1
|
Zhang W, Guo C, Li Y, Wang H, Wang H, Wang Y, Wu T, Wang H, Cheng G, Man J, Chen S, Fu S, Yang L. Mitophagy mediated by HIF-1α/FUNDC1 signaling in tubular cells protects against renal ischemia/reperfusion injury. Ren Fail 2024; 46:2332492. [PMID: 38584135 PMCID: PMC11000611 DOI: 10.1080/0886022x.2024.2332492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Kidney Diseases, Lanzhou, China
| | - Chao Guo
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Hao Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huabing Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Yingying Wang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Tingting Wu
- Department of Functional Examination in Children, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huinan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Gang Cheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiangwei Man
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Siyu Chen
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Shengjun Fu
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Urology, Lanzhou, China
| |
Collapse
|
2
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Suzuki Y, Hayashi K, Goto F, Nomura Y, Fujimoto C, Makishima M. Premature senescence is regulated by crosstalk among TFEB, the autophagy lysosomal pathway and ROS derived from damaged mitochondria in NaAsO 2-exposed auditory cells. Cell Death Discov 2024; 10:382. [PMID: 39191766 DOI: 10.1038/s41420-024-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent types of sensory decline in a superaging society. Although various studies have focused on the effect of oxidative stress on the inner ear as an inducer of ARHL, there are no effective preventive approaches for ARHL. Recent studies have suggested that oxidative stress-induced DNA damage responses (oxidative DDRs) drive cochlear cell senescence and contribute to accelerated ARHL, and autophagy could function as a defense mechanism against cellular senescence in auditory cells. However, the underlying mechanism remains unclear. Sodium arsenite (NaAsO2) is a unique oxidative stress inducer associated with reactive oxygen species (ROS) that causes high-tone hearing loss similar to ARHL. Transcription factor EB (TFEB) functions as a master regulator of the autophagy‒lysosome pathway (ALP), which is a potential target during aging and the pathogenesis of various age-related diseases. Here, we focused on the function of TFEB and the impact of intracellular ROS as a potential target for ARHL treatment in a NaAsO2-induced auditory premature senescence model. Our results suggested that short exposure to NaAsO2 leads to DNA damage, lysosomal damage and mitochondrial damage in auditory cells, triggering temporary signals for TFEB transport into the nucleus and, as a result, causing insufficient autophagic flux and declines in lysosomal function and biogenesis and mitochondrial quality. Then, intracellular ROS derived from damaged mitochondria play a role as a second messenger to induce premature senescence in auditory cells. These findings suggest that TFEB activation via transport into the nucleus contributes to anti-senescence activity in auditory cells and represents a new therapeutic target for ARHL. We have revealed the potential function of TFEB as a master regulator of the induction of oxidative stress-induced premature senescence and the senescence-associated secretion phenotype (SASP) in auditory cells, which regulates ALP and controls mitochondrial quality through ROS production.
Collapse
Affiliation(s)
- Yuna Suzuki
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Ken Hayashi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan.
- Department of Otolaryngology, Sakura Koedo Clinic, Saitama, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Keio University, Tokyo, Japan.
| | - Fumiyuki Goto
- Department of Otolaryngology-Head and Neck Surgery, Tokai University, Kanagawa, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology-Head and Neck Surgery, Nihon University, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Wen X, Tang S, Wan F, Zhong R, Chen L, Zhang H. The PI3K/Akt-Nrf2 Signaling Pathway and Mitophagy Synergistically Mediate Hydroxytyrosol to Alleviate Intestinal Oxidative Damage. Int J Biol Sci 2024; 20:4258-4276. [PMID: 39247828 PMCID: PMC11379072 DOI: 10.7150/ijbs.97263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Oxidative stress is a major pathogenic factor in many intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). The Nrf2 signaling pathway and mitophagy can reduce reactive oxygen species (ROS) and alleviate oxidative stress, but their relationship is unclear. Hydroxytyrosol (HT), a polyphenolic compound abundant in olive oil, has strong antioxidant activity and may help treat these diseases. We used pigs as a model to investigate HT's effect on intestinal oxidative damage and its mechanisms. Diquat (DQ) induced oxidative stress and impaired intestinal barrier function, which HT mitigated. Mechanistic studies in IPEC-J2 cells showed that HT protected against oxidative damage by activating the PI3K/Akt-Nrf2 signaling pathway and promoting mitophagy. Our study highlighted the synergistic relationship between Nrf2 and mitophagy in mediating HT's antioxidant effects. Inhibition studies confirmed that disrupting either pathway compromised HT's protective effects. Maintaining redox balance through Nrf2 and mitophagy is important for eliminating excess ROS. Nrf2 increases antioxidant enzymes to clear existing ROS, while mitophagy removes damaged mitochondria and reduces ROS generation. This study demonstrates that these pathways collaboratively modulate the antioxidant effects of HT, with neither being dispensable. Targeting Nrf2 and mitophagy could be a promising strategy for treating oxidative stress-related intestinal diseases, with HT as a potential treatment.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
5
|
Cavinato M, Martic I, Wedel S, Pittl A, Koziel R, Weinmmüllner R, Schosserer M, Jenewein B, Bobbili MR, Arcalis E, Haybaeck J, Pierer G, Ploner C, Hermann M, Romani N, Schmuth M, Grillari J, Jansen‐Dürr P. Elimination of damaged mitochondria during UVB-induced senescence is orchestrated by NIX-dependent mitophagy. Aging Cell 2024; 23:e14186. [PMID: 38761001 PMCID: PMC11320349 DOI: 10.1111/acel.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024] Open
Abstract
Skin aging is the result of two types of aging, "intrinsic aging" an inevitable consequence of physiologic and genetically determined changes and "extrinsic aging," which is dependent on external factors such as exposure to sunlight, smoking, and dietary habits. UVB causes skin injury through the generation of free radicals and other oxidative byproducts, also contributing to DNA damage. Appearance and accumulation of senescent cells in the skin are considered one of the hallmarks of aging in this tissue. Mitochondria play an important role for the development of cellular senescence, in particular stress-induced senescence of human cells. However, many aspects of mitochondrial physiology relevant to cellular senescence and extrinsic skin aging remain to be unraveled. Here, we demonstrate that mitochondria damaged by UVB irradiation of human dermal fibroblasts (HDF) are eliminated by NIX-dependent mitophagy and that this process is important for cell survival under these conditions. Additionally, UVB-irradiation of human dermal fibroblasts (HDF) induces the shedding of extracellular vesicles (EVs), and this process is significantly enhanced in UVB-irradiated NIX-depleted cells. Our findings establish NIX as the main mitophagy receptor in the process of UVB-induced senescence and suggest the release of EVs as an alternative mechanism of mitochondrial quality control in HDF.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Ines Martic
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Sophia Wedel
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Annabella Pittl
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
- Present address:
Department of Internal Medicin V, Hematology & OncologyTirol Kliniken InnsbruckInnsbruckAustria
| | - Rafal Koziel
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Present address:
Biosens Labs Ltd.WarsawPoland
| | - Regina Weinmmüllner
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Markus Schosserer
- Institute of Medical Genetics, Center for Pathobiochemistry and GeneticsMedical University ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Brigitte Jenewein
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVAViennaAustria
| | - Elsa Arcalis
- Institut für Pflanzenbiotechnologie und ZellbiologieUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular PathologyMedical University of InnsbruckInnsbruckAustria
- Department of PathologySaint Vincent Hospital ZamsZamsAustria
- Department of Pathology, Labor TeamGoldachSwitzerland
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care MedicineMedical University of InnsbruckInnsbruckAustria
| | - Nikolaus Romani
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Johannes Grillari
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVAViennaAustria
| | - Pidder Jansen‐Dürr
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| |
Collapse
|
6
|
Vahedi Raad M, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F. The impact of mitochondrial impairments on sperm function and male fertility: a systematic review. Reprod Biol Endocrinol 2024; 22:83. [PMID: 39020374 PMCID: PMC11253428 DOI: 10.1186/s12958-024-01252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ralf Henkel
- LogixX Pharma, Theale, Berkshire, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
7
|
Azadmanesh J, Slobodnik K, Struble LR, Lutz WE, Coates L, Weiss KL, Myles DAA, Kroll T, Borgstahl GEO. Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition. Nat Commun 2024; 15:5973. [PMID: 39013847 PMCID: PMC11252399 DOI: 10.1038/s41467-024-50260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting superoxide (O2●-) to molecular oxygen (O2) and hydrogen peroxide (H2O2) with proton-coupled electron transfers (PCETs). Human MnSOD has evolved to be highly product inhibited to limit the formation of H2O2, a freely diffusible oxidant and signaling molecule. The product-inhibited complex is thought to be composed of a peroxide (O22-) or hydroperoxide (HO2-) species bound to Mn ion and formed from an unknown PCET mechanism. PCET mechanisms of proteins are typically not known due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the mechanism, we combine neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states of the enzyme to reveal the positions of all the atoms, including hydrogen, and the electronic configuration of the metal ion. The data identifies the product-inhibited complex, and a PCET mechanism of inhibition is constructed.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Katelyn Slobodnik
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Lucas R Struble
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - William E Lutz
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Dean A A Myles
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gloria E O Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
| |
Collapse
|
8
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Silva RCMC. Mitochondria, Autophagy and Inflammation: Interconnected in Aging. Cell Biochem Biophys 2024; 82:411-426. [PMID: 38381268 DOI: 10.1007/s12013-024-01231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
In this manuscript, I discuss the direct link between abnormalities in inflammatory responses, mitochondrial metabolism and autophagy during the process of aging. It is focused on the cytosolic receptors nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) and cyclic GMP-AMP synthase (cGAS); myeloid-derived suppressor cells (MDSCs) expansion and their associated immunosuppressive metabolite, methyl-glyoxal, all of them negatively regulated by mitochondrial autophagy, biogenesis, metabolic pathways and its distinct metabolites.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Azadmanesh J, Slobodnik K, Struble LR, Cone EA, Dasgupta M, Lutz WE, Kumar S, Natarajan A, Coates L, Weiss KL, Myles DAA, Kroll T, Borgstahl GEO. The role of Tyr34 in proton-coupled electron transfer of human manganese superoxide dismutase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596464. [PMID: 38853997 PMCID: PMC11160768 DOI: 10.1101/2024.05.29.596464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O 2 •- ) to molecular oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK a due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.
Collapse
|
11
|
Morgan AB, Fan Y, Inman DM. The ketogenic diet and hypoxia promote mitophagy in the context of glaucoma. Front Cell Neurosci 2024; 18:1409717. [PMID: 38841201 PMCID: PMC11150683 DOI: 10.3389/fncel.2024.1409717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Mitochondrial homeostasis includes balancing organelle biogenesis with recycling (mitophagy). The ketogenic diet protects retinal ganglion cells (RGCs) from glaucoma-associated neurodegeneration, with a concomitant increase in mitochondrial biogenesis. This study aimed to determine if the ketogenic diet also promoted mitophagy. MitoQC mice that carry a pH-sensitive mCherry-GFP tag on the outer mitochondrial membrane were placed on a ketogenic diet or standard rodent chow for 5 weeks; ocular hypertension (OHT) was induced via magnetic microbead injection in a subset of control or ketogenic diet animals 1 week after the diet began. As a measure of mitophagy, mitolysosomes were quantified in sectioned retina immunolabeled with RBPMS for RGCs or vimentin for Müller glia. Mitolysosomes were significantly increased as a result of OHT and the ketogenic diet (KD) in RGCs. Interestingly, the ketogenic diet increased mitolysosome number significantly higher than OHT alone. In contrast, OHT and the ketogenic diet both increased mitolysosome number in Müller glia to a similar degree. To understand if hypoxia could be a stimulus for mitophagy, we quantified mitolysosomes after acute OHT, finding significantly greater mitolysosome number in cells positive for pimonidazole, an adduct formed in cells exposed to hypoxia. Retinal protein analysis for BNIP3 and NIX showed no differences across groups, suggesting that these receptors were equivocal for mitophagy in this model of OHT. Our data indicate that OHT and hypoxia stimulate mitophagy and that the ketogenic diet is an additive for mitophagy in RGCs. The different response across RGCs and Müller glia to the ketogenic diet may reflect the different metabolic needs of these cell types.
Collapse
Affiliation(s)
| | | | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
12
|
Yang J, Luo J, Tian X, Zhao Y, Li Y, Wu X. Progress in Understanding Oxidative Stress, Aging, and Aging-Related Diseases. Antioxidants (Basel) 2024; 13:394. [PMID: 38671842 PMCID: PMC11047596 DOI: 10.3390/antiox13040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Under normal physiological conditions, reactive oxygen species (ROS) are produced through redox reactions as byproducts of respiratory and metabolic activities. However, due to various endogenous and exogenous factors, the body may produce excessive ROS, which leads to oxidative stress (OS). Numerous studies have shown that OS causes a variety of pathological changes in cells, including mitochondrial dysfunction, DNA damage, telomere shortening, lipid peroxidation, and protein oxidative modification, all of which can trigger apoptosis and senescence. OS also induces a variety of aging-related diseases, such as retinal disease, neurodegenerative disease, osteoarthritis, cardiovascular diseases, cancer, ovarian disease, and prostate disease. In this review, we aim to introduce the multiple internal and external triggers that mediate ROS levels in rodents and humans as well as the relationship between OS, aging, and aging-related diseases. Finally, we present a statistical analysis of effective antioxidant measures currently being developed and applied in the field of aging research.
Collapse
Affiliation(s)
- Jianying Yang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (J.L.); (X.T.)
| | - Juyue Luo
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (J.L.); (X.T.)
| | - Xutong Tian
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (J.L.); (X.T.)
| | - Yaping Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China;
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China;
| | - Xin Wu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.Y.); (J.L.); (X.T.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China;
| |
Collapse
|
13
|
Mahmoudi SK, Tarzemani S, Aghajanzadeh T, Kasravi M, Hatami B, Zali MR, Baghaei K. Exploring the role of genetic variations in NAFLD: implications for disease pathogenesis and precision medicine approaches. Eur J Med Res 2024; 29:190. [PMID: 38504356 PMCID: PMC10953212 DOI: 10.1186/s40001-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Taha Aghajanzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Mohammadreza Kasravi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| |
Collapse
|
14
|
Borgstahl G, Azadmanesh J, Slobodnik K, Struble L, Lutz W, Coates L, Weiss K, Myles D, Kroll T. Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition. RESEARCH SQUARE 2024:rs.3.rs-3880128. [PMID: 38405788 PMCID: PMC10889052 DOI: 10.21203/rs.3.rs-3880128/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting O 2 ∙ - to O 2 and H 2 O 2 with proton-coupled electron transfers (PCETs). Since changes in mitochondrial H 2 O 2 concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, H 2 O 2 . A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the underlying mechanism, we combined neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states to reveal the all-atom structures and electronic configuration of the metal. The data identifies the product-inhibited complex for the first time and a PCET mechanism of inhibition is constructed.
Collapse
|
15
|
Headley CA, Gautam S, Olmo‐Fontanez A, Garcia‐Vilanova A, Dwivedi V, Akhter A, Schami A, Chiem K, Ault R, Zhang H, Cai H, Whigham A, Delgado J, Hicks A, Tsao PS, Gelfond J, Martinez‐Sobrido L, Wang Y, Torrelles JB, Turner J. Extracellular Delivery of Functional Mitochondria Rescues the Dysfunction of CD4 + T Cells in Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303664. [PMID: 37990641 PMCID: PMC10837346 DOI: 10.1002/advs.202303664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Indexed: 11/23/2023]
Abstract
Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Shalini Gautam
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | | | | | - Varun Dwivedi
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Anwari Akhter
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Alyssa Schami
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Kevin Chiem
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Russell Ault
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
| | - Hao Zhang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Hong Cai
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Alison Whigham
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Jennifer Delgado
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Amberlee Hicks
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Philip S. Tsao
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Jonathan Gelfond
- UT‐Health San AntonioDepartment of Epidemiology & BiostatisticsSan AntonioTexas78229USA
| | - Luis Martinez‐Sobrido
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Yufeng Wang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Jordi B. Torrelles
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Joanne Turner
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| |
Collapse
|
16
|
Azadmanesh J, Slobodnik K, Struble LR, Lutz WE, Coates L, Weiss KL, Myles DAA, Kroll T, Borgstahl GEO. Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577433. [PMID: 38328249 PMCID: PMC10849630 DOI: 10.1101/2024.01.26.577433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting O 2 ●- to O 2 and H 2 O 2 with proton-coupled electron transfers (PCETs). Since changes in mitochondrial H 2 O 2 concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, H 2 O 2 . A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the underlying mechanism, we combined neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states to reveal the all-atom structures and electronic configuration of the metal. The data identifies the product-inhibited complex for the first time and a PCET mechanism of inhibition is constructed.
Collapse
|
17
|
Li J, Dong X, Liu JY, Gao L, Zhang WW, Huang YC, Wang Y, Wang H, Wei W, Xu DX. FUNDC1-mediated mitophagy triggered by mitochondrial ROS is partially involved in 1-nitropyrene-evoked placental progesterone synthesis inhibition and intrauterine growth retardation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168383. [PMID: 37951264 DOI: 10.1016/j.scitotenv.2023.168383] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Intrauterine growth retardation (IUGR) is a major cause of perinatal morbidity and mortality. Previous studies showed that 1-nitropyrene (1-NP), an atmospheric pollutant, induces placental dysfunction and IUGR, but the exact mechanisms remain uncertain. In this research, we aimed to explore the role of mitophagy on 1-NP-evoked placental progesterone (P4) synthesis inhibition and IUGR in a mouse model. As expected, P4 levels were decreased in 1-NP-exposed mouse placentas and maternal sera. Progesterone synthases, CYP11A1 and 3βHSD1, were correspondingly declined in 1-NP-exposed mouse placentas and JEG-3 cells. Mitophagy, as determined by LC3B-II elevation and TOM20 reduction, was evoked in 1-NP-exposed JEG-3 cells. Mdivi-1, a specific mitophagy inhibitor, relieved 1-NP-evoked downregulation of progesterone synthases in JEG-3 cells. Additional experiments showed that ULK1/FUNDC1 signaling was activated in 1-NP-exposed JEG-3 cells. ULK1 inhibitor or FUNDC1-targeted siRNA blocked 1-NP-induced mitophagy and progesterone synthase downregulation in JEG-3 cells. Further analysis found that mitochondrial reactive oxygen species (ROS) were increased and GCN2 was activated in 1-NP-exposed JEG-3 cells. GCN2iB, a selective GCN2 inhibitor, and MitoQ, a mitochondria-targeted antioxidant, attenuated GCN2 activation, FUNDC1-mediated mitophagy, and downregulation of progesterone synthases in JEG-3 cells. In vivo, gestational MitoQ supplement alleviated 1-NP-evoked reduction of placental P4 synthesis and IUGR. These results suggest that FUNDC1-mediated mitophagy triggered by mitochondrial ROS may contribute partially to 1-NP-induced placental P4 synthesis inhibition and IUGR.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xin Dong
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jia-Yu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Wei-Wei Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory & Immune Medicine, Education Ministry of China, Anhui Medical University, Hefei 230032, China.
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Fu H, Sen L, Zhang F, Liu S, Wang M, Mi H, Liu M, Li B, Peng S, Hu Z, Sun J, Li R. Mesenchymal stem cells-derived extracellular vesicles protect against oxidative stress-induced xenogeneic biological root injury via adaptive regulation of the PI3K/Akt/NRF2 pathway. J Nanobiotechnology 2023; 21:466. [PMID: 38049845 PMCID: PMC10696851 DOI: 10.1186/s12951-023-02214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Xenogeneic extracellular matrices (xECM) for cell support have emerged as a potential strategy for addressing the scarcity of donor matrices for allotransplantation. However, the poor survival rate or failure of xECM-based organ transplantation is due to the negative impacts of high-level oxidative stress and inflammation on seed cell viability and stemness. Herein, we constructed xenogeneic bioengineered tooth roots (bio-roots) and used extracellular vesicles from human adipose-derived mesenchymal stem cells (hASC-EVs) to shield bio-roots from oxidative damage. Pretreatment with hASC-EVs reduced cell apoptosis, reactive oxygen species generation, mitochondrial changes, and DNA damage. Furthermore, hASC-EV treatment improved cell proliferation, antioxidant capacity, and odontogenic and osteogenic differentiation, while significantly suppressing oxidative damage by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) nuclear translocation via p62-associated Kelch-like ECH-associated protein 1 (KEAP1) degradation. Inhibition of PI3K/Akt and Nrf2 knockdown reduced antioxidant capacity, indicating that the PI3K/Akt/NRF2 pathway partly mediates these effects. In subcutaneous grafting experiments using Sprague-Dawley rats, hASC-EV administration significantly enhanced the antioxidant effect of the bio-root, improved the regeneration efficiency of periodontal ligament-like tissue, and maximized xenograft function. Conclusively, therefore, hASC-EVs have the potential to be used as an immune modulator and antioxidant for treating oxidative stress-induced bio-root resorption and degradation, which may be utilized for the generation and restoration of other intricate tissues and organs.
Collapse
Affiliation(s)
- Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Lin Sen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Fangqi Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Sirui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Meiyue Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hongyan Mi
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Mengzhe Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Zelong Hu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
19
|
Foglio E, D’Avorio E, Vitiello L, Masuelli L, Bei R, Pacifici F, Della-Morte D, Mirabilii S, Ricciardi MR, Tafuri A, Garaci E, Russo MA, Tafani M, Limana F. Doxorubicin-Induced Cardiac Senescence Is Alleviated Following Treatment with Combined Polyphenols and Micronutrients through Enhancement in Mitophagy. Cells 2023; 12:2605. [PMID: 37998340 PMCID: PMC10670650 DOI: 10.3390/cells12222605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5+, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells. Specifically, H9C2 cells exposed to DOXO showed an increase in the protein expression proteins of senescence-associated genes, p21 and p16, and a decrease in the telomere binding factors TRF1 and TRF2, indicative of senescence induction. Nevertheless, A5+ pre-treatment attenuated the senescent-like cell phenotype, as evidenced by inhibition of all senescent markers and a decrease in SA-β-gal staining in DOXO-treated H9C2 cells. Importantly, A5+ restored the LC3 II/LC3 I ratio, Parkin and BNIP3 expression, therefore rescuing mitophagy, and decreased ROS production. Further, A5+ pre-treatment determined a ripolarization of the mitochondrial membrane and improved basal respiration. A5+-mediated protective effects might be related to its ability to activate mitochondrial SIRT3 in synergy with other micronutrients, but in contrast with SIRT4 activation. Accordingly, SIRT4 knockdown in H9C2 cells further increased MnSOD activity, enhanced mitophagy, and reduced ROS generation following A5+ pre-treatment and DOXO exposure compared to WT cells. Indeed, we demonstrated that A5+ protects H9C2 cells from DOXO-induced senescence, establishing a new specific role for A5+ in controlling mitochondrial quality control by restoring SIRT3 activity and mitophagy, which provided a molecular basis for the development of therapeutic strategies against cardiomyocyte senescence.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, 04100 Latina, Italy
| | - Erica D’Avorio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
| | | | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (M.T.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Simone Mirabilii
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Maria Rosaria Ricciardi
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Enrico Garaci
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
| | - Matteo Antonio Russo
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (M.T.)
| | - Federica Limana
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
20
|
Yang H, Gong R, Liu M, Deng Y, Zheng X, Hu T. HOMA-IR is positively correlated with biological age and advanced aging in the US adult population. Eur J Med Res 2023; 28:470. [PMID: 37898776 PMCID: PMC10612177 DOI: 10.1186/s40001-023-01448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) had been reported to be associated with age; however, few studies have explored the association between IR and biological age (BA). The HOMA-IR value is a useful indicator of the extent of IR. This cross-sectional study is to explore the relationship between HOMA-IR and BA/advanced aging in the US population. METHODS This study is a cross-sectional analysis of National Health and Nutrition Examination Survey (NHANES) data. The survey comprised 12,266 people from the NHANES, and their full HOMA-IR data as well as BA data were extracted. Four multiple linear regressions were performed to analyze the association between HOMA-IR and BA, and four multiple logistic regression models were performed to analyze the association between HOMA-IR and advanced aging. In addition, trend tests and stratified analysis were performed and smoothed fitted curves were plotted to test the robustness of the results. RESULTS HOMA-IR was positively correlated with BA [β: 0.51 (0.39, 0.63)], and it was the same to advanced aging [OR: 1.05 (1.02, 1.07)], and both showed a monotonically increasing trend. The trend tests showed that the results were stable (all P for trend < 0.0001). The smoothed fitted curves showed that there were non-linear relationships between HOMA-IR and BA/advanced aging. And the stratified analysis indicated that the relationship between HOMA-IR and BA/advanced aging remained robust in all subgroups. CONCLUSION The study suggested that HOMA-IR is positively correlated with BA and advanced aging in the US adult population, with a monotonic upward trend. This is a new finding to reveal the relationship between HOMA-IR and age from new standpoint of BA rather than chronological age (CA). And it may contribute to a better understanding of human health aging and may aid future research in this field.
Collapse
Affiliation(s)
- Haifang Yang
- Medical College of Qinghai University, Xining, China
| | - Rongpeng Gong
- Medical College of Qinghai University, Xining, China
| | - Moli Liu
- Medical College of Qinghai University, Xining, China
| | - Ying Deng
- Department of Cardiology, The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Zheng
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Zhang H, Li C, Liu Q, Li J, Wu H, Xu R, Sun Y, Cheng M, Zhao X, Pan M, Wei Q, Ma B. C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting excessive PINK1/Parkin-mediated mitophagy. eLife 2023; 12:RP88523. [PMID: 37860954 PMCID: PMC10588981 DOI: 10.7554/elife.88523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
The overall oocyte quality declines with aging, and this effect is strongly associated with a higher reactive oxygen species (ROS) level and the resultant oxidative damage. C-type natriuretic peptide (CNP) is a well-characterized physiological meiotic inhibitor that has been successfully used to improve immature oocyte quality during in vitro maturation. However, the underlying roles of CNP in maternally aged oocytes have not been reported. Here, we found that the age-related reduction in the serum CNP concentration was highly correlated with decreased oocyte quality. Treatment with exogenous CNP promoted follicle growth and ovulation in aged mice and enhanced meiotic competency and fertilization ability. Interestingly, the cytoplasmic maturation of aged oocytes was thoroughly improved by CNP treatment, as assessed by spindle/chromosome morphology and redistribution of organelles (mitochondria, the endoplasmic reticulum, cortical granules, and the Golgi apparatus). CNP treatment also ameliorated DNA damage and apoptosis caused by ROS accumulation in aged oocytes. Importantly, oocyte RNA-seq revealed that the beneficial effect of CNP on aged oocytes was mediated by restoration of mitochondrial oxidative phosphorylation, eliminating excessive mitophagy. CNP reversed the defective phenotypes in aged oocytes by alleviating oxidative damage and suppressing excessive PINK1/Parkin-mediated mitophagy. Mechanistically, CNP functioned as a cAMP/PKA pathway modulator to decrease PINK1 stability and inhibit Parkin recruitment. In summary, our results demonstrated that CNP supplementation constitutes an alternative therapeutic approach for advanced maternal age-related oocyte deterioration and may improve the overall success rates of clinically assisted reproduction in older women.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Yidan Sun
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Ming Cheng
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| |
Collapse
|
22
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
23
|
Yönden Z, Bonyadi F, Yousefi Y, Daemi A, Hosseini ST, Moshari S. Nanomicelle curcumin-induced testicular toxicity: Implications for altered mitochondrial biogenesis and mitophagy following redox imbalance. Biomed Pharmacother 2023; 166:115363. [PMID: 37660650 DOI: 10.1016/j.biopha.2023.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
The purpose of this study was to examine the effects of nano-micelle curcumin (NMC)-induced redox imbalance on mitochondrial biogenesis and mitophagy. For this purpose, 24 mature male Wistar rats were divided into control and NMC-received groups (7.5, 15, and 30 mg/kg) groups. After 48 days, the Nrf1, Nrf2, and SOD (Cu/Zn) expression levels, as well as GSH/GSSG, NADP+ /NADPH relative balances (elements involved in redox homeostasis) were analyzed. Moreover, to explore the effect of NMC on mitochondrial biogenesis, the expression levels of Mfn1, Mfn2, OPA1, Fis1, and Drp1 were investigated. Finally, the expression levels of Parkin/PARK and PINK (genes involved in mitochondrial quality control), as well as LC3-I/II (mitophagy marker), were analyzed. Observations showed that NMC, dose-dependently, altered GSH/GSSG, NADP+ /NADPH relative balances, suppressed SOD expression and diminished its biochemical level, and repressed Nrf1 and Nrf2 expression levels. Moreover, it could change the Mfn1, Mfn2, OPA1, Fis1, and Drp1 expression pattern and stimulate the Parkin/PARK and PINK as well as LC3-I/II expression levels, dose-dependently. In conclusion, chronic and high-dose NMC is able to suppress the redox capacity by down-regulating the Nrf1 and Nrf2 expression. Finally, at high-dose levels, it is able to trigger mitophagy signaling in the testicles.
Collapse
Affiliation(s)
- Zafer Yönden
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Farzaneh Bonyadi
- RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran
| | | | - Amin Daemi
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Seyyedeh Touran Hosseini
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, Adana, Turkey
| | - Sana Moshari
- RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
24
|
Ghosh Chowdhury S, Ray R, Karmakar P. Relating aging and autophagy: a new perspective towards the welfare of human health. EXCLI JOURNAL 2023; 22:732-748. [PMID: 37662706 PMCID: PMC10471842 DOI: 10.17179/excli2023-6300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The most common factor that contributes to aging is the loss of proteostasis, resulting in an excess amount of non-functional/damaged proteins. These proteins lead to various age-associated phenotypes such as cellular senescence and dysfunction in the nutrient-sensing pathways. Despite the various factors that can contribute to aging, it is still a process that can be changed. According to recent advances in the field of biology, the ability to alter the pathways that are involved in aging can improve the lifespan of a person. Autophagy is a process that helps in preserving survival during stressful situations, such as starvation. It is a common component of various anti-aging interventions, including those that target the insulin/IGF-1 and rapamycin signaling pathways. It has been shown that altered autophagy is a common feature of old age and its impaired regulation could have significant effects on the aging process. This review aims to look into the role of autophagy in aging and how it can be used to improve one's health.
Collapse
Affiliation(s)
| | - Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
25
|
Ma W, Su Y, Zhang P, Wan G, Cheng X, Lu C, Gu X. Identification of mitochondrial-related genes as potential biomarkers for the subtyping and prediction of Alzheimer's disease. Front Mol Neurosci 2023; 16:1205541. [PMID: 37470054 PMCID: PMC10352499 DOI: 10.3389/fnmol.2023.1205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder prevalent among older adults. Although AD symptoms can be managed through certain treatments, advancing the understanding of underlying disease mechanisms and developing effective therapies is critical. Methods In this study, we systematically analyzed transcriptome data from temporal lobes of healthy individuals and patients with AD to investigate the relationship between AD and mitochondrial autophagy. Machine learning algorithms were used to identify six genes-FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5-for the construction of an AD prediction model. Furthermore, AD was categorized into three subtypes through consensus clustering analysis. Results The identified genes are closely linked to the onset and progression of AD and can serve as reliable biomarkers. The differences in gene expression, clinical features, immune infiltration, and pathway enrichment were examined among the three AD subtypes. Potential drugs for the treatment of each subtype were also identified. Discussion The findings observed in the present study can help to deepen the understanding of the underlying disease mechanisms of AD and enable the development of precision medicine and personalized treatment approaches.
Collapse
Affiliation(s)
- Wenhao Ma
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuelin Su
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changlian Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
26
|
Kopeć K, Szleszkowski S, Koziorowski D, Szlufik S. Glymphatic System and Mitochondrial Dysfunction as Two Crucial Players in Pathophysiology of Neurodegenerative Disorders. Int J Mol Sci 2023; 24:10366. [PMID: 37373513 DOI: 10.3390/ijms241210366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Neurodegenerative diseases are a complex problem affecting millions of people around the world. The pathogenesis is not fully understood, but it is known that both insufficiency of the glymphatic system and mitochondrial disorders affect the development of pathology. It appears that these are not just two independent factors that coexist in the processes of neurodegeneration, but that they often interact and drive each other. Bioenergetics disturbances are potentially associated with the accumulation of protein aggregates and impaired glymphatic clearance. Furthermore, sleep disorders characteristic of neurodegeneration may impair the work of both the glymphatic system and the activity of mitochondria. Melatonin may be one of the elements linking sleep disorders with the function of these systems. Moreover, noteworthy in this context is the process of neuroinflammation inextricably linked to mitochondria and its impact not only on neurons, but also on glia cells involved in glymphatic clearance. This review only presents possible direct and indirect connections between the glymphatic system and mitochondria in the process of neurodegeneration. Clarifying the connection between these two areas in relation to neurodegeneration could lead to the development of new multidirectional therapies, which, due to the complexity of pathogenesis, seems to be worth considering.
Collapse
Affiliation(s)
- Kamila Kopeć
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stanisław Szleszkowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stanislaw Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
27
|
Yu L, Pan J, Guo M, Duan H, Zhang H, Narbad A, Zhai Q, Tian F, Chen W. Gut microbiota and anti-aging: Focusing on spermidine. Crit Rev Food Sci Nutr 2023; 64:10419-10437. [PMID: 37326367 DOI: 10.1080/10408398.2023.2224867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The human gut microbiota plays numerous roles in regulating host growth, the immune system, and metabolism. Age-related changes in the gut environment lead to chronic inflammation, metabolic dysfunction, and illness, which in turn affect aging and increase the risk of neurodegenerative disorders. Local immunity is also affected by changes in the gut environment. Polyamines are crucial for cell development, proliferation, and tissue regeneration. They regulate enzyme activity, bind to and stabilize DNA and RNA, have antioxidative properties, and are necessary for the control of translation. All living organisms contain the natural polyamine spermidine, which has anti-inflammatory and antioxidant properties. It can regulate protein expression, prolong life, and improve mitochondrial metabolic activity and respiration. Spermidine levels experience an age-related decrease, and the development of age-related diseases is correlated with decreased endogenous spermidine concentrations. As more than just a consequence, this review explores the connection between polyamine metabolism and aging and identifies advantageous bacteria for anti-aging and metabolites they produce. Further research is being conducted on probiotics and prebiotics that support the uptake and ingestion of spermidine from food extracts or stimulate the production of polyamines by gut microbiota. This provides a successful strategy to increase spermidine levels.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
28
|
Vitale F, Cacciottola L, Yu FS, Barretta M, Hossay C, Donnez J, Dolmans MM. Importance of oxygen tension in human ovarian tissue in vitro culture. Hum Reprod 2023:7194693. [PMID: 37308325 DOI: 10.1093/humrep/dead122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
STUDY QUESTION Is there any difference between 20% and 5% oxygen (O2) tension in vitro culture (IVC) on the viability and quality of human follicles contained in cultured ovarian cortex? SUMMARY ANSWER An O2 tension of 5% yields higher follicle viability and quality than does 20% O2 tension after 6 days of IVC. WHAT IS KNOWN ALREADY The primordial follicle (PMF) pool resides within the ovarian cortex, where the in vivo O2 tension ranges between 2% and 8%. Some studies suggest that lowering O2 tension to physiological levels may improve in vitro follicle quality rates. STUDY DESIGN, SIZE, DURATION This prospective experimental study included frozen-thawed ovarian cortex from six adult patients (mean age: 28.5 years; age range: 26-31 years) who were undergoing laparoscopic surgery for non-ovarian diseases. Ovarian cortical fragments were cultured for 6 days at (i) 20% O2 with 5% CO2 and (ii) 5% O2 with 5% CO2. Non-cultured fragments served as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Cortical fragments were used for the following analyses: hematoxylin and eosin staining for follicle count and classification; Ki67 staining to evaluate PMF proliferation; cleaved caspase-3 immunostaining to identify follicle apoptosis; 8-hydroxy-2-deoxyguanosine and gamma-H2AX (γH2AX) immunolabeling to detect oxidative stress damage and DNA double-strand breaks (DSBs) in oocytes and granulosa cells (GCs); and β-galactosidase staining to assess follicle senescence. Droplet digital PCR was also performed to further explore the gene expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 4 (GPX4) from the antioxidant defense system and cyclin-dependent kinase inhibitors (p21 and p16) as tissue senescence-related genes. MAIN RESULTS AND THE ROLE OF CHANCE Apoptosis (P = 0.002) and follicle senescence (P < 0.001) rates were significantly lower in the 5% O2 group than in the 20% O2 group. Moreover, GCs in follicles in the 20% O2 group exhibited significantly (P < 0.001) higher oxidative stress damage rates than those in the 5% O2 group. DNA DSB damage rates in GCs of follicles were also significantly higher (P = 0.001) in the 20% O2 group than in the 5% O2 group. SOD2 expression was significantly greater in the 5% O2 group compared to the 20% O2 group (P = 0.04) and the non-cultured group (P = 0.002). Expression of p21 was significantly increased in both the 20% O2 (P = 0.03) and 5% O2 (P = 0.008) groups compared to the non-cultured group. Moreover, the 20% O2 group showed significantly greater p16 expression (P = 0.04) than the non-cultured group, while no significant variation was observed between the 5% O2 and no culture groups. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study focuses on improving follicle outcomes during the first step of ovarian tissue IVC, where follicles remain in situ within the tissue. The impact of O2 tension in further steps, such as secondary follicle isolation and maturation, was not investigated here. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that 5% O2 tension culture is a promising step toward potentially solving the problem of poor follicle viability after IVC. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0064.22, CDR J.0063.20 and grant 5/4/150/5 awarded to M.M.D.). The authors have nothing to disclose.
Collapse
Affiliation(s)
- F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F S Yu
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - M Barretta
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - C Hossay
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
29
|
De Gaetano F, Celesti C, Paladini G, Venuti V, Cristiano MC, Paolino D, Iannazzo D, Strano V, Gueli AM, Tommasini S, Ventura CA, Stancanelli R. Solid Lipid Nanoparticles Containing Morin: Preparation, Characterization, and Ex Vivo Permeation Studies. Pharmaceutics 2023; 15:1605. [PMID: 37376054 DOI: 10.3390/pharmaceutics15061605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks. In this work, morin (MRN)-loaded SLNs (MRN-SLNs) were prepared using a solvent emulsification/diffusion method, using two different lipids, Compritol® 888 ATO (COM) or Phospholipon® 80H (PHO). SLNs were investigated for their physical-chemical, morphological, and technological (encapsulation parameters and in vitro release) properties. We obtained spherical and non-aggregated nanoparticles with hydrodynamic radii ranging from 60 to 70 nm and negative zeta potentials (about -30 mV and -22 mV for MRN-SLNs-COM and MRN-SLNs-PHO, respectively). The interaction of MRN with the lipids was demonstrated via μ-Raman spectroscopy, X-ray diffraction, and DSC analysis. High encapsulation efficiency was obtained for all formulations (about 99%, w/w), particularly for the SLNs prepared starting from a 10% (w/w) theoretical MRN amount. In vitro release studies showed that about 60% of MRN was released within 24 h and there was a subsequent sustained release within 10 days. Finally, ex vivo permeation studies with excised bovine nasal mucosa demonstrated the ability of SLNs to act as a penetration enhancer for MRN due to the intimate contact and interaction of the carrier with the mucosa.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Giuseppe Paladini
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Vincenza Strano
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Anna M Gueli
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Silvana Tommasini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Stancanelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
30
|
Shrestha J, Santerre M, Allen CN, Arjona SP, Hooper R, Mukerjee R, Kaul M, Shcherbik N, Soboloff J, Sawaya BE. HIV-1 gp120 protein promotes HAND through the calcineurin pathway activation. Mitochondrion 2023; 70:31-40. [PMID: 36925028 PMCID: PMC10484070 DOI: 10.1016/j.mito.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Charles N Allen
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Robert Hooper
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Psychiatry, UCSD, San Diego, CA, USA; Division of Biomedical Sciences, School of Medicine, UCR, Riverside, CA, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Jonathan Soboloff
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| |
Collapse
|
31
|
De Vitis C, Battaglia AM, Pallocca M, Santamaria G, Mimmi MC, Sacco A, De Nicola F, Gaspari M, Salvati V, Ascenzi F, Bruschini S, Esposito A, Ricci G, Sperandio E, Massacci A, Prestagiacomo LE, Vecchione A, Ricci A, Sciacchitano S, Salerno G, French D, Aversa I, Cereda C, Fanciulli M, Chiaradonna F, Solito E, Cuda G, Costanzo F, Ciliberto G, Mancini R, Biamonte F. ALDOC- and ENO2- driven glucose metabolism sustains 3D tumor spheroids growth regardless of nutrient environmental conditions: a multi-omics analysis. J Exp Clin Cancer Res 2023; 42:69. [PMID: 36945054 PMCID: PMC10031988 DOI: 10.1186/s13046-023-02641-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesca De Nicola
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania ''Luigi Vanvitelli'', Naples, Italy
| | - Eleonora Sperandio
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Alice Massacci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Licia Elvira Prestagiacomo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Alberto Ricci
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Deborah French
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | | | - Egle Solito
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
| | - Gennaro Ciliberto
- Scientific Director, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy.
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| |
Collapse
|
32
|
Dou W, Xie J, Chen J, Zhou J, Xu Z, Wang Z, Zhu Q. Overexpression of adrenomedullin (ADM) alleviates the senescence of human dental pulp stem cells by regulating the miR-152/CCNA2 pathway. Cell Cycle 2023; 22:565-579. [PMID: 36310381 PMCID: PMC9928452 DOI: 10.1080/15384101.2022.2135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The limitation of human dental pulp stem cells (DPSCs), which have potential application value in regenerative medicine, is that they are prone to age in vitro. Studies have shown adrenomedullin (ADM) is believed to promote the proliferation of human DPSCs, but whether it can also affect aging remains to be investigated. A lentivirus vector was used to construct human DPSCs overexpressing ADM. Senescence tests were carried out on cells of the 7th and 15th passage. Transcriptome analysis was conducted to analyze microRNA expression regulation changes after human DPSCs overexpressed ADM. H2O2 induced the aging model of human DPSCs, and we examined the mechanism of recovery of aging through transfection experiments with miR-152 mimic, pCDH-CCNA2, and CCNA2 siRNA. Overexpression of ADM significantly upregulated the G2/M phase ratio of human DPSCs in natural passage culture (P = 0.001) and inhibited the expression of p53 (P = 0.014), P21 WAF1 (P = 0.015), and P16 INK4A (P = 0.001). Decreased ROS accumulation was observed in human DPSCs during long-term natural passage (P = 0.022). Transcriptome analysis showed that miR-152 was significantly upregulated during human DPSC senescence (P = 0.001) and could induce cell senescence by directly targeting CCNA2. Transfection with miR-152 mimic significantly reversed the inhibitory effect of ADM overexpression on p53 (P = 0.006), P21 WAF1 (P = 0.012), and P16 INK4A (P = 0.01) proteins in human DPSCs (H2O2-induced). In contrast, pCDH-CCNA2 weakened the effect of the miR-152 mimic, thus promoting cell proliferation and antiaging. ADM-overexpressing human DPSCs promote cell cycle progression and resist cellular senescence through CCNA2 expression promotion by inhibiting miR-152.
Collapse
Affiliation(s)
- Wenxue Dou
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China
| | - Jiaye Xie
- Department of Stomatology, Tongren Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianan Chen
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China
| | - Jiajun Zhou
- Department of Stomatology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zunyue Xu
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zheng Wang
- Department of Stomatology, Tongren Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhu
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China,CONTACT Qiang Zhu Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai200433, China
| |
Collapse
|
33
|
Yang SG, Bae JW, Park HJ, Koo DB. Mito-TEMPO protects preimplantation porcine embryos against mitochondrial fission-driven apoptosis through DRP1/PINK1-mediated mitophagy. Life Sci 2023; 315:121333. [PMID: 36608867 DOI: 10.1016/j.lfs.2022.121333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
AIMS Mdivi-1 (Md-1) is a well-known inhibitor of mitochondrial fission and mitophagy. The mitochondrial superoxide scavenger Mito-TEMPO (MT) exerts positive effects on the developmental competence of pig embryos. This study aimed to explore the adverse effects of Md-1 on developmental capacity in porcine embryos and the protective effects of MT against Md-1-induced injury. MAIN METHODS We exposed porcine embryos to Md-1 (10 and 50 μM) for 2 days after in vitro fertilization (IVF). MT (0.1 μM) treatment was applied for 4 days after exposing embryos to Md-1. We assessed blastocyst development, DNA damage, mitochondrial superoxide production, and mitochondrial distribution using TUNEL assay, Mito-SOX, and Mito-tracker, respectively. Subsequently, the expression of PINK1, DRP1, and p-DRP1Ser616 was evaluated via immunofluorescence staining and Western blot analysis. KEY FINDINGS Md-1 compromised the developmental competence of blastocysts. Apoptosis and mitochondrial superoxide production were significantly upregulated in 50 μM Md-1-treated embryos, accompanied by a downregulation of p-DRP1Ser616, PINK1, and LC3B levels and lower mitophagy activity at the blastocyst stage. We confirmed the protective effects of MT against the detrimental effect of Md-1 on blastocyst developmental competence, mitochondrial fission, and DRP1/PINK1-mediated mitophagy activation. Eventually, MT recovered DRP1/PINK1-mediated mitophagy and mitochondrial fission by inhibiting superoxide production in Md-1-treated embryos. SIGNIFICANCE MT protects against detrimental effects of Md-1 on porcine embryos by suppressing superoxide production. These findings expand available scientific knowledge on improving outcomes of IVF.
Collapse
Affiliation(s)
- Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jin-Wook Bae
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
34
|
Mishra E, Thakur MK. Mitophagy: A promising therapeutic target for neuroprotection during ageing and age-related diseases. Br J Pharmacol 2023; 180:1542-1561. [PMID: 36792062 DOI: 10.1111/bph.16062] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondria and mitochondria-mediated signalling pathways are known to control synaptic signalling, as well as long-lasting changes in neuronal structure and function. Mitochondrial impairment is linked to synaptic dysfunction in normal ageing and age-associated neurodegenerative ailments, including Parkinson's disease (PD) and Alzheimer's disease (AD). Both proteolysis and mitophagy perform a major role in neuroprotection, by maintaining a healthy mitochondrial population during ageing. Mitophagy, a highly evolutionarily conserved cellular process, helps in the clearance of damaged mitochondria and thereby maintains the mitochondrial and metabolic balance, energy supply, neuronal survival and neuronal health. Besides the maintenance of brain homeostasis, hippocampal mitophagy also helps in synapse formation, axonal development, dopamine release and long-term depression. In contrast, defective mitophagy contributes to ageing and age-related neurodegeneration by promoting the accumulation of damaged mitochondria leading to cellular dysfunction. Exercise, stress management, maintaining healthy mitochondrial dynamics and administering natural or synthetic pharmacological compounds are some of the strategies used for neuroprotection during ageing and age-related neurological diseases. The current review discusses the impact of defective mitophagy in ageing and age-associated neurodegenerative conditions, the underlying molecular pathways and potential therapies based on recently elucidated mitophagy-inducing strategies.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
35
|
Role of Mitophagy in Regulating Intestinal Oxidative Damage. Antioxidants (Basel) 2023; 12:antiox12020480. [PMID: 36830038 PMCID: PMC9952109 DOI: 10.3390/antiox12020480] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The mitochondrion is also a major site for maintaining redox homeostasis between reactive oxygen species (ROS) generation and scavenging. The quantity, quality, and functional integrity of mitochondria are crucial for regulating intracellular homeostasis and maintaining the normal physiological function of cells. The role of oxidative stress in human disease is well established, particularly in inflammatory bowel disease and gastrointestinal mucosal diseases. Oxidative stress could result from an imbalance between ROS and the antioxidative system. Mitochondria are both the main sites of production and the main target of ROS. It is a vicious cycle in which initial ROS-induced mitochondrial damage enhanced ROS production that, in turn, leads to further mitochondrial damage and eventually massive intestinal cell death. Oxidative damage can be significantly mitigated by mitophagy, which clears damaged mitochondria. In this review, we aimed to review the molecular mechanisms involved in the regulation of mitophagy and oxidative stress and their relationship in some intestinal diseases. We believe the reviews can provide new ideas and a scientific basis for researching antioxidants and preventing diseases related to oxidative damage.
Collapse
|
36
|
Implication of Cellular Senescence in Osteoarthritis: A Study on Equine Synovial Fluid Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24043109. [PMID: 36834521 PMCID: PMC9967174 DOI: 10.3390/ijms24043109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is described as a chronic degenerative disease characterized by the loss of articular cartilage. Senescence is a natural cellular response to stressors. Beneficial in certain conditions, the accumulation of senescent cells has been implicated in the pathophysiology of many diseases associated with aging. Recently, it has been demonstrated that mesenchymal stem/stromal cells isolated from OA patients contain many senescent cells that inhibit cartilage regeneration. However, the link between cellular senescence in MSCs and OA progression is still debated. In this study, we aim to characterize and compare synovial fluid MSCs (sf-MSCs), isolated from OA joints, with healthy sf-MSCs, investigating the senescence hallmarks and how this state could affect cartilage repair. Sf-MSCs were isolated from tibiotarsal joints of healthy and diseased horses with an established diagnosis of OA with an age ranging from 8 to 14 years. Cells were cultured in vitro and characterized for cell proliferation assay, cell cycle analysis, ROS detection assay, ultrastructure analysis, and the expression of senescent markers. To evaluate the influence of senescence on chondrogenic differentiation, OA sf-MSCs were stimulated in vitro for up to 21 days with chondrogenic factors, and the expression of chondrogenic markers was compared with healthy sf-MSCs. Our findings demonstrated the presence of senescent sf-MSCs in OA joints with impaired chondrogenic differentiation abilities, which could have a potential influence on OA progression.
Collapse
|
37
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
38
|
Moustakli E, Zikopoulos A, Sakaloglou P, Bouba I, Sofikitis N, Georgiou I. Functional association between telomeres, oxidation and mitochondria. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1107215. [PMID: 36890798 PMCID: PMC9986632 DOI: 10.3389/frph.2023.1107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Prior research has substantiated the vital role of telomeres in human fertility. Telomeres are prerequisites for maintaining the integrity of chromosomes by preventing the loss of genetic material following replication events. Little is known about the association between sperm telomere length and mitochondrial capacity involving its structure and functions. Mitochondria are structurally and functionally distinct organelles that are located on the spermatozoon's midpiece. Mitochondria produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), which is necessary for sperm motility and generate reactive oxygen species (ROS). While a moderate concentration of ROS is critical for egg-sperm fusion, and fertilization, excessive ROS generation is primarily related to telomere shortening, sperm DNA fragmentation, and alterations in the methylation pattern leading to male infertility. This review aims to highlight the functional connection between mitochondria biogenesis and telomere length in male infertility, as mitochondrial lesions have a damaging impact on telomere length, leading both to telomere lengthening and reprogramming of mitochondrial biosynthesis. Furthermore, it aims to shed light on how both inositol and antioxidants can positively affect male fertility.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | | - Prodromos Sakaloglou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ioanna Bouba
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
39
|
Liu M, Zhang Y, Dong L, Guo Z. Apelin-13 facilitates mitochondria homeostasis via mitophagy to prevent against airway oxidative injury in asthma. Mol Immunol 2023; 153:1-9. [PMID: 36402066 DOI: 10.1016/j.molimm.2022.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Oxidative stress is a major mediator in the pathogenesis of allergens-induced asthma. Mitochondria damage and dysfunction is considered to be closely related with oxidative stress. Apelin-13 is a novel multifunctional protein with anti-inflammatory and anti-oxidative properties in neuroinflammation and ischemia-reperfusion injury. However, its role in mitochondria homeostasis under asthma-associated airway oxidative injury and the potential mechanisms have not been elucidated. A murine model of asthma was established by house dust mite (HDM) allergen sensitization and challenge. The mice were received Apelin-13 protein through intraperitoneal administration before HDM challenge. Airway inflammation, histopathological changes and oxidative stress were examined. The regulatory effects of Apelin-13 on mitochondria function were evaluated using airway epithelial BEAS-2B cells, including mitochondria membrane potential (MMP), mitophagy and the possible signaling pathway. The HDM-challenged mice group exhibited robust inflammation and apoptosis in airway epithelium compared to the control group. The airway impairment in asthmatic mice was partly lessened after Apelin-13 administration. Meanwhile, protein expressions of mitophagy-related markers PINK1, Parkin, Tomm20 and LC3 were significantly increased in the lungs of Apelin-13-treated asthmatic mice. In vitro, Apelin-13 treatment significantly improved MMP levels and reduced ROS production in BEAS-2B cells exposed to HDM, accompanied with the increase of cell viability. Furthermore, Apelin-13 was found to promote the activation of PINK1/Parkin signaling in BEAS-2B cells, thereby increasing mitophagy activity and facilitating mitochondria homeostasis. These results demonstrate that Apelin-13 acts as a regulator of mitochondria homeostasis by driving mitophagy to protect against HDM allergen-induced airway oxidative injury. Apelin-13 may serve as a promising protective agent for treating asthma.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Yunxuan Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Lin Dong
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| | - Zhongliang Guo
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| |
Collapse
|
40
|
NRF2 in Cancer: Cross-Talk with Oncogenic Pathways and Involvement in Gammaherpesvirus-Driven Carcinogenesis. Int J Mol Sci 2022; 24:ijms24010595. [PMID: 36614036 PMCID: PMC9820659 DOI: 10.3390/ijms24010595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Expanding knowledge of the molecular mechanisms at the basis of tumor development, especially the cross-talk between oncogenic pathways, will possibly lead to better tailoring of anticancer therapies. Nuclear factor erythroid 2-related factor 2 (NRF2) plays a central role in cancer progression, not only because of its antioxidant activity but also because it establishes cross-talk with several oncogenic pathways, including Heat Shock Factor1 (HSF1), mammalian target of rapamycin (mTOR), and mutant (mut) p53. Moreover, the involvement of NRF2 in gammaherpesvirus-driven carcinogenesis is particularly interesting. These viruses indeed hijack the NRF2 pathway to sustain the survival of tumor cells in which they establish a latent infection and to avoid a too-high increase of reactive oxygen species (ROS) when these cancer cells undergo treatments that induce viral replication. Interestingly, NRF2 activation may prevent gammaherpesvirus-driven oncogenic transformation, highlighting how manipulating the NRF2 pathway in the different phases of gammaherpesvirus-mediated carcinogenesis may lead to different outcomes. This review will highlight the mechanistic interplay between NRF2 and some oncogenic pathways and its involvement in gammaherpesviruses biology to recapitulate published evidence useful for potential application in cancer therapy.
Collapse
|
41
|
Mishra J, Bhatti GK, Sehrawat A, Singh C, Singh A, Reddy AP, Reddy PH, Bhatti JS. Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders. Life Sci 2022; 311:121153. [PMID: 36343743 PMCID: PMC9712237 DOI: 10.1016/j.lfs.2022.121153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The high prevalence of neurodegenerative diseases has become a major public health challenge and is associated with a tremendous burden on individuals, society and federal governments worldwide. Protein misfolding and aggregation are the major pathological hallmarks of several neurodegenerative disorders. The cells have evolved several regulatory mechanisms to deal with aberrant protein folding, namely the classical ubiquitin pathway, where ubiquitination of protein aggregates marks their degradation via lysosome and the novel autophagy or mitophagy pathways. Autophagy is a catabolic process in eukaryotic cells that allows the lysosome to recycle the cell's own contents, such as organelles and proteins, known as autophagic cargo. Their most significant role is to keep cells alive in distressed situations. Mitophagy is also crucial for reducing abnormal protein aggregation and increasing organelle clearance and partly accounts for maintaining cellular homeostasis. Furthermore, substantial data indicate that any disruption in these homeostatic mechanisms leads to the emergence of several age-associated metabolic and neurodegenerative diseases. So, targeting autophagy and mitophagy might be a potential therapeutic strategy for a variety of health conditions.
Collapse
Affiliation(s)
- Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
42
|
Calorie Restriction Provides Kidney Ischemic Tolerance in Senescence-Accelerated OXYS Rats. Int J Mol Sci 2022; 23:ijms232315224. [PMID: 36499550 PMCID: PMC9735762 DOI: 10.3390/ijms232315224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases belong to a group of pathologies, which are most common among elderly people. With age, even outwardly healthy organisms start to exhibit some age-related changes in the renal tissue, which reduce the filtration function of kidneys and increase the susceptibility to injury. The therapy of acute kidney injury (AKI) is aggravated by the absence of targeted pharmacotherapies thus yielding high mortality of patients with AKI. In this study, we analyzed the protective effects of calorie restriction (CR) against ischemic AKI in senescence-accelerated OXYS rats. We observed that CR afforded OXYS rats with significant nephroprotection. To uncover molecular mechanisms of CR beneficial effects, we assessed the levels of anti- and proapoptotic proteins of the Bcl-2 family, COX IV, GAPDH, and mitochondrial deacetylase SIRT-3, as well as alterations in total protein acetylation and carbonylation, mitochondrial dynamics (OPA1, Fis1, Drp1) and kidney regeneration pathways (PCNA, GDF11). The activation of autophagy and mitophagy was analyzed by LC3 II/LC3 I ratio, beclin-1, PINK-1, and total mitochondrial protein ubiquitination. Among all considered protective pathways, the improvement of mitochondrial functioning may be suggested as one of the possible mechanisms for beneficial effects of CR.
Collapse
|
43
|
Wang Q, Xue H, Yue Y, Hao S, Huang SH, Zhang Z. Role of mitophagy in the neurodegenerative diseases and its pharmacological advances: A review. Front Mol Neurosci 2022; 15:1014251. [PMID: 36267702 PMCID: PMC9578687 DOI: 10.3389/fnmol.2022.1014251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are a class of incurable and debilitating diseases characterized by progressive degeneration and death of cells in the central nervous system. They have multiple underlying mechanisms; however, they all share common degenerative features, such as mitochondrial dysfunction. According to recent studies, neurodegenerative diseases are associated with the accumulation of dysfunctional mitochondria. Selective autophagy of mitochondria, called mitophagy, can specifically degrade excess or dysfunctional mitochondria within cells. In this review, we highlight recent findings on the role of mitophagy in neurodegenerative disorders. Multiple studies were collected, including those related to the importance of mitochondria, the mechanism of mitophagy in protecting mitochondrial health, and canonical and non-canonical pathways in mitophagy. This review elucidated the important function of mitophagy in neurodegenerative diseases, discussed the research progress of mitophagy in neurodegenerative diseases, and summarized the role of mitophagy-related proteins in neurological diseases. In addition, we also highlight pharmacological advances in neurodegeneration.
Collapse
|
44
|
Age-Associated Loss in Renal Nestin-Positive Progenitor Cells. Int J Mol Sci 2022; 23:ijms231911015. [PMID: 36232326 PMCID: PMC9569966 DOI: 10.3390/ijms231911015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.
Collapse
|
45
|
Guo J, Chen Y, Yuan F, Peng L, Qiu C. Tangeretin Protects Mice from Alcohol-Induced Fatty Liver by Activating Mitophagy through the AMPK-ULK1 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11236-11244. [PMID: 36063077 DOI: 10.1021/acs.jafc.2c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alcoholic beverages are widely consumed all over the world, but continuous ethanol exposure leads to hepatic steatosis that, without proper treatment, will later develop into severe liver disorders. In this study, we investigated the potential protective effect of tangeretin, a flavonoid derived from citrus peel, against alcoholic fatty liver. The in vivo effects of tangeretin were analyzed by oral intake in a chronic-binge alcohol feeding C57BL/6j mouse model, while the underlying mechanism was explored by in vitro studies performed on ethanol-treated hepatic AML-12 cells. Ethanol feeding increased the serum alanine aminotransferase and aspartate aminotransferase levels, the liver weight, and the serum and liver triacylglycerol contents, whereas 20 and 40 mg/kg tangeretin treatment promoted a dose-dependent suppression of these effects. Interestingly, tangeretin prevented increases in the liver oxidative stress level and protected the hepatocyte mitochondria from ethanol-induced morphologic abnormalities. A mechanistic study showed that 20 μM tangeretin treatment activated mitophagy through an AMP-activated protein kinase (AMPK)-uncoordinated 51-like kinase 1 (Ulk1) pathway, thereby restoring mitochondria respiratory function and suppressing steatosis. By contrast, blocking the AMPK-Ulk1 pathway with compound C reversed the hepatoprotective effect of tangeretin. Overall, tangeretin activated mitophagy and protected against ethanol-induced hepatic steatosis through an AMPK-Ulk1-dependent mechanism.
Collapse
Affiliation(s)
- Jianjin Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Yuan
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100071, China
| | - Li Peng
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Chen Qiu
- Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
46
|
Liu W, Song H, Xu J, Guo Y, Zhang C, Yao Y, Zhang H, Liu Z, Li YC. Low shear stress inhibits endothelial mitophagy via caveolin-1/miR-7-5p/SQSTM1 signaling pathway. Atherosclerosis 2022; 356:9-17. [PMID: 35952464 DOI: 10.1016/j.atherosclerosis.2022.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Mitophagy plays a crucial role in mitochondrial homeostasis and is closely associated with endothelial function. However, the mechanism underlying low blood flow shear stress (SS), detrimental cellular stress, regulating endothelial mitophagy is unclear. This study aimed to investigate whether low SS inhibits endothelial mitophagy via caveolin-1 (Cav-1)/miR-7-5p/Sequestosome 1 (SQSTM1) signaling pathway. METHODS Low SS in vivo modeling was induced using a perivascular SS modifier implanted in the carotid artery of mice. In vitro modeling, low and physiological SS (4 and 15 dyn/cm2, respectively) were exerted on human aortic endothelial cells using a parallel plate chamber system. RESULTS Compared with physiological SS, low SS significantly inhibited endothelial mitophagy shown by down-regulation of SQSTM1, PINK1, Parkin, and LC 3II expressions. Deficient mitophagy deteriorated mitochondrial dynamics shown by up-regulation of Mfn1 and Fis1 expression and led to decreases in mitochondrial membrane potential. Cav-1 plays a bridging role in the process of low SS inhibiting mitophagy. The up-regulated miR-7-5p expression induced by low SS was suppressed after Cav-1 was silenced. The results of dual-luciferase reporter assays showed that miR-7-5p targeted inhibiting the SQSTM1 gene. Oxidative stress reaction shown by the elevation of reactive oxygen species and O2●- and endothelial dysfunction by the decrease in nitric oxide and the increase in macrophage chemoattractant protein-1 were associated with the low SS inhibiting endothelial mitophagy process. CONCLUSIONS Cav-1/miR-7-5p/SQSTM1 signaling pathway was the mechanism underlying low SS inhibiting endothelial mitophagy that involves mitochondrial homeostasis impairment and endothelial dysfunction.
Collapse
Affiliation(s)
- Weike Liu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huajing Song
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jing Xu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuqi Guo
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chunju Zhang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanli Yao
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hua Zhang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhendong Liu
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
47
|
Tyrrell DJ, Chen J, Li BY, Wood SC, Rosebury-Smith W, Remmer HA, Jiang L, Zhang M, Salmon M, Ailawadi G, Yang B, Goldstein DR. Aging Alters the Aortic Proteome in Health and Thoracic Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2022; 42:1060-1076. [PMID: 35510553 PMCID: PMC9339483 DOI: 10.1161/atvbaha.122.317643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Aging enhances most chronic diseases but its impact on human aortic tissue in health and in thoracic aortic aneurysms (TAA) remains unclear. METHODS We employed a human aortic biorepository of healthy specimens (n=17) and those that underwent surgical repair for TAA (n=20). First, we performed proteomics comparing aortas of healthy donors to aneurysmal specimens, in young (ie, <60 years of age) and old (ie, ≥60 years of age) subjects. Second, we measured proteins, via immunoblotting, involved in mitophagy (ie, Parkin) and also mitochondrial-induced inflammatory pathways, specifically TLR (toll-like receptor) 9, STING (stimulator of interferon genes), and IFN (interferon)-β. RESULTS Proteomics revealed that aging transformed the aorta both quantitatively and qualitatively from health to TAA. Whereas young aortas exhibited an enrichment of immunologic processes, older aortas exhibited an enrichment of metabolic processes. Immunoblotting revealed that the expression of Parkin directly correlated to subject age in health but inversely to subject age in TAA. In TAA, but not in health, phosphorylation of STING and the expression of IFN-β was impacted by aging regardless of whether subjects had bicuspid or tricuspid valves. In subjects with bicuspid valves and TAAs, TLR9 expression positively correlated with subject age. Interestingly, whereas phosphorylation of STING was inversely correlated with subject age, IFN-β positively correlated with subject age. CONCLUSIONS Aging transforms the human aortic proteome from health to TAA, leading to a differential regulation of biological processes. Our results suggest that the development of therapies to mitigate vascular diseases including TAA may need to be modified depending on subject age.
Collapse
Affiliation(s)
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, USA,Program on Immunology, University of Michigan, USA
| | - Benjamin Y. Li
- Department of Internal Medicine, University of Michigan, USA
| | - Sherri C. Wood
- Department of Internal Medicine, University of Michigan, USA
| | | | | | - Longtan Jiang
- Department of Cardiac Surgery, University of Michigan, USA
| | - Min Zhang
- Department of Biostatistics, University of Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, University of Michigan, USA
| | - Gorav Ailawadi
- Department of Cardiac Surgery, University of Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, USA,Program on Immunology, University of Michigan, USA,Department of Microbiology and Immunology, University of Michigan, USA
| |
Collapse
|
48
|
Li L, Li H, Shi L, Shi L, Li T. Tin Porphyrin-Based Nanozymes with Unprecedented Superoxide Dismutase-Mimicking Activities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7272-7279. [PMID: 35638128 DOI: 10.1021/acs.langmuir.2c00778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the oxidative stress is related to human aging and many diseases, a diversity of antioxidant biomimetic enzymes to eliminate reactive oxygen species in vivo and maintain the redox balance has attracted intensive attention. Of particular interest are superoxide dismutase (SOD)-mimicking artificial enzymes that bear inherent characteristics of natural counterparts but overcome their deficiencies in thermal and acidic stability. Inspired by the metallized active center of natural SODs, here, we engineered different groups of metalloporphyrins and found that Sn-metallized porphyrins can act as novel SOD mimics, in which Sn-metallized meso-tetra(4-carboxyphenyl) porphine (Sn-TCPP) can more effectively catalyze the disproportionation of superoxide radical anions (•O2-) into hydrogen peroxide and oxygen. Especially, Sn-TCPP-based metal-organic frame nanozyme (Sn-PCN222) displays an unusually high catalytic activity that remarkably exceeds those of commonly used counterparts. Such unprecedented catalytic behaviors are proposed to depend on the Sn(IV)/Sn(II) transition at the center of Sn-TCPP. In addition, the metal-organic framework (MOF) nanozymes also display higher thermal and acidic stability than natural SODs. Interestingly, we find that Sn-complexed methylated tetra-(4-aminophenyl) porphyrin shows an aggregation-induced SOD activity in an acidic environment, whereas conventional SOD mimics do not function well in this case. Given these unique features, our reported Sn-porphyrin-based nanozymes would be potent alternatives for natural SODs to be widely used in clinical treatments of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ling Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Huan Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
49
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
50
|
Tragni V, Primiano G, Tummolo A, Cafferati Beltrame L, La Piana G, Sgobba MN, Cavalluzzi MM, Paterno G, Gorgoglione R, Volpicella M, Guerra L, Marzulli D, Servidei S, De Grassi A, Petrosillo G, Lentini G, Pierri CL. Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Molecules 2022; 27:3494. [PMID: 35684429 PMCID: PMC9182050 DOI: 10.3390/molecules27113494] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Lucas Cafferati Beltrame
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Gianluigi La Piana
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Domenico Marzulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| |
Collapse
|