1
|
Sun J, Jin X, Li Y. Current strategies for nonalcoholic fatty liver disease treatment (Review). Int J Mol Med 2024; 54:88. [PMID: 39129305 PMCID: PMC11335354 DOI: 10.3892/ijmm.2024.5412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic hepatic disease, has become a leading health problem worldwide. The present review summarized the methods and mechanisms to treat NAFLD, including the Mediterranean diet, physical activity and exercise, bariatric surgery and specific therapeutic agents, including statins, peroxisome proliferator‑activated receptor agonists, cenicriviroc and farnesoid X receptor agonists. Biologically active substances, such as peptides, alkaloids, polyphenolic compounds, silymarin, antibiotics, fatty acids, vitamins, probiotics, synbiotics and lamiaceae have also demonstrated actions that combat NAFLD. Considering their different mechanisms of action, combining some of them may prove an efficacious treatment for NAFLD. In this light, the present review describes recent progress and future prospects in treating NAFLD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
2
|
Santos-Sánchez G, Cruz-Chamorro I, Márquez-López JC, Pedroche J, Álvarez-López AI, Millán-Linares MDC, Lardone PJ, Carrillo-Vico A. Characterisation and beneficial effects of a Lupinus angustifolius protein hydrolysate obtained by immobilisation of the enzyme alcalase®. Food Funct 2024; 15:3722-3730. [PMID: 38489157 DOI: 10.1039/d3fo05086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Bioactive peptides have been considered potential components for the future functional foods and nutraceuticals generation. The enzymatic method of hydrolysis has several advantages compared to those of chemical hydrolysis and fermentation. Despite this fact, the high cost of natural and commercial proteases limits the commercialization of hydrolysates in the food and pharmacological industries. For this reason, more efficient and economically interesting techniques, such as the immobilisation of the enzyme, are gaining attention. In the present study, a new protein hydrolysate from Lupinus angustifolius was generated by enzymatic hydrolysis through the immobilisation of the enzyme alcalase® (imLPH). After the chemical and nutritional characterization of the imLPH, an in vivo study was carried out in order to evaluate the effect of 12 weeks treatment with imLPH on the plasmatic lipid profile and antioxidant status in western-diet-fed apolipoprotein E knockout mice. The immobilisation of alcalase® generated an imLPH with a degree of hydrolysis of 29.71 ± 2.11%. The imLPH was mainly composed of protein (82.50 ± 0.88%) with a high content of glycine/glutamine, arginine, and aspartic acid/asparagine. The imLPH-treatment reduced the amount of abdominal white adipose tissue, total plasma cholesterol, LDL-C, and triglycerides, as well as the cardiovascular risk indexes (CRI) -I, CRI-II, and atherogenic index of plasma. The imLPH-treated mice also showed an increase in the plasma antioxidant capacity. For the first time, this study demonstrates the beneficial in vivo effect of a lupin protein hydrolysate obtained with the alcalase® immobilised and points out this approach as a possible cost-effective solution at the expensive generation of the hydrolysate through the traditional batch conditions with soluble enzymes.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | | | - Justo Pedroche
- Department of Food & Health, Instituto de la grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
3
|
Santos-Sánchez G, Ponce-España E, Álvarez-López AI, Pedroche J, Millán-Linares MDC, Fernández-Pachón MS, Lardone PJ, Cruz-Chamorro I, Carrillo-Vico A. A lupin protein hydrolysate protects the central nervous system from oxidative stress in WD-fed ApoE -/- mice. Mol Nutr Food Res 2024; 68:e2300503. [PMID: 38308501 DOI: 10.1002/mnfr.202300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/22/2023] [Indexed: 02/04/2024]
Abstract
Oxidative stress plays a crucial role in neurodegenerative diseases like Parkinson's and Alzheimer's. Studies indicate the relationship between oxidative stress and the brain damage caused by a high-fat diet. It is previously found that a lupin protein hydrolysate (LPH) has antioxidant effects on human leukocytes, as well as on the plasma and liver of Western diet (WD)-fed ApoE-/- mice. Additionally, LPH shows anxiolytic effects in these mice. Given the connection between oxidative stress and anxiety, this study aimed to investigate the antioxidant effects of LPH on the brain of WD-fed ApoE-/- mice. LPH (100 mg kg-1) or a vehicle is administered daily for 12 weeks. Peptide analysis of LPH identified 101 amino acid sequences (36.33%) with antioxidant motifs. Treatment with LPH palliated the decrease in total antioxidant activity caused by WD ingestion and regulated the nitric oxide synthesis pathway in the brain of the animals. Furthermore, LPH increased cerebral glutathione levels and the activity of catalase and glutathione reductase antioxidant enzymes and reduced the 8-hydroxy-2'-deoxyguanosine levels, a DNA damage marker. These findings, for the first time, highlight the antioxidant activity of LPH in the brain. This hydrolysate could potentially be used in future nutraceutical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la grasa, CSIC, Ctra, Utrera Km 1, Seville, 41013, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
- Department of Food & Health, Instituto de la grasa, CSIC, Ctra, Utrera Km 1, Seville, 41013, Spain
| | - María-Soledad Fernández-Pachón
- Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. Utrera Km 1, Sevilla, 41013, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| |
Collapse
|
4
|
Wójcik M, Grabowski S, Jarosz ŁS, Szymczak B, Longo V, della Croce CM, Hejdysz M, Cieślak A, Gruszczyński K, Marek A. Liver Antioxidant Capacity and Steatosis in Laying Hens Exposed to Various Quantities of Lupin ( Lupinus angustifolius) Seeds in the Diet. Antioxidants (Basel) 2024; 13:251. [PMID: 38397849 PMCID: PMC10886069 DOI: 10.3390/antiox13020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the many beneficial properties of legume plants, their use in diets for poultry is limited by the presence of antinutritional factors. The aim of the study was to determine the activity of DT-diaphorase, ethoxycoumarin O-deethylase, and catalase, and the concentration of malondialdehyde in liver tissue, as well as the activity of SOD and CAT in the serum of Hy-line Brown hens fed a diet supplemented with various doses of Lupinus angustifolius seeds. The results indicate that the use of large amounts of lupin in the diet resulted in an increase in MDA concentration in the liver and the lipid vacuolization of hepatocytes. A significant increase in DTD activity was observed in chickens receiving 15% lupin. Regardless of lupin dose, no increase in SOD activity was observed in chicken serum after 33 days of the experiment. From the 66th day of the experiment, an increase in catalase activity in the serum of laying hens was observed, while low activity of this enzyme was found in the liver. It can be concluded that the short-term use of lupin in the diet of laying hens does not affect the activity of antioxidant enzymes and, therefore, does not affect the oxidative-antioxidant balance of their body.
Collapse
Affiliation(s)
- Marta Wójcik
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (M.W.); (B.S.); (K.G.)
| | - Sebastian Grabowski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Łukasz S. Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (M.W.); (B.S.); (K.G.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (C.M.d.C.)
| | - Clara Maria della Croce
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (C.M.d.C.)
| | - Marcin Hejdysz
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Wołynska 33, 60-637 Poznań, Poland;
| | - Adam Cieślak
- Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
| | - Kamil Gruszczyński
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (M.W.); (B.S.); (K.G.)
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
5
|
Lammi C. Plant bioactive peptides for cardiovascular disease prevention. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:219-239. [PMID: 37722773 DOI: 10.1016/bs.afnr.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cardiovascular disease (CVD) is a major cause of deaths in industrialized countries and a constantly growing cause of morbidity and mortality worldwide Hypercholesterolemia is one of the main risk factors for CVD progression that may be prevented by lifestyle changes, including diet. This chapter will discuss the role of peptides from plants (soybean, lupin, cowpea, hempseed, and rice bran) sources with pleotropic activity for the prevention of CVD. Overall, the bioactivity that will be mainly discussed it is the hypocholesterolemic one. The very diversified structures of the hypocholesterolemic peptides so far identified explains the reason why they exert their activity through different mechanisms of action that will be extensively described in this review. Doubtlessly, their potential use in nutritional application is desirable, however, only few of them have been tested in vivo. Therefore, more efforts need to be pursued for singling out good candidates for the development of functional foods or dietary supplements.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Cruz-Chamorro I, Santos-Sánchez G, Bollati C, Bartolomei M, Capriotti AL, Cerrato A, Laganà A, Pedroche J, Millán F, Del Carmen Millán-Linares M, Arnoldi A, Carrillo-Vico A, Lammi C. Chemical and biological characterization of the DPP-IV inhibitory activity exerted by lupin (Lupinus angustifolius) peptides: From the bench to the bedside investigation. Food Chem 2023; 426:136458. [PMID: 37329795 DOI: 10.1016/j.foodchem.2023.136458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.
Collapse
Affiliation(s)
- Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Antonio Carrillo-Vico
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
7
|
Santos-Sánchez G, Aiello G, Rivardo F, Bartolomei M, Bollati C, Arnoldi A, Cruz-Chamorro I, Lammi C. Antioxidant Effect Assessment and Trans Epithelial Analysis of New Hempseed Protein Hydrolysates. Antioxidants (Basel) 2023; 12:antiox12051099. [PMID: 37237964 DOI: 10.3390/antiox12051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Hempseed (Cannabis sativa) is one of the most promising sources of plant proteins. It contains approximately 24% (w/w) protein, and edestin accounts for approximately 60-80% (w/w) of its total proteins. In a framework of research aimed at fostering the proteins recovered from the press cake by-products generated after the extraction of hempseed oil, two hempseed protein hydrolysates (HH1 and HH2) were produced at an industrial level using a mixture of different enzymes from Aspergillus niger, Aspergillus oryzae, and Bacillus licheniformis for different times (5 h and 18 h). Using a combination of different direct antioxidant tests (DPPH, TEAC, FRAP, and ORAC assays, respectively), it has been demonstrated that HHs exert potent, direct antioxidant activity. A crucial feature of bioactive peptides is their intestinal bioavailability; for this reason, in order to solve this peculiar issue, the ability of HH peptides to be transported by differentiated human intestinal Caco-2 cells has been evaluated. Notably, by using mass spectrometry analysis (HPLC Chip ESI-MS/MS), the stable peptides transported by intestinal cells have been identified, and dedicated experiments confirmed that the trans-epithelial transported HH peptide mixtures retain their antioxidant activity, suggesting that these hempseed hydrolysates may be considered sustainable antioxidant ingredients to be exploited for further application, i.e., nutraceutical and/or food industries.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy
| | - Fabrizio Rivardo
- A. Costantino & C. Spa, Via Francesco Romana 11-15, 10083 Favria, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
8
|
Cruz-Chamorro I, Santos-Sánchez G, Álvarez-López AI, Pedroche J, Lardone PJ, Arnoldi A, Lammi C, Carrillo-Vico A. Pleiotropic biological effects of Lupinus spp. protein hydrolysates. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Flessa CM, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, Kaltsas G, Kassi E, Randeva HS. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci 2022; 23:ijms232415791. [PMID: 36555433 PMCID: PMC9780957 DOI: 10.3390/ijms232415791] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health and Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Bianca M. Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Lianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: (E.K.); (H.S.R.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Correspondence: (E.K.); (H.S.R.)
| |
Collapse
|
10
|
Kim D, Kim B, Brocker CN, Karri K, Waxman DJ, Gonzalez FJ. Long non-coding RNA G23Rik attenuates fasting-induced lipid accumulation in mouse liver. Mol Cell Endocrinol 2022; 557:111722. [PMID: 35917881 PMCID: PMC9561029 DOI: 10.1016/j.mce.2022.111722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a key mediator of lipid metabolism and metabolic stress in the liver. A recent study revealed that PPARα-dependent long non-coding RNAs (lncRNAs) play an important role in modulating metabolic stress and inflammation in the livers of fasted mice. Here hepatic lncRNA 3930402G23Rik (G23Rik) was found to have active peroxisome proliferator response elements (PPREs) within its promoter and is directly regulated by PPARα. Although G23Rik RNA was expressed to varying degrees in several tissues, the PPARα-dependent regulation of this lncRNA was only observed in the liver. Pharmacological activation of PPARα induced PPARα recruitment at the G23Rik promoter and a pronounced increase in hepatic G23Rik lncRNA expression. A G23Rik-null mouse line was developed to further characterize the function of this lncRNA in the liver. G23Rik-null mice were more susceptible to hepatic lipid accumulation in response to acute fasting. Histological analysis further revealed a pronounced buildup of lipid droplets and a significant increase in neutral triglycerides and lipids as indicated by enhanced oil red O staining of liver sections. Hepatic cholesterol, non-esterified fatty acid, and triglyceride levels were significantly elevated in G23Rik-null mice and associated with induction of the lipid-metabolism related gene Cd36. These findings provide evidence for a lncRNA dependent mechanism by which PPARα attenuates hepatic lipid accumulation in response to metabolic stress through lncRNA G23Rik induction.
Collapse
Affiliation(s)
- Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Bora Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Massachusetts, 02215, Boston, United States
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Massachusetts, 02215, Boston, United States
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA.
| |
Collapse
|
11
|
Western Diet-Fed ApoE Knockout Male Mice as an Experimental Model of Non-Alcoholic Steatohepatitis. Curr Issues Mol Biol 2022; 44:4692-4703. [PMID: 36286035 PMCID: PMC9600038 DOI: 10.3390/cimb44100320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
One of the consequences of the Western lifestyle and high-fat diet is non-alcoholic fatty liver disease (NAFLD) and its aggressive form, non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is rapidly becoming the leading cause of end-stage liver disease or liver transplantation. Currently, rodent NASH models lack significant aspects of the full NASH spectrum, representing a major problem for NASH research. Therefore, this work aimed to characterize a fast rodent model with all characteristic features of NASH. Eight-week-old male ApoE KO mice were fed with Western diet (WD), high fatty diet (HFD) or normal chow (Chow) for 7 weeks. Whole-body fat was increased by ~2 times in WD mice and HFD mice and was associated with increased glucose intolerance, hepatic triglycerides, and plasma ALT and plasma AST compared with Chow mice. WD mice also showed increased galectin-3 expression compared with Chow or HFD mice and increased plasma cholesterol compared with Chow mice. WD and HFD displayed increased hepatic fibrosis and increased F4/80 expression. WD mice also displayed increased levels of plasma MCP-1. Hepatic inflammatory markers were evaluated, and WD mice showed increased levels of TNF-α, MCP-1, IL-6 and IFN-γ. Taken together, these data demonstrated that the ApoE KO mouse fed with WD is a great model for NASH research, once it presents the fundamental parameters of the disease, including hepatic steatosis, fibrosis, inflammation, and metabolic syndrome.
Collapse
|
12
|
Santos-Sánchez G, Ponce-España E, López JC, Álvarez-Sánchez N, Álvarez-López AI, Pedroche J, Millán F, Millán-Linares MC, Lardone PJ, Bejarano I, Cruz-Chamorro I, Carrillo-Vico A. A Lupin (Lupinusangustifolius) Protein Hydrolysate Exerts Anxiolytic-Like Effects in Western Diet-Fed ApoE−/− Mice. Int J Mol Sci 2022; 23:ijms23179828. [PMID: 36077225 PMCID: PMC9456304 DOI: 10.3390/ijms23179828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Anxiety is the most prevalent psychiatric disorder worldwide, causing a substantial economic burden due to the associated healthcare costs. Given that commercial anxiolytic treatments may cause important side effects and have medical restrictions for prescription and high costs, the search for new natural and safer treatments is gaining attention. Since lupin protein hydrolysate (LPH) has been shown to be safe and exert anti-inflammatory and antioxidant effects, key risk factors for the anxiety process and memory impairment, we evaluated in this study the potential effects of LPH on anxiety and spatial memory in a Western diet (WD)-induced anxiety model in ApoE−/− mice. We showed that 20.86% of the 278 identified LPH peptides have biological activity related to anxiolytic/analgesic effects; the principal motifs found were the following: VPL, PGP, YL, and GQ. Moreover, 14 weeks of intragastrical LPH treatment (100 mg/kg) restored the WD-induced anxiety effects, reestablishing the anxiety levels observed in the standard diet (SD)-fed mice since they spent less time in the anxiety zones of the elevated plus maze (EPM). Furthermore, a significant increase in the number of head dips was recorded in LPH-treated mice, which indicates a greater exploration capacity and less fear due to lower levels of anxiety. Interestingly, the LPH group showed similar thigmotaxis, a well-established indicator of animal anxiety and fear, to the SD group, counteracting the WD effect. This is the first study to show that LPH treatment has anxiolytic effects, pointing to LPH as a potential component of future nutritional therapies in patients with anxiety.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan Carlos López
- Departamento de Psicología Experimental, Universidad de Sevilla, 41009 Seville, Spain
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (I.C.-C.); (A.C.-V.); Tel.: +34-955923106 (A.C.-V.); Fax: +34-954907048 (A.C.-V.)
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (I.C.-C.); (A.C.-V.); Tel.: +34-955923106 (A.C.-V.); Fax: +34-954907048 (A.C.-V.)
| |
Collapse
|
13
|
Santos-Sánchez G, Cruz-Chamorro I, Álvarez-Ríos AI, Álvarez-Sánchez N, Rodríguez-Ortiz B, Álvarez-López AI, Fernández-Pachón MS, Pedroche J, Millán F, Millán-Linares MDC, Lardone PJ, Bejarano I, Carrillo-Vico A. Bioactive Peptides from Lupin ( Lupinus angustifolius) Prevent the Early Stages of Atherosclerosis in Western Diet-Fed ApoE -/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8243-8253. [PMID: 35767743 PMCID: PMC9284549 DOI: 10.1021/acs.jafc.2c00809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have previously reported the in vitro hypocholesterolemic, anti-inflammatory, and antioxidant effects of Alcalase-generated lupin protein hydrolysate (LPH). Given that lipoprotein deposition, oxidative stress, and inflammation are the main components of atherogenesis, we characterized the LPH composition, in silico identified LPH-peptides with activities related to atherosclerosis, and evaluated the in vivo LPH effects on atherosclerosis risk factors in a mouse model of atherosclerosis. After 15 min of Alcalase hydrolysis, peptides smaller than 8 kDa were obtained, and 259 peptides out of 278 peptides found showed biological activities related to atherosclerosis risk factors. Furthermore, LPH administration for 12 weeks reduced the plasma lipids, as well as the cardiovascular and atherogenic risk indexes. LPH also increased the total antioxidant capacity, decreased endothelial permeability, inflammatory response, and atherogenic markers. Therefore, this study describes for the first time that LPH prevents the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ivan Cruz-Chamorro
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- .
Phone: +34955923106
| | - Ana Isabel Álvarez-Ríos
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Clínica, Unidad de Gestión de Laboratorios, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Nuria Álvarez-Sánchez
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
| | - Beatriz Rodríguez-Ortiz
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ana Isabel Álvarez-López
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
| | - María-Soledad Fernández-Pachón
- Área
de Nutrición y Bromatología, Departamento de Biología
Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra Utrera Km 1, 41013 Seville, Spain
| | - Justo Pedroche
- Department
of Food & Health, Instituto de la grasa,
CSIC, Ctra Utrera Km
1, 41013 Seville, Spain
| | - Francisco Millán
- Department
of Food & Health, Instituto de la grasa,
CSIC, Ctra Utrera Km
1, 41013 Seville, Spain
| | - María del Carmen Millán-Linares
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- Department
of Food & Health, Instituto de la grasa,
CSIC, Ctra Utrera Km
1, 41013 Seville, Spain
| | - Patricia Judith Lardone
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ignacio Bejarano
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto
de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta
de Andalucía, CSIC), 41013 Seville, Spain
- Departamento
de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
14
|
Hempseed (Cannabis sativa) protein hydrolysates: A valuable source of bioactive peptides with pleiotropic health-promoting effects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kim MJ, Chilakala R, Jo HG, Lee SJ, Lee DS, Cheong SH. Anti-Obesity and Anti-Hyperglycemic Effects of Meretrix lusoria Protamex Hydrolysate in ob/ob Mice. Int J Mol Sci 2022; 23:ijms23074015. [PMID: 35409375 PMCID: PMC8999646 DOI: 10.3390/ijms23074015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/27/2022] Open
Abstract
Meretrix lusoria (M. lusoria) is an economically important shellfish which is widely distributed in South Eastern Asia that contains bioactive peptides, proteins, and enzymes. In the present study, the extracted meat content of M. lusoria was enzymatic hydrolyzed using four different commercial proteases (neutrase, protamex, alcalase, and flavourzyme). Among the enzymatic hydrolysates, M. lusoria protamex hydrolysate (MLPH) fraction with MW ≤ 1 kDa exhibited the highest free radical scavenging ability. The MLPH fraction was further purified and an amino acid sequence (KDLEL, 617.35 Da) was identified by LC-MS/MS analysis. The purpose of this study was to investigate the anti-obesity and anti-hyperglycemic effects of MLPH containing antioxidant peptides using ob/ob mice. Treatment with MLPH for 6 weeks reduced body and organ weight and ameliorated the effects of hepatic steatosis and epididymal fat, including a constructive effect on hepatic and serum marker parameters. Moreover, hepatic antioxidant enzyme activities were upregulated and impaired glucose tolerance was improved in obese control mice. In addition, MLPH treatment markedly suppressed mRNA expression related to lipogenesis and hyperglycemia through activation of AMPK phosphorylation. These findings suggest that MLPH has anti-obesity and anti-hyperglycemic potential and could be effectively applied as a functional food ingredient or pharmaceutical.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Ramakrishna Chilakala
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Hee Geun Jo
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Seung-Jae Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea;
| | - Dong-Sung Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea;
| | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
- Correspondence: ; Tel.: +82-61-659-7215; Fax: +82-61-659-7219
| |
Collapse
|
16
|
Santos-Sánchez G, Cruz-Chamorro I, Bollati C, Bartolomei M, Pedroche J, Millán F, Millán-Linares MDC, Capriotti AL, Cerrato A, Laganà A, Arnoldi A, Carrillo-Vico A, Lammi C. A Lupinus angustifolius protein hydrolysate exerts hypocholesterolemic effects in Western diet-fed ApoE -/- mice through the modulation of LDLR and PCSK9 pathways. Food Funct 2022; 13:4158-4170. [PMID: 35316320 DOI: 10.1039/d1fo03847h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Antonio Carrillo-Vico
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
17
|
Okagu IU, Ndefo JC, Aham EC, Obeme-Nmom JI, Agboinghale PE, Aguchem RN, Nechi RN, Lammi C. Lupin-Derived Bioactive Peptides: Intestinal Transport, Bioavailability and Health Benefits. Nutrients 2021; 13:nu13093266. [PMID: 34579144 PMCID: PMC8469740 DOI: 10.3390/nu13093266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
There is a renewed interest on the reliance of food-based bioactive compounds as sources of nutritive factors and health-beneficial chemical compounds. Among these food components, several proteins from foods have been shown to promote health and wellness as seen in proteins such as α/γ-conglutins from the seeds of Lupinus species (Lupin), a genus of leguminous plant that are widely used in traditional medicine for treating chronic diseases. Lupin-derived peptides (LDPs) are increasingly being explored and they have been shown to possess multifunctional health improving properties. This paper discusses the intestinal transport, bioavailability and biological activities of LDPs, focusing on molecular mechanisms of action as reported in in vitro, cell culture, animal and human studies. The potentials of several LDPs to demonstrate multitarget mechanism of regulation of glucose and lipid metabolism, chemo- and osteoprotective properties, and antioxidant and anti-inflammatory activities position LDPs as good candidates for nutraceutical development for the prevention and management of medical conditions whose etiology are multifactorial.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Joseph C. Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka 410001, Nigeria
- Correspondence: (J.C.N.); (C.L.)
| | - Emmanuel C. Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Joy I. Obeme-Nmom
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria;
| | | | - Rita N. Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Regina N. Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
- Correspondence: (J.C.N.); (C.L.)
| |
Collapse
|