1
|
Mihaylova R, Angelova VT, Tchekalarova J, Atanasova D, Ivanova P, Simeonova R. Tailored Melatonin- and Donepezil-Based Hybrids Targeting Pathognomonic Changes in Alzheimer's Disease: An In Vitro and In Vivo Investigation. Int J Mol Sci 2024; 25:5969. [PMID: 38892154 PMCID: PMC11172853 DOI: 10.3390/ijms25115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
A plethora of pathophysiological events have been shown to play a synergistic role in neurodegeneration, revealing multiple potential targets for the pharmacological modulation of Alzheimer's disease (AD). In continuation to our previous work on new indole- and/or donepezil-based hybrids as neuroprotective agents, the present study reports on the beneficial effects of lead compounds of the series on key pathognomonic features of AD in both cellular and in vivo models. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the anti-fibrillogenic properties of 15 selected derivatives and identify quantitative changes in the formation of neurotoxic β-amyloid (Aβ42) species in human neuronal cells in response to treatment. Among the most promising compounds were 3a and 3c, which have recently shown excellent antioxidant and anticholinesterase activities, and, therefore, have been subjected to further in vivo investigation in mice. An acute toxicity study was performed after intraperitoneal (i.p.) administration of both compounds, and 1/10 of the LD50 (35 mg/kg) was selected for subacute treatment (14 days) with scopolamine in mice. Donepezil (DNPZ) and/or galantamine (GAL) were used as reference drugs, aiming to establish any pharmacological superiority of the multifaceted approach in battling hallmark features of neurodegeneration. Our promising results give first insights into emerging disease-modifying strategies to combine multiple synergistic activities in a single molecule.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| | - Violina T. Angelova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
- Department of Anatomy, Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria
| | - Petja Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
| | - Rumyana Simeonova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| |
Collapse
|
2
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Komlao P, Kraiwattanapirom N, Promyo K, Hein ZM, Chetsawang B. Melatonin enhances the restoration of neurological impairments and cognitive deficits during drug withdrawal in methamphetamine-induced toxicity and endoplasmic reticulum stress in rats. Neurotoxicology 2023; 99:305-312. [PMID: 37979660 DOI: 10.1016/j.neuro.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Methamphetamine (METH) is a psychostimulant with a very high addiction rate. Prolonged use of METH has been observed as one of the root causes of neurotoxicity. Melatonin (Mel) has been found to have a significant role in METH-induced neurotoxicity. This study aimed to investigate the restorative effect of Mel on behavioral flexibility in METH-induced cognitive deficits. Male Sprague-Dawley rats were randomly assigned to be intraperitoneally injected with saline (control) or Meth at 5 mg/kg for 7 consecutive days. Then, METH injection was withdrawn and rats in each group were subcutaneously injected with saline or Mel at 10 mg/kg for 14 consecutive days. The stereotypic behavioral test and attentional set-shifting task (ASST) were used to evaluate neurological functions and cognitive flexibility, respectively. Rats developed abnormal features of stereotyped behaviors and deficits in cognitive flexibility after 7 days of METH administration. However, post-treatment with Mel for 14 days after METH withdrawal dramatically ameliorated the neurological and cognitive deficits in METH-treated rats. Blood biomarkers indicated METH-induced systemic low-grade inflammation. Moreover, METH-induced endoplasmic reticulum (ER) stress in the prefrontal cortex was diminished by melatonin supplementation. These findings might reveal the therapeutic potential of Mel in METH toxicity-induced neurological and cognitive deficits.
Collapse
Affiliation(s)
- Pongphat Komlao
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, Netherlands
| | - Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
| | - Kitipong Promyo
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zaw Myo Hein
- Basic Medical Sciences Department, College of Medicine and Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand.
| |
Collapse
|
4
|
Shin JW. Neuroprotective effects of melatonin in neurodegenerative and autoimmune central nervous system diseases. ENCEPHALITIS 2023; 3:44-53. [PMID: 37469673 PMCID: PMC10295826 DOI: 10.47936/encephalitis.2022.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 07/21/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) in the anterior hypothalamus is the major circadian pacemaker in humans. Melatonin is a key hormone secreted by the pineal gland in response to darkness. Light-induced stimuli are transmitted along the retinohypothalamic tract to the SCN. Activation of the SCN inhibits the production of melatonin by the pineal gland through a complex neural pathway passing through the superior cervical ganglion. Accordingly, when light is unavailable, the pineal gland secretes melatonin. The circadian rhythm modulates sleep-wake cycles as well as many physiological functions of the endocrine system, including core body temperature, pulse rate, oxygen consumption, hormone levels, metabolism, and gastrointestinal function. In neurodegenerative disorders, the sleep-wake cycle is disrupted and circadian regulation is altered, which accelerates disease progression, further disrupting circadian regulation and setting up a vicious cycle. Melatonin plays a critical role in the regulation of circadian rhythms and is a multifunctional pleiotropic agent with broad neuroprotective effects in neurodegenerative disorders, viral or autoimmune diseases, and cancer. In this review, I discuss the neuroprotective functions of melatonin in circadian regulation and its roles in promoting anti-inflammatory activity, enhancing immune system functions, and preventing alterations in glucose metabolism and mitochondrial dysfunction in neurodegenerative disorders and autoimmune central nervous system diseases.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Neurology, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
5
|
Verma AK, Singh S, Rizvi SI. Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases. Biogerontology 2023; 24:183-206. [PMID: 36550377 DOI: 10.1007/s10522-022-10006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Aging is associated with increasing impairments in brain homeostasis and represents the main risk factor across most neurodegenerative disorders. Melatonin, a neuroendocrine hormone that regulates mammalian chronobiology and endocrine functions is well known for its antioxidant potential, exhibiting both cytoprotective and chronobiotic abilities. Age-related decline of melatonin disrupting mitochondrial homeostasis and cytosolic DNA-mediated inflammatory reactions in neurons is a major contributory factor in the emergence of neurological abnormalities. There is scattered literature on the possible use of melatonin against neurodegenerative mechanisms in the aging process and its associated diseases. We have searched PUBMED with many combinations of key words for available literature spanning two decades. Based on the vast number of experimental papers, we hereby review recent advancements concerning the potential impact of melatonin on cellular redox balance and mitochondrial dynamics in the context of neurodegeneration. Next, we discuss a broader explanation of the involvement of disrupted redox homeostasis in the pathophysiology of age-related diseases and its connection to circadian mechanisms. Our effort may result in the discovery of novel therapeutic approaches. Finally, we summarize the current knowledge on molecular and circadian regulatory mechanisms of melatonin to overcome neurodegenerative diseases (NDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and amyotrophic lateral sclerosis, however, these findings need to be confirmed by larger, well-designed clinical trials. This review is also expected to uncover the associated molecular alterations in the aging brain and explain how melatonin-mediated circadian restoration of neuronal homeodynamics may increase healthy lifespan in age-related NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Sandeep Singh
- Biological Psychiatry Laboratory, Hadassah Medical Center - Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
6
|
Reiter RJ, Sharma R, Cucielo MS, Tan DX, Rosales-Corral S, Gancitano G, de Almeida Chuffa LG. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci 2023; 80:88. [PMID: 36917314 PMCID: PMC11072793 DOI: 10.1007/s00018-023-04736-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
The brain lacks a classic lymphatic drainage system. How it is cleansed of damaged proteins, cellular debris, and molecular by-products has remained a mystery for decades. Recent discoveries have identified a hybrid system that includes cerebrospinal fluid (CSF)-filled perivascular spaces and classic lymph vessels in the dural covering of the brain and spinal cord that functionally cooperate to remove toxic and non-functional trash from the brain. These two components functioning together are referred to as the glymphatic system. We propose that the high levels of melatonin secreted by the pineal gland directly into the CSF play a role in flushing pathological molecules such as amyloid-β peptide (Aβ) from the brain via this network. Melatonin is a sleep-promoting agent, with waste clearance from the CNS being highest especially during slow wave sleep. Melatonin is also a potent and versatile antioxidant that prevents neural accumulation of oxidatively-damaged molecules which contribute to neurological decline. Due to its feedback actions on the suprachiasmatic nucleus, CSF melatonin rhythm functions to maintain optimal circadian rhythmicity, which is also critical for preserving neurocognitive health. Melatonin levels drop dramatically in the frail aged, potentially contributing to neurological failure and dementia. Melatonin supplementation in animal models of Alzheimer's disease (AD) defers Aβ accumulation, enhances its clearance from the CNS, and prolongs animal survival. In AD patients, preliminary data show that melatonin use reduces neurobehavioral signs such as sundowning. Finally, melatonin controls the mitotic activity of neural stem cells in the subventricular zone, suggesting its involvement in neuronal renewal.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-689, Brazil
| | | | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Giuseppe Gancitano
- 1st "Tuscania" Paratrooper Regiment, Italian Ministry of Defense, 57127, Leghorn, Italy
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-689, Brazil
| |
Collapse
|
7
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
8
|
Iacobelli P. Circadian dysregulation and Alzheimer’s disease: A comprehensive review. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Alzheimer’s disease (AD), the foremost variant of dementia, has been associated with a menagerie of risk factors, many of which are considered to be modifiable. Among these modifiable risk factors is circadian rhythm, the chronobiological system that regulates sleep‐wake cycles, food consumption timing, hydration timing, and immune responses amongst many other necessary physiological processes. Circadian rhythm at the level of the suprachiasmatic nucleus (SCN), is tightly regulated in the human body by a host of biomolecular substances, principally the hormones melatonin, cortisol, and serotonin. In addition, photic information projected along afferent pathways to the SCN and peripheral oscillators regulates the synthesis of these hormones and mediates the manner in which they act on the SCN and its substructures. Dysregulation of this cycle, whether induced by environmental changes involving irregular exposure to light, or through endogenous pathology, will have a negative impact on immune system optimization and will heighten the deposition of Aβ and the hyperphosphorylation of the tau protein. Given these correlations, it appears that there is a physiologic association between circadian rhythm dysregulation and AD. This review will explore the physiology of circadian dysregulation in the AD brain, and will propose a basic model for its role in AD‐typical pathology, derived from the literature compiled and referenced throughout.
Collapse
Affiliation(s)
- Peter Iacobelli
- Department of Arts and Sciences, University of South Carolina, Columbia, USA
| |
Collapse
|
9
|
Mushroom Polysaccharides as Potential Candidates for Alleviating Neurodegenerative Diseases. Nutrients 2022; 14:nu14224833. [PMID: 36432520 PMCID: PMC9696021 DOI: 10.3390/nu14224833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a widespread and serious global public health burden, particularly among the older population. At present, effective therapies do not exist, despite the increasing understanding of the different mechanisms of NDs. In recent years, some drugs, such as galantamine, entacapone, riluzole, and edaravone, have been proposed for the treatment of different NDs; however, they mainly concentrate on symptom management and confer undesirable side effects and adverse reactions. Therefore, there is an urgent need to find novel drugs with fewer disadvantages and higher efficacy for the treatment of NDs. Mushroom polysaccharides are macromolecular complexes with multi-targeting bioactivities, low toxicity, and high safety. Some have been demonstrated to exhibit neuroprotective effects via their antioxidant, anti-amyloidogenic, anti-neuroinflammatory, anticholinesterase, anti-apoptotic, and anti-neurotoxicity activities, which have potential in the treatment of NDs. This review focuses on the different processes involved in ND development and progression, highlighting the neuroprotective activities and potential role of mushroom polysaccharides and summarizing the limitations and future perspectives of mushroom polysaccharides in the prevention and treatment of NDs.
Collapse
|
10
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Wang Y, Chen R, Yang Z, Wen Q, Cao X, Zhao N, Yan J. Protective Effects of Polysaccharides in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:917629. [PMID: 35860666 PMCID: PMC9289469 DOI: 10.3389/fnagi.2022.917629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration and necrosis of neurons, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease and others. There are no existing therapies that correct the progression of these diseases, and current therapies provide merely symptomatic relief. The use of polysaccharides has received significant attention due to extensive biological activities and application prospects. Previous studies suggest that the polysaccharides as a candidate participate in neuronal protection and protect against NDs. In this review, we demonstrate that various polysaccharides mediate NDs, and share several common mechanisms characterized by autophagy, apoptosis, neuroinflammation, oxidative stress, mitochondrial dysfunction in PD and AD. Furthermore, this review reveals potential role of polysaccharides in vitro and in vivo models of NDs, and highlights the contributions of polysaccharides and prospects of their mechanism studies for the treatment of NDs. Finally, we suggest some remaining questions for the field and areas for new development.
Collapse
Affiliation(s)
- Yinying Wang
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Rongsha Chen
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Wen
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xia Cao
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jinyuan Yan
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Chen D, Lan G, Li R, Mei Y, Shui X, Gu X, Wang L, Zhang T, Gan CL, Xia Y, Hu L, Tian Y, Zhang M, Lee TH. Melatonin ameliorates tau-related pathology via the miR-504-3p and CDK5 axis in Alzheimer’s disease. Transl Neurodegener 2022; 11:27. [PMID: 35527277 PMCID: PMC9082841 DOI: 10.1186/s40035-022-00302-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Intracellular accumulation of the microtubule-associated protein tau and its hyperphosphorylated forms is a key neuropathological feature of Alzheimer’s disease (AD). Melatonin has been shown to prevent tau hyperphosphorylation in cellular and animal models. However, the molecular mechanisms by which melatonin attenuates tau hyperphosphorylation and tau-related pathologies are not fully understood. Methods Immunofluorescence, immunoblotting analysis and thioflavin-S staining were employed to examine the effects of early and late treatment of melatonin on tau-related pathology in hTau mice, in which nonmutated human tau is overexpressed on a mouse tau knockout background. High-throughput microRNA (miRNA) sequencing, quantitative RT-PCR, luciferase reporter assay and immunoblotting analysis were performed to determine the molecular mechanism. Results We found that both early and late treatment of melatonin efficiently decreased the phosphorylation of soluble and insoluble tau at sites related to AD. Moreover, melatonin significantly reduced the number of neurofibrillary tangles (NFTs) and attenuated neuronal loss in the cortex and hippocampus. Furthermore, using miRNA microarray analysis, we found that miR-504-3p expression was upregulated by melatonin in the hTau mice. The administration of miR-504-3p mimics dramatically decreased tau phosphorylation by targeting p39, an activator of the well-known tau kinase cyclin-dependent kinase 5 (CDK5). Compared with miR-504-3p mimics alone, co-treatment with miR-504-3p mimics and p39 failed to reduce tau hyperphosphorylation. Conclusions Our results suggest for the first time that melatonin alleviates tau-related pathologies through upregulation of miR-504-3p expression by targeting the p39/CDK5 axis and provide novel insights into AD treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00302-4.
Collapse
|
13
|
Horcharoensuk P, Yang-En S, Chakritbudsabong W, Samatiwat P, Pramong R, Rungarunlert S, Rungsiwiwut R. Melatonin attenuates dimethyl sulfoxide- and Zika virus-induced degeneration of porcine induced neural stem cells. In Vitro Cell Dev Biol Anim 2022; 58:232-242. [PMID: 35235152 PMCID: PMC8890020 DOI: 10.1007/s11626-022-00648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Domestic pigs have become increasingly popular as a model for human diseases such as neurological diseases. Drug discovery platforms have increasingly been used to identify novel compounds that combat neurodegeneration. Currently, bioactive molecules such as melatonin have been demonstrated to offer a neuroprotective effect in several studies. However, a neurodegenerative platform to study novel compounds in a porcine model has not been fully established. In this study, characterized porcine induced neural stem cells (iNSCs) were used for evaluation of the protective effect of melatonin against chemical and pathogenic stimulation. First, the effects of different concentrations of melatonin on the proliferation of porcine iNSCs were studied. Second, porcine iNSCs were treated with the appropriate concentration of melatonin prior to induced degeneration with dimethyl sulfoxide or Zika virus (ZIKV). The results demonstrated that the percentages of Ki67 expression in porcine iNSCs cultured in 0.1, 1, and 10 nM melatonin were not significantly different from that in the control groups. Melatonin at 1 nM protected porcine iNSCs from DMSO-induced degeneration, as confirmed by a dead cell exclusion assay and mitochondrial membrane potential (ΔΨm) analysis. In addition, pretreatment with melatonin reduced the percentage of dead porcine iNSCs after ZIKV infection. Melatonin increased the ΔΨm, resulting in a decrease in cell degeneration. However, pretreatment with melatonin was unable to suppress ZIKV replication in porcine iNSCs. In conclusion, the present study demonstrated the anti-degenerative effect of melatonin against DMSO- and ZIKV-induced degeneration in porcine iNSCs.
Collapse
Affiliation(s)
- Pongsatorn Horcharoensuk
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10100, Thailand
| | - Sunantha Yang-En
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10100, Thailand
| | - Warunya Chakritbudsabong
- Laboratory of Cellular Biomedicine and Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.,Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Papavee Samatiwat
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10100, Thailand
| | - Ratchadaporn Pramong
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10100, Thailand
| | - Sasitorn Rungarunlert
- Laboratory of Cellular Biomedicine and Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.,Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ruttachuk Rungsiwiwut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10100, Thailand.
| |
Collapse
|
14
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin's Benefits and Risks as a Therapy for Sleep Disturbances in the Elderly: Current Insights. Nat Sci Sleep 2022; 14:1843-1855. [PMID: 36267165 PMCID: PMC9578490 DOI: 10.2147/nss.s380465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 01/19/2023] Open
Abstract
Aging is accompanied by circadian changes, including disruptive alterations in the sleep/wake cycle, as well as the beginning of low-degree inflammation ("inflammaging"), a scenario that leads to several chronic illnesses, including cancer, and metabolic, cardiovascular, and neurological dysfunctions. As a result, any effective approach to healthy aging must consider both the correction of circadian disturbance and the control of low-grade inflammation. One of the most important prerequisites for healthy aging is the preservation of robust circadian rhythmicity (particularly of the sleep/wake cycle). Sleep disturbance disrupts various activities in the central nervous system, including waste molecule elimination. Melatonin is a chemical with extraordinary phylogenetic conservation found in all known aerobic creatures whose alteration plays an important role in sleep changes with aging. Every day, the late afternoon/nocturnal surge in pineal melatonin helps to synchronize both the central circadian pacemaker found in the hypothalamic suprachiasmatic nuclei (SCN) and a plethora of peripheral cellular circadian clocks. Melatonin is an example of an endogenous chronobiotic substance that can influence the timing and amplitude of circadian rhythms. Moreover, melatonin is also an excellent anti-inflammatory agent, buffering free radicals, down-regulating proinflammatory cytokines, and reducing insulin resistance, among other things. We present both scientific and clinical evidence that melatonin is a safe drug for treating sleep disturbances in the elderly.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Tseng PT, Zeng BY, Chen YW, Yang CP, Su KP, Chen TY, Wu YC, Tu YK, Lin PY, Carvalho AF, Stubbs B, Matsuoka YJ, Li DJ, Liang CS, Hsu CW, Sun CK, Cheng YS, Yeh PY, Shiue YL. The Dose and Duration-dependent Association between Melatonin Treatment and Overall Cognition in Alzheimer's Dementia: A Network Meta- Analysis of Randomized Placebo-Controlled Trials. Curr Neuropharmacol 2022; 20:1816-1833. [PMID: 35450525 PMCID: PMC9886806 DOI: 10.2174/1570159x20666220420122322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND While Alzheimer's dementia (AD) has a prevalence as high as 3-32% and is associated with cognitive dysfunction and the risk of institutionalization, no efficacious and acceptable treatments can modify the course of cognitive decline in AD. Potential benefits of exogenous melatonin for cognition have been divergent across trials. OBJECTIVE The current network meta-analysis (NMA) was conducted under the frequentist model to evaluate the potential beneficial effects of exogenous melatonin supplementation on overall cognitive function in participants with AD in comparison to other FDA-approved medications (donepezil, galantamine, rivastigmine, memantine, and Namzaric). METHODS The primary outcome was the changes in the cognitive function [measured by mini-mental state examination (MMSE)] after treatment in patients with Alzheimer's dementia. The secondary outcomes were changes in the quality of life, behavioral disturbance, and acceptability (i.e., drop-out due to any reason and rate of any adverse event reported). RESULTS The current NMA of 50 randomized placebo-controlled trials (RCTs) revealed the medium-term lowdose melatonin to be associated with the highest post-treatment MMSE (mean difference = 1.48 in MMSE score, 95% confidence intervals [95% CIs] = 0.51 to 2.46) and quality of life (standardized mean difference = -0.64, 95% CIs = -1.13 to -0.15) among all of the investigated medications in the participants with AD. Finally, all of the investigated exogenous melatonin supplements were associated with similar acceptability as was the placebo. CONCLUSION The current NMA provides evidence for the potential benefits of exogenous melatonin supplementation, especially medium-term low-dose melatonin, in participants with AD.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-DA Dachang Hospital, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition, Huangkuang University, Taichung, Taiwan
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei112, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Andre F. Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Yutaka J. Matsuoka
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- Former Division Chief of Health Care Research, National Cancer Center, Japan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students
| | - Yu-Shian Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai’s Home, Taiwan
| | - Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10091439. [PMID: 34573069 PMCID: PMC8470444 DOI: 10.3390/antiox10091439] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of scientific research showing the link between depression and dementia in Alzheimer’s disease (AD). The chronic stress contributes to the formation of oxidative stress in the parts of the brain involved in the development of depression and AD. The scientific literature reports the significant role of antioxidants, which are highly effective in treating these diseases. In this review, we have summarized the relationship between chronic stress, oxidative stress, and the changes in the brain they cause occurring in the brain. Among all the compounds showing antioxidant properties, the most promising results in AD treatment were observed for Vitamin E, coenzyme Q10 (CoQ10), melatonin, polyphenols, curcumin, and selenium. In case of depression treatment, the greatest potential was observed in curcumin, zinc, selenium, vitamin E, and saffron.
Collapse
|
17
|
Onaolapo OJ, Onaolapo AY, Olowe OA, Udoh MO, Udoh DO, Nathaniel TI. Melatonin and Melatonergic Influence on Neuronal Transcription Factors: Implications for the Development of Novel Therapies for Neurodegenerative Disorders. Curr Neuropharmacol 2021; 18:563-577. [PMID: 31885352 PMCID: PMC7457420 DOI: 10.2174/1570159x18666191230114339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/04/2023] Open
Abstract
Melatonin is a multifunctional signalling molecule that is secreted by the mammalian pineal gland, and also found in a number of organisms including plants and bacteria. Research has continued to uncover an ever-increasing number of processes in which melatonin is known to play crucial roles in mammals. Amongst these functions is its contribution to cell multiplication, differentiation and survival in the brain. Experimental studies show that melatonin can achieve these functions by influencing transcription factors which control neuronal and glial gene expression. Since neuronal survival and differentiation are processes that are important determinants of the pathogenesis, course and outcome of neurodegenerative disorders; the known and potential influences of melatonin on neuronal and glial transcription factors are worthy of constant examination. In this review, relevant scientific literature on the role of melatonin in preventing or altering the course and outcome of neurodegenerative disorders, by focusing on melatonin's influence on transcription factors is examined. A number of transcription factors whose functions can be influenced by melatonin in neurodegenerative disease models have also been highlighted. Finally, the therapeutic implications of melatonin's influences have also been discussed and the potential limitations to its applications have been highlighted.
Collapse
Affiliation(s)
- Olakunle J. Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y. Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olugbenga A. Olowe
- Molecular Bacteriology and Immunology Unit, Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Mojisola O. Udoh
- Department of Pathology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - David O. Udoh
- Division of Neurological Surgery, Department of Surgery, University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Thomas I. Nathaniel
- University of South Carolina School of Medicine-Greenville, Greenville, South Carolina, 29605, United States
| |
Collapse
|
18
|
Labban S, Alshehri FS, Kurdi M, Alatawi Y, Alghamdi BS. Melatonin Improves Short-Term Spatial Memory in a Mouse Model of Alzheimer's Disease. Degener Neurol Neuromuscul Dis 2021; 11:15-27. [PMID: 33986623 PMCID: PMC8110255 DOI: 10.2147/dnnd.s291172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease that has become a leading cause of death in recent years. Impairments in spatial learning and memory are an important clinical feature of AD. Melatonin (MLT), the main product secreted by the pineal gland, showed multiple antioxidant, anti-inflammatory, and neuroprotective properties. PURPOSE The present study aimed to explore the possible prophylactic effects of MLT against spatial memory deficits in a sporadic mouse model of AD induced by D-galactose and aluminium chloride (AlCl3). METHODS Four groups of mice (n = 10 per group) were prepared: control, AD (the D-galactose and AlCl3 AD model group), AD+MLT (AD mice treated with 80 mg/kg MLT), and AD+DON (AD mice treated with 3 mg/kg donepezil). We then used the object location and Y-maze tests to assess spatial memory in the four groups. Gene expression levels of brain-derived neurotrophic factor (Bdnf) and cAMP-responsive element-binding protein (Creb1) were measured using real-time polymerase chain reaction. RESULTS We found that MLT improved spatial memory in the sporadic AD mice. MLT ameliorated Creb1 gene expression and significantly increased Bdnf gene expression in the hippocampus of AD model mice compared with the AD group. CONCLUSION MLT could have a substantial potential to alleviate memory impairment in sporadic AD if introduced at early stages.
Collapse
Affiliation(s)
- Samah Labban
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Yasser Alatawi
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Sumsuzzman DM, Choi J, Jin Y, Hong Y. Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer's disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 2021; 127:459-473. [PMID: 33957167 DOI: 10.1016/j.neubiorev.2021.04.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 04/01/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Endogenous melatonin levels are inversely associated with age and cognitive deficits. Although melatonin can improve psychopathological behavior disturbances in clinical trials, whether melatonin may also enhance cognitive function remains elusive. This study examined cognitive outcomes from randomized trials of melatonin treatment for Alzheimer's disease (AD), insomnia, and healthy-subjects. Twenty-two studies met the inclusion criteria (AD = 9, insomnia = 2, healthy-subjects = 11). AD patients receiving >12 weeks of melatonin treatment improved mini-mental state examination (MMSE) score [MD: 1.82 (1.01; 2.63) p < 0.0001]. Importantly, melatonin significantly improved MMSE score in mild stage of AD [MD: 1.89 (0.96; 2.82) p < 0.0001]. In healthy-subjects, although daytime melatonin treatment notably decreased in accuracy by correct responses [SMD: -0.74 (-1.03; -0.45) p < 0.00001], the reaction-time score on different stimuli (p = 0.37) did not increased. Additionally, by pooling of short-term, spatial, and visual memory scores, melatonin did not reduce memory function (p = 0.08). Meta-analysis of MMSE score suggested that melatonin is effective in treatment for mild stage of AD. Additionally, we propose that melatonin may be preferable to traditional hypnotics in management of insomnia.
Collapse
Affiliation(s)
- Dewan Md Sumsuzzman
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, 50834, Republic of Korea; Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, 50834, Republic of Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, 50834, Republic of Korea; Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, 50834, Republic of Korea.
| | - Yunho Jin
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, 50834, Republic of Korea; Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, 50834, Republic of Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, 50834, Republic of Korea; Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, 50834, Republic of Korea; Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Marhuenda J, Villaño D, Arcusa R, Zafrilla P. Melatonin in Wine and Beer: Beneficial Effects. Molecules 2021; 26:molecules26020343. [PMID: 33440795 PMCID: PMC7827953 DOI: 10.3390/molecules26020343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a hormone secreted in the pineal gland with several functions, especially regulation of circadian sleep cycle and the biological processes related to it. This review evaluates the bioavailability of melatonin and resulting metabolites, the presence of melatonin in wine and beer and factors that influence it, and finally the different benefits related to treatment with melatonin. When administered orally, melatonin is mainly absorbed in the rectum and the ileum; it has a half-life of about 0.45–1 h and is extensively inactivated in the liver by phase 2 enzymes. Melatonin (MEL) concentration varies from picograms to ng/mL in fermented beverages such as wine and beer, depending on the fermentation process. These low quantities, within a dietary intake, are enough to reach significant plasma concentrations of melatonin, and are thus able to exert beneficial effects. Melatonin has demonstrated antioxidant, anticarcinogenic, immunomodulatory and neuroprotective actions. These benefits are related to its free radical scavenging properties as well and the direct interaction with melatonin receptors, which are involved in complex intracellular signaling pathways, including inhibition of angiogenesis and cell proliferation, among others. In the present review, the current evidence on the effects of melatonin on different pathophysiological conditions is also discussed.
Collapse
|
21
|
Labban S, Alghamdi BS, Alshehri FS, Kurdi M. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer's disease. Behav Brain Res 2021; 402:113100. [PMID: 33417994 DOI: 10.1016/j.bbr.2020.113100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/12/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the foremost cause of dementia among other neurodegenerative diseases, leading to memory loss and cognitive deficits. AD has gained extensive attention in research for exploring possible interventions. One promising field is natural substances and compounds that could provide a wide range of neuroprotection against AD. This study aimed to investigate the possible effects of melatonin (MEL) and resveratrol (RES) in improving memory deficits in a sporadic mouse model of AD. Memory deficit was induced using AlCl3 and d-galactose for generating an AD mouse model. Mice were randomly distributed into five groups (n = 13): control, AD, AD + MEL (AD mice treated with 80 mg/kg of MEL), AD + RES (AD mice treated with 40 mg/kg of RES), and AD + Combination)AD mice that received 80 mg/kg MEL and 40 mg/kg RES). A novel object recognition task (NORT) and passive avoidance task (PAT) were used for assessing memory. Moreover, acetylcholinesterase (AChE) level, brain-derived neurotrophic factor (BDNF), and cAMP-response element binding (CREB) protein expression were measured in the prefrontal cortex tissue. Our results showed that MEL significantly improved memory deficits in both the NORT and PAT of the AD model, while RES improved the PAT only in the AD model. Co-treatment with MEL and RES exerted beneficial additive effects on recognition memory impairment in the AD mouse model. Moreover, our results demonstrated that both MEL and RES enhanced the cholinergic system and BDNF and CREB signaling pathways in the prefrontal cortex in an AD mouse model.
Collapse
Affiliation(s)
- Samah Labban
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.
| |
Collapse
|
22
|
Veschsanit N, Yang JL, Ngampramuan S, Viwatpinyo K, Pinyomahakul J, Lwin T, Chancharoen P, Rungruang S, Govitrapong P, Mukda S. Melatonin reverts methamphetamine-induced learning and memory impairments and hippocampal alterations in mice. Life Sci 2020; 265:118844. [PMID: 33278389 DOI: 10.1016/j.lfs.2020.118844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
AIMS Methamphetamine (METH) has become a major public health problem because of its abuse and profound neurotoxic effects, causing alterations in brain structure and function, and impairing cognitive functions, including attention, decision making, emotional memory, and working memory. This study aimed to determine whether melatonin (MEL), the circadian-control hormone, which has roles beyond circadian rhythm regulation, could restore METH-induced cognitive and neuronal impairment. MAIN METHODS Mice were treated with either METH (1 mg/kg) or saline for 7 days, followed by MEL (10 mg/kg) or saline for another 14 days. The Morris water maze (MWM) test was performed one day after the last saline or MEL injection. The hippocampal neuronal density, synaptic density, and receptors involved in learning and memory, along with downstream signaling molecules (NMDA receptor subunits GluN2A, GluN2B, and CaMKII) were investigated by immunoblotting. KEY FINDINGS METH administration significantly extended escape latency in learning phase and reduced the number of target crossings in memory test-phase as well as decreased the expression of BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin, and synaptophysin. MEL treatment significantly ameliorated METH-induced increased escape latency, decreased the number of target crossings and decreased expression of BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin and synaptophysin. SIGNIFICANCE METH administration impairs learning and memory in mice, and MEL administration restores METH-induced neuronal impairments which is probably through the changes in BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin and synaptophysin. Therefore, MEL is potentially an innovative and promising treatment for learning and memory impairment of humans.
Collapse
Affiliation(s)
- Nisarath Veschsanit
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Kittikun Viwatpinyo
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Jitrapa Pinyomahakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Thit Lwin
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Department of Anatomy, Defence Services Medical Academy, Mingalardon, Yangon 11021, Myanmar
| | - Pongrung Chancharoen
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Faculty of Allied Health Sciences, Burapha University, Seansuk, Chonburi 20131, Thailand
| | - Saowalak Rungruang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| |
Collapse
|
23
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Can Melatonin Be a Potential "Silver Bullet" in Treating COVID-19 Patients? Diseases 2020; 8:E44. [PMID: 33256258 PMCID: PMC7709121 DOI: 10.3390/diseases8040044] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
The therapeutic potential of melatonin as a chronobiotic cytoprotective agent to counteract the consequences of COVID-19 infections has been advocated. Because of its wide-ranging effects as an antioxidant, anti-inflammatory, and immunomodulatory compound, melatonin could be unique in impairing the consequences of SARS-CoV-2 infection. Moreover, indirect evidence points out to a possible antiviral action of melatonin by interfering with SARS-CoV-2/angiotensin-converting enzyme 2 association. Melatonin is also an effective chronobiotic agent to reverse the circadian disruption of social isolation and to control delirium in severely affected patients. As a cytoprotector, melatonin serves to combat several comorbidities such as diabetes, metabolic syndrome, and ischemic and non-ischemic cardiovascular diseases, which aggravate COVID-19 disease. In view of evidence on the occurrence of neurological sequels in COVID-19-infected patients, another putative application of melatonin emerges based on its neuroprotective properties. Since melatonin is an effective means to control cognitive decay in minimal cognitive impairment, its therapeutic significance for the neurological sequels of SARS-CoV-2 infection should be considered. Finally, yet importantly, exogenous melatonin can be an adjuvant capable of augmenting the efficacy of anti-SARS-CoV-2 vaccines. We discuss in this review the experimental evidence suggesting that melatonin is a potential "silver bullet" in the COVID 19 pandemic.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina;
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada;
| | | |
Collapse
|
24
|
Abstract
BACKGROUND Sleep disturbances, including reduced nocturnal sleep time, sleep fragmentation, nocturnal wandering, and daytime sleepiness are common clinical problems in dementia, and are associated with significant carer distress, increased healthcare costs, and institutionalisation. Although non-drug interventions are recommended as the first-line approach to managing these problems, drug treatment is often sought and used. However, there is significant uncertainty about the efficacy and adverse effects of the various hypnotic drugs in this clinically vulnerable population. OBJECTIVES To assess the effects, including common adverse effects, of any drug treatment versus placebo for sleep disorders in people with dementia. SEARCH METHODS We searched ALOIS (www.medicine.ox.ac.uk/alois), the Cochrane Dementia and Cognitive Improvement Group's Specialized Register, on 19 February 2020, using the terms: sleep, insomnia, circadian, hypersomnia, parasomnia, somnolence, rest-activity, and sundowning. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared a drug with placebo, and that had the primary aim of improving sleep in people with dementia who had an identified sleep disturbance at baseline. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data on study design, risk of bias, and results. We used the mean difference (MD) or risk ratio (RR) with 95% confidence intervals (CI) as the measures of treatment effect, and where possible, synthesised results using a fixed-effect model. Key outcomes to be included in our summary tables were chosen with the help of a panel of carers. We used GRADE methods to rate the certainty of the evidence. MAIN RESULTS We found nine eligible RCTs investigating: melatonin (5 studies, n = 222, five studies, but only two yielded data on our primary sleep outcomes suitable for meta-analysis), the sedative antidepressant trazodone (1 study, n = 30), the melatonin-receptor agonist ramelteon (1 study, n = 74, no peer-reviewed publication), and the orexin antagonists suvorexant and lemborexant (2 studies, n = 323). Participants in the trazodone study and most participants in the melatonin studies had moderate-to-severe dementia due to Alzheimer's disease (AD); those in the ramelteon study and the orexin antagonist studies had mild-to-moderate AD. Participants had a variety of common sleep problems at baseline. Primary sleep outcomes were measured using actigraphy or polysomnography. In one study, melatonin treatment was combined with light therapy. Only four studies systematically assessed adverse effects. Overall, we considered the studies to be at low or unclear risk of bias. We found low-certainty evidence that melatonin doses up to 10 mg may have little or no effect on any major sleep outcome over eight to 10 weeks in people with AD and sleep disturbances. We could synthesise data for two of our primary sleep outcomes: total nocturnal sleep time (TNST) (MD 10.68 minutes, 95% CI -16.22 to 37.59; 2 studies, n = 184), and the ratio of day-time to night-time sleep (MD -0.13, 95% CI -0.29 to 0.03; 2 studies; n = 184). From single studies, we found no evidence of an effect of melatonin on sleep efficiency, time awake after sleep onset, number of night-time awakenings, or mean duration of sleep bouts. There were no serious adverse effects of melatonin reported. We found low-certainty evidence that trazodone 50 mg for two weeks may improve TNST (MD 42.46 minutes, 95% CI 0.9 to 84.0; 1 study, n = 30), and sleep efficiency (MD 8.53%, 95% CI 1.9 to 15.1; 1 study, n = 30) in people with moderate-to-severe AD. The effect on time awake after sleep onset was uncertain due to very serious imprecision (MD -20.41 minutes, 95% CI -60.4 to 19.6; 1 study, n = 30). There may be little or no effect on number of night-time awakenings (MD -3.71, 95% CI -8.2 to 0.8; 1 study, n = 30) or time asleep in the day (MD 5.12 minutes, 95% CI -28.2 to 38.4). There were no serious adverse effects of trazodone reported. The small (n = 74), phase 2 trial investigating ramelteon 8 mg was reported only in summary form on the sponsor's website. We considered the certainty of the evidence to be low. There was no evidence of any important effect of ramelteon on any nocturnal sleep outcomes. There were no serious adverse effects. We found moderate-certainty evidence that an orexin antagonist taken for four weeks by people with mild-to-moderate AD probably increases TNST (MD 28.2 minutes, 95% CI 11.1 to 45.3; 1 study, n = 274) and decreases time awake after sleep onset (MD -15.7 minutes, 95% CI -28.1 to -3.3: 1 study, n = 274) but has little or no effect on number of awakenings (MD 0.0, 95% CI -0.5 to 0.5; 1 study, n = 274). It may be associated with a small increase in sleep efficiency (MD 4.26%, 95% CI 1.26 to 7.26; 2 studies, n = 312), has no clear effect on sleep latency (MD -12.1 minutes, 95% CI -25.9 to 1.7; 1 study, n = 274), and may have little or no effect on the mean duration of sleep bouts (MD -2.42 minutes, 95% CI -5.53 to 0.7; 1 study, n = 38). Adverse events were probably no more common among participants taking orexin antagonists than those taking placebo (RR 1.29, 95% CI 0.83 to 1.99; 2 studies, n = 323). AUTHORS' CONCLUSIONS We discovered a distinct lack of evidence to guide decisions about drug treatment of sleep problems in dementia. In particular, we found no RCTs of many widely prescribed drugs, including the benzodiazepine and non-benzodiazepine hypnotics, although there is considerable uncertainty about the balance of benefits and risks for these common treatments. We found no evidence for beneficial effects of melatonin (up to 10 mg) or a melatonin receptor agonist. There was evidence of some beneficial effects on sleep outcomes from trazodone and orexin antagonists and no evidence of harmful effects in these small trials, although larger trials in a broader range of participants are needed to allow more definitive conclusions to be reached. Systematic assessment of adverse effects in future trials is essential.
Collapse
|
25
|
Promyo K, Iqbal F, Chaidee N, Chetsawang B. Aluminum chloride-induced amyloid β accumulation and endoplasmic reticulum stress in rat brain are averted by melatonin. Food Chem Toxicol 2020; 146:111829. [PMID: 33130240 DOI: 10.1016/j.fct.2020.111829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 01/18/2023]
Abstract
Accumulation of aluminium (Al) in the brain is known to be a toxic insult that result in neurodegenerative diseases and melatonin is known to have neuroprotective role. The present study was designed to investigate the neuroprotective effects of melatonin for aluminium chloride (AlCl3)-induced neurotoxicity in rats. Twelve-week old male Wistar rats were orally received 175 mg/kg AlCl3 with or without 5 mg/kg melatonin intraperitoneal pretreatment. Group 3 intraperitoneally recieved 5 mg/kg melatonin and group 4 rats were orally treated with saline solution for 8 weeks. A series of behavioral tests, biochemical analysis and expression of AD-associated proteins in the brain were determined after 7 weeks of all treatments. Our results indicated that AlCl3 treatment tends to induce memory and cognitive impairment. However, melatonin treatment attenuated amyloid beta (Aβ) (1-42) level by decreasing β-secretase, augmented low-density lipoprotein receptor-related protein 1, and neprilysin protein expression. Moreover, AlCl3 -induced endoplasmic reticulum (ER) stress and oxidative stress was attenuated by melatonin supplementation. In conclusion, these findings demonstrate a protective role of melatonin against Aβ peptide accumulation, ER stress and oxidative stress in the AlCl3 -treated AD model. Hence, the melatonin supplement might be an alternative way to alleviate the development of AD.
Collapse
Affiliation(s)
- Kitipong Promyo
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand; School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Furhan Iqbal
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand; Institute of Pure and Applied Biology, Zoology division, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Nutthika Chaidee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
26
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
27
|
Photocatalytic activity of AgInS2 quantum dots upon visible light irradiation for melatonin determination through its reactive oxygen species scavenging effect. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
In vitro and in vivo evaluation of organic solvent-free injectable melatonin nanoformulations. Eur J Pharm Biopharm 2020; 152:248-256. [PMID: 32439308 DOI: 10.1016/j.ejpb.2020.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023]
Abstract
Melatonin is a neurohormone with potenial therapeutic effects in many diseases including neonatal hypoxic-ischemic (HI) brain injury. Due to limited solubility in water there is currently no clinically available melatonin formulation for parenteral use. Clinical use of melatonin has thus relied on oral administration, which in many cases is hampered by low and variable bioavailability. In animal treatment studies of neonatal HI, this issue have been circumvented by using parenteral administration of melatonin dissolved in ethanol (EtOH) or dimethyl sulfoxide (DMSO), solvents that are potentially neurotoxic, especially to the newborn brain. Thus, there is an urgent need for a non-toxic injectable melatonin formulation. The aim of this study was to develop such a formulation comprised of melatonin and biocompatible lipid-based nanoparticles with improved melatonin bioavailability. We herein report the development and characterization of an injectable system composed of melatonin and liposomes (LP) or oil-in-water nanoemulsions (NE). Nanoparticle characterization confirmed physicochemical stability over a week and an improvement with respect to melatonin solubilization in water (2.6 mg/mL in our injectable system). Determination of the in vitro release kinetics showed a prolonged release when melatonin is solubilized in nanoparticles (T1/2: 81 min vs 50 min vs 26 min for melatonin-LP, melatonin-NE, and melatonin-EtOH respectively). The pharmacokinetic (PK) parameters were confirmed in vivo in adult rats as similar melatonin levels detected in blood and indicated higher bioavailability in brain after intravenous administration of melatonin nanoformulations (10 mg/kg) in comparison to the free-melatonin administration. In conclusion, we have developed an organic solvent-free injectable formulation for melatonin by utilizing FDA-approved components, as a safe alternative for facilitating the potential of melatonin against variety of pathological conditions.
Collapse
|
29
|
Morton AJ, Middleton B, Rudiger S, Bawden CS, Kuchel TR, Skene DJ. Increased plasma melatonin in presymptomatic Huntington disease sheep (Ovis aries): Compensatory neuroprotection in a neurodegenerative disease? J Pineal Res 2020; 68:e12624. [PMID: 31742766 DOI: 10.1111/jpi.12624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023]
Abstract
Melatonin is a pleiotrophic hormone, synthesised primarily by the pineal gland under the control of the suprachiasmatic nuclei (SCN). It not only provides a hormonal signal of darkness but also has neuroprotective properties. Huntington's disease (HD) is a progressive neurodegenerative disorder characterised by abnormal motor, cognitive and psychiatric symptoms. There is growing evidence, particularly from animal models, that circadian rhythms may also be disturbed in HD. We measured two circadian-regulated hormones, melatonin and cortisol, in plasma samples collected around-the-clock from normal and presymptomatic transgenic HD sheep (Ovis aries) at 5 and 7 years of age, to assess SCN-driven rhythms and the effect of genotype, sex and age. Melatonin-related precursors and metabolites (tryptophan, serotonin, kynurenine) were also measured by liquid chromatography (LC)-mass spectrometry (MS). At 5 years of age in both rams and ewes, plasma melatonin levels were significantly elevated in HD sheep. In ewes measured 2 years later, there was still a significant elevation of nocturnal melatonin. Furthermore, the daytime baseline levels of melatonin were significantly higher in HD sheep. Since increased melatonin could have global beneficial effects on brain function, we suggest that the increased melatonin measured in presymptomatic HD sheep is part of an autoprotective response to mutant huntingtin toxicity that may account, at least in part, for the late onset of disease that characterises HD.
Collapse
Affiliation(s)
- A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Benita Middleton
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Skye Rudiger
- South Australian Research and Development Institute, Roseworthy, South Australia, Australia
| | - C Simon Bawden
- South Australian Research and Development Institute, Roseworthy, South Australia, Australia
| | - Timothy R Kuchel
- Preclinical, Imaging and Research Laboratories (PIRL), SAHMRI, Adelaide, South Australia, Australia
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
30
|
Srivastava AK, Roy Choudhury S, Karmakar S. Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomater Sci 2020; 8:1345-1363. [PMID: 31912833 DOI: 10.1039/c9bm01602c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and localized deposition of cytoplasmic fibrillary inclusions as Lewy bodies in the brain. The aberrant phosphorylation of α-synuclein at serine 129 is the key process on its early onset, which alters the cellular conformation to oligomers and insoluble aggregates, underpinning cellular oxidative stress and mitochondrial dysfunction, leading to devastating PD synucleinopathy. The multiple neuroprotective roles of dopamine and melatonin are often demonstrated separately; however, this approach suffers from low and short bioavailability and is associated with side-effects upon overdosing. Herein, highly pleiotropic melatonin-enriched polydopamine nanostructures were fabricated, which showed efficient brain tissue retention, sustainable and prolonged melatonin release, and prevented neuroblastoma cell death elicited by Parkinson's disease-associated and mitochondrial damaging stimuli. The synergistic neuroprotection re-established the mitochondrial membrane potential, reduced the generation of cellular reactive oxygen species (ROS), inhibited the activation of both the caspase-dependent and independent apoptotic pathways, and exhibited an anti-inflammatory effect. At the molecular level, it suppressed α-synuclein phosphorylation at Ser 129 and reduced the cellular deposition of high molecular weight oligomers. The therapeutic assessment on ex vivo organotypic brain slice culture, and in vivo experimental PD model confirmed the superior brain targeting, collective neuroprotection on dopaminergic neurons with reduced alpha-synuclein phosphorylation and deposition in the hippocampal and substantia nigra region of the brain. Thus, nature-inspired melatonin-enriched polydopamine nanostructures conferring collective neuroprotective effects attributes activation of anti-oxidative, anti-inflammatory, and anti-apoptotic pathways may be superior for application in a nanomedicine-based PD therapy.
Collapse
Affiliation(s)
- Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Sector-64, Mohali, Punjab-160062, India.
| | | | | |
Collapse
|
31
|
Furtado A, Astaburuaga R, Costa A, Duarte AC, Gonçalves I, Cipolla-Neto J, Lemos MC, Carro E, Relógio A, Santos CRA, Quintela T. The Rhythmicity of Clock Genes is Disrupted in the Choroid Plexus of the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 77:795-806. [PMID: 32741824 DOI: 10.3233/jad-200331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, was recently identified as an important component of the circadian clock system. OBJECTIVE The fact that circadian rhythm disruption is closely associated to Alzheimer's disease (AD) led us to investigate whether AD pathology can contribute to disturbances of the circadian clock in the CP. METHODS For this purpose, we evaluated the expression of core-clock genes at different time points, in 6- and 12-month-old female and male APP/PS1 mouse models of AD. In addition, we also assessed the effect of melatonin pre-treatment in vitro before amyloid-β stimulus in the daily pattern of brain and muscle Arnt-like protein 1 (Bmal1) expression. RESULTS Our results showed a dysregulation of circadian rhythmicity of Bmal1 expression in female and male APP/PS1 transgenic 12-month-old mice and of Period 2 (Per2) expression in male mice. In addition, a significant circadian pattern of Bmal1 was measured the intermittent melatonin pre-treatment group, showing that melatonin can reset the CP circadian clock. CONCLUSION These results demonstrated a connection between AD and the disruption of circadian rhythm in the CP, representing an attractive target for disease prevention and/or treatment.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Rosario Astaburuaga
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Medical Department of Hematology, Oncology, and Tumor Immunology and Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
| | - Ana Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - José Cipolla-Neto
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Manuel C Lemos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Spain
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Medical Department of Hematology, Oncology, and Tumor Immunology and Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Department of Human Medicine, Institute for Systems Medicine and Bioinformatics, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
32
|
Tan HY, Ng KY, Koh RY, Chye SM. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol Neurobiol 2020; 40:25-51. [PMID: 31435851 DOI: 10.1007/s10571-019-00724-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
Collapse
Affiliation(s)
- Hui Ying Tan
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia.
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Rong K, Zheng H, Yang R, Liu X, Li L, Chen N, Zhao G, Gong C, Deng Y. Melatonin and its metabolite N(1)-acetyl-N(1)-formyl-5-methoxykynuramine improve learning and memory impairment related to Alzheimer's disease in rats. J Biochem Mol Toxicol 2019; 34:e22430. [PMID: 31833155 DOI: 10.1002/jbt.22430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/05/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the effect of melatonin (MT) and its metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) on Alzheimer-like learning and memory impairment in rats intracerebroventricularly injected with streptozotocin (STZ). The results showed that the escape latency of the STZ group was longer than that of the control (CON), MT, and AFMK groups. Increased levels of hyperphosphorylated tau, neurofilament proteins, and malondialdehyde and decreased superoxide dismutase levels were observed in the brains of the rats from the STZ group compared with the brains of the rats from the CON, MT, AFMK high and low group. These results suggest that exogenous MT and AFMK can improve memory impairment and downregulate AD-like hyperphosphorylation induced by STZ, most likely through their antioxidation function. Meanwhile, we found that an equal dose of AFMK had a stronger effect than that of MT. Our results indicate that MT and its metabolite AFMK represent novel treatment strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Kai Rong
- Nephrology Department, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hong Zheng
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Ruibo Yang
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Xiaoli Liu
- Pathology Department, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Liya Li
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Ning Chen
- Pathophysiology Department, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Chengxin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Yanqiu Deng
- Pathophysiology Department, Basic Medical College, Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Melatonin and Multiple Sclerosis: From Plausible Neuropharmacological Mechanisms of Action to Experimental and Clinical Evidence. Clin Drug Investig 2019; 39:607-624. [PMID: 31054087 DOI: 10.1007/s40261-019-00793-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a devastating chronic autoimmune demyelinating disease of the central nervous system (CNS), thought to affect more than 2.5 million people worldwide. Regulation of the sleep-wake cycle might influence disease activity and the frequency of relapses in patients. As melatonin (or sleep hormone) involves the regulation of circadian rhythms, much attention has been paid to the management of MS symptoms with melatonin. This review describes the pharmacological mechanisms underlying the neuroprotective effects of melatonin and recent clinical evidence from MS patients. Apparent risks and benefits of melatonin therapies are also discussed. Various in vivo and clinical data presented in this up-to-date review suggest that melatonin may possibly possess a protective role against the behavioral deficits and neuropathological characteristics of MS. Multiple mechanisms of the neuroprotective effects of melatonin such as mitochondrial protection and antioxidant, anti-inflammatory, and anti-apoptotic properties, as well as its anti-demyelinating function are also discussed. A large body of evidence shows that melatonin potently regulates the immune system, demyelination, free radical generation, and inflammatory responses in neural tissue, which are mediated by multiple signal transduction cascades. In the present article, we focus on different pathways that are targeted by melatonin to prevent the development and progression of MS.
Collapse
|
35
|
Luengo E, Buendia I, Fernández-Mendívil C, Trigo-Alonso P, Negredo P, Michalska P, Hernández-García B, Sánchez-Ramos C, Bernal JA, Ikezu T, León R, López MG. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J Pineal Res 2019; 67:e12578. [PMID: 30943316 DOI: 10.1111/jpi.12578] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
Alterations in autophagy are increasingly being recognized in the pathogenesis of proteinopathies like Alzheimer's disease (AD). This study was conducted to evaluate whether melatonin treatment could provide beneficial effects in an Alzheimer model related to tauopathy by improving the autophagic flux and, thereby, prevent cognitive decline. The injection of AAV-hTauP301L viral vectors and treatment/injection with okadaic acid were used to achieve mouse and human ex vivo, and in vivo tau-related models. Melatonin (10 μmol/L) impeded oxidative stress, tau hyperphosphorylation, and cell death by restoring autophagy flux in the ex vivo models. In the in vivo studies, intracerebroventricular injection of AAV-hTauP301L increased oxidative stress, neuroinflammation, and tau hyperphosphorylation in the hippocampus 7 days after the injection, without inducing cognitive impairment; however, when animals were maintained for 28 days, cognitive decline was apparent. Interestingly, late melatonin treatment (10 mg/kg), starting once the alterations mentioned above were established (from day 7 to day 28), reduced oxidative stress, neuroinflammation, tau hyperphosphorylation, and caspase-3 activation; these observations correlated with restoration of the autophagy flux and memory improvement. This study highlights the importance of autophagic dysregulation in tauopathy and how administration of pharmacological doses of melatonin, once tauopathy is initiated, can restore the autophagy flux, reduce proteinopathy, and prevent cognitive decline. We therefore propose exogenous melatonin supplementation or the development of melatonin derivatives to improve autophagy flux for the treatment of proteinopathies like AD.
Collapse
Affiliation(s)
- Enrique Luengo
- Department of Pharmacology, School of Medicine, Instituto Teófilo Hernando for Drug Discovery, Universidad Autónoma Madrid, Madrid, Spain
| | - Izaskun Buendia
- Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Cristina Fernández-Mendívil
- Department of Pharmacology, School of Medicine, Instituto Teófilo Hernando for Drug Discovery, Universidad Autónoma Madrid, Madrid, Spain
| | - Paula Trigo-Alonso
- Department of Pharmacology, School of Medicine, Instituto Teófilo Hernando for Drug Discovery, Universidad Autónoma Madrid, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patrycja Michalska
- Department of Pharmacology, School of Medicine, Instituto Teófilo Hernando for Drug Discovery, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Cristina Sánchez-Ramos
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan A Bernal
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tsuneya Ikezu
- Department of Pharmacology, Boston University School of Medicine, Boston, MA
| | - Rafael León
- Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Manuela G López
- Department of Pharmacology, School of Medicine, Instituto Teófilo Hernando for Drug Discovery, Universidad Autónoma Madrid, Madrid, Spain
- Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
36
|
Kryl'skii ED, Popova TN, Safonova OA, Stolyarova AO, Razuvaev GA, de Carvalho MAP. Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia / Reperfusion Conditions. Neuroscience 2019; 406:653-666. [DOI: 10.1016/j.neuroscience.2019.01.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
|
37
|
Spinedi E, Cardinali DP. Neuroendocrine-Metabolic Dysfunction and Sleep Disturbances in Neurodegenerative Disorders: Focus on Alzheimer's Disease and Melatonin. Neuroendocrinology 2019; 108:354-364. [PMID: 30368508 DOI: 10.1159/000494889] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is associated with altered eating behavior and metabolic disruption. Amyloid plaques and neurofilament tangles are observed in many hypothalamic nuclei from AD brains. Some of these areas (suprachiasmatic nuclei, lateral hypothalamic area) also play a role in the regulation of the sleep/wake cycle and may explain the comorbidity of eating and sleep disorders observed in AD patients. Inadequate sleep increases the neurodegenerative process, for example, the decrease of slow-wave sleep impairs clearance of β-amyloid peptide (Aβ) and tau protein from cerebral interstitial fluid. Cerebrospinal fluid (CSF) melatonin levels decrease even in preclinical stages (Braak-1 stage) when patients manifest no cognitive impairment, suggesting that reduction of melatonin in CSF may be an early marker (the cause for which is still unknown) of oncoming AD. Melatonin administration augments glymphatic clearance of Aβ and reduces generation and deposition of Aβ in transgenic animal models of AD. It may also set up a new equilibrium among hypothalamic feeding signals. While melatonin trials performed in the clinical phase of AD have failed to show or showed only modest positive effects on cognition, in the preclinical stage of dementia (minimal cognitive impairment) the effect of melatonin is demonstrable with significant improvement of sleep and quality of life. In this review, we discuss the main aspects of hypothalamic alterations in AD, the association between interrupted sleep and neurodegeneration, and the possible therapeutic effect of melatonin on these processes.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centre of Experimental and Applied Endocrinology (UNLP-CONICET-FCM), La Plata Medical School, La Plata National University, La Plata, Argentina,
| | - Daniel P Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
38
|
Zybina NN, Tikhomirova OV. [Disturbances in melatonin secretion and the efficacy of replacement therapy in sleep disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:92-98. [PMID: 30059057 DOI: 10.17116/jnevro20181184292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review presents data on the dependence of endogenous melatonin synthesis on the time of day, age, pineal gland size, lighting conditions, administration of beta-blockers and a number of other medications. The results of studies on parasecretion and efficacy of exogenous melatonin use in sleep-wake cycle disturbances, insomnia, neurodegeneration, diabetes mellitus and oncological diseases are discussed.
Collapse
Affiliation(s)
- N N Zybina
- Nikiforov Russian Center of Emergency and Radiation Medicine, EMERCOM of Russia, Saint-Petersburg, Russia
| | - O V Tikhomirova
- Nikiforov Russian Center of Emergency and Radiation Medicine, EMERCOM of Russia, Saint-Petersburg, Russia
| |
Collapse
|
39
|
Affiliation(s)
- Daniel P. Cardinali
- Departmento de Docencia e Investigación, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
40
|
Sadhukhan P, Saha S, Dutta S, Mahalanobish S, Sil PC. Nutraceuticals: An emerging therapeutic approach against the pathogenesis of Alzheimer’s disease. Pharmacol Res 2018; 129:100-114. [PMID: 29183770 DOI: 10.1016/j.phrs.2017.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
|
41
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
42
|
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol 2017; 151:101-138. [PMID: 27084356 PMCID: PMC5061605 DOI: 10.1016/j.pneurobio.2016.04.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/02/2023]
Abstract
None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Selina Wray
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danira Bažadona
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luc Buée
- University of Lille, Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Lille, France
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Claude M Wischik
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of Melatonin in Alleviating Alzheimer's Disease. Curr Neuropharmacol 2017; 15:1010-1031. [PMID: 28294066 PMCID: PMC5652010 DOI: 10.2174/1570159x15666170313123454] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive and prevalent neurodegenerative disease characterized by the loss of higher cognitive functions and an associated loss of memory. The thus far "incurable" stigma for AD prevails because of variations in the success rates of different treatment protocols in animal and human studies. Among the classical hypotheses explaining AD pathogenesis, the amyloid hypothesis is currently being targeted for drug development. The underlying concept is to prevent the formation of these neurotoxic peptides which play a central role in AD pathology and trigger a multispectral cascade of neurodegenerative processes post-aggregation. This could possibly be achieved by pharmacological inhibition of β- or γ-secretase or stimulating the nonamyloidogenic α-secretase. Melatonin the pineal hormone is a multifunctioning indoleamine. Production of this amphiphilic molecule diminishes with advancing age and this decrease runs parallel with the progression of AD which itself explains the potential benefits of melatonin in line of development and devastating consequences of the disease progression. Our recent studies have revealed a novel mechanism by which melatonin stimulates the nonamyloidogenic processing and inhibits the amyloidogenic processing of β-amyloid precursor protein (βAPP) by stimulating α -secretases and consequently down regulating both β- and γ-secretases at the transcriptional level. In this review, we discuss and evaluate the neuroprotective functions of melatonin in AD pathogenesis, including its role in the classical hypotheses in cellular and animal models and clinical interventions in AD patients, and suggest that with early detection, melatonin treatment is qualified to be an anti-AD therapy.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jutamaad Satayavivad
- Chulabhorn Research Institute and Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok10210, Thailand
| |
Collapse
|
44
|
Abstract
BACKGROUND Sleep disturbances, including reduced nocturnal sleep time, sleep fragmentation, nocturnal wandering, and daytime sleepiness are common clinical problems in dementia, and are associated with significant caregiver distress, increased healthcare costs, and institutionalisation. Drug treatment is often sought to alleviate these problems, but there is significant uncertainty about the efficacy and adverse effects of the various hypnotic drugs in this vulnerable population. OBJECTIVES To assess the effects, including common adverse effects, of any drug treatment versus placebo for sleep disorders in people with dementia, through identification and analysis of all relevant randomised controlled trials (RCTs). SEARCH METHODS We searched ALOIS (www.medicine.ox.ac.uk/alois), the Cochrane Dementia and Cognitive Improvement Group's Specialized Register, in March 2013 and again in March 2016, using the terms: sleep, insomnia, circadian, hypersomnia, parasomnia, somnolence, rest-activity, sundowning. SELECTION CRITERIA We included RCTs that compared a drug with placebo, and that had the primary aim of improving sleep in people with dementia who had an identified sleep disturbance at baseline. Trials could also include non-pharmacological interventions, as long as both drug and placebo groups had the same exposure to them. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data on study design, risk of bias, and results from the included study reports. We obtained additional information from study authors where necessary. We used the mean difference as the measure of treatment effect, and where possible, synthesized results using a fixed-effect model. MAIN RESULTS We found six RCTs eligible for inclusion for three drugs: melatonin (222 participants, four studies, but only two yielded data on our primary sleep outcomes suitable for meta-analysis), trazodone (30 participants, one study), and ramelteon (74 participants, one study, no peer-reviewed publication, limited information available).The participants in the trazodone study and almost all participants in the melatonin studies had moderate-to-severe dementia due to Alzheimer's disease (AD); those in the ramelteon study had mild-to-moderate AD. Participants had a variety of common sleep problems at baseline. All primary sleep outcomes were measured using actigraphy. In one study of melatonin, drug treatment was combined with morning bright light therapy. Only two studies made a systematic assessment of adverse effects. Overall, the evidence was at low risk of bias, although there were areas of incomplete reporting, some problems with participant attrition, related largely to poor tolerance of actigraphy and technical difficulties, and a high risk of selective reporting in one trial that contributed very few participants. The risk of bias in the ramelteon study was unclear due to incomplete reporting.We found no evidence that melatonin, at doses up to 10 mg, improved any major sleep outcome over 8 to 10 weeks in patients with AD who were identified as having a sleep disturbance. We were able to synthesize data for two of our primary sleep outcomes: total nocturnal sleep time (mean difference (MD) 10.68 minutes, 95% CI -16.22 to 37.59; N = 184; two studies), and the ratio of daytime sleep to night-time sleep (MD -0.13, 95% CI -0.29 to 0.03; N = 184; two studies). From single studies, we found no difference between melatonin and placebo groups for sleep efficiency, time awake after sleep onset, or number of night-time awakenings. From two studies, we found no effect of melatonin on cognition or performance of activities of daily living (ADL). No serious adverse effects of melatonin were reported in the included studies. We considered this evidence to be of low quality.There was low-quality evidence that trazodone 50 mg given at night for two weeks improved total nocturnal sleep time (MD 42.46 minutes, 95% CI 0.9 to 84.0; N = 30; one study), and sleep efficiency (MD 8.53%, 95% CI 1.9 to 15.1; N = 30; one study) in patients with moderate-to-severe AD, but it did not affect the amount of time spent awake after sleep onset (MD -20.41, 95% CI -60.4 to 19.6; N = 30; one study), or the number of nocturnal awakenings (MD -3.71, 95% CI -8.2 to 0.8; N = 30; one study). No effect was seen on daytime sleep, cognition, or ADL. No serious adverse effects of trazodone were reported.Results from a phase 2 trial investigating ramelteon 8 mg administered at night were available in summary form in a sponsor's synopsis. Because the data were from a single, small study and reporting was incomplete, we considered this evidence to be of low quality in general terms. Ramelteon had no effect on total nocturnal sleep time at one week (primary outcome) or eight weeks (end of treatment) in patients with mild-to-moderate AD. The synopsis reported few significant differences from placebo for any sleep, behavioural, or cognitive outcomes; none were likely to be of clinical significance. There were no serious adverse effects from ramelteon. AUTHORS' CONCLUSIONS We discovered a distinct lack of evidence to help guide drug treatment of sleep problems in dementia. In particular, we found no RCTs of many drugs that are widely prescribed for sleep problems in dementia, including the benzodiazepine and non-benzodiazepine hypnotics, although there is considerable uncertainty about the balance of benefits and risks associated with these common treatments. From the studies we identified for this review, we found no evidence that melatonin (up to 10mg) helped sleep problems in patients with moderate to severe dementia due to AD. There was some evidence to support the use of a low dose (50 mg) of trazodone, although a larger trial is needed to allow a more definitive conclusion to be reached on the balance of risks and benefits. There was no evidence of any effect of ramelteon on sleep in patients with mild to moderate dementia due to AD. This is an area with a high need for pragmatic trials, particularly of those drugs that are in common clinical use for sleep problems in dementia. Systematic assessment of adverse effects is essential.
Collapse
Affiliation(s)
- Jenny McCleery
- Oxford Health NHS Foundation TrustElms CentreOxford RoadBanburyOxfordshireUKOX16 9AL
| | - Daniel A. Cohen
- Division of Sleep MedicineResearch Fellow in Sleep and Circadian NeurobiologyHarvard Medical SchoolBostonMAUSA02115
| | - Ann L Sharpley
- Oxford UniversityDepartment of PsychiatryNeurosciences Building, Dept Psychiatry, Warneford HospitalOxfordUKOX3 7JX
| | | |
Collapse
|
45
|
Nehls M. Unified theory of Alzheimer's disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016; 4:3. [PMID: 27429752 PMCID: PMC4947325 DOI: 10.1186/s40303-016-0018-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to propose a Unified Theory of Alzheimer's disease (UTAD) that integrates all key behavioural, genetic and environmental risk factors in a causal chain of etiological and pathogenetic events. It is based on three concepts that emanate from human's evolutionary history: (1) The grandmother-hypothesis (GMH), which explains human longevity due to an evolutionary advantage in reproduction by trans-generational transfer of acquired knowledge. Consequently it is argued that mental health at old-age must be the default pathway of humans' genetic program and not development of AD. (2) Therefore, mechanism like neuronal rejuvenation (NRJ) and adult hippocampal neurogenesis (AHN) that still function efficiently even at old age provide the required lifelong ability to memorize personal experiences important for survival. Cumulative evidence from a multitude of experimental and epidemiological studies indicate that behavioural and environmental risk factors, which impair productive AHN, result in reduced episodic memory performance and in reduced psychological resilience. This leads to avoidance of novelty, dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and cortisol hypersecretion, which drives key pathogenic mechanisms of AD like the accumulation and oligomerization of synaptotoxic amyloid beta, chronic neuroinflammation and neuronal insulin resistance. (3) By applying to AHN the law of the minimum (LOM), which defines the basic requirements of biological growth processes, the UTAD explains why and how different lifestyle deficiencies initiate the AD process by impairing AHN and causing dysregulation of the HPA-axis, and how environmental and genetic risk factors such as toxins or ApoE4, respectively, turn into disease accelerators under these unnatural conditions. Consequently, the UTAD provides a rational strategy for the prevention of mental decline and a system-biological approach for the causal treatment of AD, which might even be curative if the systemic intervention is initiated early enough in the disease process. Hence an individualized system-biological treatment of patients with early AD is proposed as a test for the validity of UTAD and outlined in this review.
Collapse
Affiliation(s)
- Michael Nehls
- Independent Researcher, Allmendweg 1, 79279 Vörstetten, Germany
| |
Collapse
|
46
|
Cardinali DP, Golombek DA, Rosenstein RE, Brusco LI, Vigo DE. Assessing the efficacy of melatonin to curtail benzodiazepine/Z drug abuse. Pharmacol Res 2016; 109:12-23. [DOI: 10.1016/j.phrs.2015.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022]
|
47
|
Manukhina EB, Downey HF, Shi X, Mallet RT. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease. Exp Biol Med (Maywood) 2016; 241:1351-63. [PMID: 27190276 DOI: 10.1177/1535370216649060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a leading cause of death and disability among older adults. Modifiable vascular risk factors for AD (VRF) include obesity, hypertension, type 2 diabetes mellitus, sleep apnea, and metabolic syndrome. Here, interactions between cerebrovascular function and development of AD are reviewed, as are interventions to improve cerebral blood flow and reduce VRF. Atherosclerosis and small vessel cerebral disease impair metabolic regulation of cerebral blood flow and, along with microvascular rarefaction and altered trans-capillary exchange, create conditions favoring AD development. Although currently there are no definitive therapies for treatment or prevention of AD, reduction of VRFs lowers the risk for cognitive decline. There is increasing evidence that brief repeated exposures to moderate hypoxia, i.e. intermittent hypoxic training (IHT), improve cerebral vascular function and reduce VRFs including systemic hypertension, cardiac arrhythmias, and mental stress. In experimental AD, IHT nearly prevented endothelial dysfunction of both cerebral and extra-cerebral blood vessels, rarefaction of the brain vascular network, and the loss of neurons in the brain cortex. Associated with these vasoprotective effects, IHT improved memory and lessened AD pathology. IHT increases endothelial production of nitric oxide (NO), thereby increasing regional cerebral blood flow and augmenting the vaso- and neuroprotective effects of endothelial NO. On the other hand, in AD excessive production of NO in microglia, astrocytes, and cortical neurons generates neurotoxic peroxynitrite. IHT enhances storage of excessive NO in the form of S-nitrosothiols and dinitrosyl iron complexes. Oxidative stress plays a pivotal role in the pathogenesis of AD, and IHT reduces oxidative stress in a number of experimental pathologies. Beneficial effects of IHT in experimental neuropathologies other than AD, including dyscirculatory encephalopathy, ischemic stroke injury, audiogenic epilepsy, spinal cord injury, and alcohol withdrawal stress have also been reported. Further research on the potential benefits of IHT in AD and other brain pathologies is warranted.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Institute of General Pathology and Pathophysiology, Moscow 125315, Russian Federation
| | - H Fred Downey
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Xiangrong Shi
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Robert T Mallet
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| |
Collapse
|
48
|
Moneim AEA. Oxidant/Antioxidant imbalance and the risk of Alzheimer's disease. Curr Alzheimer Res 2016; 12:335-49. [PMID: 25817254 PMCID: PMC5384363 DOI: 10.2174/1567205012666150325182702] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of memory and other cognitive functions among older people. Senile plaques and neurofibrillary tangles are the most hallmarks lesions in the brain of AD in addition to neurons loss. Accumulating evidence has shown that oxidative stress-induced damage may play an important role in the initiation and progression of AD pathogenesis. Redox impairment occurs when there is an imbalance between the production and quenching of free radicals from oxygen species. These reactive oxygen species augment the formation and aggregation of amyloid-β and tau protein hyperphosphorylation and vice versa. Currently, there is no available treatments can modify the disease. However, wide varieties of antioxidants show promise to delay or prevent the symptoms of AD and may help in treating the disease. In this review, the role of oxidative stress in AD pathogenesis and the common used antioxidant therapies for AD will summarize.
Collapse
Affiliation(s)
- Ahmed E Abdel Moneim
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain.
| |
Collapse
|