1
|
He T, Ren K, Xiang L, Yao H, Huang Y, Gao Y. Efficacy of N-Acetylcysteine as an Adjuvant Therapy for Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Br J Hosp Med (Lond) 2024; 85:1-16. [PMID: 39618229 DOI: 10.12968/hmed.2024.0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aims/Background Rheumatoid arthritis (RA) is an inflammatory autoimmune disease and N-acetylcysteine (NAC) is considered a potential therapeutic agent for RA due to strong antioxidant and anti-inflammatory properties. Therefore, this systematic review and meta-analysis aimed to evaluate the efficacy of NAC as an adjuvant therapy for RA. Methods A systematic search was conducted across five databases from inception to 1 August 2024, including CINAHL, Cochrane Library, EMBASE, PubMed, and Web of Science. The Cochrane risk-of-bias tool for randomized trials was used to assess the quality of the included studies. Sensitivity analysis was performed when significant heterogeneity was identified. Results Four studies involving 204 patients were included in our meta-analysis. The results indicated that NAC alleviated disease activity in RA patients (Disease Activity Score 28-erythrocyte sedimentation rate (DAS28-ESR): mean difference (MD) = 0.54). Additionally, NAC reduced inflammatory markers (erythrocyte sedimentation rate (ESR): MD = 3.00). However, the beneficial effects of NAC on oxidative stress in RA patients were not observed. Conclusion This meta-analysis demonstrated the efficacy of NAC in reducing inflammatory markers, improving joint tenderness, and swelling in patients with RA.
Collapse
Affiliation(s)
- Tingting He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kehui Ren
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Xiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Huan Yao
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Pengzhou, Sichuan, China
| | - Yucheng Huang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yongxiang Gao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Ramachandran N, Ayoub N, Agrawal DK. Integrating Radioprotective Agents into Post-Mastectomy Radiotherapy: Optimization of Reconstructive Outcomes in Breast Cancer. JOURNAL OF SURGERY AND RESEARCH 2024; 7:454-465. [PMID: 39605991 PMCID: PMC11600463 DOI: 10.26502/jsr.10020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Surgical intervention utilizing various approaches is a cornerstone in the management of breast cancer. The surgical approaches include lumpectomy, mastectomy, axillary lymph node dissection, and primary or delayed reconstruction. Post-mastectomy radiotherapy is frequently recommended in cases of advanced tumors and extensive lymph node involvement. However, there are several adverse effects of radiotherapy. In this article, we critically reviewed the various complications. Additionally, we discussed the biological basis of radiation-induced tissue damage, the impact of implant-based and autologous tissue reconstruction, and the functional and aesthetic results of the reconstruction. Indeed, several radioprotective agents can attenuate the adverse effects of post-mastectomy radiotherapy while sustaining oncologic efficacy. Radioprotective agents, including free radical scavengers and antioxidants, offer promising strategies to protect tissues from the oxidative stress and inflammation induced by radiotherapy. The role of several radioprotective agents, including amifostine, N-acetylcysteine, tempol, manganese superoxide dismutase (MnSOD) plasmid liposomes, vitamin E, and beta-carotene has been analyzed with a focus on their logistical applications in breast reconstruction. Despite several challenges, the integration of radioprotective agents into post-mastectomy radiotherapy protocols offers significant potential to improve reconstructive outcomes. Development of novel radioprotective agents with improved selectivity and fewer side effects and large-scale clinical trials in diverse group of patients are warranted to determine long-term safety and efficacy.
Collapse
Affiliation(s)
| | - Nagi Ayoub
- Westfield Plastic Surgery Center, Omaha, NE; Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Ninković M, Žutić J, Tasić A, Arsić S, Bojkovski J, Zdravković N. An Innovative Approach: The Usage of N-Acetylcysteine in the Therapy of Pneumonia in Neonatal Calves. Animals (Basel) 2024; 14:2852. [PMID: 39409801 PMCID: PMC11475344 DOI: 10.3390/ani14192852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
NAC has mucolytic, antioxidant, and antimicrobial effects in living organisms. However, the therapeutic effects of NAC on clinical recovery among neonatal calves with respiratory diseases have not yet been studied. Our study represents the first investigation of the effects of NAC in neonatal calves with pneumonia. The objective of this work was to observe the effects of NAC in the treatment of neonatal pneumonia, including its ability to reduce the clinical score, shorten the duration of the treatment, and improve the overall health condition of neonatal calves. For this study, calves were divided into two groups: a treatment group that received NAC and amoxicillin with clavulanic acid, and a control group that received amoxicillin with clavulanic acid (antimicrobial only). The findings of this study indicate that NAC treatment significantly shortened the time to resolution (p < 0.001), compared to the results in the group without NAC treatment. Generally, NAC-supplemented therapy reduced the recovery time by more than 27 h (or slightly more than one day), compared to that in the antimicrobial-only group. Our study presents the first reported usage of NAC in therapy for respiratory disorders.
Collapse
Affiliation(s)
- Milan Ninković
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia (A.T.)
| | - Jadranka Žutić
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia (A.T.)
| | - Aleksandra Tasić
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia (A.T.)
| | - Sveta Arsić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodenja 18, 11000 Belgrade, Serbia
| | - Jovan Bojkovski
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodenja 18, 11000 Belgrade, Serbia
| | - Nemanja Zdravković
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia (A.T.)
| |
Collapse
|
4
|
Zhang J, Wang J, Xu D, Gui Y, Bai F, Huo Y, Cao L, Gui Y. Promoting Glutathione Synthesis: A Possibility for Treating Cardiomyopathy Induced by a Maternal Western Diet. Nutrients 2024; 16:2520. [PMID: 39125400 PMCID: PMC11313981 DOI: 10.3390/nu16152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The adverse effects of a Western diet on obesity and diabetes among reproductive-aged women pose a significant threat to the cardiovascular health of their offspring. Given the crucial role of glutathione metabolism and glutathione-related antioxidant defense systems in cardiovascular diseases through scavenging ROS and maintaining redox homeostasis, further exploration of their specific influence is imperative to develop therapeutic strategies for cardiomyopathy induced by a maternal Western diet. METHODS We developed a prenatal maternal Western diet exposure model in C57/B6 mice to investigate cardiac morphology and function through histological analysis and echocardiography. RNA sequencing and analysis were utilized to elucidate the mechanisms underlying the impact of a maternal Western diet and N-acetylcysteine treatment on cardiomyopathy. Additionally, ELISAs, transmission electron microscopy, and flow cytometry were employed to assess the antioxidant defense system and mitochondrial ROS levels in progenitor cardiomyocytes. RESULTS N-acetylcysteine significantly mitigated cardiomyocyte hypertrophy, myocardial interstitial fibrosis, collagen type I accumulation, and left ventricular remodeling induced by a maternal Western diet, particularly in male offspring. Furthermore, N-acetylcysteine reversed the increase in apoptosis and the increase in the β/α-MyHC ratio in the myocardium of offspring that results from a maternal Western diet. RNA sequencing and GSEA revealed that the beneficial effects of N-acetylcysteine were linked to its ability to modulate oxidative phosphorylation pathways. Additionally, N-acetylcysteine treatment during pregnancy can markedly elevate glutathione levels, augment glutathione peroxidase (GPx) activity, and mitigate the accumulation of mitochondrial ROS caused by a maternal Western diet. CONCLUSIONS N-acetylcysteine mitigated cardiomyopathy induced by a maternal Western diet by bolstering glutathione synthesis and enhancing GPx activity, thereby scavenging mitochondrial ROS and modulating oxidative phosphorylation pathways.
Collapse
Affiliation(s)
- Jialing Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai 201102, China; (J.Z.)
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Jiayu Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai 201102, China; (J.Z.)
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Da Xu
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yiting Gui
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Fan Bai
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yu Huo
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Li Cao
- Ultrasound Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
| | - Yonghao Gui
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
5
|
Santus P, Signorello JC, Danzo F, Lazzaroni G, Saad M, Radovanovic D. Anti-Inflammatory and Anti-Oxidant Properties of N-Acetylcysteine: A Fresh Perspective. J Clin Med 2024; 13:4127. [PMID: 39064168 PMCID: PMC11278452 DOI: 10.3390/jcm13144127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
N-acetyl-L-cysteine (NAC) was initially introduced as a treatment for mucus reduction and widely used for chronic respiratory conditions associated with mucus overproduction. However, the mechanism of action for NAC extends beyond its mucolytic activity and is complex and multifaceted. Contrary to other mucoactive drugs, NAC has been found to exhibit antioxidant, anti-infective, and anti-inflammatory activity in pre-clinical and clinical reports. These properties have sparked interest in its potential for treating chronic lung diseases, including chronic obstructive pulmonary disease (COPD), bronchiectasis (BE), cystic fibrosis (CF), and idiopathic pulmonary fibrosis (IPF), which are associated with oxidative stress, increased levels of glutathione and inflammation. NAC's anti-inflammatory activity is noteworthy, and it is not solely secondary to its antioxidant capabilities. In ex vivo models of COPD exacerbation, the anti-inflammatory effects have been observed even at very low doses, especially with prolonged treatment. The mechanism involves the inhibition of the activation of NF-kB and neurokinin A production, resulting in a reduction in interleukin-6 production, a cytokine abundantly present in the sputum and breath condensate of patients with COPD and correlates with the number of exacerbations. The unique combination of mucolytic, antioxidant, anti-infective, and anti-inflammatory properties positions NAC as a safe, cost-effective, and efficacious therapy for a plethora of respiratory conditions.
Collapse
Affiliation(s)
- Pierachille Santus
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Juan Camilo Signorello
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Fiammetta Danzo
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Giada Lazzaroni
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Marina Saad
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20122 Milano, Italy;
| | - Dejan Radovanovic
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20122 Milano, Italy;
| |
Collapse
|
6
|
Zheng H, Liu J, Sun L, Meng Z. The role of N-acetylcysteine in osteogenic microenvironment for bone tissue engineering. Front Cell Dev Biol 2024; 12:1435125. [PMID: 39055649 PMCID: PMC11269162 DOI: 10.3389/fcell.2024.1435125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Bone defect is a common clinical symptom which can arise from various causes. Currently, bone tissue engineering has demonstrated positive therapeutic effects for bone defect repair by using seeding cells such as mesenchymal stem cells and precursor cells. N-acetylcysteine (NAC) is a stable, safe and highly bioavailable antioxidant that shows promising prospects in bone tissue engineering due to the ability to attenuate oxidative stress and enhance the osteogenic potential and immune regulatory function of cells. This review systematically introduces the antioxidant mechanism of NAC, analyzes the advancements in NAC-related research involving mesenchymal stem cells, precursor cells, innate immune cells and animal models, discusses its function using the classic oral microenvironment as an example, and places particular emphasis on the innovative applications of NAC-modified tissue engineering biomaterials. Finally, current limitations and future prospects are proposed, with the aim of providing inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haowen Zheng
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jiacheng Liu
- School of Dentistry, Tianjin Medical University, Tianjin, China
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Lanxin Sun
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
7
|
Kumar H, Dhanjal DS, Guleria S, Nepovimova E, Sethi N, Dhalaria R, Kuca K. Hepatoprotective effects of fruits pulp, seed, and peel against chemical-induced toxicity: Insights from in vivo studies. Food Chem Toxicol 2024; 189:114742. [PMID: 38754807 DOI: 10.1016/j.fct.2024.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The liver is a vital organ in human physiology positioned in the upper right quadrant of the peritoneal cavity, which plats a critical role in metabolic processes, detoxification of various substances and overall homeostasis. Along with these critical functions, hepatic diseases impose as significant global health threat. Liver illness is the cause of two million fatalities every year, or 4% of all deaths. Traditionally, healthcare providers have prescribed antibacterial and antiviral medications to address liver illness. Nephrotoxicity is a frequently observed negative reaction to drugs, with the majority of such events happening in individuals who have advanced cirrhosis. Thus, recognizing this gap, there is a dire need of exploration of pharmaceutical alterative for hepatic diseases, with special focus on their efficacy and reduced toxicity. Fruits have long been known to therapeutic impact on human health, thus exploration of fruits components namely pulp, seeds and peels containing phytochemicals have emerged as a promising avenue for hepatoprotective interventions. Thus, review comprehends the information about worldwide burden of chemical induced toxicity and injuries as well as highlight the on-going challenges in hepatic disease management. It also shed light on the valuable contributions fruit parts and their phytocompounds obtained from different components of fruits. Fruit pulp, especially when rich in flavonoids, has demonstrated significant potential in animal model studies. It has been observed to enhance the activity of antioxidant enzymes and reduce the expression of pro-inflammatory markers. The methanolic and ethanolic extracts have demonstrated the most favorable outcomes. Further, this review also discusses about the safety assessments of fruits extracts for their utilization as hepatoprotective agents.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
8
|
Hassan YF, Shabaan DA. Effect of N-acetylcysteine on hair follicle changes in mouse model of cyclophosphamide-induced alopecia: histological and biochemical study. Histochem Cell Biol 2024; 161:477-491. [PMID: 38641701 PMCID: PMC11162382 DOI: 10.1007/s00418-024-02282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/21/2024]
Abstract
Chemotherapy-induced alopecia (CIA) represents one of the most severe side effects of chemotherapy, which forces some patients to reject cancer treatment. The exact pathophysiological mechanisms of CIA are not clearly understood, which makes it difficult to discover efficient preventive or therapeutic procedures for this adverse effect. N-acetylcysteine (NAC) has a strong antioxidant activity as it stimulates glutathione synthesis and acts as an oxygen radical scavenger. The current study tried to investigate the efficacy of NAC in preserving biochemical parameters and hair follicle structure against cyclophosphamide (CYP) administration. In total, 40 adult female C57BL/6 mice were induced to enter anagen by depilation (day 0) and divided into four groups: group I (control), group II (CYP) received a single dose of CYP [150 mg/kg body weight (B.W.)/intraperitoneal injection (IP)] at day 9, group III (CYP & NAC) received a single dose of CYP at day 9 as well as NAC (500 mg/kg B.W./day/IP) from day 6-16, and group IV (NAC) received NAC from day 6-16. CYP administration in group II induced an increase in malondialdehyde (MDA), decrease in superoxide dismutase (SOD), histological hair follicle dystrophy, disruption of follicular melanogenesis, overexpression of p53, and loss of ki67 immunoreactivity. NAC coadministration in group III reversed CYP-induced alterations in the biochemical parameters and preserved hair follicle structure, typical follicular melanin distribution as well as normal pattern of p53 and ki67 expression. These findings indicated that NAC could be used as an efficient and safe therapeutic option for hair loss induced by chemotherapy.
Collapse
Affiliation(s)
- Yomna F Hassan
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Dalia A Shabaan
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Cui Y, Zhu Q, Hao H, Flaker GC, Liu Z. N-Acetylcysteine and Atherosclerosis: Promises and Challenges. Antioxidants (Basel) 2023; 12:2073. [PMID: 38136193 PMCID: PMC10741030 DOI: 10.3390/antiox12122073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Atherosclerosis remains a leading cause of cardiovascular diseases. Although the mechanism for atherosclerosis is complex and has not been fully understood, inflammation and oxidative stress play a critical role in the development and progression of atherosclerosis. N-acetylcysteine (NAC) has been used as a mucolytic agent and an antidote for acetaminophen overdose with a well-established safety profile. NAC has antioxidant and anti-inflammatory effects through multiple mechanisms, including an increase in the intracellular glutathione level and an attenuation of the nuclear factor kappa-B mediated production of inflammatory cytokines like tumor necrosis factor-alpha and interleukins. Numerous animal studies have demonstrated that NAC significantly decreases the development and progression of atherosclerosis. However, the data on the outcomes of clinical studies in patients with atherosclerosis have been limited and inconsistent. The purpose of this review is to summarize the data on the effect of NAC on atherosclerosis from both pre-clinical and clinical studies and discuss the potential mechanisms of action of NAC on atherosclerosis, as well as challenges in the field.
Collapse
Affiliation(s)
- Yuqi Cui
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Gregory C. Flaker
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|