1
|
Yin L, Yuan X, Yu J, Ren X, Zhang H, Ye Y, Wang Z, Chen X. β-asarone relieves Parkinson's disease through reducing intracellular Ca 2+ in PINK1 mutant Drosophila melanogaster. Eur J Pharmacol 2025; 987:177155. [PMID: 39622404 DOI: 10.1016/j.ejphar.2024.177155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/20/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
β-asarone, an effective volatile oil component of Acorus chinensis, has been found to hold beneficial effects on Parkinson's disease (PD), but its mechanism remains incompletely understood. Drosophila melanogaster with PTEN induced kinase 1 (PINK1) mutations, a prototype PD model, was used in this study. We found that calcium chelation profoundly alleviated a spectrum of PD symptoms. Whereas, calcium supplementation made the case worse, suggesting accumulated calcium contributes to progression of PD. β-asarone administration decreased Ca2+ level in PD flies, accompanied by alleviated behavioral and neural defects. Further study demonstrated that β-asarone downregulated L-type Ca2+ channels (Dmca1D), which was increased in PD flies. Besides, β-asarone decreased expression of 1,4,5 - trisphosphate receptor (Itpr), which is responsible for calcium release from endoplasmic reticulum (ER). Knockdown of either Dmca1D or Itpr specifically in dopaminergic neurons alleviated behavioral and neural defects in PD flies. While overexpression of Itpr aggravated PD symptoms. The results indicated that increased intracellular calcium influx and release triggers dysregulation of calcium homeostasis in PD flies. And β-asarone prevents PD by restoring Ca2+ homeostasis. Overall, the study demonstrated that β-asarone can serve as a new prospective medication against PD or other diseases associated with dysregulation of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Lanxiang Yin
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xintong Yuan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiahui Yu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuemin Ren
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongqin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yunyan Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, Anhui, China
| | - Zixuan Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiangtao Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Xia M, Yi M, Guo C, Xie Y, Yu W, Wang D, Dai X. β-Asarone regulates microglia polarization to alleviate TBI-induced nerve damage via Fas/FasL signaling axis. Hum Cell 2024; 38:33. [PMID: 39718669 DOI: 10.1007/s13577-024-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Acute injury and secondary injury caused by traumatic brain injury (TBI) seriously threaten the health of patients. The purpose of this study was to investigate the role of β-Asarone in TBI-induced neuroinflammation and injury. In this work, the effects of β-Asarone on nerve injury and neuronal apoptosis were investigated in mice with TBI by controlled cortical impingement. The results of this research implied that β-Asarone dose-dependently decreased the mNSS score, brain water content and neuronal apoptosis, but increased the levels of the axonal markers Nrp-1 and Tau in TBI mice. In addition, β-Asarone caused a decrease in the levels of Fas, FasL, and inflammatory factors in cerebrospinal fluid and serum of TBI mice. Therefore, β-Asarone inhibited neuroinflammation and promoted axon regeneration in TBI mice. Besides, β-Asarone treatment inhibited M1 phenotype polarization but promoted M2 phenotype polarization in microglia of TBI mice. Overexpression of Fas and FasL reversed the above effects of β-Asarone. Thus, β-Asarone regulated microglial M1/M2 polarization balance in TBI mice by suppressing Fas/FasL signaling axis. In conclusion, β-Asarone inhibited Fas/FasL signaling pathway to promote the M1/M2 polarization balance of microglia toward M2 polarization, thus alleviating TBI-induced nerve injury.
Collapse
Affiliation(s)
- Mingyue Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Min Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chunyuan Guo
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- Jiangxi Provincial, People's Hospital, Clinical College of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yeli Xie
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Wenting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingping Dai
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China.
| |
Collapse
|
3
|
Chen Y, Huang J, Zhou Z, Zhang J, Jin C, Zeng X, Jia J, Li L. Noise exposure-induced the cerebral alterations: From emerging evidence to antioxidant-mediated prevention and treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117411. [PMID: 39591731 DOI: 10.1016/j.ecoenv.2024.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
It's well acknowledged that noise exposure has become a major environmental risk factor of public health. The previous standpoint holds that the main harm of noise exposure is to cause hearing loss of human. However, in the past two decades a large number of studies have linked the noise exposure to various cerebral changes. In this review, we summarized that noise exposure led to cerebral changes through breaking the redox balance, inducing neuroinflammation and neuronal apoptosis and altering the neurotransmission in numerous brain areas, including cortex, thalamus, hippocampus, amygdala, striatum and cerebellum. Those cerebral changes finally result in a variety of disorders, such as tinnitus, anxiety, depression, cognitive impairment and motor dysfunction. Furthermore, we reviewed several antioxidants, such as resveratrol, vitamin C, curcumin, N-acetylcysteine and α-asarone, and highlighted their protective mechanisms against noise exposure, aiming to provide a promising strategy to prevent and treat noise exposure-induced diseases. Taken together, noise exposure induces various cerebral changes and further leads to disorders in the central nervous system, which can be ameliorated by the treatment with antioxidants.
Collapse
Affiliation(s)
- Yuyan Chen
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Zhiying Zhou
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Chaohui Jin
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China; Judicial Expertise Center, Jiaxing University, Jiaxing, China.
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, China.
| | - Li Li
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, China.
| |
Collapse
|
4
|
Luo L, Hu Q, Yan R, Gao X, Zhang D, Yan Y, Liu Q, Mao S. Alpha‑Asarone Ameliorates Neuronal Injury After Ischemic Stroke and Hemorrhagic Transformation by Attenuating Blood-Brain Barrier Destruction, Promoting Neurogenesis, and Inhibiting Neuroinflammation. Mol Neurobiol 2024:10.1007/s12035-024-04596-5. [PMID: 39531192 DOI: 10.1007/s12035-024-04596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Recombinant tissue-type plasminogen activator (rt-PA), the primary drug for acute ischemic stroke (IS), has a narrow therapeutic window and carries a potential risk of hemorrhagic transformation (HT). Without rt-PA administration, patients may suffer permanent cerebral ischemia. Alpha-asarone (ASA), a natural compound derived from Acorus tatarinowii Schott, exhibits diverse neuropharmacological effects. This study aims to investigate whether ASA could improve outcomes in IS and be used to mitigate HT induced by rt-PA. We employed models of permanent middle cerebral artery occlusion (pMCAO) and photothrombotic cortical injury (PCI) to investigate both the therapeutic efficacy and underlying mechanisms of ASA during the acute and recovery periods following IS, respectively. Additionally, Sprague-Dawley rats were subjected to rt-PA treatment at 6-h post-PCI to mimic HT (rt-PA-HT). Our results revealed three key findings: (1) ASA demonstrated therapeutic effects in the acute phase of pMCAO rats by alleviating blood-brain barrier damage through inhibition of glial cell-mediated neuroinflammation; (2) administration of ASA 24 h after stroke ameliorated the neurological damage during the recovery phase in PCI mice by promoting neurogenesis via activation of the BDNF/ERK/CREB signaling pathway; (3) ASA attenuated rt-PA-HT injury by modulating the NLRP3/Caspase1/IL-1β and IL-18 pathways. Overall, our findings suggest that ASA mitigates neuronal injury following IS and HT, positioning it as a promising candidate for treating these conditions.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qinrui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Lee JY, Kim S, Kim H, Yeon SH, Kim SY, Son RH, Park CL, Lee YH. Improvement in Testosterone Production by Acorus gramineus for the Alleviation of Andropause Symptoms. J Med Food 2024; 27:740-748. [PMID: 38828543 DOI: 10.1089/jmf.2023.k.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Acorus gramineus has a number of beneficial effects, including protective effects against age-related disorders. In this study, the effects of A. gramineus on testosterone production and andropause symptoms were evaluated. We first treated TM3 mouse Leydig cells, responsible for testosterone production, with A. gramineus aqueous extract at different concentrations. In TM3 cells, the testosterone concentration increased in a concentration-dependent manner compared with those in the control. In addition, at 400 μg/mL extract, the mRNA expression level of the steroidogenic enzyme CYP11A1 was increased. Subsequently, 23-week-old Sprague-Dawley (SD) rats exhibiting an age-related reduction in serum testosterone (approximately 80% lower than that in 7-week-old SD rats) were administered A. gramineus aqueous extract for 8 weeks. Serum total testosterone and free testosterone levels were higher and serum estradiol, prostate-specific antigen levels, and total cholesterol levels were lower in the AG50 group (A. gramineus aqueous extract 50 mg/kg of body weight/day) than in the OLD (control group). The AG50 group also showed significant elevations in sperm count, grip strength, and mRNA expression of StAR, CYP11A1, 17β-HSD, and CYP17A1 compared with those in the OLD group. In conclusion, A. gramineus aqueous extract facilitated steroidogenesis in Leydig cells, elevated testosterone levels, lowered serum estradiol and total cholesterol levels, and increased muscle strength and sperm count, thus alleviating the symptoms of andropause. These findings suggest that A. gramineus aqueous extract is a potentially effective therapeutic agent against various symptoms associated with andropause.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Seokho Kim
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Hongeun Kim
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Sung-Hum Yeon
- Healthcare Research Division, Huons(O) Global Ltd., Seongnam(O), South Korea
| | - Sang-Yoon Kim
- Healthcare Research Division, Huons(O) Global Ltd., Seongnam(O), South Korea
| | - Rak Ho Son
- Healthcare Research Division, Huons(O) Global Ltd., Seongnam(O), South Korea
| | - Chae Lee Park
- Healthcare Research Division, Huons(O) Global Ltd., Seongnam(O), South Korea
| | - Yoo-Hyun Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| |
Collapse
|
6
|
Alwaili MA, Elhoby AH, El-Sayed NM, Mahmoud IZ, Alharthi A, El-Nablaway M, Khodeer DM. Cardioprotective Effects of α-Asarone Against Hexavalent Chromium-Induced Oxidative Damage in Mice. Drug Des Devel Ther 2024; 18:3383-3397. [PMID: 39100222 PMCID: PMC11297565 DOI: 10.2147/dddt.s464334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction This comprehensive study investigated the therapeutic potential of α-asarone in mitigating myocardial oxidative damage, primarily induced by hexavalent chromium (Cr(VI)) exposure in mice. Methods In this experiment, 24 mice were divided into four groups to assess the cardioprotective role of α-asarone. The study focused on two treatment groups, receiving 25 mg and 50 mg of α-asarone, respectively. These groups were compared against a control group subjected to Cr(VI) without α-asarone treatment, and a normal control negative group. The key biochemical parameters evaluated included serum levels of Creatine Kinase-MB (CK-MB) and Troponin I, markers indicative of myocardial damage. Additionally, the levels of Malondialdehyde (MDA) were measured to assess lipid peroxidation, alongside the evaluation of key inflammatory biomarkers in cardiac tissue homogenates, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin-1β (IL-1β). Results Remarkably, α-asarone treatment resulted in a significant reduction in these markers compared to the control group. The treatment also elevated the activity of cardinal antioxidant enzymes like catalase (CAT) and superoxide dismutase (SOD), and reduced the glutathione (GSH). Furthermore, a notable upregulation of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) in cardiac tissue homogenates was observed, highlighting a potential pathway through which α-asarone exerts its protective effects. Histopathological analysis of cardiac tissues revealed that α-asarone ameliorated the structural lesions induced by Cr(VI). The study thus provides substantial evidence that α-asarone ameliorates Cr(VI)-induced cardiotoxicity through a multifaceted approach. It enhances cardiac enzyme function, modulates free radical generation, improves antioxidant status, and mitigates histopathological damage in cardiac tissues. Given these findings, α-asarone emerges as a promising agent against Cr(VI)-induced myocardial injury. Purpose This study paves the way for further research into the cardioprotective properties of α-asarone and its potential application in clinical settings by specifically exploring the protective efficacy of α-asarone against Cr(VI)-induced cardiotoxicity and delineating the underlying biochemical and molecular mechanisms involved.
Collapse
Affiliation(s)
- Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdallah H Elhoby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Islam Z Mahmoud
- Department of Cardiovascular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh, 13713, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Shang C, Su Y, Ma J, Li Z, Wang P, Ma H, Song J, Zhang Z. Huanshaodan regulates microglial glucose metabolism reprogramming to alleviate neuroinflammation in AD mice through mTOR/HIF-1α signaling pathway. Front Pharmacol 2024; 15:1434568. [PMID: 39130642 PMCID: PMC11310104 DOI: 10.3389/fphar.2024.1434568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Abnormal glucose metabolism in microglial is closely associated with Alzheimer's disease (AD). Reprogramming of microglial glucose metabolism is centered on regulating the way in which microglial metabolize glucose to alter microglial function. Therefore, reprogramming microglial glucose metabolism is considered as a therapeutic strategy for AD. Huanshaodan (HSD) is a Chinese herbal compound which shows significant efficacy in treating AD, however, the precise mechanism by which HSD treats AD remains unclear. This study is aim to investigate whether HSD exerts anti-AD effects by regulating the metabolic reprogramming of microglial through the mTOR/HIF-1α signaling pathway. SAMP8 mice and BV2 cells were used to explore the alleviative effect of HSD on AD and the molecular mechanism in vivo and in vitro. The pharmacodynamic effects of HSD was evaluated by behavioral tests. The pathological deposition of Aβ in brain of mice was detected by immunohistochemistry. ELISA method was used to measure the activity of HK2 and the expression of PKM2, IL-6 and TNF-α in hippocampus and cortex tissues of mice. Meanwhile, proteins levels of p-mTOR, mTOR, HIF-1α, CD86, Arg1 and IL-1β were detected by Western-blot. LPS-induced BV2 cells were treated with HSD-containing serum. The analysis of the expression profiles of the CD86 and CD206 markers by flow cytometry allows us to distinguish the BV2 polarization. Glucose, lactic acid, ATP, IL-6 and TNF-α levels, as well as lactate dehydrogenase and pyruvate dehydrogenase activities were evaluated in the BV2. Western-blot analysis was employed to detect mTOR, p-mTOR, HIF-1α and IL-1β levels in BV2. And the mTOR agonist MHY1485 (MHY) was chosen to reverse validate. In this study, it is found that HSD improved cognitive impairment in SAMP8 mice and reduced Aβ deposition, suppressed the levels of glycolysis and neuroinflammation in mice. In LPS-induced BV2 cells, HSD also regulated glycolysis and neuroinflammation, and suppressed the mTOR/HIF-1α signaling pathway. More importantly, these effects were reversed by MHY. It is demonstrated that HSD regulated microglial glucose metabolism reprogramming by inhibiting the mTOR/HIF-1α signaling pathway, alleviated neuroinflammation, and exerted anti-AD effects. This study provided scientific evidence for the clinical application of HSD for treating AD.
Collapse
Affiliation(s)
- Congcong Shang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yunfang Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinlian Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhonghua Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Pan Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Junying Song
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Lv S, Zhang G, Lu Y, Zhong X, Huang Y, Ma Y, Yan W, Teng J, Wei S. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155669. [PMID: 38696923 DOI: 10.1016/j.phymed.2024.155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355,China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
9
|
Sun D, Wu L, Lan S, Chi X, Wu Z. β-asarone induces viability and angiogenesis and suppresses apoptosis of human vascular endothelial cells after ischemic stroke by upregulating vascular endothelial growth factor A. PeerJ 2024; 12:e17534. [PMID: 38948219 PMCID: PMC11214739 DOI: 10.7717/peerj.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Ischemic stroke (IS) is a disease with a high mortality and disability rate worldwide, and its incidence is increasing per year. Angiogenesis after IS improves blood supply to ischemic areas, accelerating neurological recovery. β-asarone has been reported to exhibit a significant protective effect against hypoxia injury. The ability of β-asarone to improve IS injury by inducing angiogenesis has not been distinctly clarified. The experimental rats were induced with middle cerebral artery occlusion (MCAO), and oxygen-glucose deprivation (OGD) model cells were constructed using human microvascular endothelial cell line (HMEC-1) cells. Cerebral infarction and pathological damage were first determined via triphenyl tetrazolium chloride (TTC) and hematoxylin and eosin (H&E) staining. Then, cell viability, apoptosis, and angiogenesis were assessed by utilizing cell counting kit-8 (CCK-8), flow cytometry, spheroid-based angiogenesis, and tube formation assays in OGD HMEC-1 cells. Besides, angiogenesis and other related proteins were identified with western blot. The study confirms that β-asarone, like nimodipine, can ameliorate cerebral infarction and pathological damage. β-asarone can also upregulate vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) and induce phosphorylation of p38. Besides, the study proves that β-asarone can protect against IS injury by increasing the expression of VEGFA. In vitro experiments affirmed that β-asarone can induce viability and suppress apoptosis in OGD-mediated HMEC-1 cells and promote angiogenesis of OGD HMEC-1 cells by upregulating VEGFA. This establishes the potential for β-asarone to be a latent drug for IS therapy.
Collapse
Affiliation(s)
- Dazhong Sun
- Department of Acupuncture and Moxibustion Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Lulu Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyuan Lan
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangfeng Chi
- Department of Acupuncture and Moxibustion Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Zhibing Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Anbaraki A, Dindar Z, Mousavi-Jarrahi Z, Ghasemi A, Moeini Z, Evini M, Saboury AA, Seyedarabi A. The novel anti-fibrillary effects of volatile compounds α-asarone and β-caryophyllene on tau protein: Towards promising therapeutic agents for Alzheimer's disease. Int J Biol Macromol 2024; 271:132401. [PMID: 38761902 DOI: 10.1016/j.ijbiomac.2024.132401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The abnormal deposition of tau protein is one of the critical causes of tauopathies including Alzheimer's disease (AD). In recent years, there has been great interest in the use of essential oils and volatile compounds in aromatherapy for treating AD, since volatile compounds can directly reach the brain through intranasal administration. The volatile compounds α-asarone (ASA) and β-caryophyllene (BCP) have revealed various important neuroprotective properties, useful in treating AD. In this study, the volatile compounds ASA and BCP were assessed for their effectiveness in preventing tau fibrillation, disassembly of pre-formed tau fibrils, and disaggregation of tau aggregates. SDS-PAGE and AFM analyses revealed that ASA and BCP inhibited tau fibrillation/aggregation and decreased the mean size of tau oligomers. Tau samples treated with ASA and BCP, showed a reduction in ThT and ANS fluorescence intensities, and a decrease in the β-sheet content. Additionally, ASA and BCP disassembled the pre-formed tau fibrils to the granular and linear oligomeric intermediates. Treatment of neuroblastoma SH-SY5Y cells with tau samples treated with ASA and BCP, revealed protective effects as shown by reduced toxicity of the cells, due to the inhibition of tau fibrillation/aggregation. Overall, ASA and BCP appeared to be promising therapeutic candidates for AD.
Collapse
Affiliation(s)
- Afrooz Anbaraki
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Dindar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mina Evini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Umeda T, Sakai A, Shigemori K, Nakata K, Nakajima R, Yamana K, Tomiyama T. New Value of Acorus tatarinowii/ gramineus Leaves as a Dietary Source for Dementia Prevention. Nutrients 2024; 16:1589. [PMID: 38892521 PMCID: PMC11175135 DOI: 10.3390/nu16111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizomes of Acorus tatarinowii Schott and Acorus gramineus Solander are widely used for treating amnesia in traditional Chinese medicine. In contrast, their leaves are usually discarded without their medicinal properties being known. Here, we found that the hot water extract of leaves improved cognition and tau pathology in model mice of frontotemporal dementia, similar to or even better than that of rhizomes. To explore the optimal method of processing, we made three preparations from dried leaves: hot water extract, extraction residue, and non-extracted simple crush powder. Among them, the simple crush powder had the strongest effect on tauopathy in mice. The crush powder also ameliorated Aβ and α-synuclein pathologies and restored cognition in mouse models of Alzheimer's disease and dementia with Lewy bodies. These findings suggest the potential of Acorus tatarinowii/gramineus leaves as a dietary source for dementia prevention and reveal that simple crushing is a better way to maximize their efficacy.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
| | - Kunio Nakata
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Ryota Nakajima
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Kei Yamana
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| |
Collapse
|
12
|
Yang K, Zeng L, He Q, Wang S, Xu H, Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front Pharmacol 2024; 15:1250918. [PMID: 38601463 PMCID: PMC11004298 DOI: 10.3389/fphar.2024.1250918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Critical Care Medicine, People’s Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Singh K, Gupta JK, Kumar S, Soni U. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides. Curr Protein Pept Sci 2024; 25:507-526. [PMID: 38561605 DOI: 10.2174/0113892037275221240327042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neurodegenerative disorders, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a significant and growing global health challenge. Current therapies predominantly focus on symptom management rather than altering disease progression. In this review, we discuss the major therapeutic strategies in practice for these disorders, highlighting their limitations. For AD, the mainstay treatments are cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. For PD, dopamine replacement therapies, including levodopa, are commonly used. HD is managed primarily with symptomatic treatments, and reusable extends survival in ALS. However, none of these therapies halts or substantially slows the neurodegenerative process. In contrast, this review highlights emerging research into bioactive peptides as potential therapeutic agents. These naturally occurring or synthetically designed molecules can interact with specific cellular targets, potentially modulating disease processes. Preclinical studies suggest that bioactive peptides may mitigate oxidative stress, inflammation, and protein misfolding, which are common pathological features in neurodegenerative diseases. Clinical trials using bioactive peptides for neurodegeneration are limited but show promising initial results. For instance, hemiacetal, a γ-secretase inhibitor peptide, has shown potential in AD by reducing amyloid-beta production, though its development was discontinued due to side effects. Despite these advancements, many challenges remain, including identifying optimal peptides, confirming their mechanisms of action, and overcoming obstacles related to their delivery to the brain. Future research should prioritize the discovery and development of novel bioactive peptides and improve our understanding of their pharmacokinetics and pharmacodynamics. Ultimately, this approach may lead to more effective therapies for neurodegenerative disorders, moving beyond symptom management to potentially modify the course of these devastating diseases.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Urvashi Soni
- Department of Pharmacology, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, Maharashtra, India
| |
Collapse
|
14
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
15
|
Shan X, Yang X, Li D, Zhou L, Qin S, Li J, Tao W, Peng C, Wei J, Chu X, Wang H, Zhang C. Research on the quality markers of antioxidant activity of Kai-Xin-San based on the spectrum-effect relationship. Front Pharmacol 2023; 14:1270836. [PMID: 38205371 PMCID: PMC10777484 DOI: 10.3389/fphar.2023.1270836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024] Open
Abstract
Background: Kai-Xin-San (KXS) is one of the classic famous traditional Chinese medicine prescriptions for amnesia, which has been applied for thousands of years. Modern pharmacological research has found that KXS has significant therapeutic efficacy on nervous system diseases, which is related to its antioxidant activity. However, the antioxidant material basis and quality markers (Q-makers) of KXS have not been studied. Objective: The objective of this study is to explore the Q-makers of antioxidant activity of KXS based on spectrum-effect relationship. Methods: Specifically, the metabolites in KXS extracts were identified by UPLC-Q-Exactive Orbitrap MS/MS. The fingerprint profile of KXS extracts were established by high-performance liquid chromatography (HPLC) and seven common peaks were identified. Meanwhile, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test was used to evaluate the free radical scavenging ability of KXS. The spectrum-effect relationship between its HPLC fingerprint and DPPH free radical scavenging activity was preliminarily examined by the Pearson correlation analysis, grey relation analysis (GRA), and orthogonal partial least squares discrimination analysis (OPLS-DA). Further, the antioxidant effect of KXS and its Q-makers were validated through human neuroblastoma (SH-SY5Y) cells experiment. Results: The results showed that 103 metabolites were identified from KXS, and the similarity values between HPLC fingerprint of twelve batches of KXS were greater than 0.900. At the same time, the results of Pearson correlation analysis showed that the peaks 8, 1, 14, 17, 18, 24, 16, 21, 15, 13, 6, 5, and 3 from KXS were positively correlated with the scavenging activity values of DPPH. Combined with the results of GRA and OPLS-DA, peaks 1, 3, 5 (Sibiricose A6), 6, 13 (Ginsenoside Rg1), 15, and 24 in the fingerprints were screen out as the potential Q-makers of KXS for antioxidant effect. Besides, the results of CCK-8 assay showed that KXS and its Q-makers remarkably reduced the oxidative damage of SH-SY5Y cells caused by H2O2. However, the antioxidant activity of KXS was decreased significantly after Q-makers were knocked out. Conclusion: In conclusion, the metabolites in KXS were successfully identified by UPLC-Q-Exactive Orbitrap MS/MS, and the Q-makers of KXS for antioxidant effect was analyzed based on the spectrum-effect relationship. These results are beneficial to clarify the antioxidant material basis of KXS and provide the quality control standards for new KXS products development.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xuan Yang
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Dawei Li
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lele Zhou
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shaogang Qin
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Hefei Food and Drug Inspection Center, Hefei, Anhui, China
| | - Junying Li
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wenkang Tao
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Can Peng
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinming Wei
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Haixuan Wang
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Hefei Food and Drug Inspection Center, Hefei, Anhui, China
| | - Caiyun Zhang
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
16
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
17
|
Jannat K, Balakrishnan R, Han JH, Yu YJ, Kim GW, Choi DK. The Neuropharmacological Evaluation of Seaweed: A Potential Therapeutic Source. Cells 2023; 12:2652. [PMID: 37998387 PMCID: PMC10670678 DOI: 10.3390/cells12222652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The most common neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are the seventh leading cause of mortality and morbidity in developed countries. Clinical observations of NDD patients are characterized by a progressive loss of neurons in the brain along with memory decline. The common pathological hallmarks of NDDs include oxidative stress, the dysregulation of calcium, protein aggregation, a defective protein clearance system, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, and damage to cholinergic neurons. Therefore, managing this pathology requires screening drugs with different pathological targets, and suitable drugs for slowing the progression or prevention of NDDs remain to be discovered. Among the pharmacological strategies used to manage NDDs, natural drugs represent a promising therapeutic strategy. This review discusses the neuroprotective potential of seaweed and its bioactive compounds, and safety issues, which may provide several beneficial insights that warrant further investigation.
Collapse
Affiliation(s)
- Khoshnur Jannat
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Rengasamy Balakrishnan
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| | - Jun-Hyuk Han
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ye-Ji Yu
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ga-Won Kim
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| |
Collapse
|
18
|
Zhao Y, Li J, Cao G, Zhao D, Li G, Zhang H, Yan M. Ethnic, Botanic, Phytochemistry and Pharmacology of the Acorus L. Genus: A Review. Molecules 2023; 28:7117. [PMID: 37894595 PMCID: PMC10609487 DOI: 10.3390/molecules28207117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The genus Acorus, a perennial monocotyledonous-class herb and part of the Acoraceae family, is widely distributed in the temperate and subtropical zones of the Northern and Southern Hemispheres. Acorus is rich in biological activities and can be used to treat various diseases of the nervous system, cardiovascular system, and digestive system, including Alzheimer's disease, depression, epilepsy, hyperlipidemia, and indigestion. Recently, it has been widely used to improve eutrophic water and control heavy-metal-polluted water. Thus far, only three species of Acorus have been reported in terms of chemical components and pharmacological activities. Previously published reviews have not further distinguished or comprehensively expounded the chemical components and pharmacological activities of Acorus plants. By carrying out a literature search, we collected documents closely related to Acorus published from 1956 to 2022. We then performed a comprehensive and systematic review of the genus Acorus from different perspectives, including botanical aspects, ethnic applications, phytochemistry aspects, and pharmacological aspects. Our aim was to provide a basis for further research and the development of new concepts.
Collapse
Affiliation(s)
- Yu Zhao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia Li
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guoshi Cao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guangzhe Li
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hongyin Zhang
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingming Yan
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
19
|
Chen L, Zhen Y, Wang X, Wang J, Zhu G. Neurovascular glial unit: A target of phytotherapy for cognitive impairments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155009. [PMID: 37573807 DOI: 10.1016/j.phymed.2023.155009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.
Collapse
Affiliation(s)
- Lixia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yilan Zhen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
20
|
Mucke HA. Patent highlights December 2022-January 2023. Pharm Pat Anal 2023; 12:151-158. [PMID: 37801039 DOI: 10.4155/ppa-2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
|
21
|
Wang M, Tang HP, Wang S, Hu WJ, Li JY, Yu AQ, Bai QX, Yang BY, Kuang HX. Acorus tatarinowii Schott: A Review of Its Botany, Traditional Uses, Phytochemistry, and Pharmacology. Molecules 2023; 28:molecules28114525. [PMID: 37299001 DOI: 10.3390/molecules28114525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Acorus tatarinowii Schott (A. tatarinowii) is a natural medicinal plant. It plays an indispensable role in the treatment of diseases by the empirical medicine system and has achieved remarkable curative effects. A. tatarinowii is often used to treat various diseases, such as depression, epilepsy, fever, dizziness, heartache, stomachache, etc. More than 160 compounds of different structural types have been identified in A. tatarinowii, including phenylpropanoids, terpenoids, lignans, flavonoids, alkaloids, amides, and organic acids. These bioactive ingredients make A. tatarinowii remarkable for its pharmacological effects, including antidepressant, antiepileptic, anticonvulsant, antianxiety, neuroprotective, antifatigue, and antifungal effects, improving Alzheimer's disease, and so on. It is noteworthy that A. tatarinowii has been widely used in the treatment of brain diseases and nervous system diseases and has achieved satisfactory therapeutic effects. This review focused on the research publications of A. tatarinowii and aimed to summarize the advances in the botany, traditional uses, phytochemistry, and pharmacology, which will provide a reference for further studies and applications of A. tatarinowii.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jia-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
22
|
Balakrishnan R, Azam S, Kim IS, Choi DK. Neuroprotective Effects of Black Pepper and Its Bioactive Compounds in Age-Related Neurological Disorders. Aging Dis 2023; 14:750-777. [PMID: 37191428 PMCID: PMC10187688 DOI: 10.14336/ad.2022.1022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/22/2022] [Indexed: 11/18/2022] Open
Abstract
Age-related neurological disorders (ANDs), including neurodegenerative diseases, are multifactorial disorders whose risk increases with age. The main pathological hallmarks of ANDs include behavioral changes, excessive oxidative stress, progressive functional declines, impaired mitochondrial function, protein misfolding, neuroinflammation, and neuronal cell death. Recently, efforts have been made to overcome ANDs because of their increased age-dependent prevalence. Black pepper, the fruit of Piper nigrum L. in the family Piperaceae, is an important food spice that has long been used in traditional medicine to treat various human diseases. Consumption of black pepper and black pepper-enriched products is associated with numerous health benefits due to its antioxidant, antidiabetic, anti-obesity, antihypertensive, anti-inflammatory, anticancer, hepatoprotective, and neuroprotective properties. This review shows that black pepper's major bioactive neuroprotective compounds, such as piperine, effectively prevent AND symptoms and pathological conditions by modulating cell survival signaling and death. Relevant molecular mechanisms are also discussed. In addition, we highlight how recently developed novel nanodelivery systems are vital for improving the efficacy, solubility, bioavailability, and neuroprotective properties of black pepper (and thus piperine) in different experimental AND models, including clinical trials. This extensive review shows that black pepper and its active ingredients have therapeutic potential for ANDs.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
23
|
Liu H, Zhou R, Yin L, Si N, Yang C, Huang C, Wang R, Chen X. β-asarone prolongs sleep via regulating the level of glutamate in the PVN. Biochem Biophys Res Commun 2023; 665:71-77. [PMID: 37149985 DOI: 10.1016/j.bbrc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
People of all ages could suffer from sleep disorders, which are increasingly recognized as common manifestations of neurologic disease. Acorus tatarinowii is a herb that has been used in traditional medicine to promote sleep. β-asarone, as the main component of volatile oil obtained from Acorus tatarinowii, may be the main contributor to the sleeping-promoting efficacy of Acorus tatarinowii. In the study, adult male C57BL/6 mice were administered β-asarone at 12.5 mg/kg, 25 mg/kg, and 50 mg/kg. Behavioral experiments showed that β-asarone at 25 mg/kg could significantly improve sleep duration. It was also observed that the proportion of NREM (Non-Rapid Eye Movement) sleep increased considerably after administration of β-asarone. In the PVN (paraventricular nucleus of hypothalamus) region of the hypothalamus, it was observed that the glutamate content decreased after β-asarone treatment. At the same time, the expression of VGLUT2 (vesicular glutamate transporters 2) decreased while the expression of GAD65 (glutamic acid decarboxylase 65) and GABARAP (GABA Type A Receptor-Associated Protein) increased in the hypothalamus, suggesting that β-asarone may suppress arousal by reducing glutamate and promoting transformation of glutamate to the inhibitory neurotransmitter GABA (γ-aminobutyric acid). This study is the first to focus on the association between β-asarone and sleep, shedding perspectives for pharmacological applications of β-asarone and providing a new direction for future research.
Collapse
Affiliation(s)
- Haoyu Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ruiqing Zhou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lanxiang Yin
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Nana Si
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chenglin Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chengqing Huang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rongrong Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangtao Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
24
|
Kim CJ, Kwak TY, Bae MH, Shin HK, Choi BT. Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine. J Pharmacopuncture 2022; 25:326-343. [PMID: 36628348 PMCID: PMC9806153 DOI: 10.3831/kpi.2022.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.
Collapse
Affiliation(s)
- Cheol Ju Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Tae Young Kwak
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Hyeok Bae
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| |
Collapse
|
25
|
Antiepileptic Effect of Neuroaid ® on Strychnine-Induced Convulsions in Mice. Pharmaceuticals (Basel) 2022; 15:ph15121468. [PMID: 36558919 PMCID: PMC9784395 DOI: 10.3390/ph15121468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
NeuroAid II, a folk Chinese Medicine, is currently used in Asia for the treatment of stroke. An experimental study demonstrated that NeuroAid enables neuronal cells to be more resistant to glutamate toxicity. This research was constructed to evaluate the efficacy of NeuroAid in the prevention of epilepsy (EP). Forty healthy adult male mice were used and divided into four groups (10 mice/group): normal control group; positive control group; NeuroAid-treated group (10 mg/kg); topiramate-treated group (10 mg/kg). The treatment continued for 7 days, and on the last day, EP was induced using strychnine at a dose of 2 mg/kg via intraperitoneal (ip) administration. Seizure severity, latency to the seizure onset, the number of seizures, and the duration of each seizure episode were observed for one hour. The death and protection rates over the next twenty-four hours were recorded. Brain specimens from surviving animals were extracted and examined pathologically for quantification of glutamate receptor (GluR) gene expression in the isolated hippocampus employing real-time PCR analysis. Treatment with NeuroAid resulted in a significant reduction in seizure severity, prolonged the onset of seizures, decreased the number and duration of episodes, reduced brain insult, and decreased mortality rate. Reductions in the gene expression of GluRs in the hippocampus with minor histopathological changes were observed in the NeruoAid- and topiramate-treated groups. It is concluded that NeuroAid has a potential antiepileptic effect (EP) with the ability to prevent convulsion through its effect on the glutamate receptor.
Collapse
|
26
|
Ukkirapandian K, E K, Udaykumar KP, Kandhi S, R M. The Neuroprotective Role of Acorus calamus in Developmental and Histopathological Changes in Autism-Induced Wistar Rats. Cureus 2022; 14:e29717. [PMID: 36340563 PMCID: PMC9621743 DOI: 10.7759/cureus.29717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder, and a tremendous increase in the incidence of autism poses challenges in identifying the different treatment modalities. Since the defined etiology, pathophysiology, and treatment of autism are unavailable, translational research is being done by creating animal models of autism. This study aimed to assess the effects of Acorus calamus on developmental and histopathological changes in autism-induced Wistar rats. Materials and methods A rat model of autism was created by administering sodium valproate on the 12th day of pregnancy, and rat pups of this group were considered autism-induced. Rat pups of pregnant rats who had received normal saline on the 12th day of pregnancy were considered group I (negative control group). Neural reflexes were assessed in early postnatal days (PND) to confirm the development of autism. Autism-induced rat pups were divided into the following two groups: group II, autism (positive control group), and group III, autism + A. calamus (drug-treated group). On the 21st postnatal day (PND), group III was given an ethanolic extract of A. calamus (200 mg/kg), and group I and group II were given normal saline orally for 15 days. After 15 days of drug exposure, at 36thPND, the rats were sacrificed, and brain tissue was collected for histopathological analysis. Results When compared to the negative control group, autism-induced rat pups showed delayed appearance of neurological reflexes. Neurodegenerative changes were well appreciated in group II (autism-induced rats) than in group III (autism + A. calamus). In the histomorphometric analysis, group II showed a significant reduction in the number of neurons in the frontal cortex and Purkinje cells in the cerebellum. However, when compared to group II, group III (autism treated with A. calamus) did not show significant alteration. Conclusion Valproate exposure at mid-pregnancy creates autism by disturbing neural structures among rat pups. This was clinically represented as the delayed appearance of neural reflexes. Acorus calamus in the early postnatal period protects rat pups’ brain morphology against autism pathology.
Collapse
|