1
|
Narenkumar J, Das B, Abilaji S, Sathishkumar K, AlSalhi MS, Devanesan S, Rajasekar A, Malik T. Biosurfactant-assisted bio-electrokinetic enhanced remediation of heavy metal-contaminated soil. Front Microbiol 2024; 15:1458369. [PMID: 39380679 PMCID: PMC11458532 DOI: 10.3389/fmicb.2024.1458369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Background Environmental soil contamination is a serious problem for humans worldwide, as it causes many diseases. Methods The present study focuses on utilizing biosurfactants produced by Pseudomonas stutzeri (P. stutzeri) NA3 and Bacillus cereus (B. cereus) EN6, as an electrolyte for removing chromium (Cr) from contaminated soil using the electrokinetic (EK) process. Results As a result, biosurfactants produced by P. stutzeri NA3 and B. cereus EN6, being lipopeptides, increase heavy metal mobility in the EK process. The Cr removal efficiency of a novel electrolyte (biosurfactants) in the EK process was compared with that of NA3 and EN6 biosurfactants. The EK results revealed a maximum Cr removal of 75 and 70% by NA3 and EN6, respectively, at the end of 7 days. Discussion The biosurfactant aids in the breaking down of the heavy metals that are present deeper into the soil matrix. From the metagenomics analysis, it was identified that biosurfactant changes the microbial community with an enhanced ability to remove heavy metals. The phytotoxicity assay confirms that NA3 biosurfactant solution showed 95% seed germination and can lower hazardous pollutants in the soil. Conclusion The application of biosurfactants as a potent electrolyte for the remediation of hazardous pollutants is an integrated process. Overall, the results of this study suggest that biosurfactants can serve as an economic and efficient electrolyte in the EK process to remove Cr from polluted soil.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, India
| | - Bhaskar Das
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, India
| | - Subramani Abilaji
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohamad S. AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Thakur B, Kaur S, Dwibedi V, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM. Unveiling the antimicrobial and antibiofilm potential of biosurfactant produced by newly isolated Lactiplantibacillus plantarum strain 1625. Front Microbiol 2024; 15:1459388. [PMID: 39318434 PMCID: PMC11420119 DOI: 10.3389/fmicb.2024.1459388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024] Open
Abstract
The present study aimed to characterize the biosurfactants synthesized by lactic acid bacteria (LAB) obtained from fermented foods, optimize the conditions for increasing the yield of biosurfactants and explore their antimicrobial and antibiofilm potential. Out of the 26 LAB isolates, isolate BS2 showed the highest biosurfactant production as indicated in the oil displacement test, drop collapse and emulsification activity. BS2 was identified as Lactiplantibacillus plantarum 1625 using 16S-rRNA gene sequencing and phylogenetic analysis. The biosurfactant produced by BS2 was identified as an anionic glycol-lipo-proteins by employing Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The biosurfactants produced by L. plantarum 1625 demonstrated strong antibacterial and antibiofilm characteristics against pathogenic strains such as Staphylococcus aureus MTCC 1049, Escherichia coli MTCC 1587, and Pseudomonas putida MTCC 1655. The minimal inhibition concentration value of antibacterial activity was found to be 0.1 mg/mL with the inhibition percentage ranging from 90 to 95%. Further, the effect of temperature, pH, and substrate composition on biosurfactant production was also studied to enhance it production using the Box-Behnken Design approach of Response surface methodology (RSM). Application of biosurfactant led to a considerable decrease in biofilm-forming harmful bacteria, as proven by scanning electron microscopy analysis. The results highlight the potential uses of biosurfactants in distinct industries, and biotechnological contexts, especially in the creation of new antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- Babita Thakur
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Sukhminderjit Kaur
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vagish Dwibedi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Thakur V, Baghmare P, Verma A, Verma JS, Geed SR. Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook. BIORESOURCE TECHNOLOGY 2024; 408:131211. [PMID: 39102966 DOI: 10.1016/j.biortech.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Biosurfactants are surface-active compounds produced by numerous microorganisms. They have gained significant attention due to their wide applications in food, pharmaceuticals, cosmetics, agriculture, and environmental remediation. The production efficiency and yield of microbial biosurfactants have improved significantly through the development and optimization of different process parameters. This review aims to provide an in-depth analysis of recent trends and developments in microbial biosurfactant production strategies, including submerged, solid-state, and co-culture fermentation. Additionally, review discusses biosurfactants' applications, challenges, and future perspectives. It highlights their advantages over chemical surfactants, emphasizing their biodegradability, low toxicity, and diverse chemical structures. However, the critical challenges in commercializing include high production costs and low yield. Strategies like genetic engineering, process optimization, and downstream processing, have been employed to address these challenges. The review provides insights into current commercial producers and highlights future perspectives such as novel bioprocesses, efficient microbial strains, and exploring their applications in emerging industries.
Collapse
Affiliation(s)
- Vishal Thakur
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Pawan Baghmare
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow 226026, India
| | - Jitendra Singh Verma
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| | | |
Collapse
|
4
|
Rocha TM, Marcelino PRF, Antunes FAF, Sánchez-Muñoz S, Dos Santos JC, da Silva SS. Biocompatibility of Brazilian native yeast-derived sophorolipids and Trichoderma harzianum as plant-growth promoting bioformulations. Microbiol Res 2024; 283:127689. [PMID: 38493529 DOI: 10.1016/j.micres.2024.127689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The replacement of agrochemicals by biomolecules is imperative to mitigate soil contamination and inactivation of its core microbiota. Within this context, this study aimed at the interaction between a biological control agent such as Trichoderma harzianum CCT 2160 (BF-Th) and the biosurfactants (BSs) derived from the native Brazilian yeast Starmerella bombicola UFMG-CM-Y6419. Thereafter, their potential in germination of Oryza sativa L. seeds was tested. Both bioproducts were produced on site and characterized according to their chemical composition by HPLC-MS and GC-MS for BSs and SDS-PAGE gel for BF-Th. The BSs were confirmed to be sophorolipids (SLs) which is a well-studied compound with antimicrobial activity. The biocompatibility was examined by cultivating the fungus with SLs supplementation ranging from 0.1 to 2 g/L in solid and submerged fermentation. In solid state fermentation the supplementation of SLs enhanced spore production, conferring the synergy of both bioproducts. For the germination assays, bioformulations composed of SLs, BF-Th and combined (SLT) were applied in the germination of O. sativa L seeds achieving an improvement of up to 30% in morphological aspects such as root and shoot size as well as the presence of lateral roots. It was hypothesized that SLs were able to regulate phytohormones expression such as auxins and gibberellins during early stage of growth, pointing to their novel plant-growth stimulating properties. Thus, this study has pointed to the potential of hybrid bioformulations composed of biosurfactants and active endophytic fungal spores in order to augment the plant fitness and possibly the control of diseases.
Collapse
Affiliation(s)
- Thiago Moura Rocha
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil.
| | - Paulo Ricardo Franco Marcelino
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Felipe Antonio Fernandes Antunes
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Salvador Sánchez-Muñoz
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Júlio César Dos Santos
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| |
Collapse
|
5
|
Irfan Z, Firdous SM, Citarasu T, Uma G, Thirumalaikumar E. Isolation and screening of antimicrobial biosurfactants obtained from mangrove plant root-associated bacteria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3261-3274. [PMID: 37930391 DOI: 10.1007/s00210-023-02806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
The unique properties of biosurfactants obtained from microbes, including their activity at extreme temperatures, make them more attractive than synthetic alternatives. Henceforth, the principle objective is to isolate and detect the antibacterial and antifungal activities of the biosurfactants produced from bacteria of the economically competitive mangrove ecosystem. Using the serial dilution method, 53 bacterial strains were recovered from the Manakudy mangrove forest in Kanyakumari, India, for the investigation. Different biosurfactant screening methods and morphological and biochemical tests were opted to select the potential biosurfactant producer. After the initial screening, two strains were discovered by 16S rRNA gene sequencing followed by extraction using chloroform: methanol (2:1) by the precipitation method. The partially purified biosurfactants were then screened for antimicrobial properties against pathogens including Mucor sp., Trichoderma sp. Morphological, biochemical, and 16S rRNA gene sequencing identified the two strains to be gram-positive, rod-shaped bacteria namely Virgibacillus halodentrificans CMST-ZI (GenBank Accession No.: OL336402.1) and Pseudomonas pseudoalcaligenes CMST-ZI (GenBank Accession No (10 K): OL308085.1). The two extracted biosurfactants viz., 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, as well as cycloheptane efficiently inhibited human pathogens, including Enterococcus faecalis, and fungi, including Mucor sp., Trichoderma sp., indicated by the formation of a zone of inhibition in pharmacological screening. Thus, there is a growing interest in the prospective application of these biosurfactants isolated from marine microbes, exhibiting antimicrobial properties which can be further studied as a potential candidate in biomedical studies and eco-friendly novel drug development.
Collapse
Affiliation(s)
- Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal, India
| | - Sayeed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah-711316, West Bengal, India.
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Kanyakumari District, Tamil Nadu, India.
| | - Ganapathi Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Kanyakumari District, Tamil Nadu, India
| | | |
Collapse
|
6
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
7
|
Mukadam H, Gaikwad SV, Kutty NN, Gaikwad VD. Bioformulation of Bacillus proteolyticus MITWPUB1 and its biosurfactant to control the growth of phytopathogen Sclerotium rolfsii for the crop Brassica juncea var local, as a sustainable approach. Front Bioeng Biotechnol 2024; 12:1362679. [PMID: 38707507 PMCID: PMC11066288 DOI: 10.3389/fbioe.2024.1362679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 05/07/2024] Open
Abstract
Bacillus proteolyticus MITWPUB1 is a potential producer of biosurfactants (BSs), and the organism is also found to be a producer of plant growth promoting traits, such as hydrogen cyanide and indole acetic acid (IAA), and a solubilizer of phosphate. The BSs were reportedly a blend of two classes, namely glycolipids and lipopeptides, as found by thin layer chromatography and Fourier-transform infrared spectroscopy analysis. Furthermore, semi-targeted metabolite profiling via liquid chromatography mass spectroscopy revealed the presence of phospholipids, lipopeptides, polyamines, IAA derivatives, and carotenoids. The BS showed dose-dependent antagonistic activity against Sclerotium rolfsii; scanning electron microscopy showed the effects of the BS on S. rolfsii in terms of mycelial deformations and reduced branching patterns. In vitro studies showed that the application of B. proteolyticus MITWPUB1 and its biosurfactant to seeds of Brassica juncea var local enhanced the seed germination rate. However, sawdust-carrier-based bioformulation with B. proteolyticus MITWPUB1 and its BS showed increased growth parameters for B. juncea var L. This study highlights a unique bioformulation combination that controls the growth of the phytopathogen S. rolfsii and enhances the plant growth of B. juncea var L. Bacillus proteolyticus MITWPUB1 was also shown for the first time to be a prominent BS producer with the ability to control the growth of the phytopathogen S. rolfsii.
Collapse
Affiliation(s)
- Humaira Mukadam
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Shikha V. Gaikwad
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Nithya N. Kutty
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Vikrant D. Gaikwad
- Department of Chemical Engineering, School of Engineering and Technology, Faculty of Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| |
Collapse
|
8
|
Das RP, Sahoo S, Paidesetty SK, Ahmad I, Sahoo B, Jayabaskaran C, Patel H, Arakha M, Pradhan AK. Isolation, characterization, and multimodal evaluation of novel glycolipid biosurfactant derived from Bacillus species: A promising Staphylococcus aureus tyrosyl-tRNA synthetase inhibitor through molecular docking and MD simulations. Int J Biol Macromol 2024; 261:129848. [PMID: 38302032 DOI: 10.1016/j.ijbiomac.2024.129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Glycolipid-based biosurfactants (BSs), known for their intriguing and diverse properties, represent a largely uncharted territory in the realm of potential biomedical applications. This field holds great promise yet remains largely unexplored. This investigation provides new insights into the isolation, characterization, and comprehensive biomedical assessment of a novel glycolipid biosurfactant derived from Bacillus species, meeting the growing demand for understanding its multifaceted impact on various biomedical issues. Within this framework, two glycolipids, BG2A and BG2B, emerged as the most proficient strains in biosurfactant (BS) production. The biosurfactants (BSs) ascertained as glycolipids via thin layer chromatography (TLC) exhibited antimicrobial activity against S. aureus and E. coli. Both isolates exhibited anticancer effects against cervical carcinoma cells and demonstrated significant anti-biofilm activity against V. cholerae. Moreover, molecular docking and molecular dynamics (MD) simulations were employed to explore their antimicrobial resistance properties against Tyrosyl-tRNA synthetase (TyrRS) of Staphylococcus aureus, a well-annotated molecular target. Characterization and interpretation using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H and 13C NMR) confirmed that the BSs produced by each strain were glycolipids. These findings suggest that the isolated BSs can serve as effective agents with antibiofilm, antimicrobial, antioxidant, and anticancer properties, in addition to their considerable antibacterial resistance attributes.
Collapse
Affiliation(s)
- Rohit Pritam Das
- Department of Bioengineering, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), 751030, Odisha, Bhubaneswar, India
| | - Subhadarsini Sahoo
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sudhir Kumar Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751030 Bhubaneswar, Odisha, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Banishree Sahoo
- Department of Bioengineering, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), 751030, Odisha, Bhubaneswar, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Manoranjan Arakha
- Department of Bioengineering, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), 751030, Odisha, Bhubaneswar, India
| | - Arun Kumar Pradhan
- Department of Bioengineering, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), 751030, Odisha, Bhubaneswar, India.
| |
Collapse
|
9
|
Jama D, Łaba W, Kruszelnicki M, Polowczyk I, Lazar Z, Janek T. Bioconversion of waste glycerol into viscosinamide by Pseudomonas fluorescens DR54 and its activity evaluation. Sci Rep 2024; 14:1531. [PMID: 38233450 PMCID: PMC10794706 DOI: 10.1038/s41598-024-51179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024] Open
Abstract
Lipopeptides, derived from microorganisms, are promising surface-active compounds known as biosurfactants. However, the high production costs of biosurfactants, associated with expensive culture media and purification processes, limit widespread industrial application. To enhance the sustainability of biosurfactant production, researchers have explored cost-effective substrates. In this study, crude glycerol was evaluated as a promising and economical carbon source in viscosinamide production by Pseudomonas fluorescens DR54. Optimization studies using the Box - Behnken design and response surface methodology were performed. Optimal conditions for viscosinamide production including glycerol 70.8 g/L, leucine 2.7 g/L, phosphate 3.7 g/L, and urea 9.3 g/L were identified. Yield of viscosinamide production, performed under optimal conditions, reached 7.18 ± 0.17 g/L. Preliminary characterization of viscosinamide involved the measurement of surface tension. The critical micelle concentration of lipopeptide was determined to be 5 mg/L. Furthermore, the interactions between the viscosinamide and lipase from Candida rugosa (CRL) were investigated by evaluating the impact of viscosinamide on lipase activity and measuring circular dichroism. It was observed that the α-helicity of CRL increases with increasing viscosinamide concentration, while the random coil structure decreases.
Collapse
Affiliation(s)
- Dominika Jama
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - Wojciech Łaba
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - Mateusz Kruszelnicki
- Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, 50-370, Wrocław, Poland
| | - Izabela Polowczyk
- Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, 50-370, Wrocław, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland.
| |
Collapse
|
10
|
Tchakouani GFY, Mouafo HT, Nguimbou RM, Nganou ND, Mbawala A. Antibacterial activity of bioemulsifiers/biosurfactants produced by Levilactobacillus brevisS4 and Lactiplantibacillus plantarumS5 and their utilization to enhance the stability of cold emulsions of milk chocolate drinks. Food Sci Nutr 2024; 12:141-153. [PMID: 38268904 PMCID: PMC10804106 DOI: 10.1002/fsn3.3740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 01/26/2024] Open
Abstract
Chocolate milk drink, one of the most popular and widely consumed milk products among the population, independent of their age, has as its main challenge the problem of its physical instability. The aim of this study was to assess the stabilizing effect of bioemulsifiers/biosurfactants (BE/BS) from two lactobacilli strains in a cold chocolate milk drink. The strains Levilactobacillus brevis S4 and Lactiplantibacillus plantarum S5 isolated from pendidam were screened for their ability to produce BE/BS. The produced BE/BS were characterized, their antimicrobial activities were assessed, and their ability to stabilize cold chocolate milk drinks was determined. The results obtained showed BE/BS yields of 3.48 and 4.37 g/L from L. brevis S4 and L. plantarum S5, respectively. These BE/BS showed emulsifying and surface activities that remained stable after treatment at different temperatures, pH, and salinity. The emulsions formed using BE/BS were stable for 72 h at room temperature (25 ± 1°C). The BE/BS exhibited antimicrobial activity against Staphylococcus aureus S1 and Escherichia coli E1. When applied to cold chocolate milk drinks at 0.2% (w/v), the BE/BS from L. brevis S4 and L. plantarum S5 showed interesting solubility indexes and water absorption capacities, which led to the successful stabilization of the drinks. The results of this study demonstrate the stabilizer potential of BE/BS from L. brevis S4 and L. plantarum S5 and suggest their use in the dairy and food industries.
Collapse
Affiliation(s)
| | - Hippolyte Tene Mouafo
- Centre for Food, Food Security and Nutrition ResearchInstitute of Medical Research and Medicinal Plant StudiesYaoundéCameroon
| | - Richard Marcel Nguimbou
- Department of Food Sciences and Nutrition, National School of Agro‐Industrial SciencesUniversity of NgaoundéréNgaoundéréCameroon
| | - Nadège Donkeng Nganou
- Department of Food Engineering and Quality ControlUniversity Institute of Technology, University of NgaoundéréNgaoundéréCameroon
| | - Augustin Mbawala
- Department of Food Sciences and Nutrition, National School of Agro‐Industrial SciencesUniversity of NgaoundéréNgaoundéréCameroon
| |
Collapse
|
11
|
Chio C, Shrestha S, Carr G, Khatiwada JR, Zhu Y, Li O, Chen X, Hu J, Qin W. Optimization and purification of bioproducts from Bacillus velezensis PhCL fermentation and their potential on industrial application and bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166428. [PMID: 37619727 DOI: 10.1016/j.scitotenv.2023.166428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Bioproduction is considered a promising alternative way of obtaining useful and green chemicals. However, the downstream process of biomolecules has been one of the major difficulties in upscaling the application of bioproducts due to the high purification cost. Acid precipitation is the most common method for purifying biosurfactants from the fermentation broth with high purity. However, the use of strong acids and organic solvents in solvent extraction has limited its application. Hence, in this study, a new strain of Bacillus velezensis PhCL was isolated from phenolic waste, and its production of amylase had been optimized via response surface methodology. After that, amylase and biosurfactant were purified by sequential ammonium sulfate precipitation and the result suggested that even though the purified crude biosurfactant had a lower purification fold compared to the acid precipitation, the yield was higher and both enzymes and biosurfactant also could be recovered for lowering the purification cost. Moreover, the purified amylase and crude biosurfactant were characterized and the results suggested that the purified crude biosurfactant would have a higher emulsion activity and petroleum hydrocarbon removal rate compared to traditional surfactants. This study provided another approach for purifying bioactive compounds including enzymes and biosurfactants from the same fermentation broth and further explored the potential of the crude purified biosurfactant in the bioremediation of polycyclic aromatic hydrocarbons and petroleum hydrocarbons.
Collapse
Affiliation(s)
- Chonlong Chio
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Sarita Shrestha
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Griffin Carr
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Janak Raj Khatiwada
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Yuen Zhu
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Ou Li
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuantong Chen
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Jing Hu
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
12
|
Garraud J, Plihon H, Capiaux H, Le Guern C, Mench M, Lebeau T. Drivers to improve metal(loid) phytoextraction with a focus on microbial degradation of dissolved organic matter in soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:63-81. [PMID: 37303191 DOI: 10.1080/15226514.2023.2221740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioaugmentation of soils can increase the mobilization of metal(loid)s from the soil-bearing phases. However, once desorbed, these metal(loid)s are mostly complexed to the dissolved organic matter (DOM) in the soil solution, which can restrict their availability to plants (roots mainly taking up the free forms) and then the phytoextraction performances. Firstly the main drivers influencing phytoextraction are reminded, then the review focuses on the DOM role. After having reminding the origin, the chemical structure and the lability of DOM, the pool of stable DOM (the most abundant in the soil) most involved in the complexation of metal(loid)s is addressed in particular by focusing on carboxylic and/or phenolic groups and factors controlling metal(loid) complexation with DOM. Finally, this review addresses the ability of microorganisms to degrade metal(loid)-DOM complexes as an additional lever for increasing the pool of free metal(loid) ions, and then phytoextraction performances, and details the origin of microorganisms and how they are selected. The development of innovative processes including the use of these DOM-degrading microorganisms is proposed in perspectives.
Collapse
Affiliation(s)
- Justine Garraud
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hélène Plihon
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hervé Capiaux
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | | | | | - Thierry Lebeau
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| |
Collapse
|
13
|
Gómez-Gutiérrez JA, Wong-Villarreal A, Aguilar-Marcelino L, Yañez-Ocampo G, Hernández-Nuñéz E, Caspeta-Mandujano JM, García-Flores A, Cruz-Arévalo J, Vargas-Uriostegui P, Gomez-Rodríguez O. In vitro nematicidal and acaricidal effect of biosurfactants produced by Bacillus against the root-knot nematode Nacobbus aberrans and the dust mite Tyrophagus putrescentiae. Braz J Microbiol 2023; 54:1127-1136. [PMID: 37119435 PMCID: PMC10234950 DOI: 10.1007/s42770-023-00981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023] Open
Abstract
In the present study, the nematicidal and acaricidal activity of three biosurfactants (BS) produced by strains of the Bacillus genus was evaluated. The BS produced by the Bacillus ROSS2 strain presented a mortality of 39.29% in juveniles (J2) of Nacobbus aberrans at a concentration of 30 mg/mL, this same strain is the one that presented the highest mortality in Tyrophagus putrescentiae, which was 57.97% at a concentration of 39 mg/mL. The BS were qualitatively identified by thin layer chromatography and are lipid in nature based on the retention factor (Rf). While the GC-MS analysis identified two main compounds that are 4,7-Methano-1H-indene-2,6-dicarboxylic acid, 3a,4,7,7a-tetrahydro-1, and Methyl 4-(pyrrol-1-yl)-1,2,5-oxadiazole-3-carboxylate1, which is the polar part indicated by the presence of dicarboxylic acid and carboxylate groups; while the non-polar portion can be interpreted as a hydrocarbon chain of variable length. Based on the present results, BS can be an alternative for the biocontrol of the root-knot nematode N. aberrans and the mite T. putrescentiae.
Collapse
Affiliation(s)
- Jaime Adriel Gómez-Gutiérrez
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | | | - Liliana Aguilar-Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550 Jiutepec, MR Mexico
| | - Gustavo Yañez-Ocampo
- Laboratorio de edafología y ambiente. Facultad de ciencias, Universidad Autónoma del estado de Mexico, Campus El Cerrillo, Carretera Toluca-Ixtlahuaca Km 15.5, Piedras Blancas, C.P, 50200 Toluca de Lerdo, México
| | - Emanuel Hernández-Nuñéz
- Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Mérida, Yucatán México
| | - Juan Manuel Caspeta-Mandujano
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | - Alejandro García-Flores
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | - Julio Cruz-Arévalo
- División Agroalimentaria, Universidad Tecnológica de la Selva, C.P, 29950 Ocosingo, Mexico
| | - Patricia Vargas-Uriostegui
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550 Jiutepec, MR Mexico
| | - Olga Gomez-Rodríguez
- Programa de Fitopatología, Colegio de Postgraduados-Campus Montecillo, km. 36.5 Carretera México-Texcoco, 56230 Texcoco, Estado de México México
| |
Collapse
|
14
|
Kumari K, Nandi A, Sinha A, Ghosh A, Sengupta S, Saha U, Singh PK, Panda PK, Raina V, Verma SK. The paradigm of prophylactic viral outbreaks measures by microbial biosurfactants. J Infect Public Health 2023; 16:575-587. [PMID: 36840992 PMCID: PMC9940476 DOI: 10.1016/j.jiph.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The recent emergence and outbreak of the COVID-19 pandemic confirmed the incompetence of countries across the world to deal with a global public health emergency. Although the recent advent of vaccines is an important prophylactic measure, effective clinical therapy for SARS-Cov-2 is yet to be discovered. With the increasing mortality rate, research has been focused on understanding the pathogenic mechanism and clinical parameters to comprehend COVID-19 infection and propose new avenues for naturally occurring molecules with novel therapeutic properties to alleviate the current situation. In accordance with recent clinical studies and SARS-CoV-2 infection markers, cytokine storm and oxidative stress are entwined pathogenic processes in COVID-19 progression. Lately, Biosurfactants (BSs) have been studied as one of the most advanced biomolecules of microbial origin with anti-inflammatory, antioxidant, antiviral properties, antiadhesive, and antimicrobial properties. Therefore, this review inspects available literature and proposes biosurfactants with these properties to be encouraged for their extensive study in dealing with the current pandemic as new pharmaceutics in the prevention and control of viral spread, treating the symptoms developed after the incubation period through different therapeutic approaches and playing a potential drug delivery model.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Srabasti Sengupta
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Pawan K Singh
- BVG Life Sciences Limited, Sagar Complex, Near Nashikphata, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Vishakha Raina
- School of Biotechnology, KIIT Deemed to be University, 751024, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT Deemed to be University, 751024, India.
| |
Collapse
|
15
|
Kumari K, Behera HT, Nayak PP, Sinha A, Nandi A, Ghosh A, Saha U, Suar M, Panda PK, Verma SK, Raina V. Amelioration of lipopeptide biosurfactants for enhanced antibacterial and biocompatibility through molecular antioxidant property by methoxy and carboxyl moieties. Biomed Pharmacother 2023; 161:114493. [PMID: 36906974 DOI: 10.1016/j.biopha.2023.114493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Biosurfactants having surface-active biomolecules have been the cynosure in environment research due to their vast application. However, the lack of information about their low-cost production and detailed mechanistic biocompatibility limits the applicability. The study explores techniques for the production and design of low-cost, biodegradable, and non-toxic biosurfactants from Brevibacterium casei strain LS14 and excavates the mechanistic details of their biomedical properties like antibacterial effects and biocompatibility. Taguchi's design of experiment was used to optimize for enhancing biosurfactant production by optimal factor combinations like Waste glycerol (1%v/v), peptone (1%w/v), NaCl 0.4% (w/v), and pH 6. Under optimal conditions, the purified biosurfactant reduced the surface tension to 35 mN/m from 72.8 mN/m (MSM) and a critical micelle concentration of 25 mg/ml was achieved. Spectroscopic analyses of the purified biosurfactant using Nuclear Magnetic Resonance suggested it as a lipopeptide biosurfactant. The evaluation of mechanistic antibacterial, antiradical, antiproliferative, and cellular effects indicated the efficient antibacterial activity (against Pseudomonas aeruginosa) of biosurfactants due to free radical scavenging activity and oxidative stress. Moreover, the cellular cytotoxicity was estimated by MTT and other cellular assays revealing the phenomenon as the dose-dependent induction of apoptosis due to free radical scavenging with an LC50 of 55.6 ± 2.3 mg/ml.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | | | - Adrija Sinha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | - Pritam Kumar Panda
- Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden.
| | - Suresh K Verma
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| | - Vishakha Raina
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| |
Collapse
|
16
|
Gupta KK, Sharma KK, Chandra H. Utilization of Bacillus cereus strain CGK5 associated with cow feces in the degradation of commercially available high-density polyethylene (HDPE). Arch Microbiol 2023; 205:101. [PMID: 36862211 DOI: 10.1007/s00203-023-03448-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
The accumulation and mismanagement of high-density polyethylene (HDPE) waste in the environment is a complex problem in the present scenario. Biodegradation of this thermoplastic polymer is a promising environmentally sustainable method that offers a significant opportunity to address plastic waste management with minimal negative repercussion on the environment. In this framework, HDPE-degrading bacterium strain CGK5 was isolated from the fecal matter of cow. The biodegradation efficiency of strain was assessed, including percentage reduction in HDPE weight, cell surface hydrophobicity, extracellular biosurfactant production, viability of surface adhered cells, as well as biomass in terms of protein content. Through molecular techniques, strain CGK5 was identified as Bacillus cereus. Significant weight loss of 1.83% was observed in the HDPE film treated with strain CGK5 for 90 days. The FE-SEM analysis revealed the profused bacterial growth which ultimately caused the distortions in HDPE films. Furthermore, EDX study indicated a significant decrease in percentage carbon content at atomic level, whereas FTIR analysis confirmed chemical groups' transformation as well as an increment in the carbonyl index supposedly caused by bacterial biofilm biodegradation. Our findings shed light on the ability of our strain B. cereus CGK5 to colonize and use HDPE as a sole carbon source, demonstrating its applicability for future eco-friendly biodegradation processes.
Collapse
Affiliation(s)
- Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India
| | - Kamal Kant Sharma
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India.
| | - Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India
| |
Collapse
|
17
|
Bird LJ, Mickol RL, Eddie BJ, Thakur M, Yates MD, Glaven SM. Marinobacter: A case study in bioelectrochemical chassis evaluation. Microb Biotechnol 2023; 16:494-506. [PMID: 36464922 PMCID: PMC9948230 DOI: 10.1111/1751-7915.14170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2022] Open
Abstract
The junction of bioelectrochemical systems and synthetic biology opens the door to many potentially groundbreaking technologies. When developing these possibilities, choosing the correct chassis organism can save a great deal of engineering effort and, indeed, can mean the difference between success and failure. Choosing the correct chassis for a specific application requires a knowledge of the metabolic potential of the candidate organisms, as well as a clear delineation of the traits, required in the application. In this review, we will explore the metabolic and electrochemical potential of a single genus, Marinobacter. We will cover its strengths, (salt tolerance, biofilm formation and electrochemical potential) and weaknesses (insufficient characterization of many strains and a less developed toolbox for genetic manipulation) in potential synthetic electromicrobiology applications. In doing so, we will provide a roadmap for choosing a chassis organism for bioelectrochemical systems.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Rebecca L. Mickol
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Brian J. Eddie
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
- College of Science, George Mason UniversityFairfaxVirginiaUSA
| | - Matthew D. Yates
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
18
|
Devale A, Sawant R, Pardesi K, Perveen K, Khanam MNI, Shouche Y, Mujumdar S. Production and characterization of bioemulsifier by Parapedobacter indicus. Front Microbiol 2023; 14:1111135. [PMID: 36876100 PMCID: PMC9978354 DOI: 10.3389/fmicb.2023.1111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
The current study evaluated Parapedobacter indicus MCC 2546 for its potential to produce a bioemulsifier (BE). Screening methods performed for BE production by P. indicus MCC 2546 showed good lipase activity, positive drop collapse test, and oil-spreading activity. Furthermore, it showed maximum emulsification activity (225 EU/ml) and emulsification index (E24 50%) at 37°C in Luria Bertani broth at 72 h with olive oil as a substrate. The optimal pH and NaCl concentration for maximum emulsification activity were 7 and 1%, respectively. P. indicus MCC 2546 lowered the surface tension of the culture medium from 59.65 to 50.42 ± 0.78 mN/m. BE produced was composed of 70% protein and 30% carbohydrate, which showed the protein-polysaccharide nature of the BE. Furthermore, Fourier transform infrared spectroscopy analysis confirmed the same. P. indicus MCC 2546 showed a catecholate type of siderophore production. This is the first report on BE and siderophore production by the genus Parapedobacter.
Collapse
Affiliation(s)
- Anushka Devale
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| | - Rupali Sawant
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mehrun NIsha Khanam
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yogesh Shouche
- School of Arts and Sciences, Azim Premji University, Bengaluru, India
| | - Shilpa Mujumdar
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| |
Collapse
|
19
|
Biosurfactant Production from Pineapple Waste and Application of Experimental Design and Statistical Analysis. Appl Biochem Biotechnol 2023; 195:386-400. [PMID: 36083431 DOI: 10.1007/s12010-022-04159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
The use of non-conventional carbon sources for biosurfactant-producing microorganisms is a promising alternative in fermentation to substitute costly substrates. So, the current research used pineapple peel as a cost-effective and renewable substrate because of its rich composition in minerals and sugars and high availability. Following a 22 full factorial design, a bacterial strain of Bacillus subtilis produced biosurfactants in fermentative media containing different concentrations of glucose and concentrated pineapple peel juice (CPPJ). The influence of these two independent variables was evaluated according to three different responses: surface tension reduction rate (STRR), emulsification index (EI24), and concentration of semi-purified biosurfactant (SPB). The maximum value for STRR (57.63%) was obtained in media containing 0.58% glucose (w/v) and 5.82% CPPJ (v/v), while the highest EI24 response (58.60%) was observed at 2% glucose (w/v) and 20% CPPJ (v/v) and maximum SPB (1.28 g/L) at 3.42% glucose (w/v) and 34.18% CPPJ (v/v). Statistical analysis indicated that the CPPJ variable mostly influenced the STRR and SPB responses, whereas the EI24 was significantly influenced by pineapple peel juice and glucose contents.
Collapse
|
20
|
Singh S, Sequeira RA, Kumar P, Ghadge VA, Vaghela P, Mohanty AK, Ghosh A, Prasad K, Shinde PB. Selective Partition of Lipopeptides from Fermentation Broth: A Green and Sustainable Approach. ACS OMEGA 2022; 7:46646-46652. [PMID: 36570225 PMCID: PMC9774373 DOI: 10.1021/acsomega.2c05587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Lipopeptide (LP) biosurfactants from microbes have the potential to gradually replace chemical synthetic surfactants and fit the contemporary green and sustainable industrial production concept. However, their active participation is comparatively low in the global market pertaining to their low yield in microbial broth and costly downstream processes arising due to tedious isolation and purification methods. Herein, an efficient extraction method is developed that utilizes an aqueous biphasic system (ABS) comprising ionic liquids and polypropylene glycol 400 (PPG) to selectively extract a mixture of cyclic lipopeptides, namely, surfactin and fengycin from the culture broth of Bacillus amyloliquefaciens 5NPA-1, isolated from the halophyte Salicornia brachiata Roxb. Out of four different ABSs, the ABS composed of 2-hydroxyethyl ammonium formate and PPG displayed a maximum extraction efficiency of 82.30%. PPG-rich phase containing lipopeptides exhibited excellent antimicrobial and mosquito larvicidal properties with no toxic effect on plants. The developed method is simple, novel and accelerates the application of cyclic lipopeptides produced by the microbial source.
Collapse
Affiliation(s)
- Sanju Singh
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Rosy Alphons Sequeira
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pankaj Kumar
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Vishal A. Ghadge
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pradipkumar Vaghela
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Applied
Phycology and Biotechnology Division, CSIR-Central
Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council
of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
| | - Ajeet Kumar Mohanty
- ICMR-National
Institute of Malaria Research, Field Unit, Campal, Panaji403001Goa, India
| | - Arup Ghosh
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Applied
Phycology and Biotechnology Division, CSIR-Central
Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council
of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
| | - Kamalesh Prasad
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pramod B. Shinde
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
21
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
22
|
Tsui L, Paul A, Chen YT, Tz-Chi E. Potential mechanisms contributing to the high cadmium removal efficiency from contaminated soil by using effective microorganisms as novel electrolyte in electrokinetic remediation applications. ENVIRONMENTAL RESEARCH 2022; 215:114239. [PMID: 36184964 DOI: 10.1016/j.envres.2022.114239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, we tested the ability of a solution of effective microorganisms (EM) to remove cadmium from soil. Experimental results revealed that EM had an overall cadmium removal efficiency of 90.5% after 7 days of electrokinetic (EK) treatment. During EK treatment, EM exhibited a low initial pH of 3.6 and a high conductivity of 7.0 mS/m; therefore, they reduced the pH of the anode after an electric field was applied. EM had a surface tension of 50.3 dyne/cm and exhibited biosurfactant property in the EK experiments. The cadmium removal efficiency of EM in soil was compared with that of tap water, citric acid, and ethylenediaminetetraacetic acid (EDTA). The results revealed that after 7 days of EK treatment, EM had a higher cadmium removal efficiency than did citric acid (72.3%), EDTA (75.4%), and tap water (21.7%). This result can be partly attributed to the biosurfactant property of EM, which enables them to penetrate deeply into the soil matrix and thus dissolve a high quantity of pollutants. Overall, the results of this study indicate that EM can serve as an economic and efficient biosurfactant for removing cadmium from soil in EK applications.
Collapse
Affiliation(s)
- Lo Tsui
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - Aaneta Paul
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - Yi-Ting Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - E Tz-Chi
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| |
Collapse
|
23
|
Mgbechidinma CL, Akan OD, Zhang C, Huang M, Linus N, Zhu H, Wakil SM. Integration of green economy concepts for sustainable biosurfactant production - A review. BIORESOURCE TECHNOLOGY 2022; 364:128021. [PMID: 36167175 DOI: 10.1016/j.biortech.2022.128021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The link between increasing global population, food demand, industrialization, and agricultural waste is strong. Decomposing by-products from food cycles can introduce harmful toxic heavy metals, active degrading microbes, and enzymes to the environment. Additionally, high greenhouse gas emissions from the decomposing wastes contribute to global change and a high carbon economy. The bioeconomy and circular economy of biosurfactant production utilize these cheap feedstocks and promote waste to valuable product initiatives. Waste reduction, reuse, and recycling in an integrating green economy bioprocess ensure the sustainability of novel, cost-effective, safe, and renewable health-grade biosurfactants. This work reviews green economy concepts integration with sustainable biosurfactant production and its application in health-related industries. Benefits from recent advances in the production, characterization, and health-wise classification of biosurfactants were further discussed, including its limitations, techno-economic assessment, market evaluations, possible roadblocks, and future directions.
Collapse
Affiliation(s)
- Chiamaka Linda Mgbechidinma
- Integrated Life Sciences, University of Georgia, Athens, GA 30602, USA; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; Microbiology Department, Akwa-Ibom State University, Akwa-Ibom State, Nigeria
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Mengzhen Huang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China
| | - Nsemeke Linus
- Biochemistry Department, University of Uyo, Uyo, Nigeria
| | - He Zhu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; College of Food Science and Engineering, Shandong Agriculture and Engineering University, Shandong, China
| | | |
Collapse
|
24
|
Mulugeta K, Kamaraj M, Tafesse M, Kebede G, Gemechu G, Chandran M. Biomolecules from Serratia sp. CS1 indigenous to Ethiopian natural alkaline lakes: biosurfactant characteristics and assessment of compatibility in a laundry detergent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:873. [PMID: 36227369 DOI: 10.1007/s10661-022-10533-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, the biosurfactants (Bio-SFs) producing bacteria are screened from the selected alkaline lake of Ethiopia, and the potential bacterial strain and their produced Bio-SFs are further characterized. In an initial screening, 25 bacterial isolates were isolated, and among those, the bacterial isolate assigned as CS1 was identified as the most potent producer of Bio-SFs using a subsequent characterization process. The CS1 strain was identified as Serratia sp. via biochemical and molecular methods. An emulsion index (E24) of 69.06 ± 0.11% was obtained for CS1 after 5 days of incubation time at 30 °C. The CS1-extracted Bio-SFs were characterized by Fourier transform infrared (FTIR), and it indicated that the type of biosurfactant produced was a glycolipid. The stability of the crude Bio-SFs was characterized, and the optimal conditions were found to be 80 °C, pH 8, and 3% NaCl, respectively. The extracted Bio-SFs were compatible with tested commercial detergents, and its efficiency increased from 12.2 ± 0.1% to 67.1 ± 0.17% and 70.43 ± 0.11% when combined with commercially available detergent brands in Ethiopia such as Taza and Largo, respectively. This study suggests that the isolated S. marcescens CS1 strain has the potential to produce Bio-SFs that are viable competence to replace the use of synthetic chemicals in the production of commercial detergents.
Collapse
Affiliation(s)
- Kidist Mulugeta
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Murugesan Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology - Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Mesfin Tafesse
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Gessesse Kebede
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Getachew Gemechu
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Masi Chandran
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| |
Collapse
|
25
|
Biosurfactant Production by Bacillus amyloliquefaciens C11 and Streptomyces lavendulae C27 Isolated from a Biopurification System for Environmental Applications. Microorganisms 2022; 10:microorganisms10101892. [DOI: 10.3390/microorganisms10101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Biosurfactant-producing bacteria can be found in contaminated environments such as biopurification systems (BPS) for pesticide treatments. A total of 18 isolates were screened to determine their ability to produce extracellular biosurfactants, using olive oil as the main carbon source. Out of the eighteen isolates, two strains (C11 and C27) were selected for biosurfactant production. The emulsification activities of the C11 and C27 strains using sunflower oil was 58.4 and 53.7%, respectively, and 46.6 and 48.0% using olive oil. Using molecular techniques and MALDI-TOF, the strains were identified as Bacillus amyloliquefaciens (C11) and Streptomyces lavendulae (C27). The submerged cultivation of the two selected strains was carried out in a 1 L stirred-tank bioreactor. The maximum biosurfactant production, indicated by the lowest surface tension measurement, was similar (46 and 45 mN/m) for both strains, independent of the fact that the biomass of the B. amyloliquefaciens C11 strain was 50% lower than the biomass of the S. lavendulae C27 strain. The partially purified biosurfactants produced by B. amyloliquefaciens C11 and S. lavendulae C27 were characterized as a lipopeptide and a glycolipid, respectively. These outcomes highlight the potential of the selected biosurfactant-producing microorganisms for improving pesticides’ bioavailability and therefore the degradational efficacy of BPS.
Collapse
|
26
|
Ciurko D, Czyżnikowska Ż, Kancelista A, Łaba W, Janek T. Sustainable Production of Biosurfactant from Agro-Industrial Oil Wastes by Bacillus subtilis and Its Potential Application as Antioxidant and ACE Inhibitor. Int J Mol Sci 2022; 23:ijms231810824. [PMID: 36142732 PMCID: PMC9505973 DOI: 10.3390/ijms231810824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/02/2023] Open
Abstract
The microbial conversion of agro-industrial oil wastes into biosurfactants shows promise as a biomass refinery approach. In this study, Bacillus subtilis #309 was applied to produce surfactin using rapeseed and sunflower cakes, the most common oil processing side products in Europe. Studies of the chemical composition of the substrates were performed, to determine the feasibility of oil cakes for surfactin production. Initially, screening of proteolytic and lipolytic activity was performed to establish the capability of B. subtilis #309 for substrate utilization and hence effective surfactin production. B. subtilis #309 showed both proteolytic and lipolytic activity. The process of surfactin production was carefully analyzed by measurement of the surfactin concentration, pH, surface tension (ST) and emulsification index (E24). The maximal surfactin concentration in the sunflower and rapeseed cake medium reached 1.19 ± 0.03 and 1.45 ± 0.09 g/L, respectively. At the same time, a progressive decrease in the surface tension and increase in emulsification activity were observed. The results confirmed the occurrence of various surfactin homologues, while the surfactin C15 was the dominant one. Finally, the analysis of surfactin biological function exhibited antioxidant activity and significant angiotensin-converting enzyme (ACE)-inhibitory activity. The half-maximal inhibitory concentration (IC50) value for ACE inhibition was found to be 0.62 mg/mL for surfactin. Molecular docking of the surfactin molecule to the ACE domains confirmed its inhibitory activity against ACE. Several interactions, such as hydrophobic terms, hydrogen bonds and van der Waals interactions, were involved in the complex stabilization. To the best of our knowledge, this is the first report describing the effect of a lipopeptide biosurfactant, surfactin, produced by B. subtilis for multifunctional properties in vitro, namely the ACE-inhibitory activity and the antioxidant properties, using different assays, such as 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). Thus, the ACE-inhibitory lipopeptide biosurfactant shows promise to be used as a natural antihypertensive agent.
Collapse
Affiliation(s)
- Dominika Ciurko
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wrocław, Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Wojciech Łaba
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-320-7734
| |
Collapse
|
27
|
Chaudhary P, Singh S, Chaudhary A, Sharma A, Kumar G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:930340. [PMID: 36082294 PMCID: PMC9445558 DOI: 10.3389/fpls.2022.930340] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 05/09/2023]
Abstract
With the increase in world population, the demography of humans is estimated to be exceeded and it has become a major challenge to provide an adequate amount of food, feed, and agricultural products majorly in developing countries. The use of chemical fertilizers causes the plant to grow efficiently and rapidly to meet the food demand. The drawbacks of using a higher quantity of chemical or synthetic fertilizers are environmental pollution, persistent changes in the soil ecology, physiochemical composition, decreasing agricultural productivity and cause several health hazards. Climatic factors are responsible for enhancing abiotic stress on crops, resulting in reduced agricultural productivity. There are various types of abiotic and biotic stress factors like soil salinity, drought, wind, improper temperature, heavy metals, waterlogging, and different weeds and phytopathogens like bacteria, viruses, fungi, and nematodes which attack plants, reducing crop productivity and quality. There is a shift toward the use of biofertilizers due to all these facts, which provide nutrition through natural processes like zinc, potassium and phosphorus solubilization, nitrogen fixation, production of hormones, siderophore, various hydrolytic enzymes and protect the plant from different plant pathogens and stress conditions. They provide the nutrition in adequate amount that is sufficient for healthy crop development to fulfill the demand of the increasing population worldwide, eco-friendly and economically convenient. This review will focus on biofertilizers and their mechanisms of action, role in crop productivity and in biotic/abiotic stress tolerance.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Shivani Singh
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Anuj Chaudhary
- School of Agriculture and Environmental Science, Shobhit University, Gangoh, India
| | - Anita Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Govind Kumar
- Department of Crop Production, Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
28
|
Karamchandani BM, Maurya PA, Dalvi SG, Waghmode S, Sharma D, Rahman PKSM, Ghormade V, Satpute SK. Synergistic Activity of Rhamnolipid Biosurfactant and Nanoparticles Synthesized Using Fungal Origin Chitosan Against Phytopathogens. Front Bioeng Biotechnol 2022; 10:917105. [PMID: 36017342 PMCID: PMC9396382 DOI: 10.3389/fbioe.2022.917105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Phytopathogens pose severe implications in the quantity and quality of food production by instigating several diseases. Biocontrol strategies comprising the application of biomaterials have offered endless opportunities for sustainable agriculture. We explored multifarious potentials of rhamnolipid-BS (RH-BS: commercial), fungal chitosan (FCH), and FCH-derived nanoparticles (FCHNPs). The high-quality FCH was extracted from Cunninghamella echinulata NCIM 691 followed by the synthesis of FCHNPs. Both, FCH and FCHNPs were characterized by UV-visible spectroscopy, DLS, zeta potential, FTIR, SEM, and Nanoparticle Tracking Analysis (NTA). The commercial chitosan (CH) and synthesized chitosan nanoparticles (CHNPs) were used along with test compounds (FCH and FCHNPs). SEM analysis revealed the spherical shape of the nanomaterials (CHNPs and FCHNPs). NTA provided high-resolution visual validation of particle size distribution for CHNPs (256.33 ± 18.80 nm) and FCHNPs (144.33 ± 10.20 nm). The antibacterial and antifungal assays conducted for RH-BS, FCH, and FCHNPs were supportive to propose their efficacies against phytopathogens. The lower MIC of RH-BS (256 μg/ml) was observed than that of FCH and FCHNPs (>1,024 μg/ml) against Xanthomonas campestris NCIM 5028, whereas a combination study of RH-BS with FCHNPs showed a reduction in MIC up to 128 and 4 μg/ml, respectively, indicating their synergistic activity. The other combination of RH-BS with FCH resulted in an additive effect reducing MIC up to 128 and 256 μg/ml, respectively. Microdilution plate assay conducted for three test compounds demonstrated inhibition of fungi, FI: Fusarium moniliforme ITCC 191, FII: Fusarium moniliforme ITCC 4432, and FIII: Fusarium graminearum ITCC 5334 (at 0.015% and 0.020% concentration). Furthermore, potency of test compounds performed through the in vitro model (poisoned food technique) displayed dose-dependent (0.005%, 0.010%, 0.015%, and 0.020% w/v) antifungal activity. Moreover, RH-BS and FCHNPs inhibited spore germination (61–90%) of the same fungi. Our efforts toward utilizing the combination of RH-BS with FCHNPs are significant to develop eco-friendly, low cytotoxic formulations in future.
Collapse
Affiliation(s)
| | - Priya A. Maurya
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
- *Correspondence: Sunil G. Dalvi, ; Surekha K. Satpute,
| | | | - Deepansh Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Pattanathu K. S. M. Rahman
- TeeGene and TARA Biologics, Life Science Accelerator, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
- *Correspondence: Sunil G. Dalvi, ; Surekha K. Satpute,
| |
Collapse
|
29
|
Gaur VK, Gautam K, Sharma P, Gupta P, Dwivedi S, Srivastava JK, Varjani S, Ngo HH, Kim SH, Chang JS, Bui XT, Taherzadeh MJ, Parra-Saldívar R. Sustainable strategies for combating hydrocarbon pollution: Special emphasis on mobil oil bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155083. [PMID: 35395309 DOI: 10.1016/j.scitotenv.2022.155083] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 05/21/2023]
Abstract
The global rise in industrialization and vehicularization has led to the increasing trend in the use of different crude oil types. Among these mobil oil has major application in automobiles and different machines. The combustion of mobil oil renders a non-usable form that ultimately enters the environment thereby causing problems to environmental health. The aliphatic and aromatic hydrocarbon fraction of mobil oil has serious human and environmental health hazards. These components upon interaction with soil affect its fertility and microbial diversity. The recent advancement in the omics approach viz. metagenomics, metatranscriptomics and metaproteomics has led to increased efficiency for the use of microbial based remediation strategy. Additionally, the use of biosurfactants further aids in increasing the bioavailability and thus biodegradation of crude oil constituents. The combination of more than one approach could serve as an effective tool for efficient reduction of oil contamination from diverse ecosystems. To the best of our knowledge only a few publications on mobil oil have been published in the last decade. This systematic review could be extremely useful in designing a micro-bioremediation strategy for aquatic and terrestrial ecosystems contaminated with mobil oil or petroleum hydrocarbons that is both efficient and feasible. The state-of-art information and future research directions have been discussed to address the issue efficiently.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Pallavi Gupta
- Bioscience and Biotechnology Department, Banasthali University, Rajasthan, India
| | | | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Thu Duc district, Ho Chi Minh City 700000, Viet Nam
| | | | - Roberto Parra-Saldívar
- Escuela de Ingeniería y Ciencias-Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico
| |
Collapse
|
30
|
Ali B, Hafeez A, Ahmad S, Javed MA, Sumaira, Afridi MS, Dawoud TM, Almaary KS, Muresan CC, Marc RA, Alkhalifah DHM, Selim S. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. FRONTIERS IN PLANT SCIENCE 2022; 13:921668. [PMID: 35968151 PMCID: PMC9366557 DOI: 10.3389/fpls.2022.921668] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/30/2022] [Indexed: 07/30/2023]
Abstract
Soil salinity is the major abiotic stress that disrupts nutrient uptake, hinders plant growth, and threatens agricultural production. Plant growth-promoting rhizobacteria (PGPR) are the most promising eco-friendly beneficial microorganisms that can be used to improve plant responses against biotic and abiotic stresses. In this study, a previously identified B. thuringiensis PM25 showed tolerance to salinity stress up to 3 M NaCl. The Halo-tolerant Bacillus thuringiensis PM25 demonstrated distinct salinity tolerance and enhance plant growth-promoting activities under salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing (sfp and srfAA) genes that confer biotic and abiotic stresses were also amplified in B. thuringiensis PM25. Under salinity stress, the physiological and molecular processes were followed by the over-expression of stress-related genes (APX and SOD) in B. thuringiensis PM25. The results detected that B. thuringiensis PM25 inoculation substantially improved phenotypic traits, chlorophyll content, radical scavenging capability, and relative water content under salinity stress. Under salinity stress, the inoculation of B. thuringiensis PM25 significantly increased antioxidant enzyme levels in inoculated maize as compared to uninoculated plants. In addition, B. thuringiensis PM25-inoculation dramatically increased soluble sugars, proteins, total phenols, and flavonoids in maize as compared to uninoculated plants. The inoculation of B. thuringiensis PM25 significantly reduced oxidative burst in inoculated maize under salinity stress, compared to uninoculated plants. Furthermore, B. thuringiensis PM25-inoculated plants had higher levels of compatible solutes than uninoculated controls. The current results demonstrated that B. thuringiensis PM25 plays an important role in reducing salinity stress by influencing antioxidant defense systems and abiotic stress-related genes. These findings also suggest that multi-stress tolerant B. thuringiensis PM25 could enhance plant growth by mitigating salt stress, which might be used as an innovative tool for enhancing plant yield and productivity.
Collapse
Affiliation(s)
- Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saliha Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
31
|
Azeem MA, Shah FH, Ullah A, Ali K, Jones DA, Khan MEH, Ashraf A. Biochemical Characterization of Halotolerant Bacillus safensis PM22 and Its Potential to Enhance Growth of Maize under Salinity Stress. PLANTS 2022; 11:plants11131721. [PMID: 35807673 PMCID: PMC9268828 DOI: 10.3390/plants11131721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Salinity stress is one of the primary abiotic stresses limiting crop growth and yield. Plants respond to salinity stress with several morphophysiological, molecular, and biochemical mechanisms, however, these mechanisms need to be improved further to cope with salt stress effectively. In this regard, the use of plant growth-promoting (PGP) and halotolerant bacteria is thought to be very efficient for enhancing growth and salinity tolerance in plants. The current study aims to assess Bacillus safensis PM22 for its ability to promote plant growth and resistance to salt. The PM22 produced substantial amounts of exopolysaccharides, indole-3-acetic acid, siderophore, and 1-aminocyclopropane-1-carboxylic acid deaminase (ACC-deaminase) under saline conditions. Additionally, inoculation of the halotolerant bacteria PM22 reduced the severity of salinity stress in plants and increased root and shoot length at various salt concentrations (0, 180, 240, and 300 mM). Furthermore, PM22-inoculated plants showed markedly enhanced photosynthetic pigment, carotenoid, leaf relative water content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity, salt tolerance index, total soluble sugar, total protein, and ascorbic acid contents compared to non-inoculated control maize plants. PM22 substantially increased antioxidant (enzymatic and non-enzymatic) activities in maize plants, including ascorbate peroxidase, peroxidase, superoxide dismutase, catalase, total flavonoid, and phenol levels. Maize plants inoculated with PM22 also exhibited a significant reduction in electrolyte leakage, hydrogen peroxide, malondialdehyde, glycine betaine, and proline contents compared to non-inoculated control plants. These physiological appearances were further validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), which revealed the upregulation of expression in genes responsible for stress tolerance. In the current investigation, Bacillus safensis PM22 showed plant growth-promoting and salt tolerance attributes and can be utilized as a bio-inoculant to improve yield in salt stress affected areas.
Collapse
Affiliation(s)
- Muhammad Atif Azeem
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.A.A.); (F.H.S.)
| | - Fahim Hussain Shah
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.A.A.); (F.H.S.)
| | - Abid Ullah
- Botany Department, University of Malakand, Chakdara 18800, Pakistan;
| | - Kishwar Ali
- College of General Education, University of Doha for Science and Technology, Arab League Street, Doha P.O. Box 24449, Qatar;
- Correspondence:
| | - David Aaron Jones
- College of Health Sciences, University of Doha for Science and Technology, Arab League Street, Doha P.O. Box 24449, Qatar;
| | - Muhammad Ezaz Hasan Khan
- College of General Education, University of Doha for Science and Technology, Arab League Street, Doha P.O. Box 24449, Qatar;
| | - Azad Ashraf
- College of Engineering, University of Doha for Science and Technology, Arab League Street, Doha P.O. Box 24449, Qatar;
| |
Collapse
|
32
|
Sharma J, Kapley A, Sundar D, Srivastava P. Characterization of a potent biosurfactant produced from Franconibacter sp. IITDAS19 and its application in enhanced oil recovery. Colloids Surf B Biointerfaces 2022; 214:112453. [PMID: 35305323 DOI: 10.1016/j.colsurfb.2022.112453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/09/2023]
Abstract
Biosurfactants are surface-active molecules produced from microorganisms either on the cell surface or secreted extracellularly. Several biosurfactant producing microorganisms have been isolated to date, but they differ in their efficacy towards different types of hydrocarbons. Here, we report the isolation and characterization of a biosurfactant producing bacterium Franconibacter sp. IITDAS19 from crude oil contaminated soil. The biosurfactant was isolated, purified and characterized. It was identified as a glycolipid. It was found to be very stable at wide range of temperatures, pH and salt concentrations. It could reduce the surface tension of the water from 71 mN/m to 31 mN/m. IITDAS19 showed very high efficacy towards both aliphatic and aromatic hydrocarbons. It resulted in about 63% recovery of residual oil in a sand pack column. Our results suggested that the produced biosurfactant can be used for enhanced oil recovery. To our knowledge, this is the first report demonstrating the detailed characterization of a biosurfactant from Franconibacter spp.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India
| | - Atya Kapley
- Council of Scientific and Industrial Research- National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur 440020, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
33
|
Lactiplantibacillus plantarum-Derived Biosurfactant Attenuates Quorum Sensing-Mediated Virulence and Biofilm Formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms 2022; 10:microorganisms10051026. [PMID: 35630468 PMCID: PMC9145448 DOI: 10.3390/microorganisms10051026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Quorum sensing (QS) controls the expression of diverse biological traits in bacteria, including virulence factors. Any natural bioactive compound that disables the QS system is being considered as a potential strategy to prevent bacterial infection. Various biological activities of biosurfactants have been observed, including anti-QS effects. In the present study, we investigated the effectiveness of a biosurfactant derived from Lactiplantibacillus plantarum on QS-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. The structural analogues of the crude biosurfactant were identified using gas chromatography–mass spectrometry (GC–MS). Moreover, the inhibitory prospects of identified structural analogues were assessed with QS-associated CviR, LasA, and LasI ligands via in silico molecular docking analysis. An L. plantarum-derived biosurfactant showed a promising dose-dependent interference with the production of both violacein and acyl homoserine lactone (AHL) in C. violaceum. In P. aeruginosa, at a sub-MIC concentration (2.5 mg/mL), QS inhibitory activity was also demonstrated by reduction in pyocyanin (66.63%), total protease (60.95%), LasA (56.62%), and LasB elastase (51.33%) activity. The swarming motility and exopolysaccharide production were also significantly reduced in both C. violaceum (61.13%) and P. aeruginosa (53.11%). When compared with control, biofilm formation was also considerably reduced in C. violaceum (68.12%) and P. aeruginosa (59.80%). A GC–MS analysis confirmed that the crude biosurfactant derived from L. plantarum was a glycolipid type. Among all, n-hexadecanoic acid, oleic acid, and 1H-indene,1-hexadecyl-2,3-dihydro had a high affinity for CviR, LasI, and LasA, respectively. Thus, our findings suggest that the crude biosurfactant of L. plantarum can be used as a new anti-QS/antibiofilm agent against biofilm-associated pathogenesis, which warrants further investigation to uncover its therapeutic efficacy.
Collapse
|
34
|
Ali SAM, Sayyed RZ, Mir MI, Khan MY, Hameeda B, Alkhanani MF, Haque S, Mohammad Al Tawaha AR, Poczai P. Induction of Systemic Resistance in Maize and Antibiofilm Activity of Surfactin From Bacillus velezensis MS20. Front Microbiol 2022; 13:879739. [PMID: 35615505 PMCID: PMC9126211 DOI: 10.3389/fmicb.2022.879739] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Surfactin lipopeptide is an eco-friendly microbially synthesized bioproduct that holds considerable potential in therapeutics (antibiofilm) as well as in agriculture (antifungal). In the present study, production of surfactin by a marine strain Bacillus velezensis MS20 was carried out, followed by physico-chemical characterization, anti-biofilm activity, plant growth promotion, and quantitative Reverse Transcriptase-Polymerase Chain Reaction (q RT-PCR) studies. From the results, it was inferred that MS20 was found to produce biosurfactant (3,300 mg L-1) under optimized conditions. From the physicochemical characterization [Thin layer chromatography (TLC), Fourier Transform Infrared (FTIR) Spectroscopy, Liquid Chromatography/Mass Spectroscopy (LC/MS), and Polymerase Chain Reaction (PCR) amplification] it was revealed to be surfactin. From bio-assay and scanning electron microscope (SEM) images, it was observed that surfactin (MIC 50 μg Ml-1) has appreciable bacterial aggregation against clinical pathogens Pseudomonas aeruginosa MTCC424, Escherichia coli MTCC43, Klebsiella pneumoniae MTCC9751, and Methicillin resistant Staphylococcus aureus (MRSA) and mycelial condensation property against a fungal phytopathogen Rhizoctonia solani. In addition, the q-RTPCR studies revealed 8-fold upregulation (9.34 ± 0.11-fold) of srfA-A gene compared to controls. Further, treatment of maize crop (infected with R. solani) with surfactin and MS20 led to the production of defense enzymes. In conclusion, concentration and synergy of a carbon source with inorganic/mineral salts can ameliorate surfactin yield and, application wise, it has antibiofilm and antifungal activities. In addition, it induced systemic resistance in maize crop, which makes it a good candidate to be employed in sustainable agricultural practices.
Collapse
Affiliation(s)
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada, India
| | - Mohammad I. Mir
- Department of Botany, University College of Science, Osmania University, Hyderabad, India
| | - M. Y. Khan
- Kalam Biotech Pvt Ltd., Hyderabad, India
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, Al-Maarefa University, Riyadh, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Péter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Using Large-Scale Multi-Module NRPS to Heterologously Prepare Highly Efficient Lipopeptide Biosurfactants in Recombinant Escherichia coli. Enzyme Microb Technol 2022; 159:110068. [DOI: 10.1016/j.enzmictec.2022.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022]
|
36
|
Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T. Microbial biosurfactants: a review of recent environmental applications. Bioengineered 2022; 13:12365-12391. [PMID: 35674010 PMCID: PMC9275870 DOI: 10.1080/21655979.2022.2074621] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial biosurfactants are low-molecular-weight surface-active compounds of high industrial interest owing to their chemical properties and stability under several environmental conditions. The chemistry of a biosurfactant and its production cost are defined by the selection of the producer microorganism, type of substrate, and purification strategy. Recently, biosurfactants have been applied to solve or contribute to solving some environmental problems, with this being their main field of application. The most referenced studies are based on the bioremediation of contaminated soils with recalcitrant pollutants, such as hydrocarbons or heavy metals. In the case of heavy metals, biosurfactants function as chelating agents owing to their binding capacity. However, the mechanism by which biosurfactants typically act in an environmental field is focused on their ability to reduce the surface tension, thus facilitating the emulsification and solubilization of certain pollutants (in-situ biostimulation and/or bioaugmentation). Moreover, despite the low toxicity of biosurfactants, they can also act as biocidal agents at certain doses, mainly at higher concentrations than their critical micellar concentration. More recently, biosurfactant production using alternative substrates, such as several types of organic waste and solid-state fermentation, has increased its applicability and research interest in a circular economy context. In this review, the most recent research publications on the use of biosurfactants in environmental applications as an alternative to conventional chemical surfactants are summarized and analyzed. Novel strategies using biosurfactants as agricultural and biocidal agents are also presented in this paper.
Collapse
Affiliation(s)
- Estefanía Eras-Muñoz
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Abel Farré
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Font
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Teresa Gea
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
37
|
Sharma P, Gaur VK, Gupta S, Varjani S, Pandey A, Gnansounou E, You S, Ngo HH, Wong JWC. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152357. [PMID: 34921885 DOI: 10.1016/j.scitotenv.2021.152357] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
Majority of industries, in order to meet the technological development and consumer demands generate waste. The untreated waste spreads out toxic and harmful substances in the environment which serves as a breeding ground for pathogenic microorganisms thus causing severe health hazards. The three industrial sectors namely food, agriculture, and oil industry are among the primary organic waste producers that affect urban health and economic growth. Conventional treatment generates a significant amount of greenhouse gases which further contributes to global warming. Thus, the use of microbes for utilization of this waste, liberating CO2 offers an indispensable tool. The simultaneous production of value-added products such as bioplastics, biofuels, and biosurfactants increases the economics of the process and contributes to environmental sustainability. This review comprehensively summarized the composition of organic waste generated from the food, agriculture, and oil industry. The linkages between global health hazards of industrial waste and environmental implications have been uncovered. Stare-of-the-art information on their subsequent utilization as a substrate to produce value-added products through bio-routes has been elaborated. The research gaps, economical perspective(s), and future research directions have been identified and discussed to strengthen environmental sustainability.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
38
|
Human Lactobacillus Biosurfactants as Natural Excipients for Nasal drug Delivery of Hydrocortisone. Pharmaceutics 2022; 14:pharmaceutics14030524. [PMID: 35335901 PMCID: PMC8952429 DOI: 10.3390/pharmaceutics14030524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
The inclusion of a chemical permeation enhancer in a dosage form is considered an effective approach to improve absorption across the nasal mucosa. Herein we evaluated the possibility of exploiting biosurfactants (BS) produced by Lactobacillus gasseri BC9 as innovative natural excipients to improve nasal delivery of hydrocortisone (HC). BC9-BS ability to improve HC solubility and the BS mucoadhesive potential were investigated using the surfactant at a concentration below and above the critical micelle concentration (CMC). In vitro diffusion studies through the biomimetic membrane PermeaPad® and the same synthetic barrier functionalized with a mucin layer were assessed to determine BC9-BS absorption enhancing properties in the absence and presence of the mucus layer. Lastly, the diffusion study was performed across the sheep nasal mucosa using BC9-BS at a concentration below the CMC. Results showed that BC9-BS was able to interact with the main component of the nasal mucosa, and that it allowed for a greater solubilization and also permeation of the drug when it was employed at a low concentration. Overall, it seems that BC9-BS could be a promising alternative to chemical surfactants in the nasal drug delivery field.
Collapse
|
39
|
Raj A, Kumar A, Dames JF. Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Front Microbiol 2021; 12:791723. [PMID: 35003022 PMCID: PMC8733403 DOI: 10.3389/fmicb.2021.791723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Pesticides are used indiscriminately all over the world to protect crops from pests and pathogens. If they are used in excess, they contaminate the soil and water bodies and negatively affect human health and the environment. However, bioremediation is the most viable option to deal with these pollutants, but it has certain limitations. Therefore, harnessing the role of microbial biosurfactants in pesticide remediation is a promising approach. Biosurfactants are the amphiphilic compounds that can help to increase the bioavailability of pesticides, and speeds up the bioremediation process. Biosurfactants lower the surface area and interfacial tension of immiscible fluids and boost the solubility and sorption of hydrophobic pesticide contaminants. They have the property of biodegradability, low toxicity, high selectivity, and broad action spectrum under extreme pH, temperature, and salinity conditions, as well as a low critical micelle concentration (CMC). All these factors can augment the process of pesticide remediation. Application of metagenomic and in-silico tools would help by rapidly characterizing pesticide degrading microorganisms at a taxonomic and functional level. A comprehensive review of the literature shows that the role of biosurfactants in the biological remediation of pesticides has received limited attention. Therefore, this article is intended to provide a detailed overview of the role of various biosurfactants in improving pesticide remediation as well as different methods used for the detection of microbial biosurfactants. Additionally, this article covers the role of advanced metagenomics tools in characterizing the biosurfactant producing pesticide degrading microbes from different environments.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Joanna Felicity Dames
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
40
|
Piegza M, Szura K, Łaba W. Trichoderma citrinoviride: Anti-Fungal Biosurfactants Production Characteristics. Front Bioeng Biotechnol 2021; 9:778701. [PMID: 34888302 PMCID: PMC8650307 DOI: 10.3389/fbioe.2021.778701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanism of direct impact of Trichoderma fungi on other organisms is a multilayer process. The level of limiting the growth of other microorganisms is determined by the strain and often by the environment. Confirmation of the presence of extracellular biosurfactants in certain strains of Trichoderma considered as biocontrol agents was regarded as a crucial topic complementing the characterization of their interactive mechanisms. Selected strains of T. citrinoviride were cultured in media stimulating biosurfactant biosynthesis, optionally supplemented with lytic enzyme inducers. Results confirmed the anti-fungal properties of surface-active compounds in the tested culture fluids. Preparations that displayed high fungal growth inhibition presented marginal enzymatic activities of both chitinases and laminarinases, implying the inhibitory role of biosurfactants. Fractions from the foam of the culture fluid of the C1 strain, cultured on Saunders medium, and HL strain on MGP medium, without an additional carbon source, exhibited the most prominent ability to inhibit the growth of phytopathogens. Filamentous fungi capable of producing fungicidal compounds, including surfactants, may find applications in protecting the plants against agri-food pathogenic molds.
Collapse
Affiliation(s)
- Michał Piegza
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Scinces, Wrocław, Poland
| | - Kamil Szura
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Scinces, Wrocław, Poland
| | - Wojciech Łaba
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Scinces, Wrocław, Poland
| |
Collapse
|
41
|
Adnan M, Siddiqui AJ, Hamadou WS, Ashraf SA, Hassan MI, Snoussi M, Badraoui R, Jamal A, Bardakci F, Awadelkareem AM, Sachidanandan M, Patel M. Functional and Structural Characterization of Pediococcus pentosaceus-Derived Biosurfactant and Its Biomedical Potential against Bacterial Adhesion, Quorum Sensing, and Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10111371. [PMID: 34827310 PMCID: PMC8614858 DOI: 10.3390/antibiotics10111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022] Open
Abstract
Biosurfactants are surface-active molecules of microbial origin and alternatives to synthetic surfactants with various applications. Due to their environmental-friendliness, biocompatibility, biodegradability, effectiveness to work under various environmental conditions, and non-toxic nature, they have been recently recognized as potential agents with therapeutic and commercial importance. The biosurfactant produced by various probiotic lactic acid bacteria (LAB) has enormous applications in different fields. Thus, in vitro assessment of biofilm development prevention or disruption by natural biosurfactants derived from probiotic LAB is a plausible approach that can lead to the discovery of novel antimicrobials. Primarily, this study aims to isolate, screen, and characterize the functional and biomedical potential of biosurfactant synthesized by probiotic LAB Pediococcus pentosaceus (P. pentosaceus). Characterization consists of the assessment of critical micelle concentration (CMC), reduction in surface tension, and emulsification index (% EI24). Evaluation of antibacterial, antibiofilm, anti-QS, and anti-adhesive activities of cell-bound biosurfactants were carried out against different human pathogenic bacteria (B. subtilis, P. aeruginosa, S. aureus, and E. coli). Moreover, bacterial cell damage, viability of cells within the biofilm, and exopolysaccharide (EPS) production were also evaluated. As a result, P. pentosaceus was found to produce 4.75 ± 0.17 g/L biosurfactant, which displayed a CMC of 2.4 ± 0.68 g/L and reduced the surface tension from 71.11 ± 1.12 mN/m to 38.18 ± 0.58 mN/m. P. pentosaceus cells bound to the crude biosurfactant were found to be effective against all tested bacterial pathogens. It exhibited an anti-adhesion ability and impeded the architecture of the biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total EPS content. Furthermore, the crude biosurfactant derived from P. pentosaceus was structurally characterized as a lipoprotein by GC-MS analysis, which confirms the presence of lipids and proteins. Thus, our findings represent the potent anti-adhesion and antibiofilm potential of P. pentosaceus crude biosurfactant for the first time, which may be explored further as an alternative to antibiotics or chemically synthesized toxic antibiofilm agents.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Correspondence: (M.A.); (M.P.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 10025, India;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Center, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
- Correspondence: (M.A.); (M.P.)
| |
Collapse
|