1
|
Hsu HH, Lee AH, Tai SH, Chen LY, Huang SY, Chen YY, Hung YC, Wu TS, Lee EJ. Viscolin-mediated antiapoptotic and neuroprotective effects in cortical neurons exposed to oxygen-glucose deprivation and rats subjected to transient focal cerebral ischemia. Neurol Res 2024; 46:1063-1073. [PMID: 39033031 DOI: 10.1080/01616412.2024.2381381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Previously, we have successfully purified and synthesized viscolin, an agent derived from Viscum coloratum extract, which has shown significant potential in the treatment of stroke. Our study aimed to evaluate the neuroprotective effects of viscolin. METHODS We first assessed the cytotoxicity of viscolin on primary neuronal cultures and determined its antioxidant and radical scavenging properties. Subsequently, we identified the optimal dose-response of viscolin in protecting against glutamate-induced neurotoxicity. RESULTS Our results demonstrated that viscolin at a concentration of 10 μM effectively reduced neuronal cell death up to 6 hours after glutamate-induced neurotoxicity. Additionally, we investigated the therapeutic window of opportunity and the potential of viscolin in preventing necrotic and apoptotic damage in cultured neurons exposed to oxygen glucose deprivation-induced neurotoxicity. Our findings showed that viscolin treatment significantly reduced DNA breakage, prevented the release of cytochrome c from mitochondria to cytosol, increased the expression of anti-apoptotic protein Bcl-2, decreased the expression of pro-apoptotic protein Bax, and reduced the number of TUNEL-positive cells. Additionally, our in vivo investigation demonstrated a reduction in brain infarction following middle cerebral artery occlusion. CONCLUSION Viscolin has potential utility as a therapeutic agent in the treatment of stroke.
Collapse
Affiliation(s)
- Hao-Hsiang Hsu
- Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ai-Hua Lee
- Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shih-Huang Tai
- Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Liang-Yi Chen
- Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Sheng-Yang Huang
- Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Yun Chen
- Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yu-Chang Hung
- Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E-Jian Lee
- Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
2
|
Huang Y, Ni Y, Yu L, Shu L, Zhu Q, He X. Dietary total antioxidant capacity and risk of stroke: a systematic review and dose-response meta-analysis of observational studies. Front Nutr 2024; 11:1451386. [PMID: 39364151 PMCID: PMC11448356 DOI: 10.3389/fnut.2024.1451386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
BackgroundPrevious studies have reported the association between dietary total antioxidant capacity (TAC) and risk of stroke, but these findings have been inconsistent. We therefore performed this systematic review and dose–response meta-analysis of observational studies to evaluate the association between dietary TAC and risk of stroke.MethodsA systematic literature search was carried out through PubMed, ISI Web of Science, EBSCO, Scopus and China National Knowledge Infrastructure (CNKI) databases, to find the relevant articles published up to 31 May, 2024. Random-effects or fixed-effects models were used to pool the relative risks (RRs) and their 95% confidence intervals (CIs) where appropriate. Heterogeneity across studies were determined using the Cochran’s Q test and I-square (I2) statistics.ResultsEight observational studies (six cohort and two case–control studies) were included in the final analysis. The pooled results showed that higher intake of dietary TAC was associated with a lower risk of stroke (RR = 0.88; 95%CI: 0.81–0.95, p = 0.002). Additionally, dose–response analysis of cohort studies demonstrated a linear association between dietary TAC intake and risk of stroke (RR = 0.994; 95%CI: 0.990–0.999, Pnon-linearity = 0.329, Pdose–response = 0.014). Subgroup analyses showed the inverse association between dietary TAC intake and risk of stroke in the studies with mean age < 50 (RR = 0.82, 95%CI: 0.67–0.99, p = 0.044), and there was no evidence of heterogeneity (p = 0.360; I2 = 0.0%).ConclusionOur findings indicated that higher intake of dietary TAC was inversely associated with the risk of stroke. Future studies in particular of longitudinal design are needed to confirm this inverse relationship.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024547706.
Collapse
Affiliation(s)
- Yiqian Huang
- Department of Anesthesia Operation, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yajun Ni
- Department of Anesthesia Operation, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Lin Yu
- Department of Anesthesia Operation, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Long Shu
- Department of Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Qin Zhu
- Department of Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang, China
- Department of Digestion, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xingzhen He
- Department of Digestion, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
4
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
5
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
6
|
Kaviyarasu K. Investigation of structural, optical, photocatalytic, and antibacterial properties of ZnO doped GO nanoparticles for environment applications. Microsc Res Tech 2024. [PMID: 39192686 DOI: 10.1002/jemt.24672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
As a result of their unique and novel properties, nanocomposites have found applications in a wide variety of fields. The purpose of this study is to demonstrate the ability to synthesize nanoparticles consisting of zinc oxide (ZnO) and graphene oxide (GO) via sol-gel techniques. An x-ray diffractometer (XRD) as well as a UV-visible spectrometer were used to determine the crystalline and optical characteristics of the prepared samples. A hexagonal wurtzite crystal structure was observed in both pure ZnO nanoparticles and those that contain GO based on XRD results. It was estimated that the average crystallite size is based on the broadening of x-ray lines. In comparison with pure ZnO, the antimicrobial properties were enhanced when GO was incorporated with ZnO. In addition, experiments on the absorption edge indicated the presence of a red shift as a result of the incorporation of GO. When GO is incorporated in quantitative amounts, the bandgap value of pure ZnO decreased. FTIR spectra exhibit a band of absorption at 486 cm-1, which confirms Zn-O stretching in both samples. SEM images reveal a random pattern of structural features on the surface of the prepared samples. According to the EDX spectrum, pure GO nanoparticles and those doped with ZnO contain 61%-64% zinc and 32%-34% oxygen, respectively. When annealed at a higher temperature, ZnO NPs produced more H2 with a narrower bandgap than before annealing. In addition, methyl blue (MB) was used as an example of an organic compound in order to investigate the potential photocatalytic properties of nanoparticles with ZnO doped GO. In addition to DPPH assays, ZnO nanoparticles and ZnO doped GO nanoparticles were tested for their ability to scavenge free radicals. Comparing ZnO doped GO NPs with pure ZnO, these nanoparticles showed increased antioxidant activity. Based on the increased zone of inhibition observed for pure ZnO and ZnO doped GO (5, 10, 50, and 100 mg/mL), the antibacterial activity of pure ZnO and ZnO doped GO is concentration dependent. A detailed discussion of the results of the study demonstrated that ZnO doped GO and pure ZnO are toxic in different ways depending on how long they survive in degreased Zebrafish embryos and how fast they decompose. RESEARCH HIGHLIGHTS: The scope of the manuscript was under the results of the study confirmed that both nanoparticles exhibited concentration dependent antioxidative activity. Determined that 89% of methyl orange dye can be degraded photocatalytically. ZnO nanoparticles were found to be 74.86% antioxidant at a concentration of 50 g/mL in the present study. At a concentration of 50 g/mL, ZnO doped GO NPs showed 79.1% antioxidant activity. Photocatalytic degradation mechanism scheme is implicit in the photoexcited charge carrier transportation path is observed for all the samples. Survival rate of zebrafish embryos was shown to decrease with increasing concentrations of ZnO and zinc oxide plus GO nanoparticles.
Collapse
Affiliation(s)
- K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, School of Interdisciplinary Research and Graduate Studies, College of Graduate Studies, University of South Africa (UNISA), Roodepoort, Johannesburg, South Africa
| |
Collapse
|
7
|
Zhen J, Cheung BMY, Li C. Association between dietary fat intake and history of stroke in US adults: findings from National Health and Nutrition Examination Survey 2007-2018. Nutr Neurosci 2024:1-9. [PMID: 39175259 DOI: 10.1080/1028415x.2024.2391652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Diet is an important target for primary prevention of stroke. There are mixed findings on the relationship between dietary fat intake and stroke. We aimed to investigate the relationship of stroke with fats, including total fat, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). METHODS We analysed data on 27,673 participants who had valid data on dietary fat intake and history of stroke from the National Health and Nutrition Examination Survey 2007-2018. History of stroke was defined according to previous diagnosis by doctors or other health professional. Data on 24-h dietary recalls was collected using Automated Multiple-Pass Method. Age, sex, race/ethnicity, total calories, body mass index, diabetes, hypertension, hypercholesterolaemia, smoking, alcohol consumption and physical activity were adjusted in multivariable models. RESULTS 3.8% (n = 1,054) of participants had a diagnosis of stroke. History of stroke was inversely associated with total fat (OR = 0.89, 95% CI = 0.79-0.99, P = 0.037), SFA (OR = 0.46, 95% CI = 0.23-0.91) and MUFA (OR = 0.08, 95% CI = 0.02-0.38, P = 0.002) from supplements. There was an inverse association between history of stroke and PUFA intake (from diet: quartile 4 vs quartile 1, OR = 0.58, 95% CI = 0.43-0.78, P for trend = 0.003; from supplements: OR = 0.44, 95% CI = 0.27-0.72, P = 0.001). CONCLUSIONS In this large-scale nationally representative study, stroke is inversely associated with fat intake from supplements and PUFA intake from diet. While lifestyle choices may not be the most vital health factor for stroke patients, increasing fat intake from specific supplements does provide additional motivation for undertaking the difficult challenge of stroke prevention.
Collapse
Affiliation(s)
- Juanying Zhen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Bernard Man Yung Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chao Li
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
8
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
9
|
Rotaru-Zăvăleanu AD, Dinescu VC, Aldea M, Gresita A. Hydrogel-Based Therapies for Ischemic and Hemorrhagic Stroke: A Comprehensive Review. Gels 2024; 10:476. [PMID: 39057499 PMCID: PMC11276304 DOI: 10.3390/gels10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Stroke remains the second leading cause of death and a major cause of disability worldwide, significantly impacting individuals, families, and healthcare systems. This neurological emergency can be triggered by ischemic events, including small vessel arteriolosclerosis, cardioembolism, and large artery atherothromboembolism, as well as hemorrhagic incidents resulting from macrovascular lesions, venous sinus thrombosis, or vascular malformations, leading to significant neuronal damage. The resultant motor impairment, cognitive dysfunction, and emotional disturbances underscore the urgent need for effective therapeutic interventions. Recent advancements in biomaterials, particularly hydrogels, offer promising new avenues for stroke management. Hydrogels, composed of three-dimensional networks of hydrophilic polymers, are notable for their ability to absorb and retain substantial amounts of water. Commonly used polymers in hydrogel formulations include natural polymers like alginate, chitosan, and collagen, as well as synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide. Their customizable characteristics-such as their porosity, swelling behavior, mechanical strength, and degradation rates-make hydrogels ideal for biomedical applications, including drug delivery, cell delivery, tissue engineering, and the controlled release of therapeutic agents. This review comprehensively explores hydrogel-based approaches to both ischemic and hemorrhagic stroke therapy, elucidating the mechanisms by which hydrogels provide neuroprotection. It covers their application in drug delivery systems, their role in reducing inflammation and secondary injury, and their potential to support neurogenesis and angiogenesis. It also discusses current advancements in hydrogel technology and the significant challenges in translating these innovations from research into clinical practice. Additionally, it emphasizes the limited number of clinical trials utilizing hydrogel therapies for stroke and addresses the associated limitations and constraints, underscoring the need for further research in this field.
Collapse
Affiliation(s)
- Alexandra-Daniela Rotaru-Zăvăleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680, USA
| |
Collapse
|
10
|
Inderhees J, Schwaninger M. Liver Metabolism in Ischemic Stroke. Neuroscience 2024; 550:62-68. [PMID: 38176607 DOI: 10.1016/j.neuroscience.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Focal brain damage and neurological deficits are the direct consequences of acute ischemic stroke (AIS). In addition, cerebral ischemia causes systemic alterations across peripheral organs. Dysregulation of the autonomic and endocrine systems as well as the release of brain-derived pro-inflammatory mediators trigger a peripheral immune response and systemic inflammation. As a key metabolic organ, the liver contributes not only to post-stroke immunosuppression but also to stress-induced hyperglycemia. At the same time, increased ketogenesis and glutathione production in the liver are likely to combat inflammation and oxidative stress after AIS. The closely linked lipid metabolism could regulate both glucose and glutathione homeostasis. In addition, increased hepatic very low-density lipoprotein (VLDL) secretion may improve the availability of phospholipids, polyunsaturated fatty acids (PUFAs) and glutathione after AIS. This review provides an overview of recent findings concerning ischemic stroke and the liver and discusses the therapeutic potential of targeting the hepatic metabolism to improve patient outcome after stroke.
Collapse
Affiliation(s)
- Julica Inderhees
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany; Bioanalytic Core Facility, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany.
| |
Collapse
|
11
|
Bao L, Liu Y, Jia Q, Chu S, Jiang H, He S. Argon neuroprotection in ischemic stroke and its underlying mechanism. Brain Res Bull 2024; 212:110964. [PMID: 38670471 DOI: 10.1016/j.brainresbull.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Li Bao
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yongxin Liu
- Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Qi Jia
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Sihao Chu
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Han Jiang
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Shuang He
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
12
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
13
|
Zhao J, Zhu R, He F, Wu M, Wu Y, Meng X, Liu X. Neuroprotective effects of galectin‑1 on cerebral ischemia/reperfusion injury by regulating oxidative stress. Exp Ther Med 2024; 27:154. [PMID: 38476925 PMCID: PMC10928996 DOI: 10.3892/etm.2024.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress contributes to the pathology of cerebral ischemia/reperfusion (I/R) injury. Galectin-1 has shown an anti-oxidative stress effect. The present study investigated whether this anti-oxidative stress effect can account for the neuroprotective actions of galectin-1 induced by cerebral I/R injury. A cerebral I/R injury model was created in C57Bl/6 mice by transient occlusion of the middle cerebral artery, after which the mice were treated with galectin-1 for 3 days. Infarct volumes were measured. A rotarod test and neurological deficit score assessment was performed to evaluate the neurological deficits. Oxidative stress was evaluated by measuring the levels of reactive oxygen species (ROS) and lipid peroxidation malondialdehyde (MDA), while the anti-oxidative stress status was assessed by measuring molecules such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidation enzyme (GSH-Px) in the ischemic cerebral hemisphere of mice. The inflammatory cytokines, including Interleukin 1 (IL-1), IL-6 and tumor necrosis factor alpha (TNF-α) were measured, and the expression of microglia was evaluated by immunohistochemistry in the ischemic cerebral hemisphere of mice. Galectin-1 treatment ameliorated neurological deficits and reduced infarct volumes in the mice model with cerebral I/R injury. Moreover, it was demonstrated that galectin-1 can significantly alleviate cerebral I/R injury in the ischemic cerebral hemisphere by decreasing the production of ROS and MDA, but increasing the production of CAT, SOD and GSH-Px. Galectin-1 treatment decreased microglia expression, and IL-1, IL-6 and TNF-α levels in the ischemic cerebral hemisphere of mice. Galectin-1 could improve the outcome of cerebral I/R injury by alleviating oxidative stress. Moreover, the neuroprotective effect of galectin-1 in cerebral ischemia could be related to its anti-oxidative stress effect.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Rui Zhu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Feifei He
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Miao Wu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Yufu Wu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Xiangjun Meng
- Department of Neurology, Liaoyuan City Central Hospital, Liaoyuan, Jilin 136200, P.R. China
| | - Xiaohong Liu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| |
Collapse
|
14
|
Mao J, Zhao Y, Hu H, Zhou M, Yang X. An L-shaped association between composite dietary antioxidant index and stroke: Evidence from NHANES 2011-2020. J Stroke Cerebrovasc Dis 2024; 33:107578. [PMID: 38232583 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Antioxidant diets are considered to be protective factors against stroke. However, comprehensive measurement and evaluation of antioxidant diets are lacking. This study aimed to investigate the correlation between the Composite Dietary Antioxidant Index (CDAI) and stroke in adults. MATERIALS AND METHODS In this study, based on the National Health and Nutrition Examination Survey (NHANES) 2011-2020 data, multivariate logistic regression, smoothing curve fitting, and threshold effect analysis were used to explore the relationship between CDAI and stroke. Subgroup analyses and interaction tests were conducted to assess the stability of this association within the population. RESULTS Among 12,922 U.S. adults, there was a significant negative correlation between CDAI and the prevalence of stroke. In the fully adjusted model, the risk of stroke was reduced by 4 % for each 1-unit increase in CDAI (OR [95% CI] = 0.96 [0.93, 0.99]). Participants in the highest quartile of the CDAI had a 37 % lower risk of stroke than those in the lowest quartile (OR [95% CI] = 0.63 [0.47, 0.84]). This negative correlation remained stable across subgroups. Furthermore, the study revealed an L-shaped association between CDAI and stroke through smoothing curve fitting. The threshold effect analysis further identified the inflection point as -1.55. CONCLUSIONS This study revealed an L-shaped relationship between CDAI and stroke. Keeping CDAI in the proper range may help prevent stroke in the general population.
Collapse
Affiliation(s)
- Jiesheng Mao
- Postgraduate Training Base Alliance of Wenzhou Medical University (Wenzhou People's Hospital), China
| | - Yunhan Zhao
- Postgraduate Training Base Alliance of Wenzhou Medical University (Wenzhou People's Hospital), China
| | - Haoxiang Hu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Wenzhou People's Hospital), China
| | - Mi Zhou
- Third Affiliated Hospital, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaokai Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Wenzhou People's Hospital), China.
| |
Collapse
|
15
|
Amankwa CE, Acha LG, Dibas A, Chavala SH, Roth S, Mathew B, Acharya S. Neuroprotective and Anti-Inflammatory Activities of Hybrid Small-Molecule SA-10 in Ischemia/Reperfusion-Induced Retinal Neuronal Injury Models. Cells 2024; 13:396. [PMID: 38474360 PMCID: PMC10931063 DOI: 10.3390/cells13050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1β and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.
Collapse
Affiliation(s)
- Charles E. Amankwa
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Lorea Gamboa Acha
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Adnan Dibas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sai H. Chavala
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Biji Mathew
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Suchismita Acharya
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
16
|
Jackson CW, Xu J, Escobar I, Saul I, Fagerli E, Dave KR, Perez-Pinzon MA. Resveratrol Preconditioning Downregulates PARP1 Protein to Alleviate PARP1-Mediated Cell Death Following Cerebral Ischemia. Transl Stroke Res 2024; 15:165-178. [PMID: 36633794 PMCID: PMC10336177 DOI: 10.1007/s12975-022-01119-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
Stroke remains a leading cause of mortality; however, available therapeutics are limited. The study of ischemic tolerance, in paradigms such as resveratrol preconditioning (RPC), provides promise for the development of novel prophylactic therapies. The heavily oxidative environment following stroke promotes poly-ADP-ribose polymerase 1 (PARP1)-overactivation and parthanatos, both of which are major contributors to neuronal injury. In this study, we tested the hypothesis that RPC instills ischemic tolerance through decreasing PARP1 overexpression and parthanatos following in vitro and in vivo cerebral ischemia. To test this hypothesis, we utilized rat primary neuronal cultures (PNCs) and middle cerebral artery occlusion (MCAO) in the rat as in vitro and in vivo models, respectively. RPC was administered 2 days preceding ischemic insults. RPC protected PNCs against oxygen and glucose deprivation (OGD)-induced neuronal loss, as well as increases in total PARP1 protein, implying protection against PARP1-overactivation. Twelve hours following OGD, we observed reductions in NAD+/NADH as well as an increase in AIF nuclear translocation, but RPC ameliorated NAD+/NADH loss and blocked AIF nuclear translocation. MCAO in the rat induced AIF nuclear translocation in the ischemic penumbra after 24 h, which was ameliorated with RPC. We tested the hypothesis that RPC's neuroprotection was instilled through long-term downregulation of nuclear PARP1 protein. RPC downregulated nuclear PARP1 protein for at least 6 days in PNCs, likely contributing to RPC's ischemic tolerance. This study describes a novel mechanism by which RPC instills prophylaxis against ischemia-induced PARP1 overexpression and parthanatos, through a long-term reduction of nuclear PARP1 protein.
Collapse
Grants
- R01 NS045676 NINDS NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- R01 NS054147 NINDS NIH HHS
- RF1 NS034773 NINDS NIH HHS
- R01 NS097658 NINDS NIH HHS
- R01 NS034773 NINDS NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
Collapse
Affiliation(s)
- Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Isabel Saul
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
| | - Eric Fagerli
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
17
|
Vamshi G, D S N B K P, Sampath A, Dammalli M, Kumar P, B S G, Pasala PK, Somasekhar G, Challa MC, Alluril R, Narala VR. Possible cerebroprotective effect of citronellal: molecular docking, MD simulation and in vivo investigations. J Biomol Struct Dyn 2024; 42:1208-1219. [PMID: 37286367 DOI: 10.1080/07391102.2023.2220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 06/09/2023]
Abstract
This study focused on molecular docking, dynamic simulation, and in vivo approaches to examine the molecular interactions between citronellal (CT) and neurotoxic proteins. In silico studies of CT were performed using proteins involved in the pathophysiology of stroke, such as interleukin-6 (IL-6), interleukin-12 (IL-12), TNF-α, and nitric oxide synthase (NOS), to determine the binding affinity based on their interactions. The docking results of CT revealed that, among the targets, NOS had a better binding energy of -6.4 Kcal/mol. NOS showed good hydrophobic interactions: TYR A, 347; VAL A, 352; PRO A, 350; TYR A, 373 amino acids. Interactions with IL-6, TNF-α, and IL-12 resulted in lower binding affinities of -3.7, -3.9 and -3.1 Kcal/mol. Based on molecular dynamics simulations of 100 ns, the binding affinity of CT (-66.782 ± 7.309 kJ/mol) was well complemented, and NOS stability at the docked site was confirmed. In in vivo studies, cerebral stroke was induced by occlusion of the bilateral common carotid arteries for 30 min and reperfusion for 4 h. CT treatment protected the brain by decreasing cerebral infarction size, increasing GSH(p < 0.001***), decreasing MPO (p < 0.001***), MDA (p < 0.001***), NO production (p < 0.01**), and AChE (p < 0.001***) compared to stroke rats. Histopathological examination revealed that CT treatment reduced the severity of cerebral damage. The investigation concluded that CT strongly binds to NOS, as observed in molecular docking and dynamic simulation studies, which are involved in nitric oxide production, leading to cerebral damage, and CT treatment reduces NO production and oxidative stress parameters, and increases antioxidants via inhibition of NOS function.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Vamshi
- SKU College of Pharmaceutical Sciences, SKU, Ananthapuramu, Andhra Pradesh, India
| | - Prasanth D S N B K
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India
| | - A Sampath
- Department of QA, EQRX International Inc, Cambridge, Massachusetts, USA
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technosslogy, Tumkur, Karnataka, India
| | - Pankaj Kumar
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangaluru, India
| | - Gowrishankar B S
- Department of Biotechnology, Siddaganga Institute of Technosslogy, Tumkur, Karnataka, India
| | | | - G Somasekhar
- SKU College of Pharmaceutical Sciences, SKU, Ananthapuramu, Andhra Pradesh, India
| | | | - Ramesh Alluril
- Vishnu Institute of Pharmaceutical Education & Research, Medak, Telangana, India
| | | |
Collapse
|
18
|
Nowak M, Karliński M, Śnieżyński M, Pożarowszczyk N, Kurkowska-Jastrzębska I, Członkowska A. High neutrophil-to-lymphocyte ratio (NLR) predicts poor response to intravenous thrombolysis in white Caucasian stroke patients. J Stroke Cerebrovasc Dis 2023; 32:107341. [PMID: 37757584 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVES Our aim was to investigate usefulness of the neutrophil-to-lymphocyte ratio (NLR) for predicting poor response to intravenous rtPA in white Caucasian ischemic stroke patients treated within 4.5 hours from the onset. MATERIALS AND METHODS This retrospective analysis included all consecutive acute ischemic stroke patients (N = 344) treated with rtPA in a tertiary stroke center from 2011 to 2017. NLR was calculated from complete blood counts obtained on admission. The patients were classified into NLR terciles (T1 <1.75, T2<2.97, T3≥2.97). Significant neurological improvement was defined as an 8-point reduction in the NIHSS score or reaching the score of 0 to 1. RESULTS Compared to NLR T1, patients from NLR T3 were significantly older, more often disabled before stroke, and had longer onset-to-needle time. They less often achieved neurological improvement at day 7 (38% vs 59% p=0.002) and had higher 90-day mortality (27% vs 13%, p=0.020), with no differences in neurological improvement at 24 hours, occurrence of sICH and 7-day mortality. Each additional 4 units of NLR decreased unadjusted and adjusted odds for achieving favorable outcome at day 7 (OR 0.65, 95% CI: 0.46-0.92; aOR 0.62, 95% CI: 0.39-1.00), and increased the odds for death at 3 months (OR 1.60, 95% CI: 1.15-2.24; aOR 1.82, 95% CI:1.14-2.92) CONCLUSIONS: High NLR can predict poor response to intravenous rtPA in Caucasian patients with acute ischemic stroke, especially in terms of not achieving significant neurological improvement at day 7 and death at day 90. It encourages attempts to incorporate NLR in already validated scores.
Collapse
Affiliation(s)
- Maciej Nowak
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 street, 02-957 Warsaw, Poland
| | - Michał Karliński
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 street, 02-957 Warsaw, Poland.
| | - Maciej Śnieżyński
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 street, 02-957 Warsaw, Poland
| | - Natalia Pożarowszczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 street, 02-957 Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 street, 02-957 Warsaw, Poland
| | - Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 street, 02-957 Warsaw, Poland
| |
Collapse
|
19
|
Rout M, Vaughan A, Blair A, Stavrakis S, Sidorov EV, Sanghera DK. Discovery and validation of circulating stroke metabolites by NMR-based analyses using patients from the MISS and UK Biobank. Neurochem Int 2023; 169:105588. [PMID: 37499945 DOI: 10.1016/j.neuint.2023.105588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Stroke is a significant health issue in the United States, and identifying biomarkers for the prevention and functional recovery after an acute stroke remains the highest priority. This study aims to identify circulating metabolite signatures that may be associated with stroke pathophysiology by performing discovery and validation studies. METHODS We performed targeted metabolomics profiling of 420 participants of the discovery dataset of Metabolome in an Ischemic Stroke Study (MISS) using high-throughput nuclear magnetic resonance (NMR) spectroscopy. A validation study of significantly altered metabolites was conducted using an independent cohort of 117,988 participants from the UK Biobank, whose metabolomics profiles were generated using the same NMR technology. RESULTS AND CONCLUSION Our study identified 16 metabolites to be significantly perturbed during acute stroke. Amino acid phenylalanine was significantly increased, while glutamine and histidine were significantly lowered in stroke. Serum levels of apolipoprotein A-1, HDL particles, small HDL particles, essential fatty acids, and phosphatidylcholine were reduced, while ketone bodies like 3-hydroxybutyrate and acetoacetate were markedly increased in stroke. Based on the robust validation in a large independent UK Biobank dataset, some of these analytes may become clinically meaningful biomarkers to predict or prevent stroke in humans.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - April Vaughan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Apple Blair
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- Department of Cardiology, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Evgeny V Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
20
|
Chichai AS, Popova TN, Kryl'skii ED, Oleinik SA, Razuvaev GA. Indole-3-carbinol mitigates oxidative stress and inhibits inflammation in rat cerebral ischemia/reperfusion model. Biochimie 2023; 213:1-11. [PMID: 37120006 DOI: 10.1016/j.biochi.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
Ischemia is a significant pathogenetic factor of stroke with very limited treatment options. The objective of our research was to evaluate the protective properties of indole-3-carbinol (I3C) and its effect on redox status parameters, inflammation, and apoptosis intensity in cerebral ischemia/reperfusion injury (CIRI) in rats. I3C administration to CIRI rats decreased levels of oxidative stress markers and improved aerobic metabolism compared to the animals with CIRI. A decrease in myeloperoxidase activity, proinflammatory cytokines mRNA levels, and expression of redox-sensitive factor Nuclear Factor-κB was observed in rats with CIRI that received I3C. I3C-treated rats with pathology showed decreased caspase activity and apoptosis-inducing factor expression, compared to the animals in the CIRI group. Obtained data indicate that I3C has a neuroprotective and anti-ischemic effect in CIRI that may be related to its antioxidant properties and ability to reduce the inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Aleksandra Sergeevna Chichai
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Tatyana Nikolaevna Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Evgenii Dmitrievich Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Sergei Aleksandrovich Oleinik
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Grigorii Andreevich Razuvaev
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| |
Collapse
|
21
|
Li C, Wu Y, Chen Q, Luo Y, Liu P, Zhou Z, Zhao Z, Zhang T, Su B, Sun T, Jiang C. Pleiotropic Microenvironment Remodeling Micelles for Cerebral Ischemia-Reperfusion Injury Therapy by Inhibiting Neuronal Ferroptosis and Glial Overactivation. ACS NANO 2023; 17:18164-18177. [PMID: 37703316 DOI: 10.1021/acsnano.3c05038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Reperfusion injury presents a significant obstacle to neuronal survival following successful recanalization in ischemic stroke, which is characterized by intricate pathophysiological processes comprising numerous interconnected pathways. Oxidative stress-induced neuronal ferroptosis and the overactivation of glial cells play important roles in this phenomenon. In this study, we developed a targeted cross-linked micelle loaded with idebenone to rescue the ischemic penumbra by inhibiting neuronal ferroptosis and glial overactivation. In rat models, the CREKA peptide-modified micelles accumulate in the damaged brain via binding to microthrombi in the ipsilateral microvessels. Upon reactive oxygen species (ROS) stimulation, diselenide bonds within the micelles are transformed to hydrophilic seleninic acids, enabling synchronized ROS consumption and responsive drug release. The released idebenone scavenges ROS, prevents oxidative stress-induced neuronal ferroptosis, attenuates glial overactivation, and suppresses pro-inflammatory factors secretion, thereby modulating the inflammatory microenvironment. Finally, this micelle significantly reinforces neuronal survival, reduces infarct volume, and improves behavioral function compared to the control groups. This pleiotropic therapeutic micelle provides a proof-of-concept of remodeling the lesion microenvironment by inhibiting neuronal ferroptosis and glial overactivation to treat cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yuxing Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tongyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Boyu Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| |
Collapse
|
22
|
Sohail S, Shah FA, Zaman SU, Almari AH, Malik I, Khan SA, Alamro AA, Zeb A, Din FU. Melatonin delivered in solid lipid nanoparticles ameliorated its neuroprotective effects in cerebral ischemia. Heliyon 2023; 9:e19779. [PMID: 37809765 PMCID: PMC10559112 DOI: 10.1016/j.heliyon.2023.e19779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The current study explores the potential of melatonin (MLT)-loaded solid lipid nanoparticles (MLT-SLNs) for better neuroprotective effects in ischemic stroke. MLT-SLNs were prepared using lipid matrix of palmityl alcohol with a mixture of surfactants (Tween 40, Span 40, Myrj 52) for stabilizing the lipid matrix. MLT-SLNs were tested for physical and chemical properties, thermal and polymorphic changes, in vitro drug release and in vivo neuroprotective studies in rats using permanent middle cerebral artery occlusion (p-MCAO) model. The optimized MLT-SLNs showed particle size of ∼159 nm, zeta potential of -29.6 mV and high entrapment efficiency ∼92%. Thermal and polymorphic studies showed conversion of crystalline MLT to amorphous form after its entrapment in lipid matrix. MLT-SLNs displayed a sustained release pattern compared to MLT dispersion. MLT-SLNs significantly enhanced the neuroprotective profile of MLT ascertained by reduced brain infarction, recovered behavioral responses, low expression of inflammatory markers and improved oxidation protection in rats. MLT-SLNs also showed reduced hepatotoxicity compared to p-MCAO. From these outcomes, it is evidenced that MLT-SLNs have improved neuroprotection as compared to MLT dispersion and thereby present a promising approach to deliver MLT to the brain for better therapeutic outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Saba Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahiq uz Zaman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Ali H. Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Imran Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Saifoor Ahmad Khan
- Department of Community Medicine, Nowshera Medical College, Nowshera, Pakistan
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar ud Din
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
23
|
Yu M, Zhang M, Fu P, Wu M, Yin X, Chen Z. Research progress of mitophagy in chronic cerebral ischemia. Front Aging Neurosci 2023; 15:1224633. [PMID: 37600521 PMCID: PMC10434995 DOI: 10.3389/fnagi.2023.1224633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic cerebral ischemia (CCI), a condition that can result in headaches, dizziness, cognitive decline, and stroke, is caused by a sustained decrease in cerebral blood flow. Statistics show that 70% of patients with CCI are aged > 80 years and approximately 30% are 45-50 years. The incidence of CCI tends to be lower, and treatment for CCI is urgent. Studies have confirmed that CCI can activate the corresponding mechanisms that lead to mitochondrial dysfunction, which, in turn, can induce mitophagy to maintain mitochondrial homeostasis. Simultaneously, mitochondrial dysfunction can aggravate the insufficient energy supply to cells and various diseases caused by CCI. Regulation of mitophagy has become a promising therapeutic target for the treatment of CCI. This article reviews the latest progress in the important role of mitophagy in CCI and discusses the induction pathways of mitophagy in CCI, including ATP synthesis disorder, oxidative stress injury, induction of reactive oxygen species, and Ca2+ homeostasis disorder, as well as the role of drugs in CCI by regulating mitophagy.
Collapse
Affiliation(s)
- Mayue Yu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Peijie Fu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
24
|
Chavda V, Lu B. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040895. [PMID: 37107270 PMCID: PMC10135819 DOI: 10.3390/antiox12040895] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide. A main cause of brain damage by stroke is ischemia-reperfusion (IR) injury due to the increased production of reactive oxygen species (ROS) and energy failure caused by changes in mitochondrial metabolism. Ischemia causes a build-up of succinate in tissues and changes in the mitochondrial NADH: ubiquinone oxidoreductase (complex I) activity that promote reverse electron transfer (RET), in which a portion of the electrons derived from succinate are redirected from ubiquinol along complex I to reach the NADH dehydrogenase module of complex I, where matrix NAD+ is converted to NADH and excessive ROS is produced. RET has been shown to play a role in macrophage activation in response to bacterial infection, electron transport chain reorganization in response to changes in the energy supply, and carotid body adaptation to changes in the oxygen levels. In addition to stroke, deregulated RET and RET-generated ROS (RET-ROS) have been implicated in tissue damage during organ transplantation, whereas an RET-induced NAD+/NADH ratio decrease has been implicated in aging, age-related neurodegeneration, and cancer. In this review, we provide a historical account of the roles of ROS and oxidative damage in the pathogenesis of ischemic stroke, summarize the latest developments in our understanding of RET biology and RET-associated pathological conditions, and discuss new ways to target ischemic stroke, cancer, aging, and age-related neurodegenerative diseases by modulating RET.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Yen Hsin L, Samynathan C VV, Yilun H. White Cord Syndrome: A Treatment Dilemma. Cureus 2023; 15:e38177. [PMID: 37252488 PMCID: PMC10224717 DOI: 10.7759/cureus.38177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Spinal cord reperfusion injury following decompressive surgery is extremely rare. This complication is known as white cord syndrome (WCS). A 61-year-old male presented with chronic neck stiffness associated with left C6/C7 radiculopathy and numbness. Magnetic resonance imaging (MRI) of the cervical spine reported a severely narrowed left C6/C7 neural exit canal. C6/C7 anterior cervical decompression and fusion (ACDF) was performed. There was no significant intraoperative injury. On postoperative day 6, the patient developed bilateral C8 numbness, which started post-operation. He was treated for surgical site inflammation and was prescribed prednisolone and amitriptyline. However, his condition progressively worsened. At postoperative six weeks, there was right hemisensory loss, right triceps atrophy, and positive right Lhermitte's and Hoffman's tests. This subsequently progressed to right C7 weakness and bilateral lower limb radiculopathy at postoperative eight weeks. Postoperative MRI of the cervical spine revealed a new focal gliosis/edema within the spinal cord at C6/C7. The patient was treated conservatively with pregabalin and was referred for rehabilitation. Early diagnosis and treatment initiation are crucial in the management of WCS. Surgeons should be aware of this potential complication and counsel patients on the risk prior to surgery. Magnetic resonance imaging (MRI) remains the gold standard in the diagnosis of WCS. The current mainstay of treatment is high-dose steroids, intraoperative neurophysiological monitoring, and early recognition of postoperative WCS.
Collapse
Affiliation(s)
- Leong Yen Hsin
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singapore, SGP
| | | | - Huang Yilun
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singapore, SGP
| |
Collapse
|
26
|
Joaquim LS, Danielski LG, Bonfante S, Biehl E, Mathias K, Denicol T, Bagio E, Lanzzarin EV, Machado RS, Bernades GC, Generoso J, Della Giustina A, Barichello T, Petronilho F. NLRP3 inflammasome activation increases brain oxidative stress after transient global cerebral ischemia in rats. Int J Neurosci 2023; 133:375-388. [PMID: 33902404 DOI: 10.1080/00207454.2021.1922402] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 10/21/2022]
Abstract
Pupurpose of the study: Oxidative stress has been reported to be an important mechanism for brain damage following ischemic stroke. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes has been demonstrated to perpetuate oxidative stress. Herein, we report the effect of NLRP3 inhibition with MCC950 on brain oxidative stress in an animal model of transient global cerebral ischemia.Materials and methods: Male Wistar rats received an intracerebroventricularly (icv) injection of MCC950 (140 ng/kg) or saline and were subjected to sham procedure or ischemia/reperfusion (I/R). Twenty-four hours after I/R, myeloperoxidase (MPO) activity, nitrite/nitrate (N/N) concentration, lipid peroxidation, protein carbonyls formation, superoxide dismutase (SOD) and catalase (CAT) activity were determined in the prefrontal cortex, hippocampus, cortex, cerebellum and striatum. Results: After I/R, MPO activity increased in the prefrontal cortex, hippocampus, cortex and cerebellum and N/N concentration elevated in the prefrontal cortex, hippocampus and cortex, while MCC950 decreased this level except in hippocampus. After I/R, lipid peroxidation enhanced in the prefrontal cortex and cerebellum and increased the oxidative protein damage in both structures and hippocampus. MCC950 decreased lipid peroxidation in the prefrontal cortex and decreased protein oxidative damage in all brain structures except in the striatum. SOD activity decreased in the cortex after I/R and MCC950 reestablished these levels. CAT activity decreased in the prefrontal cortex, hippocampus and cerebellum after I/R and MCC950 reestablished these levels in the prefrontal cortex.Conclusion: Our data provide novel demonstration that inhibiting NLRP3 activation with MCC950 reduces brain oxidative damage after cerebral I/R in rats.
Collapse
Affiliation(s)
- Larissa Silva Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erica Biehl
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tais Denicol
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erick Bagio
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Everton Venicius Lanzzarin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Gabriela Costa Bernades
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciencies, Mc Govern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
27
|
Ko G, Kim J, Jeon YJ, Lee D, Baek HM, Chang KA. Salvia miltiorrhiza Alleviates Memory Deficit Induced by Ischemic Brain Injury in a Transient MCAO Mouse Model by Inhibiting Ferroptosis. Antioxidants (Basel) 2023; 12:antiox12040785. [PMID: 37107160 PMCID: PMC10135292 DOI: 10.3390/antiox12040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Salvia miltiorrhiza (SM) has been used in oriental medicine for its neuroprotective effects against cardiovascular diseases and ischemic stroke. In this study, we investigated the therapeutic mechanism underlying the effects of SM on stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Our results showed that SM administration significantly attenuated acute brain injury, including brain infarction and neurological deficits, 3 days after tMCAO. This was confirmed by our magnetic resonance imaging (MRI) study, which revealed a reduction in brain infarction with SM administration, as well as our magnetic resonance spectroscopy (MRS) study, which demonstrated the restoration of brain metabolites, including taurine, total creatine, and glutamate. The neuroprotective effects of SM were associated with the reduction in gliosis and upregulation of inflammatory cytokines, such as interleukin-6 (IL-6) and Tumor necrosis factor-α (TNF-α), along with the upregulation of phosphorylated STAT3 in post-ischemic brains. SM also reduced the levels of 4-Hydroxynonenal (4-HNE) and malondialdehyde (MDA), which are markers of lipid peroxidation, induced by oxidative stress upregulation in the penumbra of the tMCAO mouse brain. SM administration attenuated ischemic neuronal injury by inhibiting ferroptosis. Additionally, post-ischemic brain synaptic loss and neuronal loss were alleviated by SM administration, as demonstrated by Western blot and Nissl staining. Moreover, daily administration of SM for 28 days after tMCAO significantly reduced neurological deficits and improved survival rates in tMCAO mice. SM administration also resulted in improvement in post-stroke cognitive impairment, as measured by the novel object recognition and passive avoidance tests in tMCAO mice. Our findings suggest that SM provides neuroprotection against ischemic stroke and has potential as a therapeutic agent.
Collapse
Affiliation(s)
- Geon Ko
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Yeong-Jae Jeon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
28
|
Choudhary M, Chaudhari S, Gupta T, Kalyane D, Sirsat B, Kathar U, Sengupta P, Tekade RK. Stimuli-Responsive Nanotherapeutics for Treatment and Diagnosis of Stroke. Pharmaceutics 2023; 15:1036. [PMID: 37111522 PMCID: PMC10141724 DOI: 10.3390/pharmaceutics15041036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Stroke is the second most common medical emergency and constitutes a significant cause of global morbidity. The conventional stroke treatment strategies, including thrombolysis, antiplatelet therapy, endovascular thrombectomy, neuroprotection, neurogenesis, reducing neuroinflammation, oxidative stress, excitotoxicity, hemostatic treatment, do not provide efficient relief to the patients due to lack of appropriate delivery systems, large doses, systemic toxicity. In this context, guiding the nanoparticles toward the ischemic tissues by making them stimuli-responsive can be a turning point in managing stroke. Hence, in this review, we first outline the basics of stroke, including its pathophysiology, factors affecting its development, current treatment therapies, and their limitations. Further, we have discussed stimuli-responsive nanotherapeutics used for diagnosing and treating stroke with challenges ahead for the safe use of nanotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rakesh K. Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opposite Air Force Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
29
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
30
|
Nyalo P, Omwenga G, Ngugi M. Quantitative Phytochemical Profile and In Vitro Antioxidant Properties of Ethyl Acetate Extracts of Xerophyta spekei (Baker) and Grewia tembensis (Fresen). J Evid Based Integr Med 2023; 28:2515690X231165096. [PMID: 36945829 PMCID: PMC10034282 DOI: 10.1177/2515690x231165096] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Overproduction of free radicals in excess of antioxidants leads to oxidative stress which can cause harm to the body. Conventional antioxidants have drawbacks and are believed to be carcinogenic. The present study seeked to confirm folklore use and validate the antioxidant potentials of Grewia tembensis and Xerophyta spekei which have been widely used in the Mbeere community as medicinal plants. Antioxidant properties were determined through scavenging effects of diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide radicals as well as iron chelating effects. The data obtained was assayed in comparison to the standards (Ascorbic acid and EDTA). Ascorbic acid had a significantly greater DPPH radical scavenging property with an inhibitory concentration (IC50) value of 20.54 ± 2.24 µg/mL in comparison to the plant extracts, which had IC50 values of 33.00 ± 1.47 µg/mL, 69.66 ± 1.01 µg/mL and 86.88 ± 2.64 µg/mL for X. spekei, G. tembensis leaf and G. tembensis stem bark extracts, respectively. EDTA demonstrated a significantly greater iron chelating effect having a significantly lesser IC50 value of 25.05 ± 0.79 µg/mL as opposed to 43.56 ± 0.46 µg/mL, 89.78 ± 0.55 µg/mL, and 120.70 ± 0.71 µg/mL for X. spekei, G. tembensis leaf, and G. tembensis stem bark extracts respectively. Additionally, ascorbic acid also exhibited stronger hydrogen peroxide radical scavenging effect than the studied extracts. Generally, X. spekei extract had higher antioxidant activities as compared to both the leaf and stem bark extracts of G. tembensis. The phytochemical screening demonstrated the presence of secondary metabolites associated with antioxidant properties. The present study therefore, recommends ethno medicinal and therapeutic use of G. tembensis and X. spekei in the treatment and management of oxidative stress related infections.
Collapse
Affiliation(s)
- Paul Nyalo
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
- Medical Laboratory Department, Penda Health (K) Ltd, Nairobi, Kenya
| | - George Omwenga
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| | - Mathew Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| |
Collapse
|
31
|
Rong F, Wang T, Zhou Q, Peng H, Yang J, Fan Q, Li P. Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications. Bioact Mater 2023; 19:198-216. [PMID: 35510171 PMCID: PMC9034248 DOI: 10.1016/j.bioactmat.2022.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) plays an important role in regulating various pathological processes such as protecting mammalian cell from harmful injuries, promoting tissue regeneration, and regulating the process of various diseases caused by physiological disorders. Studies have revealed that the physiological effects of H2S are highly associated with its concentrations. At relatively low concentration, H2S shows beneficial functions. However, long-time and high-dose donation of H2S would inhibit regular biological process, resulting in cell dysfunction and apoptosis. To regulate the dosage of H2S delivery for precision medicine, H2S delivery systems with intelligent characteristics were developed and a variety of biocompatibility polymers have been utilized to establish intelligent polymeric H2S delivery systems, with the abilities to specifically target the lesions, smartly respond to pathological microenvironments, as well as real-timely monitor H2S delivery and lesion conditions by incorporating imaging-capable moieties. In this review, we focus on the design, preparation, and therapeutic applications of intelligent polymeric H2S delivery systems in cardiovascular therapy, inflammatory therapy, tissue regenerative therapy, cancer therapy and bacteria-associated therapy. Strategies for precise H2S therapies especially imaging-guided H2S theranostics are highlighted. Since H2S donors with stimuli-responsive characters are vital components for establishing intelligent H2S delivery systems, the development of H2S donors is also briefly introduced. H2S is an endogenous gasotransmitter that plays important role in regulating various physiological and pathological pathways. Controlled H2S delivery is vital since the therapeutic effects of H2S are highly associated with its concentrations. Intelligent polymeric H2S delivery systems possess specific targeting, stimuli responsive and imaging guided capabilities, representing a strategic option for next generation of therapies.
Collapse
|
32
|
Zhu T, Wan Q. Pharmacological properties and mechanisms of Notoginsenoside R1 in ischemia-reperfusion injury. Chin J Traumatol 2023; 26:20-26. [PMID: 35922249 PMCID: PMC9912185 DOI: 10.1016/j.cjtee.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Panax notoginseng is an ancient Chinese medicinal plant that has great clinical value in regulating cardiovascular disease in China. As a single component of panax notoginosides, notoginsenoside R1 (NGR1) belongs to the panaxatriol group. Many reports have demonstrated that NGR1 exerts multiple pharmacological effects in ischemic stroke, myocardial infarction, acute renal injury, and intestinal injury. Here, we outline the available reports on the pharmacological effects of NGR1 in ischemia-reperfusion (I/R) injury. We also discuss the chemistry, composition and molecular mechanism underlying the anti-I/R injury effects of NGR1. NGR1 had significant effects on reducing cerebral infarct size and neurological deficits in cerebral I/R injury, ameliorating the impaired mitochondrial morphology in myocardial I/R injury, decreasing kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in renal I/R injury and attenuating jejunal mucosal epithelium injury in intestinal I/R injury. The various organ anti-I/R injury effects of NGR1 are mainly through the suppression of oxidative stress, apoptosis, inflammation, endoplasmic reticulum stress and promotion of angiogenesis and neurogenesis. These findings provide a reference basis for future research of NGR1 on I/R injury.
Collapse
Affiliation(s)
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
33
|
Pharmacological Strategies for Stroke Intervention: Assessment of Pathophysiological Relevance and Clinical Trials. Clin Neuropharmacol 2023; 46:17-30. [PMID: 36515293 DOI: 10.1097/wnf.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The present review describes stroke pathophysiology in brief and discusses the spectrum of available treatments with different promising interventions that are in clinical settings or are in clinical trials. METHODS Relevant articles were searched using Google Scholar, Cochrane Library, and PubMed. Keywords for the search included ischemic stroke, mechanisms, stroke interventions, clinical trials, and stem cell therapy. RESULTS AND CONCLUSION Stroke accounts to a high burden of mortality and morbidity around the globe. Time is an important factor in treating stroke. Treatment options are limited; however, agents with considerable efficacy and tolerability are being continuously explored. With the advances in stroke interventions, new therapies are being formulated with a hope that these may aid the ongoing protective and reparative processes. Such therapies may have an extended therapeutic time window in hours, days, weeks, or longer and may have the advantage to be accessible by a majority of the patients.
Collapse
|
34
|
Chebulic Acid Prevents Hypoxia Insult via Nrf2/ARE Pathway in Ischemic Stroke. Nutrients 2022; 14:nu14245390. [PMID: 36558549 PMCID: PMC9781341 DOI: 10.3390/nu14245390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Excessive reactive oxygen species (ROS) production contributes to brain ischemia/reperfusion (I/R) injury through many mechanisms including inflammation, apoptosis, and cellular necrosis. Chebulic acid (CA) isolated from Terminalia chebula has been found to have various biological effects, such as antioxidants. In this study, we investigated the mechanism of the anti-hypoxic neuroprotective effect of CA in vitro and in vivo. The results showed that CA could protect against oxygen-glucose deprivation/reoxygenation (OGD/R) induced neurotoxicity in SH-SY5Y cells, as evidenced by the enhancement of cell viability and improvement of total superoxide dismutase (T-SOD) in SH-SY5Y cells. CA also attenuated OGD/R-induced elevations of malondialdehyde (MDA) and ROS in SH-SY5Y cells. Nuclear factor-E2-related factor 2 (Nrf2) is one of the key regulators of endogenous antioxidant defense. CA acted as antioxidants indirectly by upregulating antioxidant-responsive-element (ARE) and Nrf2 nuclear translocation to relieve OGD/R-induced oxidative damage. Furthermore, the results showed that CA treatment resulted in a significant decrease in ischemic infarct volume and improved performance in the motor ability of mice 24 h after stroke. This study provides a new niche targeting drug to oppose ischemic stroke and reveals the promising potential of CA for the control of ischemic stroke in humans.
Collapse
|
35
|
Lei CZ, Gong DJ, Zhou YF. Late‑onset white cord syndrome following anterior cervical discectomy and fusion: A case report. Exp Ther Med 2022; 25:71. [PMID: 36605533 PMCID: PMC9798147 DOI: 10.3892/etm.2022.11770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/21/2022] [Indexed: 01/07/2023] Open
Abstract
White cord syndrome refers to an emerging neurological dysfunction occurring after spinal decompression surgery with hyperenhancing changes on T2-weighted magnetic resonance imaging (T2WI). The pathophysiological mechanism is hypothesized to be an ischemia-reperfusion injury following chronic ischemic spinal cord decompression. A 54-year-old man was admitted to Jinhua Municipal Central Hospital with complaints of numbness and weakness in the extremities and swelling in the neck. MRI showed degeneration and herniation of the C4-C7 intervertebral discs. The patient underwent anterior cervical corpectomy and fusion (ACCF). On the 7th postoperative day, the patient reappeared with weakness of the limbs. Physical examination revealed paralysis. Emergency MRI suggested T2 high signal myelopathy and emergency surgery was performed following the diagnosis of white cord syndrome. Following the operation, the patient's neurological system gradually improved. The motor ability and sensory function of the extremities recovered at 7-month follow-up. Spine surgeons should be aware of this serious complication. The present case serves to provide experience for clinical treatment and diagnosis and encourage research into its pathophysiology.
Collapse
Affiliation(s)
- Chang-Zhen Lei
- Department of Surgery, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| | - Dao-Jun Gong
- Department of Surgery, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China,Correspondence to: Professor Dao-Jun Gong, Department of Surgery, Jinhua Hospital of Zhejiang University, 351 Ming Yue Street, Jinhua, Zhejiang 321000, P.R. China
| | - Yang-Fan Zhou
- Department of Orthopedics, Pan'an County Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
36
|
Mehrpooya M, Mazdeh M, Rahmani E, Khazaie M, Ahmadimoghaddam D. Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. J Clin Neurosci 2022; 106:66-75. [DOI: 10.1016/j.jocn.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
37
|
Wang J, Gao S, Lenahan C, Gu Y, Wang X, Fang Y, Xu W, Wu H, Pan Y, Shao A, Zhang J. Melatonin as an Antioxidant Agent in Stroke: An Updated Review. Aging Dis 2022; 13:1823-1844. [PMID: 36465183 PMCID: PMC9662272 DOI: 10.14336/ad.2022.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 08/22/2023] Open
Abstract
Stroke is a devastating disease associated with high mortality and disability worldwide, and is generally classified as ischemic or hemorrhagic, which share certain similar pathophysiological processes. Oxidative stress is a critical factor involved in stroke-induced injury, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, brain edema, and neuronal death. To alleviate these serious secondary brain injuries, neuroprotective agents targeting oxidative stress inhibition may serve as a promising treatment strategy. Melatonin is a hormone secreted by the pineal gland, and has various properties, such as antioxidation, anti-inflammation, circadian rhythm modulation, and promotion of tissue regeneration. Numerous animal experiments studying stroke have confirmed that melatonin exerts considerable neuroprotective effects, partially via anti-oxidative stress. In this review, we introduce the possible role of melatonin as an antioxidant in the treatment of stroke based on the latest published studies of animal experiments and clinical research.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
| | - Yichen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Yang C, Jia X, Wang Y, Fan J, Zhao C, Yang Y, Shi X. Association between Dietary Total Antioxidant Capacity of Antioxidant Vitamins and the Risk of Stroke among US Adults. Antioxidants (Basel) 2022; 11:2252. [PMID: 36421437 PMCID: PMC9686933 DOI: 10.3390/antiox11112252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 08/26/2023] Open
Abstract
The intake of antioxidant vitamins can scavenge free radicals and reduce oxidative stress, which may be beneficial for stroke. However, the relationship between total antioxidant capacity (TAC) of antioxidant vitamins and stroke is controversial. This study aims to investigate the association between dietary TAC and the risk of stroke in US adults. This study included participants over 20 years old from the 2001-2018 National Health and Nutrition Examination Survey (NHANES). Data from two 24 h dietary recalls were used to estimate the usual intake of antioxidant vitamins. TAC was calculated by the vitamin C equivalent antioxidant capacity reference values of individual antioxidant vitamins. Survey-weighted generalized linear models were performed to evaluate the relationship between TAC and the risk of stroke. A restricted cubic spline regression model was used to investigate the dose-response association. A total of 37,045 participants was involved, of whom 1391 suffered a stroke. Compared with the first tertile, the participants in the second tertile of TAC showed a lower risk of stroke (OR = 0.788, 95% CI: 0.662, 0.936) after adjusting for potential risk factors. The dose-response analysis showed a gradual increase in the risk of stroke as TAC decreases. Subgroups analyses indicated that this association was primarily in the population of those aged over 60 years old, who were female, consumed alcohol, were a former smoker and inactive. The sensitivity analysis presented consistent results. These results suggest that deficiency of dietary TAC was associated with an increased risk of stroke, particularly in populations with underlying oxidative stress injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Allen AJH, Peres BU, Liu Y, Jen R, Shah A, Laher I, Almeida F, Taylor C, Ghafoor AA, Ayas NT. Circulating markers of oxidative stress and risk of incident cardiovascular events in obstructive sleep apnea. Sleep Biol Rhythms 2022; 20:533-540. [PMID: 38468626 PMCID: PMC10899996 DOI: 10.1007/s41105-022-00399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
The identification of which patients with obstructive sleep apnea (OSA) are more likely to develop cardiovascular disease (CVD) remains a challenge. OSA causes oxidative stress (OS) which may contribute to CVD pathogenesis. Therefore, OS markers could be useful in risk-stratifying cardiovascular (CV) risk in OSA patients. The purpose of this pilot study was to assess whether three OS marker levels could be associated with incident CVD in suspected OSA patients. Morning plasma levels of 8-isoprostane, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and superoxide dismutase (SOD) were measured in patients with suspected OSA referred for a polysomnogram (PSG). A composite outcome of CV events was defined by linkage with provincial administrative health databases. Cox proportional hazards models were used to assess the relationship between the levels of OS markers and events. 352 patients were included (mean age of 51.4 years, 68% male, median apnea hypopnea index of 16/h). Thirty-one first CV events occurred over an 8-year follow-up. In univariate or fully adjusted models, none of the OS markers were significantly associated with incident CV events (hazard ratio in adjusted models of: 1.25 (95% CI 0.56-2.80, p = 0.59), 1.15 (0.52-2.57, p = 0.73), 0.77 (0.37-1.61, p = 0.48), for 8-OHdG, 8-isoprostane and SOD; however, confidence intervals were wide. In this small preliminary study, oxidative stress markers were not significantly associated with risk of CV events. However, moderate associations between these markers and risk of CV events are possible and should be the focus of future larger studies. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-022-00399-0.
Collapse
Affiliation(s)
- A. J. Hirsch Allen
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Bernardo U. Peres
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Yu Liu
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Rachel Jen
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
| | - Aditi Shah
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
| | - Ismail Laher
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Fernanda Almeida
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Carolyn Taylor
- Division of Cardiology, Department of Medicine, University of British Columbia and Providence Health Care, Vancouver, Canada
| | - Ali Abdul Ghafoor
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Najib T. Ayas
- Department of Medicine, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 7th Floor, Vancouver, BC V5Z 1M9 Canada
- Leon Judah Blackmore Sleep Disorders Program, UBC Hospital, Vancouver, Canada
- Canadian Sleep and Circadian Network, Montréal, Canada
| |
Collapse
|
40
|
Wu Z, Qian S, Zhao L, Zhang Z, Song C, Chen L, Gao H, Zhu W. Metabolomics-based study of the potential interventional effects of Xiao-Xu-Ming Decoction on cerebral ischemia/reperfusion rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115379. [PMID: 35595221 DOI: 10.1016/j.jep.2022.115379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiao-Xu-Ming Decoction (XXMD) is a classical Chinese medicinal compound for the treatment of ischemic stroke, which has good efficacy in clinical studies and also plays a neuroprotective role in pharmacological studies. AIM OF THE STUDY The purpose of this study is to investigate the potential and integral interventional effects of XXMD on cerebral ischemia/reperfusion rat model. MATERIALS AND METHODS In this study, 1H NMR metabolomics was used, combined with neurological functional assessments, cerebral infarct area measurements, and pathological staining including Nissl staining, immunofluorescence staining of NeuN and TUNEL, and immunohistochemical staining of MCT2, to analyze the metabolic effects of XXMD in the treatment of an ischemia/reperfusion rat model. RESULTS It's observed that XXMD treatment could improve the neurological deficit scores and reduce the cerebral infarct areas on cerebral ischemia/reperfusion rat model. The pathological staining results performed that XXMD treatment could improve the decrease of Nissl bodies and the expression of NeuN and MCT2, reduce the high expression of TUNEL. In 1H NMR study, it revealed that the metabolic patterns among three experimental groups were different, the level of lactate, acetate, NAA, glutamate, and GABA were improved to varying degrees in different brain area. CONCLUSION Our findings indicated that XXMD has positive effect on neuroprotection and improvement of metabolism targeting cerebral ischemic injury in rats, which showed great potential for ischemic stroke.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Shiyan Qian
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, China
| | - Zaiheng Zhang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengcheng Song
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Ling Chen
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, China.
| | - Wenzong Zhu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China.
| |
Collapse
|
41
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
42
|
Qi S, Zhang X, Fu Z, Pi A, Shi F, Fan Y, Zhang J, Xiao T, Shang D, Lin M, Gao N, Chang J, Gao Y. (±)-5-bromo-2-(5-fluoro-1-hydroxyamyl) Benzoate Protects Against Oxidative Stress Injury in PC12 Cells Exposed to H2O2 Through Activation of Nrf2 Pathway. Front Pharmacol 2022; 13:943111. [PMID: 35935850 PMCID: PMC9348035 DOI: 10.3389/fphar.2022.943111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Oxidative stress is associated with the pathogenesis of ischemic stroke (±)-5-bromo-2-(5-fluoro-1-hydroxyamyl) benzoate (BFB) is a novel compound modified by dl-3-n-butylphthalide (NBP). Here, we hypothesized that BFB may protect the PC12 cells against H2O2-induced oxidative stress injury through activation of the Nrf2 pathway. Methods: We measured the cell viability and levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) to determine the construction of the H2O2-induced models of oxidative stress in PC12 cells. Additionally, apoptotic cell death, mitochondrial membrane potential, and cellular morphology were examined to determine the effect of BFB on oxidative stress injury in H2O2-treated PC12 cells. The expression levels of Nrf2-related and autophagy-related genes and proteins were detected using real time quantative PCR (RT-qPCR), Western Blot, and immunofluorescence analyses. Results: Our study showed that BFB treatment reduced the elevated levels of MDA, LDH, and ROS, and decreased cell viability and GSH in H2O2-treated PC12 cells. We also observed the elevated expression of Nrf2 pathway-related factors and intranuclear transitions and found that Nrf2 inhibitors (ML385) could block the protective effect of BFB. The inhibitory effect of BFB on oxidative stress may be partially regulated by Nrf2 activation, and the initiation and induction of autophagy. Conclusion: BFB inhibited H2O2-induced oxidative stress injury in PC12 cells by activating the Nrf2 pathway, initiating and inducing autophagy, suggesting that BFB may be a promising therapeutic agent in treating neurological disorders like cerebral ischemia.
Collapse
Affiliation(s)
- Saidan Qi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiaojiao Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Fu
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Anran Pi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Feiyan Shi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yanan Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jiahua Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Tingting Xiao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Dong Shang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Meng Lin
- Department of Experimental Center, School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Department of Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Junbiao Chang
- Department of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Yuan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuan Gao,
| |
Collapse
|
43
|
Progress and Setbacks in Translating a Decade of Ferroptosis Research into Clinical Practice. Cells 2022; 11:cells11142134. [PMID: 35883577 PMCID: PMC9320262 DOI: 10.3390/cells11142134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ten years after its initial description, ferroptosis has emerged as the most intensely studied entity among the non-apoptotic forms of regulated cell death. The molecular features of ferroptotic cell death and its functional role have been characterized in vitro and in an ever-growing number of animal studies, demonstrating that it exerts either highly detrimental or, depending on the context, occasionally beneficial effects on the organism. Consequently, two contrary therapeutic approaches are being explored to exploit our detailed understanding of this cell death pathway: the inhibition of ferroptosis to limit organ damage in disorders such as drug-induced toxicity or ischemia-reperfusion injury, and the induction of ferroptosis in cancer cells to ameliorate anti-tumor strategies. However, the path from basic science to clinical utility is rocky. Emphasizing ferroptosis inhibition, we review the success and failures thus far in the translational process from basic research in the laboratory to the treatment of patients.
Collapse
|
44
|
Yang W, Zhang M, He J, Gong M, Sun J, Yang X. Central nervous system injury meets nanoceria: opportunities and challenges. Regen Biomater 2022; 9:rbac037. [PMID: 35784095 PMCID: PMC9245649 DOI: 10.1093/rb/rbac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) injury, induced by ischemic/hemorrhagic or traumatic damage, is one of the most common causes of death and long-term disability worldwide. Reactive oxygen and nitrogen species (RONS) resulting in oxidative/nitrosative stress play a critical role in the pathological cascade of molecular events after CNS injury. Therefore, by targeting RONS, antioxidant therapies have been intensively explored in previous studies. However, traditional antioxidants have achieved limited success thus far, and the development of new antioxidants to achieve highly effective RONS modulation in CNS injury still remains a great challenge. With the rapid development of nanotechnology, novel nanomaterials provided promising opportunities to address this challenge. Within these, nanoceria has gained much attention due to its regenerative and excellent RONS elimination capability. To promote its practical application, it is important to know what has been done and what has yet to be done. This review aims to present the opportunities and challenges of nanoceria in treating CNS injury. The physicochemical properties of nanoceria and its interaction with RONS are described. The applications of nanoceria for stroke and neurotrauma treatment are summarized. The possible directions for future application of nanoceria in CNS injury treatment are proposed.
Collapse
Affiliation(s)
- Wang Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
- Army Health Service Training Base, Army Medical University, Chongqing 400038, China
| | - Maoting Zhang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Jian He
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Mingfu Gong
- Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Jian Sun
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| |
Collapse
|
45
|
Martens LG, Luo J, Wermer MJ, Willems van Dijk K, Hägg S, Grassmann F, Noordam R, van Heemst D. The association between mitochondrial DNA abundance and stroke: A combination of multivariable-adjusted survival and Mendelian randomization analyse. Atherosclerosis 2022; 354:1-7. [PMID: 35793595 DOI: 10.1016/j.atherosclerosis.2022.06.1012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIMS Mitochondrial dysfunction is associated with increased reactive oxygen species (ROS) that are thought to drive disease risk, including stroke. We investigated the association between mtDNA abundance, as a proxy measure of mitochondrial function, and incident stroke, using multivariable-adjusted survival and Mendelian Randomization (MR) analyses. METHODS Cox-proportional hazard model analyses were conducted to assess the association between mtDNA abundance, and incident ischemic and hemorrhagic stroke over a maximum of 14-year follow-up in European-ancestry participants from UK Biobank. MR was conducted using independent (R2 < 0.001) lead variants for mtDNA abundance (p < 5 × 10-8) as instrumental variables. Single-nucleotide polymorphism (SNP)-ischemic stroke associations were derived from three published open source European-ancestry results databases (cases/controls): MEGASTROKE (60,341/454,450), UK Biobank (2404/368,771) and FinnGen (10,551/202,223). MR was performed per study, and results were subsequently meta-analyzed. RESULTS In total, 288,572 unrelated participants (46% men) with mean (SD) age of 57 (8) years were included in the Cox-proportional hazard analyses. After correction for considered confounders (BMI, hypertension, cholesterol, T2D), no association was found between low versus high mtDNA abundance and ischemic (HR: 1.06 [95% CI: 0.95, 1.18]) or hemorrhagic (HR: 0.97 [95% CI: 0.82, 1.15]) stroke. However, in the MR analyses after removal of platelet count-associated SNPs, we found evidence for an association between genetically-influenced mtDNA abundance and ischemic stroke (odds ratio, 1.17; confidence interval, 1.03, 1.32). CONCLUSIONS Although the results from both multivariable-adjusted prospective and basis MR analyses did not show an association between low mtDNA and increased risk of ischemic stroke, in-depth MR sensitivity analyses may suggest evidence for a causal relationship.
Collapse
|
46
|
Maciejczyk M, Nesterowicz M, Zalewska A, Biedrzycki G, Gerreth P, Hojan K, Gerreth K. Salivary Xanthine Oxidase as a Potential Biomarker in Stroke Diagnostics. Front Immunol 2022; 13:897413. [PMID: 35603179 PMCID: PMC9120610 DOI: 10.3389/fimmu.2022.897413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is one of the most common cerebrovascular diseases. Despite significant progress in understanding stroke pathogenesis, cases are still increasing. Thus, laboratory biomarkers of stroke are sought to allow rapid and non-invasive diagnostics. Ischemia-reperfusion injury is an inflammatory process with characteristic cellular changes leading to microvascular disruption. Several studies have shown that hyperactivation of xanthine oxidase (XO) is a major pathogenic factor contributing to brain dysfunction. Given the critical role of XO in stroke complications, this study aimed to evaluate the activity of the enzyme and its metabolic products in the saliva of stroke subjects. Thirty patients in the subacute phase of stroke were included in the study: 15 with hemorrhagic stroke and 15 with ischemic stroke. The control group consisted of 30 healthy subjects similar to the cerebral stroke patients regarding age, gender, and status of the periodontium, dentition, and oral hygiene. The number of individuals was determined a priori based on our previous experiment (power of the test = 0.8; α = 0.05). The study material was mixed non‐stimulated whole saliva (NWS) and stimulated saliva (SWS). We showed that activity, specific activity, and XO output were significantly higher in NWS of ischemic stroke patients than in hemorrhagic stroke and healthy controls. Hydrogen peroxide and uric acid levels were also considerably higher in NWS of ischemic stroke patients. Using receiver operating curve (ROC) analysis, we demonstrated that XO-specific activity in NWS distinguishes ischemic stroke from hemorrhagic stroke (AUC: 0.764) and controls (AUC: 0.973) with very high sensitivity and specificity. Saliva collection is stress-free, requires no specialized medical personnel, and allows continuous monitoring of the patient’s condition through non-invasive sampling multiple times per day. Salivary XO also differentiates with high accuracy (100%) and specificity (93.75%) between stroke patients with mild to moderate cognitive decline (AUC = 0.988). Thus, salivary XO assessment may be a potential screening tool for a comprehensive neuropsychological evaluation. To summarize, our study demonstrates the potential utility of salivary XO in the differential diagnosis of stroke.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Mateusz Maciejczyk,
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Gerreth
- Private Dental Practice, Poznan, Poland
- Postgraduate Studies in Scientific Research Methodology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Poznan, Poland
- Department of Rehabilitation, Greater Poland Cancer Centre, Poznan, Poland
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
47
|
Khalid W, Gill P, Arshad MS, Ali A, Ranjha MMAN, Mukhtar S, Afzal F, Maqbool Z. Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Poonam Gill
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | | | - Shanza Mukhtar
- Department of Nutrition and Dietetics, The University of Faisalabad, Pakistan
| | - Fareed Afzal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
48
|
Khanaki K, Fekri A, Abedinzade M, Mohammadi E, Aghajanpour F. Potential anti-inflammatory effect of Lamium album extract through caspase-3 and cyclooxygenase-2 genes expression in a rat model of middle cerebral artery occlusion. Folia Med (Plovdiv) 2022; 64:275-282. [DOI: 10.3897/folmed.64.e60562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction: Stroke is one of the most common causes of death worldwide. Inflammation and apoptosis play an important role in the cascade of ischemic stroke.
Aim: The aim of the present study was to evaluate the pretreatment effects of Lamium album (L. album) extract on caspase-3 and cyclooxygenase-2 (COX-2) expression, infarct volume, and neurological deficit score in a rat model of middle cerebral artery occlusion (MCAO).
Materials and methods: Wistar male rats were randomly divided into three groups: 1) MCAO group (1 h after MCAO, reperfusion was allowed for 24 h by retracting the thread); 2) L. album + MCAO group [receiving L. album extract (100 mg/kg via intraperitoneal) for a week before MCAO]; 3) sham group. The expression level of caspase-3 and COX-2 in the core, penumbra, and subcortex regions was measured by real time-PCR technique. Infarct volume and neurological deficit score were also assessed.
Results: The mRNA expression of caspase-3 in the core, penumbra, and subcortex regions in L. album group was significantly reduced compared to MCAO group (p<0.05). Expression level of COX-2 in the subcortex of the rats exposed to L. album was statistically decreased relative to MCAO group (p<0.05). Infarct volume in the core, penumbra, and subcortex was significantly reduced in the L. album group compared with MCAO group (p<0.001, p<0.001, p<0.05, respectively). Neurological deficit score was remarkably decreased in the L. album group in comparison with the MCAO group (p<0.05).
Conclusions: It appears that pretreatment with L. album extract may attenuate brain tissue damage after ischemic stroke. The potential protective effects of this plant extract against this condition might be in part attributed to its anti-inflammatory and anti-apoptotic activities.
Collapse
|
49
|
Antioxidant Polyphenols of Antirhea borbonica Medicinal Plant and Caffeic Acid Reduce Cerebrovascular, Inflammatory and Metabolic Disorders Aggravated by High-Fat Diet-Induced Obesity in a Mouse Model of Stroke. Antioxidants (Basel) 2022; 11:antiox11050858. [PMID: 35624723 PMCID: PMC9138119 DOI: 10.3390/antiox11050858] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic disorders related to obesity and type 2 diabetes are associated with aggravated cerebrovascular damages during stroke. In particular, hyperglycemia alters redox and inflammatory status, leading to cerebral endothelial cell dysfunction, blood–brain barrier (BBB) disruption and brain homeostasis loss. Polyphenols constitute the most abundant dietary antioxidants and exert anti-inflammatory effects that may improve cerebrovascular complications in stroke. This study evaluated the effects of the characterized polyphenol-rich extract of Antirhea borbonica medicinal plant and its major constituent caffeic acid on a high-fat diet (HFD)-induced obesity mouse model during ischemic stroke, and murine bEnd3 cerebral endothelial cells in high glucose condition. In vivo, polyphenols administered by oral gavage for 12 weeks attenuated insulin resistance, hyperglycemia, hyperinsulinemia and dyslipidemia caused by HFD-induced obesity. Polyphenols limited brain infarct, hemorrhagic transformation and BBB disruption aggravated by obesity during stroke. Polyphenols exhibited anti-inflammatory and antioxidant properties by reducing IL-1β, IL-6, MCP-1, TNF-α and Nrf2 overproduction as well as total SOD activity elevation at the cerebral or peripheral levels in obese mice. In vitro, polyphenols decreased MMP-2 activity that correlated with MCP-1 secretion and ROS intracellular levels in hyperglycemic condition. Protective effects of polyphenols were linked to their bioavailability with evidence for circulating metabolites including caffeic acid, quercetin and hippuric acid. Altogether, these findings show that antioxidant polyphenols reduced cerebrovascular, inflammatory and metabolic disorders aggravated by obesity in a mouse model of stroke. It will be relevant to assess polyphenol-based strategies to improve the clinical consequences of stroke in the context of obesity and diabetes.
Collapse
|
50
|
2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside Attenuates Reactive Oxygen Species-Dependent Inflammation and Apoptosis in Porphyromonas gingivalis-Infected Brain Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040740. [PMID: 35453424 PMCID: PMC9024880 DOI: 10.3390/antiox11040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
We recently reported that the periodontopathic bacteria Porphyromonas gingivalis (P. gingivalis) initiates an inflammatory cascade that disrupts the balance of reactive oxygen species (ROS), resulting in apoptotic cell death in brain endothelial cells. An extract from Polygonum multiflorum Thunb., 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside (THSG) has been well-reported to diminish the inflammation in many disease models. However, the effects of THSG in the area of the brain–oral axis is unknown. In this study, we examined the effects of THSG in P. gingivalis-stimulated inflammatory response and apoptotic cell death in brain endothelial cells. THSG treatment remarkably lessened the upregulation of IL-1β and TNF-α proteins in bEnd.3 cells infected with P. gingivalis. Treatment of THSG further ameliorated brain endothelial cell death, including apoptosis caused by P. gingivalis. Moreover, the present study showed that the inhibitory effects on NF-κB p65 and antiapoptotic properties of THSG is through inhibiting the ROS pathway. Importantly, the ROS inhibitory potency of THSG is similar to a ROS scavenger N-Acetyl-L-Cysteine (NAC) and NADPH oxidase inhibitor apocynin. Furthermore, the protective effect of THSG from P. gingivalis infection was further confirmed in primary mouse brain endothelial cells. Taken together, this study indicates that THSG attenuates an ROS-dependent inflammatory response and cell apoptosis in P. gingivalis-infected brain endothelial cells. Our results also suggest that THSG could be a potential herbal medicine to prevent the risk of developing cerebrovascular diseases from infection of periodontal bacteria.
Collapse
|