing and Analysis (EGE MATAL), İzmir, 35100, Turkey
| |
Collapse
|
21
|
Evaluation of Antioxidant and Anticancer Activity of Mono- and Polyfloral Moroccan Bee Pollen by Characterizing Phenolic and Volatile Compounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020835. [PMID: 36677892 PMCID: PMC9866838 DOI: 10.3390/molecules28020835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Bee pollen is frequently characterized as a natural source of bioactive components, such as phenolic compounds, which are responsible for its pharmaceutical potential and nutritional properties. In this study, we evaluated the bioactive compound contents of mono- and polyfloral bee pollen samples using spectroscopic and chromatographic methods and established links with their antioxidant and antitumor activity. The findings demonstrated that the botanical origin of bee pollen has a remarkable impact on its phenolic (3-17 mg GAE/g) and flavonoid (0.5-3.2 mg QE/g) contents. Liquid chromatography-mass spectrometry analysis revealed the presence of 35 phenolic and 13 phenylamide compounds in bee pollen, while gas chromatography-mass spectrometry showed its richness in volatiles, such as hydrocarbons, fatty acids, alcohols, ketones, etc. The concentration of bioactive compounds in each sample resulted in a substantial distinction in their antioxidant activity, DPPH (EC50: 0.3-0.7 mg/mL), ABTS (0.8-1.3 mM Trolox/mg), and reducing power (0.03-0.05 mg GAE/g), with the most bioactive pollens being the monofloral samples from Olea europaea and Ononis spinosa. Complementarily, some samples revealed a moderate effect on cervical carcinoma (GI50: 495 μg/mL) and breast adenocarcinoma (GI50: 734 μg/mL) cell lines. This may be associated with compounds such as quercetin-O-diglucoside and kaempferol-3-O-rhamnoside, which are present in pollens from Olea europaea and Coriandrum, respectively. Overall, the results highlighted the potentiality of bee pollen to serve health-promoting formulations in the future.
Collapse
|
22
|
Rasera GB, de Camargo AC, de Castro RJS. Bioaccessibility of phenolic compounds using the standardized INFOGEST protocol: A narrative review. Compr Rev Food Sci Food Saf 2023; 22:260-286. [PMID: 36385735 DOI: 10.1111/1541-4337.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The INFOGEST protocol creation was a watershed for phenolic bioaccessibility studies. Because of this important initiative to standardize bioaccessibility studies, data comparisons between different laboratories are now expedited. It has been eight years since the INFOGEST protocol creation, and three from the latest update. However, the current status in terms of phenolic bioaccessibility and how far different laboratories are from reaching a consensus are still unrevealed. In this sense, this narrative review considered an evaluation of different studies that applied the INFOGEST protocol to investigate the bioaccessibility of phenolic compounds. The central objective was to compile the main findings and consensus and to identify possible gaps and future opportunities. This approach intends to further facilitate the use of this protocol by professionals in the field of food science and technology and related areas, generating a reflection on the actual level of standardization of the method. Despite the differences in phenolic compounds from diverse food matrices, and their peculiar behavior, some trends could be elucidated, in terms of phenolic release, stability, and/or transformation upon in vivo digestion. In contrast, there was no general consensus regarding sample preparation, how to report results and the form to calculate bioaccessibility, making it difficult to compare different studies. There is still a long road to effectively standardize the results obtained for phenolic bioaccessibility using the INFOGEST protocol, which is also an opportunity in terms of food analysis that can impact the food industry, especially for the development of nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
23
|
Szurpnicka A, Wrońska AK, Bus K, Kozińska A, Jabłczyńska R, Szterk A, Lubelska K. Phytochemical screening and effect of Viscum album L. on monoamine oxidase A and B activity and serotonin, dopamine and serotonin receptor 5-HTR1A levels in Galleria mellonealla (Lepidoptera). JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115604. [PMID: 35944736 DOI: 10.1016/j.jep.2022.115604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viscum album L. (European mistletoe), a member of the Santalaceae, is a hemiparasitic, evergreen shrub growing on deciduous and coniferous trees. In traditional and folk medicine, mistletoe was used for the treatment of central nervous system disorders such as epilepsy, hysteria, insomnia, nervous excitability, neuralgia, headache, dizziness and fatigue. However, relatively little is known of its neuropharmacological activity. AIM OF THE STUDY The aim of the present study was to evaluate the effect of treatment with aqueous and hydroethanolic extracts from Viscum album L. parasitizing birch, linden and pine, on MAO-A and MAO-B activity as well as serotonin, dopamine and serotonin receptor 5-HTR1A levels in Galleria mellonella (Lepidoptera) larvae. MATERIALS AND METHODS The phytochemical composition of the extracts was characterised using UPLC-DAD-ESI-MS/MS. To investigate the neuropharmacological activity of Viscum album L. extracts, Galleria mellonella (Lepidoptera) larvae were used as a model organism. The inhibitory potential of the extracts against MAO-A and MAO-B was determined by fluorometry. The serotonin, dopamine and serotonin receptor 5-HTR1A levels in larvae hemolymph after treatment were quantified by ELISA. RESULTS UPLC-DAD-ESI-MS/MS analysis allowed the identification of 88 compounds, either full or in part. Most of the characterised phytochemicals were flavonoids, hydroxycinnamic acids and lignans. Screening found that aqueous and hydroethanolic mistletoe extracts inhibited the enzymatic activity of either MAO-A or MAO-B or both. Additionally, mistletoe extract administration increased the levels of serotonin and serotonin receptor 5-HTR1A. None of the tested extracts had any significant effect on dopamine level. CONCLUSIONS A key novel finding was that the aqueous and hydroethanolic extracts from Viscum album L. inhibited monoamine oxidase activity and increased the levels of serotonin and serotonin receptor 5-HTR1A in Galleria mellonella (Lepidoptera) larvae. These properties may be due to the presence of phenolic constituents, particularly flavonoids. Further research based on bioassay-guided fractionation of mistletoe is needed to identify CNS-active molecules.
Collapse
Affiliation(s)
- Anna Szurpnicka
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Anna Katarzyna Wrońska
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Katarzyna Bus
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Renata Jabłczyńska
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Arkadiusz Szterk
- Transfer of Science, Strzygłowska 15, 04-872, Warsaw, Poland; Center for Translationale Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland.
| | - Katarzyna Lubelska
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
24
|
Nasti R, Orlandini S, Furlanetto S, Casale M, Daci A, Hajdari A, Meneghetti F, Villa S, Mori M, Beretta G. An analytical investigation of hydroxylated cinnamoyl polyamines as biomarkers of commercial bee pollen botanical origin. Int J Food Sci Technol 2022. [DOI: http://doi.org/10.1111/ijfs.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rita Nasti
- Department of Environmental Science and Policy (ESP) University of Milan Via G. Celoria 2 20133 Milan Italy
| | - Serena Orlandini
- Department of Chemistry “U. Schiff” University of Florence Via U. Schiff 6, 50019 Sesto Fiorentino Florence Italy
| | - Sandra Furlanetto
- Department of Chemistry “U. Schiff” University of Florence Via U. Schiff 6, 50019 Sesto Fiorentino Florence Italy
| | - Monica Casale
- Department of Pharmacy University of Genova Viale Cembrano, 4 16148 Genova Italy
| | - Armond Daci
- Department of Pharmacy Faculty of Medicine University Hasan Prishtina Pristina Kosovo Albania
| | - Avni Hajdari
- Department of Biology Faculty of Mathematical and Natural Science University of Prishtina Mother Theresa St. 10000 Pristina Kosovo Albania
- Institute of Biological and Environmental Research, University of Prishtina Mother Teresa St. 10000 Pristina Kosovo Albania
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences (DISFARM) University of Milan Via L. Mangiagalli 25 20133 Milan Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences (DISFARM) University of Milan Via L. Mangiagalli 25 20133 Milan Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences (DISFARM) University of Milan Via L. Mangiagalli 25 20133 Milan Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy (ESP) University of Milan Via G. Celoria 2 20133 Milan Italy
| |
Collapse
|
25
|
Nasti R, Orlandini S, Furlanetto S, Casale M, Daci A, Hajdari A, Meneghetti F, Villa S, Mori M, Beretta G. An analytical investigation of hydroxylated cinnamoyl polyamines as biomarkers of commercial bee pollen botanical origin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rita Nasti
- Department of Environmental Science and Policy (ESP) University of Milan Via G. Celoria 2 20133 Milan Italy
| | - Serena Orlandini
- Department of Chemistry “U. Schiff” University of Florence Via U. Schiff 6, 50019 Sesto Fiorentino Florence Italy
| | - Sandra Furlanetto
- Department of Chemistry “U. Schiff” University of Florence Via U. Schiff 6, 50019 Sesto Fiorentino Florence Italy
| | - Monica Casale
- Department of Pharmacy University of Genova Viale Cembrano, 4 16148 Genova Italy
| | - Armond Daci
- Department of Pharmacy Faculty of Medicine University Hasan Prishtina Pristina Kosovo Albania
| | - Avni Hajdari
- Department of Biology Faculty of Mathematical and Natural Science University of Prishtina Mother Theresa St. 10000 Pristina Kosovo Albania
- Institute of Biological and Environmental Research, University of Prishtina Mother Teresa St. 10000 Pristina Kosovo Albania
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences (DISFARM) University of Milan Via L. Mangiagalli 25 20133 Milan Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences (DISFARM) University of Milan Via L. Mangiagalli 25 20133 Milan Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences (DISFARM) University of Milan Via L. Mangiagalli 25 20133 Milan Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy (ESP) University of Milan Via G. Celoria 2 20133 Milan Italy
| |
Collapse
|
26
|
De Carli C, Aylanc V, Mouffok KM, Santamaria-Echart A, Barreiro F, Tomás A, Pereira C, Rodrigues P, Vilas-Boas M, Falcão SI. Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. Int J Biol Macromol 2022; 213:486-497. [PMID: 35640852 DOI: 10.1016/j.ijbiomac.2022.05.155] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 12/18/2022]
Abstract
Developing biodegradable active films has been a promising green approach to overcoming global concerns over the environmental pollution and human health caused by plastic utilization. This study aimed to develop active films based on chitosan (CS), produced from waste crayfish (Procambarus clarkii) shells enriched with bioactive extract (5-20%) of propolis (PS) and to characterize its properties, envisaging food packaging applications. The chromatographic profile of PS extract confirmed its richness, with 41 phenolic compounds. With increasing extract addition to the chitosan, the thickness of the films increased from 61.7 to 71.7 μm, causing a reduction in the light transmission rate, along with a greenish colour shift. The interactions between PS extract and CS was confirmed by infrared spectroscopy, at the same time that the microstructural integrity of the films was checked on the scanning electron microscopy micrographs. The findings also showed that addition of PS enhanced the films thermal stability and mechanical properties e.g., tensile modulus, yield strength, and stress at break. Besides, it improved the antioxidant and antimicrobial activities. Overall, CS-based composite films seem a promising green alternative to petroleum-based synthetic plastics allowing to extend the shelf life of food products due to their eco-friendly nature.
Collapse
Affiliation(s)
- Cristiane De Carli
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Universidade Tecnológica Federal do Paraná - UTFPR, Campus Medianeira, 85884-000 Medianeira, Brazil
| | - Volkan Aylanc
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Kheira M Mouffok
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Arantzazu Santamaria-Echart
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Andreia Tomás
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celeide Pereira
- Universidade Tecnológica Federal do Paraná - UTFPR, Campus Medianeira, 85884-000 Medianeira, Brazil
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Soraia I Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
27
|
Free and conjugated phenolic compounds profile and antioxidant activities of honeybee products of polish origin. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
29
|
Aylanc V, Ertosun S, Russo‐Almeida P, Falcão SI, Vilas‐Boas M. Performance of green and conventional techniques for the optimal extraction of bioactive compounds in bee pollen. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Volkan Aylanc
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Campus de Santa Apolónia Bragança 5300‐253 Portugal
| | - Seymanur Ertosun
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Campus de Santa Apolónia Bragança 5300‐253 Portugal
| | - Paulo Russo‐Almeida
- Laboratório Apícola – LabApis Departamento de Zootecnia Universidade de Trás‐os‐Montes e Alto Douro (UTAD) Vila Real 5000‐801 Portugal
| | - Soraia I. Falcão
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Campus de Santa Apolónia Bragança 5300‐253 Portugal
| | - Miguel Vilas‐Boas
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Campus de Santa Apolónia Bragança 5300‐253 Portugal
| |
Collapse
|
30
|
Bridi R, Echeverría J, Larena A, Nuñez Pizarro P, Atala E, De Camargo AC, Oh WY, Shahidi F, Garcia O, Ah-Hen KS, Montenegro G. Honeybee Pollen From Southern Chile: Phenolic Profile, Antioxidant Capacity, Bioaccessibility, and Inhibition of DNA Damage. Front Pharmacol 2022; 13:775219. [PMID: 35321331 PMCID: PMC8937017 DOI: 10.3389/fphar.2022.775219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Honeybee pollen (HBP) chemical composition is highly variable conforming to the floral and geographical origin of the pollen grains. The beneficial effects and functional properties of the HBP are well-known and have been mainly attributed to their high content of antioxidant polyphenols. In this work, twelve HBPs samples from the Southern region of Chile (X Región de Los Lagos) were characterized for the first time according to their botanical origin, phenolic composition, and antioxidant activity. The in vitro gastrointestinal digestion assay was done to simulate the human upper digestive tract. Selected honeybee pollen extracts (HBPEs) were assessed as bioaccessible fractions during an in vitro gastrointestinal digestion. Contents of phenolic compounds, antioxidant capacity, and recovery index of quercetin, myricetin, and cinnamic acid were monitored in different steps of gastrointestinal digestion. Furthermore, the protective effect of in vitro digested HBP towards DNA damage induced by peroxyl radicals was evaluated. The introduced species Brassica rapa L. (Brassicaceae), Lotus pedunculatus Cav. (Fabaceae), and Ulex europaeus L. (Fabaceae) predominated in all the HBPs analyzed, while the native species Buddleja globosa Hope (Scrophulariaceae), Luma apiculata (DC.) Burret (Myrtaceae), Embothrium coccineum J.R. Forst. & G. Forst. (Proteaceae) and Eucryphia cordifolia Cav. (Cunoniaceae) appeared less frequently. The content of polyphenols and antioxidant capacity in HBPEs achieved full bioaccessibility at the end of the intestinal digestion step. However, results obtained by a state-of-the-art technique (i.e. HPLC-DAD) demonstrated relatively low values of bioaccessible quercetin and cinnamic acid after the digestion process. In contrast, myricetin showed a high bioaccessibility in the intestinal digestion steps. The protective effect of in vitro digested HBP towards DNA damage induced by peroxyl radicals showed promising results (up to 91.2% protection). In conclusion, HBPs from the X Region de Los Lagos are rich sources of phenolic antioxidants that protect DNA from strand breakage. Therefore, the potential of HBPEs in preventing gastric and/or intestinal cancer should be further considered.
Collapse
Affiliation(s)
- Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- *Correspondence: Raquel Bridi, ; Javier Echeverría,
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad Santiago de Chile, Santiago, Chile
- *Correspondence: Raquel Bridi, ; Javier Echeverría,
| | - Arturo Larena
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Nuñez Pizarro
- Doctorado en Ciencias de la Agricultura, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elias Atala
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Adriano Costa De Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| | - Won Young Oh
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Olga Garcia
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Kong S. Ah-Hen
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gloria Montenegro
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-Safi I, Mechchate H, Lyoussi B. Bee Bread as a Promising Source of Bioactive Molecules and Functional Properties: An Up-To-Date Review. Antibiotics (Basel) 2022; 11:203. [PMID: 35203806 PMCID: PMC8868279 DOI: 10.3390/antibiotics11020203] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Bee bread is a natural product obtained from the fermentation of bee pollen mixed with bee saliva and flower nectar inside the honeycomb cells of a hive. Bee bread is considered a functional product, having several nutritional virtues and various bioactive molecules with curative or preventive effects. This paper aims to review current knowledge regarding the chemical composition and medicinal properties of bee bread, evaluated in vitro and in vivo, and to highlight the benefits of the diet supplementation of bee bread for human health. Bee bread extracts (distilled water, ethanol, methanol, diethyl ether, and ethyl acetate) have been proven to have antioxidant, antifungal, antibacterial, and antitumoral activities, and they can also inhibit α-amylase and angiotensin I-converting enzyme in vitro. More than 300 compounds have been identified in bee bread from different countries around the world, such as free amino acids, sugars, fatty acids, minerals, organic acids, polyphenols, and vitamins. In vivo studies have revealed the efficiency of bee bread in relieving several pathological cases, such as hyperglycemia, hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-Safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland;
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
32
|
Tungmunnithum D, Drouet S, Lorenzo JM, Hano C. Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010067. [PMID: 35009070 PMCID: PMC8747412 DOI: 10.3390/plants11010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 05/05/2023]
Abstract
The edible beans in Fabaceae have been used for foods and medicines since the ancient time, and being used more and more. It is also appeared as a major ingredient in dairy cooking menu in many regions including Thailand, a rich biodiversity country. Many studies reported on health benefits of their flavonoids, but there is no report on the effect of cooking on phytochemical profile and pharmacological potentials. Thus, this present study aims to complete this knowledge, with the 10 most consumed Fabaceae beans in Thailand, by determining the impact of traditional cooking and gastrointestinal digestion on their phytochemicals, their antioxidant and anti-diabetic activities using different in vitro and in cellulo yeast models. The results showed that Vigna unguiculata subsp. sesquipedalis were the richest source of phytochemicals, whereas the population of V. mungo, Phaseolus vulgaris, V. angularis, and V. unguiculata subsp. sesquipedalis were richest in monomeric anthocyanin contents (MAC). Furthermore, the results clearly demonstrated the impact of the plant matrix effect on the preservation of a specific class of phytochemicals. In particular, after cooking and in vitro digestion, total flavonoid contents (TFC) in Glycine max extract was higher than in the uncooked sample. This study is the first report on the influence of cooking and in vitro gastrointestinal digestion on the inhibition capacity toward advanced glycation end products (AGEs). All samples showed a significant capacity to stimulate glucose uptake in yeast model, and V. angularis showed the highest capacity. Interestingly, the increase in glucose uptake after in vitro digestion was higher than in uncooked samples for both P. vulgaris and G. max samples. The current study is the first attempt to investigate at the effects of both processes not only on the natural bioactive compounds but also on antioxidant and anti-diabetic activities of Thailand's 10 most consumed beans that can be applied for agro-industrial and phytopharmaceutical sectors.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orleans, France
- Correspondence: (D.T.); (C.H.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orleans, France
- Correspondence: (D.T.); (C.H.)
| |
Collapse
|
33
|
Nutritive Value of 11 Bee Pollen Samples from Major Floral Sources in Taiwan. Foods 2021; 10:foods10092229. [PMID: 34574339 PMCID: PMC8469103 DOI: 10.3390/foods10092229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Bee pollen is a nutrient-rich food that meets the nutritional requirements of honey bees and supports human health. This study aimed to provide nutritive composition data for 11 popular bee pollen samples (Brassica napus (Bn), Bidens pilosa var. radiata (Bp), Camellia sinensis (Cs), Fraxinus griffithii (Fg), Prunus mume (Pm), Rhus chinensis var. roxburghii (Rc), Bombax ceiba (Bc), Hylocereus costaricensis (Hc), Liquidambar formosana (Lf), Nelumbo nucifera (Nn), and Zea mays (Zm)) in Taiwan for the global bee pollen database. Macronutrients, such as carbohydrates, proteins, and lipids, were analyzed, which revealed that Bp had the highest carbohydrate content of 78.8 g/100 g dry mass, Bc had the highest protein content of 32.2 g/100 g dry mass, and Hc had the highest lipid content of 8.8 g/100 g dry mass. Only the bee pollen Hc completely met the minimum requirements of essential amino acids for bees and humans, and the other bee pollen samples contained at least 1-3 different limiting essential amino acids, i.e., methionine, tryptophan, histidine, valine, and isoleucine. Regarding the fatty acid profile of bee pollen samples, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) were predominant fatty acids that accounted for 66.0-97.4% of total fatty acids. These data serve as an indicator of the nutritional quality and value of the 11 bee pollen samples.
Collapse
|
34
|
Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life (Basel) 2021; 11:life11090970. [PMID: 34575119 PMCID: PMC8464958 DOI: 10.3390/life11090970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biodiversity strengthens the productivity of any ecosystem (agricultural land, forest, lake, etc.). The loss of biodiversity contributes to food and energy insecurity; increases vulnerability to natural disasters, such as floods or tropical storms; and decreases the quality of both life and health. Wild and managed bees play a key role in maintaining the biodiversity and in the recovery and restoration of degraded habitats. The novelty character of this perspective is to give an updated representation of bee products’ biodiversity, sustainability, and health relationship. The role of bees as bioindicators, their importance in the conservation of biodiversity, their ecosystem services, and the variety of the bee products are described herein. An overview of the main components of bee products, their biological potentials, and health is highlighted and detailed as follows: (i) nutritional value of bee products, (ii) bioactive profile of bee products and the related beneficial properties; (iii) focus on honey and health through a literature quantitative analysis, and (iv) bee products explored through databases. Moreover, as an example of the interconnection between health, biodiversity, and sustainability, a case study, namely the “Cellulose Park”, realized in Rome (Italy), is presented here. This case study highlights how bee activities can be used to assess and track changes in the quality of agricultural ecosystems—hive products could be valid indicators of the quality and health of the surrounding environment, as well as the changes induced by the biotic and abiotic factors that impact the sustainability of agricultural production and biodiversity conservation in peri-urban areas.
Collapse
|