1
|
Li K, Ji M, Sun X, Shan J, Su G. Food Polyphenols in Radiation-Related Diseases: The Roles and Possible Mechanisms. Curr Nutr Rep 2024; 13:884-895. [PMID: 39340730 DOI: 10.1007/s13668-024-00582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW As science and technology continue to evolve, the potential harm of radiation to the human body cannot be overlooked. Radiation has the capacity to inflict cellular and body-wide damage. Polyphenols are a group of naturally occurring compounds that are found in an array of plant foods. Scientific studies have demonstrated that these compounds possess noteworthy anti-radiation efficacy. Furthermore, they have been observed to be less toxic at higher doses. In the present review, we discussed the mechanisms of ionizing radiation damage and the progress in the research on the radiation resistance mechanism of polyphenol compounds, to provide guidance for the prevention and treatment of radiation related diseases. RECENT FINDINGS Food polyphenols can reduce the oxidative damage caused by ionizing radiation, clear free radicals, reduce DNA damage, regulate NF-KB, MAPK, JAK/STAT, Wnt and other signaling pathways, improve immune function, and have significant protective effects on radiation-induced inflammation, fibrosis, cancer and other aspects. In addition, it also has significant dual effects on radiation sensitization and radiation protection. Food polyphenols come from a wide range of sources, are abundant in daily food, and have no toxic side effects, demonstrating that food polyphenols have great advantages in preventing and treating radiation-related diseases.
Collapse
Affiliation(s)
- Kaidi Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Maxin Ji
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiujuan Sun
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Junyan Shan
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative, Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Chakraborty N, Dimitrov G, Kanan S, Lawrence A, Moyler C, Gautam A, Fatanmi OO, Wise SY, Carpenter AD, Hammamieh R, Singh VK. Cross-species conserved miRNA as biomarker of radiation injury over a wide dose range using nonhuman primate model. PLoS One 2024; 19:e0311379. [PMID: 39570918 PMCID: PMC11581275 DOI: 10.1371/journal.pone.0311379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 11/24/2024] Open
Abstract
Multiple accidents in nuclear power plants and the growing concerns about the misuse of radiation exposure in warfare have called for the rapid determination of absorbed radiation doses (RDs). The latest findings about circulating microRNA (miRNAs) using several animal models revealed considerable promises, although translating this knowledge to clinics remains a major challenge. To address this issue, we randomly divided 36 nonhuman primates (NHPs) into six groups and exposed these groups to six different radiation doses ranging from 6.0-8.5 Gy in increments of 0.5 Gy. Serum samples were collected pre-irradiation as well as three post-irradiation timepoints, namely 1, 2 and 6 days post-total body irradiation (TBI). Generated from a deep sequencing platform, the miRNA reads were multi-variate analyzed to find the differentially expressed putative biomarkers that were linked to RDs, time since irradiation (TSI) and sex. To increase these biomarkers' translational potential, we aligned the NHP-miRNAs' sequences and their functional responses to humans following an in-silico routine. Those miRNAs, which were sequentially and functionally conserved between NHPs and humans, were down selected for further analysis. A linear regression model identified miRNA markers that were consistently regulated with increasing RD but independent TSI. Likewise, a set of potential TSI-markers were identified that consistently shifted with increasing TSI, but independent of RD. Additional molecular analysis found a considerable gender bias in the low-ranges of doses when the risk to radiation-induced fatality was low. Bionetworks linked to cell quantity and cell invasion were significantly altered between the survivors and decedents. Using these biomarkers, an assay could be developed to retrospectively determine the RD and TSI with high translational potential. Ultimately, this knowledge can lead to precise and personalized medicine.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Swapna Kanan
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Alexander Lawrence
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Oak Ridge Institute for Science and Education (ORISE), MD, United States of America
| | - Candance Moyler
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
3
|
Ibáñez B, Melero A, Montoro A, San Onofre N, Soriano JM. Molecular Insights into Radiation Effects and Protective Mechanisms: A Focus on Cellular Damage and Radioprotectors. Curr Issues Mol Biol 2024; 46:12718-12732. [PMID: 39590349 PMCID: PMC11592695 DOI: 10.3390/cimb46110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Ionizing radiation has been a critical tool in various fields, such as medicine, agriculture, and energy production, since its discovery in 1895. While its applications-particularly in cancer treatment and diagnostics-offer significant benefits, ionizing radiation also poses risks due to its potential to cause molecular and cellular damage. This damage can occur through the direct ionization of biological macromolecules, such as deoxyribonucleic acid (DNA), or indirectly through the radiolysis of water, which generates reactive oxygen species (ROS) that further damage cellular components. Radioprotectors, compounds that protect against radiation-induced damage, have been extensively researched since World War II. These agents work by enhancing DNA repair, scavenging free radicals, and boosting antioxidant defenses, thereby protecting healthy tissues. Furthermore, some radioprotective agents also stimulate DNA repair mechanisms even after radiation exposure, aiding in recovery from radiation-induced damage. This article explores the molecular mechanisms of radiation-induced damage, focusing on both direct and indirect effects on DNA, and discusses the role of radioprotectors, their mechanisms of action, and recent advancements in the field. The findings underscore the importance of developing effective radioprotective strategies, particularly in medical and industrial settings, where radiation exposure is prevalent.
Collapse
Affiliation(s)
- Blanca Ibáñez
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (B.I.); (N.S.O.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain;
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Nadia San Onofre
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (B.I.); (N.S.O.)
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, 03690 Alicante, Spain
- FoodLab Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain
| | - Jose M. Soriano
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (B.I.); (N.S.O.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, University of Valencia, 46026 Valencia, Spain
| |
Collapse
|
4
|
Aryankalayil MJ, Patel H, May JM, Shankavaram U, Bylicky MA, Martello S, Chopra S, Axtelle J, Menon N, Coleman CN. Whole-blood RNA biomarkers for predicting survival in non-human primates following thoracic radiation. Sci Rep 2024; 14:22957. [PMID: 39362942 PMCID: PMC11449919 DOI: 10.1038/s41598-024-72975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Radiation injury, either from radiotherapy or a mass-casualty event requires a health care system that can efficiently allocate resources to patients. We conducted a comprehensive transcriptome analysis of whole blood from a nonhuman primate model that received upper thoracic radiation (9.8-10.7 Gy). Blood samples were collected at multiple time points, extending up to 270 days post-irradiation with a minimum n = 6 for initial time points (Day 3-Day 40) and a total number of n = 28 primates. No males receiving the higher dose survived to Day 270. Using the Elastic Net model in R we found that pooling biomarkers from Day 3-21 increased our accuracy in discerning survival time, pleural effusion or dose compared to using biomarkers specific to a single day. For survival data, in predicting short term (less than 90 day), medium term (Day 91-269) or long-term survival (Day 270), prediction accuracy using only Day 3 data was 0.14 (95% Confidence Interval (CI) 0.1, 0.19) while pooled data for Male and Female was 0.76 (CI 0.69, 0.82). When pooled data was divided by biological sex, accuracy was 0.7 (CI 0.58, 0.8) for pooled data from Males and 0.84 (CI 0.76, 0.91) for Females. The development of RNA biomarkers as a tool to aid in clinical decision-making could significantly improve patient care in cases of radiation injury, whether from radiotherapy or mass-casualty events. Further validation and clinical translation of these findings could lead to improved patient care and management strategies in cases of radiation exposure.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.
| | - Haaris Patel
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
5
|
David E, Wolfson M, Muradian KK, Fraifeld VE. The potential longevity-promoting hypoxic-hypercapnic environment as a measure for radioprotection. Biogerontology 2024; 25:891-898. [PMID: 39162980 PMCID: PMC11374852 DOI: 10.1007/s10522-024-10129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Many biological mechanisms of aging well converge with radiation's biological effects. We used scientific insights from the field of aging to establish a novel hypoxic-hypercapnic environment (HHE) concept for radioprotection. According to this concept, HHE which possesses an anti-aging and longevity-promoting potential, should also act as a radiomitigator and radioprotector. As such, it might contribute greatly to the safety and wellbeing of individuals exposed to high levels of radiation, whether in planned events (e.g. astronauts) or in unplanned events (e.g. first responders in nuclear accidents).
Collapse
Affiliation(s)
- Elroei David
- Nuclear Research Center Negev (NRCN), P.O. Box 9001, 8419001, Beer-Sheva, Israel.
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Khachik K Muradian
- Department of Aging Biology and Experimental Life Extension, Institute of Gerontology, NAMS of Ukraine, Kiev, 04114, Ukraine
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| |
Collapse
|
6
|
Saha B, Pallatt S, Banerjee A, Banerjee AG, Pathak R, Pathak S. Current Insights into Molecular Mechanisms and Potential Biomarkers for Treating Radiation-Induced Liver Damage. Cells 2024; 13:1560. [PMID: 39329744 PMCID: PMC11429644 DOI: 10.3390/cells13181560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Highly conformal delivery of radiation therapy (RT) has revolutionized the treatment landscape for primary and metastatic liver cancers, yet concerns persist regarding radiation-induced liver disease (RILD). Despite advancements, RILD remains a major dose-limiting factor due to the potential damage to normal liver tissues by therapeutic radiation. The toxicity to normal liver tissues is associated with a multitude of physiological and pathological consequences. RILD unfolds as multifaceted processes, intricately linking various responses, such as DNA damage, oxidative stress, inflammation, cellular senescence, fibrosis, and immune reactions, through multiple signaling pathways. The DNA damage caused by ionizing radiation (IR) is a major contributor to the pathogenesis of RILD. Moreover, current treatment options for RILD are limited, with no established biomarker for early detection. RILD diagnosis often occurs at advanced stages, highlighting the critical need for early biomarkers to adjust treatment strategies and prevent liver failure. This review provides an outline of the diverse molecular and cellular mechanisms responsible for the development of RILD and points out all of the available biomarkers for early detection with the aim of helping clinicians decide on advance treatment strategies from a single literature recourse.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sneha Pallatt
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit G. Banerjee
- R&D, Genomic Bio-Medicine Research and Incubation (GBMRI), Durg 491001, Chhattisgarh, India
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
7
|
Moloudi K, Azariasl S, Abrahamse H, George BP, Yasuda H. Expected role of photodynamic therapy to relieve skin damage in nuclear or radiological emergency: Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104517. [PMID: 39032581 DOI: 10.1016/j.etap.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Nuclear and radiological accidents can occur due to poor management, in transportation, radiation therapy and nuclear wards in hospitals, leading to extreme radiation exposure and serious consequences for human health. Additionally, in many of previous radiological accidents, skin damage was observed in patients and survivors due to the high radiation exposure. However, as part of a medical countermeasures in a nuclear/radiological emergency, it is critical to plan for the treatment of radiation-induced skin damage. Hence, the new, non-invasive technology of photodynamic therapy (PDT) is projected to be more effectively used for treating skin damage caused by high-dose radiation. PDT plays an important role in treating, repairing skin damage and promoting wound healing as evidenced by research. This review, highlighted and recommended potential impacts of PDT to repair and decrease radiation-induced skin tissue damage. Moreover, we have suggested some photosensitizer (PS) agent as radio-mitigator drugs to decrease radiobiological effects.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Samayeh Azariasl
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| |
Collapse
|
8
|
Al-Ibraheem A, Moghrabi S, Abdlkadir A, Safi H, Kazzi Z, Al-Balooshi B, Salman K, Khalaf A, Zein M, Al Naemi H, Aldousari H, Mula-Hussain L, Juweid M, Hatazawa J, Hawwari F, Mansour A. An Overview of Appropriate Medical Practice and Preparedness in Radiation Emergency Response. Cureus 2024; 16:e61627. [PMID: 38966480 PMCID: PMC11222772 DOI: 10.7759/cureus.61627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Radiation emergencies involving high doses of nuclear radiation pose significant risks from exposure to ionizing radiation in various scenarios. These situations include transportation accidents involving radioactive materials, occupational exposure, nuclear detonations, dirty bombs, and nuclear power plant accidents. In addition to the immediate risks of acute radiation syndrome (ARS) and related diseases, long-term exposure can increase the risk of other health issues such as cardiovascular disease and cancer. Vulnerable populations, including pregnant women and children, face particular concern due to potential impacts on their health and the health of unborn babies. The severity of ARS depends on several factors such as radiation dose, quality, dose rate, exposure uniformity, and individual biological responses. Bioindicators are biological responses or markers that help assess the severity and effects of radiation exposure on an individual. Bioindicators can include physical symptoms such as nausea, vomiting, and diarrhea, or laboratory tests such as changes in blood cell counts and gene expression that can help in assessing and treating exposed individuals. Additionally, early prodromal symptoms such as vomiting, diarrhea, and erythema can provide important clues for diagnosis and treatment. Developing a comprehensive plan for radiation emergencies is vital for safeguarding public health, infrastructure, and the environment. First responders play a critical role in establishing safety perimeters, triage, and coordination with various stakeholders. Education and training are essential for medical personnel and the public. This article provides general recommendations and identifies challenges to effective radiation emergency preparedness and response.
Collapse
Affiliation(s)
| | - Serin Moghrabi
- Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, JOR
| | - Ahmed Abdlkadir
- Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, JOR
| | - Heba Safi
- Health and Environment Unit, World Health Organization, Amman, JOR
| | - Ziad Kazzi
- Emergency Medicine, Emory University, Atlanta, USA
| | | | - Khaled Salman
- Department of Nuclear Medicine and PET/CT imaging, King Abdullah Medical City (KAMC), Makkah, SAU
| | - Aysar Khalaf
- Department of Nuclear Medicine, Warith International Cancer Institute, Karbala, IRQ
| | - Majdi Zein
- Department of Nuclear Medicine, Assad University Hospital, Damascus, SYR
| | - Huda Al Naemi
- Nuclear Medicine, Hamad Medical Corporation, Doha, QAT
| | - Hanan Aldousari
- Molecular Imaging Department, Jaber Alahmad Center for Molecular Imaging, Kuwait City, KWT
| | - Layth Mula-Hussain
- Department of Radiation Oncology, Ninevah University, Mosul, IRQ
- Department of Radiation Oncology, Dalhousie University, Halifax, CAN
| | - Malik Juweid
- Department of Radiology and Nuclear Medicine, Jordan University Hospital, Amman, JOR
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Osaka, JPN
| | - Feras Hawwari
- Section of Pulmonary and Critical Care, Department of Internal Medicine, King Hussein Cancer Center (KHCC), Amman, JOR
| | - Asem Mansour
- Radiology, King Hussein Cancer Center (KHCC), Amman, JOR
| |
Collapse
|
9
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
10
|
Zuo Z, Wang L, Wang S, Liu X, Wu D, Ouyang Z, Meng R, Shan Y, Zhang S, Peng T, Wang L, Li Z, Cong Y. Radioprotective effectiveness of a novel delta-tocotrienol prodrug on mouse hematopoietic system against 60Co gamma-ray irradiation through inducing granulocyte-colony stimulating factor production. Eur J Med Chem 2024; 269:116346. [PMID: 38518524 DOI: 10.1016/j.ejmech.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Considering the increasing risk of nuclear attacks worldwide, the development of develop potent and safe radioprotective agents for nuclear emergencies is urgently needed. γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have demonstrated a potent radioprotective effect by inducing the production of granulocyte-colony stimulating factor (G-CSF) in vivo. However, their application is limited because of their low bioavailability. The utilization of ester prodrugs can be an effective strategy for modifying the pharmacokinetic properties of drug molecules. In this study, we initially confirmed that DT3 exhibited the most significant potential for inducing G-CSF effects among eight natural vitamin E homologs. Consequently, we designed and synthesized a series of DT3 ester and ether derivatives, leading to improved radioprotective effects. The metabolic study conducted in vitro and in vivo has identified DT3 succinate 5b as a prodrug of DT3 with an approximately seven-fold higher bioavailability compared to DT3 alone. And DT3 ether derivative 8a were relatively stable and approximately 4 times more bioavailable than DT3 prototype. Furthermore, 5b exhibited superior ability to mitigate radiation-induced pancytopenia, enhance the recovery of bone marrow hematopoietic stem and progenitor cells, and promote splenic extramedullary hematopoiesis in sublethal irradiated mice. Similarly, 8a shown potential radiation protection, but its radiation protection is less than DT3. Based on these findings, we identified 5b as a DT3 prodrug, and providing an attractive candidate for further drug development.
Collapse
Affiliation(s)
- Zongchao Zuo
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Limei Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shaozheng Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xinyu Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dandan Wu
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key Lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing, 210046, China
| | - Zhangyi Ouyang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruoxi Meng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yajun Shan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shouguo Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tao Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lin Wang
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
| | - Yuwen Cong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
11
|
Wei Y, Dewji S. A comprehensive review of dose limits, triage systems and measurement tools for consequence management of nuclear and radiological emergencies. Radiat Phys Chem Oxf Engl 1993 2024; 217:111533. [PMID: 38882716 PMCID: PMC11170981 DOI: 10.1016/j.radphyschem.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
During a radiological or nuclear emergency, occupational workers, members of the public, and emergency responders may be exposed to radionuclides, whether external or internal, through inhalation, ingestion, or wounds. In the case of internalized radiation exposure, prompt assessment of contamination is necessary to inform subsequent medical interventions. This review assembles the constituent considerations for managing nuclear and radiological incidents, focused on a parallel analysis of the evolution of radiation dose limits - notably in the emergency preparedness and response realm - alongside a discussion of triage systems and in vivo radionuclide detection tools. The review maps the development of international and national standards and regulations concerning radiation dose limits, illuminating how past incidents and accumulated knowledge have informed present emergency preparedness and response practices, specifically for internalized radiation. Additionally, the objectives and levels of radiation triage systems are explored in-depth, along with a global survey of practices and protocols. Finally, this review also focuses on in vivo detection systems and their capacities for radionuclide identification, prioritizing internalized gamma-emitting isotopes due to their broader relevance. Collectively, this study comprehensively addresses the intricacies of triage management following radiation emergencies, emphasizing the imperative for enhanced standardization and continued research in this critical domain.
Collapse
Affiliation(s)
- Y. Wei
- Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, GA, 30332-0405, USA
| | - S.A. Dewji
- Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, GA, 30332-0405, USA
| |
Collapse
|
12
|
Ma LP, Chen J, Liu MM, Yan J, Xiang JQ, Tian M, Gao L, Liu QJ. Biodosimetry Based on Gamma-H2AX Quantification in Human Peripheral Blood Lymphocytes after Partial-body Irradiation. HEALTH PHYSICS 2024; 126:134-140. [PMID: 38117190 DOI: 10.1097/hp.0000000000001779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
ABSTRACT Quantification of gamma-H2AX foci can estimate exposure to ionizing radiation. Most nuclear and radiation accidents are partial-body irradiation, and the doses estimated using the total-body irradiation dose estimation formula are often lower than the actual dose. To evaluate the dose-response relation of gamma-H2AX foci in human peripheral blood lymphocytes after partial-body irradiation and establish a simple and high throughput model to estimate partial-body irradiation dose, we collected human peripheral blood and irradiated with 0-, 0.5-, 1-, 2-, 3-, 4-, 5-, 6-, and 8-Gy gamma rays to simulate total-body irradiation in vitro. Gamma-H2AX foci were quantitated by flow cytometry at 1 h after irradiation, and a dose-response curve was established for total-body irradiation dose estimation. Then, a partial-body irradiation dose-response calibration curve was established by adding calibration coefficients based on the Dolphin method. To reflect the data distribution of all doses more realistically, the partial-body irradiation dose-response calibration curve was divided into two sections. In addition, partial-body irradiation was simulated in vitro, and the PBI data were substituted into curves to verify the accuracy of the two partial-body irradiation calibration curves. Results showed that the dose estimation variations were all less than 30% except the 25% partial-body irradiation group at 1 Gy, and the partial-body irradiation calibration dose-response curves were YF 1 = - 3.444 x 2 + 18.532 x + 3.109, R 2 = 0.92 (YF ≤ 27.95); YF 2 = - 2.704 x 2 + 37.97 x - 56.45, R 2 = 0.86 (YF > 27.95). Results also suggested that the partial-body irradiation dose-response calibration curve based on the gamma-H2AX foci quantification in human peripheral blood lymphocytes is a simple and high throughput model to assess partial-body irradiation dose.
Collapse
Affiliation(s)
- Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
14
|
Shrum SA, Nukala U, Shrimali S, Pineda EN, Krager KJ, Thakkar S, Jones DE, Pathak R, Breen PJ, Aykin-Burns N, Compadre CM. Tocotrienols Provide Radioprotection to Multiple Organ Systems through Complementary Mechanisms of Antioxidant and Signaling Effects. Antioxidants (Basel) 2023; 12:1987. [PMID: 38001840 PMCID: PMC10668991 DOI: 10.3390/antiox12111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Tocotrienols have powerful radioprotective properties in multiple organ systems and are promising candidates for development as clinically effective radiation countermeasures. To facilitate their development as clinical radiation countermeasures, it is crucial to understand the mechanisms behind their powerful multi-organ radioprotective properties. In this context, their antioxidant effects are recognized for directly preventing oxidative damage to cellular biomolecules from ionizing radiation. However, there is a growing body of evidence indicating that the radioprotective mechanism of action for tocotrienols extends beyond their antioxidant properties. This raises a new pharmacological paradigm that tocotrienols are uniquely efficacious radioprotectors due to a synergistic combination of antioxidant and other signaling effects. In this review, we have covered the wide range of multi-organ radioprotective effects observed for tocotrienols and the mechanisms underlying it. These radioprotective effects for tocotrienols can be characterized as (1) direct cytoprotective effects, characteristic of the classic antioxidant properties, and (2) other effects that modulate a wide array of critical signaling factors involved in radiation injury.
Collapse
Affiliation(s)
- Stephen A. Shrum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| | - Ujwani Nukala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Shivangi Shrimali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Edith Nathalie Pineda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Shraddha Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| |
Collapse
|
15
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
16
|
Guan B, Li D, Meng A. Development of radiation countermeasure agents for acute radiation syndromes. Animal Model Exp Med 2023; 6:329-336. [PMID: 37642199 PMCID: PMC10486342 DOI: 10.1002/ame2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
The risk of internal and external exposure to ionizing radiation (IR) has increased alongside the development and implementation of nuclear technology. Therefore, serious security issues have emerged globally, and there has been an increase in the number of studies focusing on radiological prevention and medical countermeasures. Radioprotective drugs are particularly important components of emergency medical preparedness strategies for the clinical management of IR-induced injuries. However, a few drugs have been approved to date to treat such injuries, and the related mechanisms are not entirely understood. Thus, the aim of the present review was to provide a brief overview of the World Health Organization's updated list of essential medicines for 2023 for the proper management of national stockpiles and the treatment of radiological emergencies. This review also discusses the types of radiation-induced health injuries and the related mechanisms, as well as the development of various radioprotective agents, including Chinese herbal medicines, for which significant survival benefits have been demonstrated in animal models of acute radiation syndrome.
Collapse
Affiliation(s)
- Bowen Guan
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal Sciences Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), National Center of Technology Innovation for Animal ModelBeijingChina
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical CollegeTianjinChina
| | - Aimin Meng
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal Sciences Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), National Center of Technology Innovation for Animal ModelBeijingChina
| |
Collapse
|
17
|
Obrador E, Montoro A. Ionizing Radiation, Antioxidant Response and Oxidative Damage: Radiomodulators. Antioxidants (Basel) 2023; 12:1219. [PMID: 37371949 DOI: 10.3390/antiox12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Ionizing radiation (IR) is the energy released by atoms in the form of electromagnetic waves (e [...].
Collapse
Affiliation(s)
- Elena Obrador
- Elena Obrador Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Alegría Montoro
- Alegría Montoro, Radiation Protection Service, University and Polytechnic Hospital La Fe, 46021 Valencia, Spain
| |
Collapse
|
18
|
Ghandhi SA, Morton SR, Shuryak I, Lee Y, Soni RK, Perrier JR, Bakke J, Gahagan J, Bujold K, Authier S, Amundson SA, Brenner DJ, Nishita D, Chang P, Turner HC. Longitudinal multi-omic changes in the transcriptome and proteome of peripheral blood cells after a 4 Gy total body radiation dose to Rhesus macaques. BMC Genomics 2023; 24:139. [PMID: 36944971 PMCID: PMC10031949 DOI: 10.1186/s12864-023-09230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFβ and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.
Collapse
Affiliation(s)
- Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Shad R. Morton
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NY New York, 10032 USA
| | - Jay R. Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - James Bakke
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Janet Gahagan
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Kim Bujold
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Simon Authier
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Denise Nishita
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Polly Chang
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| |
Collapse
|
19
|
Luo H, Sun Y, Wang L, Zhao R, James B. Cellular proteomic profiling of esophageal epithelial cells cultured under physioxia or normoxia reveals high correlation of radiation response. RADIATION MEDICINE AND PROTECTION 2023. [DOI: 10.1016/j.radmp.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
20
|
Guo X, Du L, Ma N, Zhang P, Wang Y, Han Y, Huang X, Zhang Q, Tan X, Lei X, Qu B. Monophosphoryl lipid A ameliorates radiation-induced lung injury by promoting the polarization of macrophages to the M1 phenotype. J Transl Med 2022; 20:597. [DOI: 10.1186/s12967-022-03804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Radiation-induced lung injury (RILI) often occurs during clinical chest radiotherapy and acute irradiation from accidental nuclear leakage. This study explored the role of monophosphoryl lipid A (MPLA) in RILI.
Materials and Methods
The entire thoracic cavity of C57BL/6N mice was irradiated at 20 Gy with or without pre-intragastric administration of MPLA. HE staining, Masson trichrome staining, and TUNEL assay were used to assess lung tissue injury after treatment. The effect of irradiation on the proliferation of MLE-12 cells was analyzed using the Clonogenic assay. The effect of MPLA on the apoptosis of MLE-12 cells was analyzed using flow cytometry. Expression of γ-H2AX and epithelial-mesenchymal transition (EMT) markers in MLE-12 cells was detected by immunofluorescence and Western blot, respectively.
Results
MPLA attenuated early pneumonitis and late pulmonary fibrosis after thoracic irradiation and reversed radiation-induced EMT in C57 mice. MPLA further promoted proliferation and inhibited apoptosis of irradiated MLE-12 cells in vitro. Mechanistically, the radioprotective effect of MPLA was mediated by exosomes secreted by stimulated macrophages. Macrophage-derived exosomes modulated DNA damage in MLE-12 cells after irradiation. MPLA promoted the polarization of RAW 264.7 cells to the M1 phenotype. The exosomes secreted by M1 macrophages suppressed EMT in MLE-12 cells after irradiation.
Conclusion
MPLA is a novel treatment strategy for RILI. Exosomes derived from macrophages are key to the radioprotective role of MPLA in RILI.
Collapse
|
21
|
Synthesis and Iodine Adsorption Properties of Organometallic Copolymers with Propeller-Shaped Fe(II) Clathrochelates Bridged by Different Diaryl Thioether and Their Oxidized Sulfone Derivatives. Polymers (Basel) 2022; 14:polym14224818. [PMID: 36432945 PMCID: PMC9697507 DOI: 10.3390/polym14224818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Three organometallic copolymers, ICP1-3, containing iron(II) clathrochelate units with cyclohexyl lateral groups and interconnected by various thioether derivatives were synthesized. The reaction of the latter into their corresponding OICP1-3 sulfone derivatives was achieved quantitatively using mild oxidation reaction conditions. The target copolymers, ICP1-3 and OICP1-3, were characterized by various instrumental analysis techniques, and their iodine uptake studies disclosed excellent iodine properties, reaching a maximum of 360 wt.% (qe = 3600 mg g-1). The adsorption mechanisms of the copolymers were explored using pseudo-first-order and pseudo-second-order kinetic models. Furthermore, regeneration tests confirmed the efficiency of the target copolymers for their iodine adsorption even after several adsorption-desorption cycles.
Collapse
|
22
|
Huang Y, Wen W, Liu J, Liang X, Yuan W, Ouyang Q, Liu S, Gok C, Wang J, Song G. Preliminary Screening of Soils Natural Radioactivity and Metal(loid) Content in a Decommissioned Rare Earth Elements Processing Plant, Guangdong, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14566. [PMID: 36361445 PMCID: PMC9657683 DOI: 10.3390/ijerph192114566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Radiological aspects such as natural radioactivity of 238U, 232Th, 226Ra, 40K combined with potentially toxic metal(loid) (PTM) distribution features were seldom simultaneously investigated in rare earth element (REE) processing activities. This work was designed to investigate the distribution levels of natural radioactivity, air-absorbed dose rate of γ radiation as well as PTMs at a typical REE plant in Guangdong, China. Ambient soils around REE processing facilities were sampled, measured and assessed. The natural radioactivity of radionuclides of the samples was determined using a high-purity germanium γ-energy spectrometer while the air-absorbed dose rate of γ radiation was measured at a height of 1 m above the ground using a portable radiometric detector. The PTM content was measured by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the specific activities of the radionuclides ranged from 80.8 to 1990.2, 68.2 to 6935.0, 78.4 to 14,372.4, and 625.4 to 2698.4 Bq·kg-1 for 238U, 226Ra, 232Th, and 40K, respectively, representing overwhelmingly higher activity concentrations than worldwide soil average natural radioactivity. The radium equivalent activity and external hazard index of most samples exceeded the limits of 370 Bq·kg-1 and 1, respectively. The measured air-absorbed dose rate of γ radiation was in a range of 113~4004 nGy·h-1, with most sites displaying comparatively higher values than that from some other REE-associated industrial sites referenced. The content levels of PTMs of Cu, Ni, Zn, Mn, Pb, Cd, Cr, and As were 0.7~37.2, 1.8~16.9, 20.4~2070.5, 39.4~431.3, 2.3~1411.5, 0.1~0.7, 6.7~526.1, and 59.5~263.8 mg·kg-1, respectively. It is important to note that the PTM contents in the studied soil samples were 2.1~5.4 times higher for Zn-As and 1.4 times higher for Pb than the third level of the China soil standard while 2.5~13 times higher for Zn-As and 1.2 times higher for Pb than Canadian industry standard. The findings call for subsequent site remediation to secure the ecological environment and human health after the REE processing plant was decommissioned.
Collapse
Affiliation(s)
- Yaole Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wangfeng Wen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wenhuan Yuan
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qi’en Ouyang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siyu Liu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Cem Gok
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Pamukkale University, Denizli 20160, Turkey
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
23
|
Lazarus HM, McManus J, Gale RP. Sargramostim in acute radiation syndrome. Expert Opin Biol Ther 2022; 22:1345-1352. [DOI: 10.1080/14712598.2022.2143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Robert Peter Gale
- Haematology Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|