1
|
Ali T, Li D, Ponnamperumage TNF, Peterson AK, Pandey J, Fatima K, Brzezinski J, Jakusz JAR, Gao H, Koelsch GE, Murugan DS, Peng X. Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer Treatment. Cancers (Basel) 2024; 16:2171. [PMID: 38927877 PMCID: PMC11201821 DOI: 10.3390/cancers16122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells show altered antioxidant defense systems, dysregulated redox signaling, and increased generation of reactive oxygen species (ROS). Targeting cancer cells through ROS-mediated mechanisms has emerged as a significant therapeutic strategy due to its implications in cancer progression, survival, and resistance. Extensive research has focused on selective generation of H2O2 in cancer cells for selective cancer cell killing by employing various strategies such as metal-based prodrugs, photodynamic therapy, enzyme-based systems, nano-particle mediated approaches, chemical modulators, and combination therapies. Many of these H2O2-amplifying approaches have demonstrated promising anticancer effects and selectivity in preclinical investigations. They selectively induce cytotoxicity in cancer cells while sparing normal cells, sensitize resistant cells, and modulate the tumor microenvironment. However, challenges remain in achieving selectivity, addressing tumor heterogeneity, ensuring efficient delivery, and managing safety and toxicity. To address those issues, H2O2-generating agents have been combined with other treatments leading to optimized combination therapies. This review focuses on various chemical agents/approaches that kill cancer cells via H2O2-mediated mechanisms. Different categories of compounds that selectively generate H2O2 in cancer cells are summarized, their underlying mechanisms and function are elucidated, preclinical and clinical studies as well as recent advancements are discussed, and their prospects as targeted therapeutic agents and their therapeutic utility in combination with other treatments are explored. By understanding the potential of these compounds, researchers can pave the way for the development of effective and personalized cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, USA; (T.A.); (D.L.); (T.N.F.P.); (A.K.P.); (J.P.); (K.F.); (J.B.); (J.A.R.J.); (H.G.); (G.E.K.); (D.S.M.)
| |
Collapse
|
2
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
3
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
4
|
Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, Jiang G, Yan B, Sun X, Ma Y, Wang L, Wu Z, Cui X, Wang H, Yang W. TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun 2024; 15:6. [PMID: 38177099 PMCID: PMC10766952 DOI: 10.1038/s41467-023-43743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Induction of tumor vascular normalization is a crucial measure to enhance immunotherapy efficacy. cGAS-STING pathway is vital for anti-tumor immunity, but its role in tumor vasculature is unclear. Herein, using preclinical liver cancer models in Cgas/Sting-deficient male mice, we report that the interdependence between tumor cGAS and host STING mediates vascular normalization and anti-tumor immune response. Mechanistically, TET2 mediated IL-2/STAT5A signaling epigenetically upregulates tumor cGAS expression and produces cGAMP. Subsequently, cGAMP is transported via LRRC8C channels to activate STING in endothelial cells, enhancing recruitment and transendothelial migration of lymphocytes. In vivo studies in male mice also reveal that administration of vitamin C, a promising anti-cancer agent, stimulates TET2 activity, induces tumor vascular normalization and enhances the efficacy of anti-PD-L1 therapy alone or in combination with IL-2. Our findings elucidate a crosstalk between tumor and vascular endothelial cells in the tumor immune microenvironment, providing strategies to enhance the efficacy of combinational immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Cian Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Bing Yan
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Xiaoyan Sun
- Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
5
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Yuan J, Zhang YH, Hua X, Hong HQ, Shi W, Liu KX, Liu ZX, Huang P. Genetically predicted vitamin C levels significantly affect patient survival and immunotypes in multiple cancer types. Front Immunol 2023; 14:1177580. [PMID: 37283769 PMCID: PMC10239825 DOI: 10.3389/fimmu.2023.1177580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background Recent observational studies and meta-analyses have shown that vitamin C reduces cancer incidence and mortality, but the underlying mechanisms remain unclear. We conducted a comprehensive pan-cancer analysis and biological validation in clinical samples and animal tumor xenografts to understand its prognostic value and association with immune characteristics in various cancers. Methods We used the Cancer Genome Atlas gene expression data involving 5769 patients and 20 cancer types. Vitamin C index (VCI) was calculated using the expression of 11 genes known to genetically predict vitamin C levels, which were classified into high and low subgroups. The correlation between VCI and patient overall survival (OS), tumor mutational burden (TMB), microsatellite instability (MSI), and immune microenvironment was evaluated, using Kaplan-Meier analysis method and ESTIMATE (https://bioinformatics.mdanderson.org/estimate/). Clinical samples of breast cancer and normal tissues were used to validate the expression of VCI-related genes, and animal experiments were conducted to test the impact of vitamin C on colon cancer growth and immune cell infiltration. Results Significant changes in expression of VCI-predicted genes were observed in multiple cancer types, especially in breast cancer. There was a correlation of VCI with prognosis in all samples (adjusted hazard ratio [AHR] = 0.87; 95% confidence interval [CI] = 0.78-0.98; P = 0.02). The specific cancer types that exhibited significant correlation between VCI and OS included breast cancer (AHR = 0.14; 95% CI = 0.05-0.40; P < 0.01), head and neck squamous cell carcinoma (AHR = 0.20; 95% CI = 0.07-0.59; P < 0.01), kidney clear cell carcinoma (AHR = 0.66; 95% CI = 0.48-0.92; P = 0.01), and rectum adenocarcinoma (AHR = 0.01; 95% CI = 0.001-0.38; P = 0.02). Interestingly, VCI was correlated with altered immunotypes and associated with TMB and MSI negatively in colon and rectal adenocarcinoma (P < 0.001) but positively in lung squamous cell carcinoma (P < 0.05). In vivo study using mice bearing colon cancer xenografts demonstrated that vitamin C could inhibit tumor growth with significant impact on immune cell infiltration. Conclusion VCI is significantly correlated with OS and immunotypes in multiple cancers, and vitamin C might have therapeutic potential in colon cancer.
Collapse
Affiliation(s)
- Jing Yuan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-hong Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin Hua
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui-qi Hong
- Department of Oncology, Shunde Hospital of Southern Medical University, Foshan, China
| | - Wei Shi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kun-xiang Liu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze-xian Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Metabolomics Innovation Center, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| |
Collapse
|
7
|
Barnish M, Sheikh M, Scholey A. Nutrient Therapy for the Improvement of Fatigue Symptoms. Nutrients 2023; 15:2154. [PMID: 37432282 DOI: 10.3390/nu15092154] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Fatigue, characterised by lack of energy, mental exhaustion and poor muscle endurance which do not recover following a period of rest, is a common characteristic symptom of several conditions and negatively impacts the quality of life of those affected. Fatigue is often a symptom of concern for people suffering from conditions such as fibromyalgia, chronic fatigue syndrome, cancer, and multiple sclerosis. Vitamins and minerals, playing essential roles in a variety of basic metabolic pathways that support fundamental cellular functions, may be important in mitigating physical and mental fatigue. Several studies have examined the potential benefits of nutrients on fatigue in various populations. The current review aimed to gather the existing literature exploring different nutrients' effects on fatigue. From the searches of the literature conducted in PubMed, Ovid, Web of Science, and Google scholar, 60 articles met the inclusion criteria and were included in the review. Among the included studies, 50 showed significant beneficial effects (p < 0.05) of vitamin and mineral supplementation on fatigue. Altogether, the included studies investigated oral or parenteral administration of nutrients including Coenzyme Q10, L-carnitine, zinc, methionine, nicotinamide adenine dinucleotide (NAD), and vitamins C, D and B. In conclusion, the results of the literature review suggest that these nutrients have potentially significant benefits in reducing fatigue in healthy individuals as well as those with chronic illness, both when taken orally and parenterally. Further studies should explore these novel therapies, both as adjunctive treatments and as sole interventions.
Collapse
Affiliation(s)
- Michael Barnish
- REVIV Life Science Research, REVIV Global Ltd., Manchester M15 4PS, UK
| | - Mahsa Sheikh
- REVIV Life Science Research, REVIV Global Ltd., Manchester M15 4PS, UK
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia
| |
Collapse
|
8
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
9
|
Fan D, Liu X, Shen Z, Wu P, Zhong L, Lin F. Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed Pharmacother 2023; 162:114695. [PMID: 37058822 DOI: 10.1016/j.biopha.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Vitamin C, a small organic molecule, is widely found in fruits and vegetables and is an essential nutrient in the human body. Vitamin C is closely associated with some human diseases such as cancer. Many studies have shown that high doses of vitamin C have anti-tumor ability and can target tumor cells in multiple targets. This review will describe vitamin C absorption and its function in cancer treatment. We will review the cellular signaling pathways associated with vitamin C against tumors depending on the different anti-cancer mechanisms. Based on this, we will further describe some applications of the use of vitamin C for cancer treatment in preclinical and clinical trials and the possible adverse events that can occur. Finally, this review also assesses the prospective advantages of vitamin C in oncology treatment and clinical applications.
Collapse
Affiliation(s)
- Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Faquan Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education,Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University.
| |
Collapse
|
10
|
Gordon N, Gallagher PT, Neupane NP, Mandigo AC, McCann JK, Dylgjeri E, Vasilevskaya I, McNair C, Paller CJ, Kelly WK, Knudsen KE, Shafi AA, Schiewer MJ. PARP inhibition and pharmacological ascorbate demonstrate synergy in castration-resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533944. [PMID: 36993449 PMCID: PMC10055378 DOI: 10.1101/2023.03.23.533944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death for men in the United States. While organ-confined disease has reasonable expectation of cure, metastatic PCa is universally fatal upon recurrence during hormone therapy, a stage termed castration-resistant prostate cancer (CRPC). Until such time as molecularly defined subtypes can be identified and targeted using precision medicine, it is necessary to investigate new therapies that may apply to the CRPC population as a whole. The administration of ascorbate, more commonly known as ascorbic acid or Vitamin C, has proved lethal to and highly selective for a variety of cancer cell types. There are several mechanisms currently under investigation to explain how ascorbate exerts anti-cancer effects. A simplified model depicts ascorbate as a pro-drug for reactive oxygen species (ROS), which accumulate intracellularly and generate DNA damage. It was therefore hypothesized that poly(ADP-ribose) polymerase (PARP) inhibitors, by inhibiting DNA damage repair, would augment the toxicity of ascorbate. Results Two distinct CRPC models were found to be sensitive to physiologically relevant doses of ascorbate. Moreover, additional studies indicate that ascorbate inhibits CRPC growth in vitro via multiple mechanisms including disruption of cellular energy dynamics and accumulation of DNA damage. Combination studies were performed in CRPC models with ascorbate in conjunction with escalating doses of three different PARP inhibitors (niraparib, olaparib, and talazoparib). The addition of ascorbate augmented the toxicity of all three PARP inhibitors and proved synergistic with olaparib in both CRPC models. Finally, the combination of olaparib and ascorbate was tested in vivo in both castrated and non-castrated models. In both cohorts, the combination treatment significantly delayed tumor growth compared to monotherapy or untreated control. Conclusions These data indicate that pharmacological ascorbate is an effective monotherapy at physiological concentrations and kills CRPC cells. Ascorbate-induced tumor cell death was associated with disruption of cellular energy dynamics and accumulation of DNA damage. The addition of PARP inhibition increased the extent of DNA damage and proved effective at slowing CRPC growth both in vitro and in vivo. These findings nominate ascorbate and PARPi as a novel therapeutic regimen that has the potential to improve CRPC patient outcomes.
Collapse
Affiliation(s)
- Nicolas Gordon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter T. Gallagher
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Amy C. Mandigo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jennifer K. McCann
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Irina Vasilevskaya
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Channing J. Paller
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ayesha A. Shafi
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD 20817, USA. The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pharmacology/Physiology/Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Burkard M, Niessner H, Leischner C, Piotrowsky A, Renner O, Marongiu L, Lauer UM, Busch C, Sinnberg T, Venturelli S. High-Dose Ascorbate in Combination with Anti-PD1 Checkpoint Inhibition as Treatment Option for Malignant Melanoma. Cells 2023; 12:254. [PMID: 36672190 PMCID: PMC9857291 DOI: 10.3390/cells12020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Ascorbate acts as a prooxidant when administered parenterally at high supraphysiological doses, which results in the generation of hydrogen peroxide in dependence on oxygen. Most cancer cells are susceptible to the emerging reactive oxygen species (ROS). Accordingly, we evaluated high-dose ascorbate for the treatment of the B16F10 melanoma model. To investigate the effects of ascorbate on the B16F10 cell line in vitro, viability, cellular impedance, and ROS production were analyzed. In vivo, C57BL/6NCrl mice were subcutaneously injected into the right flank with B16F10 cells and tumor-bearing mice were treated intraperitoneally with ascorbate (3 g/kg bodyweight), immunotherapy (anti-programmed cell death protein 1 (PD1) antibody J43; 2 mg/kg bodyweight), or both treatments combined. The efficacy and toxicity were analyzed by measuring the respective tumor sizes and mouse weights accompanied by histological analysis of the protein levels of proliferating cell nuclear antigen (Pcna), glucose transporter 1 (Glut-1), and CD3. Treatment of B16F10 melanoma-carrying mice with high-dose ascorbate yielded plasma levels in the pharmacologically effective range, and ascorbate showed efficacy as a monotherapy and when combined with PD1 inhibition. Our data suggest the applicability of ascorbate as an additional therapeutic agent that can be safely combined with immunotherapy and has the potential to potentiate anti-PD1-based immune checkpoint blockades.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Christian Busch
- Dermatologie zum Delfin, Stadthausstraße 12, 8400 Winterthur, Switzerland
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| |
Collapse
|
12
|
Damuka N, Bashetti N, Mintz A, Bansode AH, Miller M, Krizan I, Furdui C, Bhoopal B, Gollapelli KK, Shanmukha Kumar JV, Deep G, Dugan G, Cline M, Solingapuram Sai KK. [ 18F]KS1, a novel ascorbate-based ligand images ROS in tumor models of rodents and nonhuman primates. Biomed Pharmacother 2022; 156:113937. [PMID: 36411624 PMCID: PMC11017304 DOI: 10.1016/j.biopha.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY, United States
| | - Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - J V Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Greg Dugan
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mark Cline
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
13
|
Mohseni S, Tabatabaei-Malazy O, Ejtahed HS, Qorbani M, Azadbakht L, Khashayar P, Larijani B. Effect of vitamins C and E on cancer survival; a systematic review. Daru 2022; 30:427-441. [PMID: 36136247 PMCID: PMC9715902 DOI: 10.1007/s40199-022-00451-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE Association between vitamins C (VC)/ E (VE) and cancer survival is inconsistent. This systematic review is aimed to summarize trials for effects of VC/VE on cancer survival. METHODS Relevant English trials were retrieved from PubMed, Cochrane Library, Embase, Web of Science, Scopus databases, and Clinicaltrials.gov through 21/June/2022. Inclusion criteria were all trials which assessed sole/combinations intake of VC/VE on survival rate, mortality, or remission of any cancer. Exclusion criteria were observational and animal studies. RESULTS We reached 30 trials conducted on 38,936 patients with various cancers. Due to severe methodological heterogeneity, meta-analysis was impossible. High dose VC + chemotherapy or radiation was safe with an overall survival (OS) 182 days - 21.5 months. Sole oral or intravenous high dose VC was safe with non-significant change in OS (2.9-8.2 months). VE plus chemotherapy was safe, resulted in stabling diseases for 5 years in 70- 86.7% of patients and OS 109 months. It was found 60% and 16% non-significant reductions in adjusted hazard ratio (HR) deaths or recurrence by 200 mg/d tocotrienol + tamoxifen in breast cancer, respectively. Sole intake of 200-3200 mg/d tocotrienol before resectable pancreatic cancer was safe and significantly increased cancer cells' apoptosis. Combination VC and VE was non-significantly reduced 7% in rate of neoplastic gastric polyp. CONCLUSION Although our study is supported improvement of survival and progression rates of cancers by VC/VE, more high quality trials with large sample sizes are required to confirm. PROSPERO REGISTRATION NUMBER CRD42020152795.
Collapse
Affiliation(s)
- Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Patricia Khashayar
- Center for microsystem technology, Imec and Ghent University, 9052 Gent, Zwijnaarde, Belgium
- Osteoporosis Research Center, Endocrinology & Metabolism Clinical Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Maekawa T, Miyake T, Tani M, Uemoto S. Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironment. Front Oncol 2022; 12:981547. [PMID: 36203466 PMCID: PMC9531273 DOI: 10.3389/fonc.2022.981547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Ascorbic acid has attracted substantial attention for its potential antitumor effects by acting as an antioxidant in vivo and as a cofactor in diverse enzymatic reactions. However, solid proof of its clinical efficacy against cancer and the mechanism behind its effect have not been established. Moreover, cancer forms cancer-specific microenvironments and interacts with various cells, such as cancer-associated fibroblasts (CAFs), to maintain cancer growth and progression; however, the effect of ascorbic acid on the cancer microenvironment is unclear. This review discusses the effects and mechanisms of ascorbic acid on cancer, including the role of ascorbic acid concentration. In addition, we present future perspectives on the effects of ascorbic acid on cancer cells and the CAF microenvironment. Ascorbic acid has a variety of effects, which contributes to the complexity of these effects. Oral administration of ascorbic acid results in low blood concentrations (<0.2 mM) and acts as a cofactor for antioxidant effects, collagen secretion, and HIFα degradation. In contrast, intravenous treatment achieves large blood concentrations (>1 mM) and has oxidative-promoting actions that exert anticancer effects via reactive oxygen species. Therefore, intravenous administration at high concentrations is required to achieve the desired effects on cancer cells during treatment. Partial data on the effect of ascorbic acid on fibroblasts indicate that it may also modulate collagen secretion in CAFs and impart tumor-suppressive effects. Thus, future studies should verify the effect of ascorbic acid on CAFs. The findings of this review can be used to guide further research and clinical trials.
Collapse
Affiliation(s)
- Takeru Maekawa
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Toru Miyake
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
- *Correspondence: Toru Miyake,
| | - Masaji Tani
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | | |
Collapse
|
15
|
Chen HY, Almonte-Loya A, Lay FY, Hsu M, Johnson E, González-Avalos E, Yin J, Bruno RS, Ma Q, Ghoneim HE, Wozniak DJ, Harrison FE, Lio CWJ. Epigenetic remodeling by vitamin C potentiates plasma cell differentiation. eLife 2022; 11:73754. [PMID: 36069787 PMCID: PMC9451539 DOI: 10.7554/elife.73754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ascorbate (vitamin C) is an essential micronutrient in humans. The severe chronic deficiency of ascorbate, termed scurvy, has long been associated with increased susceptibility to infections. How ascorbate affects the immune system at the cellular and molecular levels remained unclear. From a micronutrient analysis, we identified ascorbate as a potent enhancer for antibody response by facilitating the IL-21/STAT3-dependent plasma cell differentiation in mouse and human B cells. The effect of ascorbate is unique as other antioxidants failed to promote plasma cell differentiation. Ascorbate is especially critical during early B cell activation by poising the cells to plasma cell lineage without affecting the proximal IL-21/STAT3 signaling and the overall transcriptome. As a cofactor for epigenetic enzymes, ascorbate facilitates TET2/3-mediated DNA modification and demethylation of multiple elements at the Prdm1 locus. DNA demethylation augments STAT3 association at the Prdm1 promoter and a downstream enhancer, thus ensuring efficient gene expression and plasma cell differentiation. The results suggest that an adequate level of ascorbate is required for antibody response and highlight how micronutrients may regulate the activity of epigenetic enzymes to regulate gene expression. Our findings imply that epigenetic enzymes can function as sensors to gauge the availability of metabolites and influence cell fate decisions.
Collapse
Affiliation(s)
- Heng-Yi Chen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Ana Almonte-Loya
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Fang-Yun Lay
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Michael Hsu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Eric Johnson
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Edahí González-Avalos
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Jieyun Yin
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, United States
| | - Qin Ma
- Biomedical Informatics, The Ohio State University, Columbus, OH, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
16
|
Turpin M, Salbert G. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front Mol Biosci 2022; 9:976862. [PMID: 36060265 PMCID: PMC9428128 DOI: 10.3389/fmolb.2022.976862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation at the fifth position of cytosine (5mC) is one of the most studied epigenetic mechanisms essential for the control of gene expression and for many other biological processes including genomic imprinting, X chromosome inactivation and genome stability. Over the last years, accumulating evidence suggest that DNA methylation is a highly dynamic mechanism driven by a balance between methylation by DNMTs and TET-mediated demethylation processes. However, one of the main challenges is to understand the dynamics underlying steady state DNA methylation levels. In this review article, we give an overview of the latest advances highlighting DNA methylation as a dynamic cycling process with a continuous turnover of cytosine modifications. We describe the cooperative actions of DNMT and TET enzymes which combine with many additional parameters including chromatin environment and protein partners to govern 5mC turnover. We also discuss how mathematical models can be used to address variable methylation levels during development and explain cell-type epigenetic heterogeneity locally but also at the genome scale. Finally, we review the therapeutic implications of these discoveries with the use of both epigenetic clocks as predictors and the development of epidrugs that target the DNA methylation/demethylation machinery. Together, these discoveries unveil with unprecedented detail how dynamic is DNA methylation during development, underlying the establishment of heterogeneous DNA methylation landscapes which could be altered in aging, diseases and cancer.
Collapse
Affiliation(s)
- Marion Turpin
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| | - Gilles Salbert
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
17
|
Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:930205. [PMID: 35938170 PMCID: PMC9352950 DOI: 10.3389/fcell.2022.930205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials.
Collapse
Affiliation(s)
- S. Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C. Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - S. Antonelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G. Silvestrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N. I. Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - T. Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M. T. Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- *Correspondence: M. T. Voso,
| |
Collapse
|
18
|
Yu G, Liang B, Yin K, Zhan M, Gu X, Wang J, Song S, Liu Y, Yang Q, Ji T, Xu B. Identification of Metabolism-Related Gene-Based Subgroup in Prostate Cancer. Front Oncol 2022; 12:909066. [PMID: 35785167 PMCID: PMC9243363 DOI: 10.3389/fonc.2022.909066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is still the main male health problem in the world. The role of metabolism in the occurrence and development of prostate cancer is becoming more and more obvious, but it is not clear. Here we firstly identified a metabolism-related gene-based subgroup in prostate cancer. We used metabolism-related genes to divide prostate cancer patients from The Cancer Genome Atlas into different clinical benefit populations, which was verified in the International Cancer Genome Consortium. After that, we analyzed the metabolic and immunological mechanisms of clinical beneficiaries from the aspects of functional analysis of differentially expressed genes, gene set variation analysis, tumor purity, tumor microenvironment, copy number variations, single-nucleotide polymorphism, and tumor-specific neoantigens. We identified 56 significant genes for non-negative matrix factorization after survival-related univariate regression analysis and identified three subgroups. Patients in subgroup 2 had better overall survival, disease-free interval, progression-free interval, and disease-specific survival. Functional analysis indicated that differentially expressed genes in subgroup 2 were enriched in the xenobiotic metabolic process and regulation of cell development. Moreover, the metabolism and tumor purity of subgroup 2 were higher than those of subgroup 1 and subgroup 3, whereas the composition of immune cells of subgroup 2 was lower than that of subgroup 1 and subgroup 3. The expression of major immune genes, such as CCL2, CD274, CD276, CD4, CTLA4, CXCR4, IL1A, IL6, LAG3, TGFB1, TNFRSF4, TNFRSF9, and PDCD1LG2, in subgroup 2 was almost significantly lower than that in subgroup 1 and subgroup 3, which is consistent with the results of tumor purity analysis. Finally, we identified that subgroup 2 had lower copy number variations, single-nucleotide polymorphism, and neoantigen mutation. Our systematic study established a metabolism-related gene-based subgroup to predict outcomes of prostate cancer patients, which may contribute to individual prevention and treatment.
Collapse
Affiliation(s)
- Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Liang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Keneng Yin
- 174 Clinical College, Anhui Medical University, Hefei, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Gu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangyi Wang
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangqing Song
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Bin Xu, ; Tianhai Ji, ; Qing Yang, ; Yushan Liu,
| | - Qing Yang
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Bin Xu, ; Tianhai Ji, ; Qing Yang, ; Yushan Liu,
| | - Tianhai Ji
- 174 Clinical College, Anhui Medical University, Hefei, China
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Bin Xu, ; Tianhai Ji, ; Qing Yang, ; Yushan Liu,
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Bin Xu, ; Tianhai Ji, ; Qing Yang, ; Yushan Liu,
| |
Collapse
|
19
|
Ascorbate as a Bioactive Compound in Cancer Therapy: The Old Classic Strikes Back. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123818. [PMID: 35744943 PMCID: PMC9229419 DOI: 10.3390/molecules27123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Cancer is a disease of high mortality, and its prevalence has increased steadily in the last few years. However, during the last decade, the development of modern chemotherapy schemes, new radiotherapy techniques, targeted therapies and immunotherapy has brought new hope in the treatment of these diseases. Unfortunately, cancer therapies are also associated with frequent and, sometimes, severe adverse events. Ascorbate (ascorbic acid or vitamin C) is a potent water-soluble antioxidant that is produced in most mammals but is not synthesised endogenously in humans, which lack enzymes for its synthesis. Ascorbate has antioxidant effects that correspond closely to the dose administered. Interestingly, this natural antioxidant induces oxidative stress when given intravenously at a high dose, a paradoxical effect due to its interactions with iron. Importantly, this deleterious property of ascorbate can result in increased cell death. Although, historically, ascorbate has been reported to exhibit anti-tumour properties, this effect has been questioned due to the lack of available mechanistic detail. Recently, new evidence has emerged implicating ferroptosis in several types of oxidative stress-mediated cell death, such as those associated with ischemia–reperfusion. This effect could be positively modulated by the interaction of iron and high ascorbate dosing, particularly in cell systems having a high mitotic index. In addition, it has been reported that ascorbate may behave as an adjuvant of favourable anti-tumour effects in cancer therapies such as radiotherapy, radio-chemotherapy, chemotherapy, immunotherapy, or even in monotherapy, as it facilitates tumour cell death through the generation of reactive oxygen species and ferroptosis. In this review, we provide evidence supporting the view that ascorbate should be revisited to develop novel, safe strategies in the treatment of cancer to achieve their application in human medicine.
Collapse
|
20
|
High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15060711. [PMID: 35745630 PMCID: PMC9231292 DOI: 10.3390/ph15060711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the idea that Vitamin C (Vit-C) could be utilized as a form of anti-cancer therapy has generated many contradictory arguments. Recent insights into the physiological characteristics of Vit-C, its pharmacokinetics, and results from preclinical reports, however, suggest that high-dose Vit-C could be effectively utilized in the management of various tumor types. Studies have shown that the pharmacological action of Vit-C can attack various processes that cancerous cells use for their growth and development. Here, we discuss the anti-cancer functions of Vit-C, but also the potential for the use of Vit-C as an epigenetic regulator and immunotherapy enhancer. We also provide a short overview of the current state of systems for scavenging reactive oxygen species (ROS), especially in the context of their influencing high-dose Vit-C toxicity for the inhibition of cancer growth. Even though the mechanisms of Vit-C action are promising, they need to be supported with robust randomized and controlled clinical trials. Moreover, upcoming studies should focus on how to define the most suitable cancer patient populations for high-dose Vit-C treatments and develop effective strategies that combine Vit-C with various concurrent cancer treatment regimens.
Collapse
|
21
|
Hunyady J. The Result of Vitamin C Treatment of Patients with Cancer: Conditions Influencing the Effectiveness. Int J Mol Sci 2022; 23:ijms23084380. [PMID: 35457200 PMCID: PMC9030840 DOI: 10.3390/ijms23084380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin C (ascorbic acid, AA) is a weak sugar acid structurally related to glucose. All known physiological and biochemical functions of AA are due to its action as an electron donor. Ascorbate readily undergoes pH-dependent autoxidation creating hydrogen peroxide (H2O2). In vitro evidence suggests that vitamin C functions at low concentrations as an antioxidant while high concentration is pro-oxidant. Thus, both characters of AA might be translated into clinical benefits. In vitro obtained results and murine experiments consequently prove the cytotoxic effect of AA on cancer cells, but current clinical evidence for high-dose intravenous (i.v.) vitamin C's therapeutic effect is ambiguous. The difference might be caused by the missing knowledge of AA's actions. In the literature, there are many publications regarding vitamin C and cancer. Review papers of systematic analysis of human interventional and observational studies assessing i.v. AA for cancer patients' use helps the overview of the extensive literature. Based on the results of four review articles and the Cancer Information Summary of the National Cancer Institute's results, we analyzed 20 publications related to high-dose intravenous vitamin C therapy (HAAT). The analyzed results indicate that HAAT might be a useful cancer-treating tool in certain circumstances. The AA's cytotoxic effect is hypoxia-induced factor dependent. It impacts only the anoxic cells, using the Warburg metabolism. It prevents tumor growth. Accordingly, discontinuation of treatment leads to repeated expansion of the tumor. We believe that the clinical use of HAAT in cancer treatment should be reassessed. The accumulation of more study results on HAAT is desperately needed.
Collapse
Affiliation(s)
- János Hunyady
- Department of Dermatology, Medical Faculty, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
22
|
Therapeutic Efficacy of Pharmacological Ascorbate on Braf Inhibitor Resistant Melanoma Cells In Vitro and In Vivo. Cells 2022; 11:cells11071229. [PMID: 35406796 PMCID: PMC8997901 DOI: 10.3390/cells11071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
High-dose ascorbate paradoxically acts as a pro-oxidant causing the formation of hydrogen peroxide in an oxygen dependent manner. Tumor cells (in particular melanoma cells) show an increased vulnerability to ascorbate induced reactive oxygen species (ROS). Therefore, high-dose ascorbate is a promising pharmacological approach to treating refractory melanomas, e.g., with secondary resistance to targeted BRAF inhibitor therapy. BRAF mutated melanoma cells were treated with ascorbate alone or in combination with the BRAF inhibitor vemurafenib. Viability, cell cycle, ROS production, and the protein levels of phospho-ERK1/2, GLUT-1 and HIF-1α were analyzed. To investigate the treatment in vivo, C57BL/6NCrl mice were subcutaneously injected with D4M.3A (BrafV600E) melanoma cells and treated with intraperitoneal injections of ascorbate with or without vemurafenib. BRAF mutated melanoma cell lines either sensitive or resistant to vemurafenib were susceptible to the induction of cell death by pharmacological ascorbate. Treatment of BrafV600E melanoma bearing mice with ascorbate resulted in plasma levels in the pharmacologically active range and significantly improved the therapeutic effect of vemurafenib. We conclude that intravenous high-dose ascorbate will be beneficial for melanoma patients by interfering with the tumor’s energy metabolism and can be safely combined with standard melanoma therapies such as BRAF inhibitors without pharmacological interference.
Collapse
|
23
|
Coppock D, Violet PC, Vasquez G, Belden K, Foster M, Mullin B, Magee D, Mikell I, Shah L, Powers V, Curcio B, Monti D, Levine M. Pharmacologic Ascorbic Acid as Early Therapy for Hospitalized Patients with COVID-19: A Randomized Clinical Trial. Life (Basel) 2022; 12:453. [PMID: 35330204 PMCID: PMC8954118 DOI: 10.3390/life12030453] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/29/2023] Open
Abstract
Despite the widespread availability of effective vaccines, new cases of infection with severe acute respiratory syndrome coronavirus-2, the cause of coronavirus disease 2019 (COVID-19), remain a concern in the settings of vaccine hesitancy and vaccine breakthrough. In this randomized, controlled, phase 2 trial, we hypothesized that high-dose ascorbic acid delivered intravenously to achieve pharmacologic concentrations may target the high viral phase of COVID-19 and thus improve early clinical outcomes. Sixty-six patients admitted with COVID-19 and requiring supplemental oxygen were randomized to receive either escalating doses of intravenous ascorbic acid plus standard of care or standard of care alone. The demographic and clinical characteristics were well-balanced between the two study arms. The primary outcome evaluated in this study was clinical improvement at 72 h after randomization. While the primary outcome was not achieved, point estimates for the composite outcome and its individual components of decreased use of supplemental oxygen, decreased use of bronchodilators, and the time to discharge were all favorable for the treatment arm. Possible favorable effects of ascorbic acid were most apparent during the first 72 h of hospitalization, although these effects disappeared over the course of the entire hospitalization. Future larger trials of intravenous ascorbic acid should be based on our current understanding of COVID-19 with a focus on the potential early benefits of ascorbic in hospitalized patients.
Collapse
Affiliation(s)
- Dagan Coppock
- Division of Infectious Diseases, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Chestnut Street, Philadelphia, PA 19107, USA; (G.V.); (K.B.)
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA;
| | - Gustavo Vasquez
- Division of Infectious Diseases, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Chestnut Street, Philadelphia, PA 19107, USA; (G.V.); (K.B.)
| | - Katherine Belden
- Division of Infectious Diseases, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Chestnut Street, Philadelphia, PA 19107, USA; (G.V.); (K.B.)
| | - Michael Foster
- Jefferson Clinical Research Institute, Thomas Jefferson University, 833 Chestnut Street, Philadelphia, PA 19107, USA; (M.F.); (B.M.); (D.M.)
| | - Bret Mullin
- Jefferson Clinical Research Institute, Thomas Jefferson University, 833 Chestnut Street, Philadelphia, PA 19107, USA; (M.F.); (B.M.); (D.M.)
| | - Devon Magee
- Jefferson Clinical Research Institute, Thomas Jefferson University, 833 Chestnut Street, Philadelphia, PA 19107, USA; (M.F.); (B.M.); (D.M.)
| | - Isabelle Mikell
- Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; (I.M.); (L.S.); (V.P.)
| | - Lokesh Shah
- Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; (I.M.); (L.S.); (V.P.)
| | - Victoria Powers
- Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; (I.M.); (L.S.); (V.P.)
| | - Brian Curcio
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, 1015 Chestnut Street, Philadelphia, PA 19107, USA;
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Sidney Kimmel Medical College, Thomas Jefferson University, 925 Chestnut Street, Philadelphia, PA 19107, USA;
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA;
| |
Collapse
|
24
|
Role of Vitamin C in Selected Malignant Neoplasms in Women. Nutrients 2022; 14:nu14040882. [PMID: 35215535 PMCID: PMC8876016 DOI: 10.3390/nu14040882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Since the first reports describing the anti-cancer properties of vitamin C published several decades ago, its actual effectiveness in fighting cancer has been under investigation and widely discussed. Some scientific reports indicate that vitamin C in high concentrations can contribute to effective and selective destruction of cancer cells. Furthermore, preclinical and clinical studies have shown that relatively high doses of vitamin C administered intravenously in ‘pharmacological concentrations’ may not only be well-tolerated, but significantly improve patients’ quality of life. This seems to be particularly important, especially for terminal cancer patients. However, the relatively high frequency of vitamin C use by cancer patients means that the potential clinical benefits may not be obvious. For this reason, in this review article, we focus on the articles published mainly in the last two decades, describing possible beneficial effects of vitamin C in preventing and treating selected malignant neoplasms in women, including breast, cervical, endometrial, and ovarian cancer. According to the reviewed studies, vitamin C use may contribute to an improvement of the overall quality of life of patients, among others, by reducing chemotherapy-related side effects. Nevertheless, new clinical trials are needed to collect stronger evidence of the role of this nutrient in supportive cancer treatment.
Collapse
|
25
|
Kobayashi H, Imanaka S, Shigetomi H. Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis. Oncol Lett 2022; 23:80. [PMID: 35111249 PMCID: PMC8771630 DOI: 10.3892/ol.2022.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in molecular genetics have expanded our understanding of ovarian cancer. High levels of reactive oxygen species (ROS) and upregulation of antioxidant genes are common characteristic features of human cancers. This review reconsiders novel therapeutic strategies for ovarian cancer by focusing on redox homeostasis. A literature search was performed for preclinical and clinical studies published between January 1998 and October 2021 in the PubMed database using a combination of specific terms. ROS serves a central role in tumor suppression and progression by inducing DNA damage and mutations, genomic instability, and aberrant anti- and pro-tumorigenic signaling. Cancer cells increase their antioxidant capacity to neutralize the extra ROS. Additionally, antioxidants, such as CD44 variant isoform 9 (CD44v9) and nuclear factor erythroid 2-related factor 2 (Nrf2), mediate redox homeostasis in ovarian cancer. Furthermore, studies conducted on different cancer types revealed the dual role of antioxidants in tumor progression and inhibition. However, in animal models, genetic loss of antioxidant capacity in the host cannot block cancer initiation and progression. Host-derived antioxidant systems are essential to suppress carcinogenesis, suggesting that antioxidants serve a pivotal role in suppressing cancer development. By contrast, antioxidant activation in cancer cells confers aggressive phenotypes. Antioxidant inhibitors can promote cancer cell death by enhancing ROS levels. Concurrent inhibition of CD44v9 and Nrf2 may trigger apoptosis induction, potentiate chemosensitivity and enhance antitumor activities through the ROS-activated p38/p21 pathway. Antioxidants may have tumor-promoting and -suppressive functions. Therefore, an improved understanding of the role of antioxidants in redox homeostasis and developing antioxidant-specific inhibitors is necessary for treating ovarian cancer.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Ms. Clinic MayOne, Kashihara, Nara 634-0813, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Ms. Clinic MayOne, Kashihara, Nara 634-0813, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Obstetrics and Gynecology, Aska Ladies Clinic, Nara 634-0001, Japan
| |
Collapse
|
26
|
Kouakanou L, Peters C, Brown CE, Kabelitz D, Wang LD. Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy? Front Immunol 2021; 12:765906. [PMID: 34899716 PMCID: PMC8663797 DOI: 10.3389/fimmu.2021.765906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin C (VitC), in addition to its role as a general antioxidant, has long been considered to possess direct anti-cancer activity at high doses. VitC acts through oxidant and epigenetic mechanisms, which at high doses can exert direct killing of tumor cells in vitro and delay tumor growth in vivo. Recently, it has also been shown that pharmacologic-dose VitC can contribute to control of tumors by modulating the immune system, and studies have been done interrogating the role of physiologic-dose VitC on novel adoptive cellular therapies (ACTs). In this review, we discuss the effects of VitC on anti-tumor immune cells, as well as the mechanisms underlying those effects. We address important unanswered questions concerning both VitC and ACTs, and outline challenges and opportunities facing the use of VitC in the clinical setting as an adjunct to immune-based anti-cancer therapies.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Department of Pediatrics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
27
|
Abstract
Significance: Vitamin C (ascorbate), in regard to its effectiveness against malignancies, has had a controversial history in cancer treatment. It has been shown that in vitro and in vivo anticancer efficacy of ascorbate relies on its pro-oxidant effect mainly from an increased generation of reactive oxygen species (ROS). A growing understanding of its anticancer activities and pharmacokinetic properties has prompted scientists to re-evaluate the significance of ascorbate in cancer treatment. Recent Advances: A recent resurge in ascorbate research emerged after discovering that, at high doses, ascorbate preferentially kills Kirsten-Ras (K-ras)- and B-raf oncogene (BRAF)-mutant cancer cells. In addition, some of the main hallmarks of cancer cells, such as redox homeostasis and oxygen-sensing regulation (through inhibition of hypoxia-inducible factor-1 alpha [HIF-1α] activity), are affected by vitamin C. Critical Issues: Currently, there is no clear consensus from the literature in regard to the beneficial effects of antioxidants. Results from both human and animal studies provide no clear evidence about the benefit of antioxidant treatment in preventing or suppressing cancer development. Since pro-oxidants may affect both normal and tumor cells, the extremely low toxicity of ascorbate represents a main advantage. This guarantees the safe inclusion of ascorbate in clinical protocols to treat cancer patients. Future Directions: Current research could focus on elucidating the wide array of reactions between ascorbate and reactive species, namely ROS, reactive nitrogen species as well as reactive sulfide species, and their intracellular molecular targets. Unraveling these mechanisms could allow researchers to assess what could be the optimal combination of ascorbate with standard treatments.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.,Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Agarwal A, Hager DN, Sevransky JE. Any Role of High-Dose Vitamin C for Septic Shock in 2021? Semin Respir Crit Care Med 2021; 42:672-682. [PMID: 34544184 DOI: 10.1055/s-0041-1733986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While the use of vitamin C as a therapeutic agent has been investigated since the 1950s, there has been substantial recent interest in the role of vitamin C supplementation in critical illness and particularly, sepsis and septic shock. Humans cannot synthesize vitamin C and rely on exogenous intake to maintain a plasma concentration of approximately 70 to 80 μmol/L. Vitamin C, in healthy humans, is involved with antioxidant function, wound healing, endothelial function, and catecholamine synthesis. Its function in the human body informs the theoretical basis for why vitamin C supplementation may be beneficial in sepsis/septic shock.Critically ill patients can be vitamin C deficient due to low dietary intake, increased metabolic demands, inefficient recycling of vitamin C metabolites, and loss due to renal replacement therapy. Intravenous supplementation is required to achieve supraphysiologic serum levels of vitamin C. While some clinical studies of intravenous vitamin C supplementation in sepsis have shown improvements in secondary outcome measures, none of the randomized clinical trials have shown differences between vitamin C supplementation and standard of care and/or placebo in the primary outcome measures of the trials. There are some ongoing studies of high-dose vitamin C administration in patients with sepsis and coronavirus disease 2019; the majority of evidence so far does not support the routine supplementation of vitamin C in patients with sepsis or septic shock.
Collapse
Affiliation(s)
- Ankita Agarwal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - David N Hager
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan E Sevransky
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia.,Emory Critical Care Center, Emory University, Atlanta, Georgia
| |
Collapse
|
29
|
Goncalves J, Moog S, Morin A, Gentric G, Müller S, Morrell AP, Kluckova K, Stewart TJ, Andoniadou CL, Lussey-Lepoutre C, Bénit P, Thakker A, Vettore L, Roberts J, Rodriguez R, Mechta-Grigoriou F, Gimenez-Roqueplo AP, Letouzé E, Tennant DA, Favier J. Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate. Cancer Res 2021; 81:3480-3494. [PMID: 34127497 DOI: 10.1158/0008-5472.can-20-2936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/02/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.
Collapse
Affiliation(s)
- Judith Goncalves
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Sophie Moog
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Aurélie Morin
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Géraldine Gentric
- Stress and Cancer Laboratory, Institut Curie, Equipe Labellisée par la Ligue Nationale contre le Cancer, Inserm U830, PSL Research University, Paris France
| | - Sebastian Müller
- Chemical Biology of Cancer Team, Equipe Labellisée par la Ligue Contre le Cancer, PSL Research University, CNRS UMR3666 -INSERM U1143, Institut Curie, Paris, France
| | - Alexander P Morrell
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Katarina Kluckova
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Theodora J Stewart
- London Metallomics Facility, King's College London and Imperial College London, London, United Kingdom
| | - Cynthia L Andoniadou
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London
| | - Charlotte Lussey-Lepoutre
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Sorbonne Université, Pitie-Salpêtrière Hospital, Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Paule Bénit
- Université de Paris, INSERM, UMR 1141, Hôpital Robert Debré, Paris, France
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Lisa Vettore
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Team, Equipe Labellisée par la Ligue Contre le Cancer, PSL Research University, CNRS UMR3666 -INSERM U1143, Institut Curie, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, Equipe Labellisée par la Ligue Nationale contre le Cancer, Inserm U830, PSL Research University, Paris France
| | - Anne-Paule Gimenez-Roqueplo
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Genetics, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris France
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Judith Favier
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France.
- Université de Paris, Paris, France
| |
Collapse
|
30
|
Li H, Zimmerman SE, Weyemi U. Genomic instability and metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:241-265. [PMID: 34507785 DOI: 10.1016/bs.ircmb.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genomic instability and metabolic reprogramming are among the key hallmarks discriminating cancer cells from normal cells. The two phenomena contribute to the robust and evasive nature of cancer, particularly when cancer cells are exposed to chemotherapeutic agents. Genomic instability is defined as the increased frequency of mutations within the genome, while metabolic reprogramming is the alteration of metabolic pathways that cancer cells undergo to adapt to increased bioenergetic demand. An underlying source of these mutations is the aggregate product of damage to the DNA, and a defective repair pathway, both resulting in the expansion of genomic lesions prior to uncontrolled proliferation and survival of cancer cells. Exploitation of DNA damage and the subsequent DNA damage response (DDR) have aided in defining therapeutic approaches in cancer. Studies have demonstrated that targeting metabolic reprograming yields increased sensitivity to chemo- and radiotherapies. In the past decade, it has been shown that these two key features are interrelated. Metabolism impacts DNA damage and DDR via regulation of metabolite pools. Conversely, DDR affects the response of metabolic pathways to therapeutic agents. Because of the interplay between genomic instability and metabolic reprogramming, we have compiled findings which more selectively highlight the dialog between metabolism and DDR, with a particular focus on glucose metabolism and double-strand break (DSB) repair pathways. Decoding this dialog will provide significant clues for developing combination cancer therapies.
Collapse
Affiliation(s)
- Haojian Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Susan E Zimmerman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Urbain Weyemi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
31
|
Bedlack R, Barkhaus P, Carter G, Crayle J, Mcdermott C, Pattee G, Polak M, Salmon K, Wicks P. ALSUntangled #62: vitamin C. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:476-479. [PMID: 34187257 DOI: 10.1080/21678421.2021.1946088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vitamin C is one of the most common supplements taken by people with ALS. As an antioxidant, it has a plausible mechanism for slowing disease progression and there are some flawed pre-clinical studies and case reports suggesting benefit. However, a small human trial showed no benefit. Given this negative trial, we do not currently advise vitamin C as an ALS treatment.
Collapse
Affiliation(s)
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Greg Carter
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jesse Crayle
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Christopher Mcdermott
- Department of Neuroscience, The University of Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom of Great Britain and Northern Ireland
| | - Gary Pattee
- Department of Neurology, Neurology Associates, Lincoln, NE, USA
| | - Meraida Polak
- Department of Neurology, Emory Healthcare, Atlanta, GA, USA
| | - Kristiana Salmon
- Department of Neurology, McGill Centre for Research in Neuroscience, Montreal, Canada
| | - Paul Wicks
- UIndependent Consultant, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
32
|
Abstract
OBJECTIVES The potential harm associated with the use of IV vitamin C has not been systematically assessed. We aimed to review the available evidence on harm related to such treatment. DATA SOURCES We searched MEDLINE, EMBASE, Cochrane Library, National Institute of Health Clinical Trials Register, and World Health Organization International Clinical Trials Registry Platform. STUDY SELECTION We included studies in adult population that reported harm related to IV high-dose vitamin C which we defined as greater than or equal to 6 g/d, greater than or equal to 75 mg/kg/d, or greater than or equal to 3 g/m/d. DATA EXTRACTION Two independent investigators screened records and extracted data. DATA SYNTHESIS We identified 8,149 reports, of which 650 full text were assessed for eligibility, leaving 74 eligible studies. In these studies, 2,801 participants received high-dose vitamin C at a median (interquartile range) dose of 22.5 g/d (8.25-63.75 g/d), 455 mg/kg/d (260-925 mg/kg/d), or 70 g/m/d (50-90 g/m/d); and 932 or more adverse events were reported. Among nine double-blind randomized controlled trials (2,310 patients), adverse events were reported in three studies with an event rate per patient for high-dose vitamin C identical to placebo group in one study (0.1 [1/10] vs 0.1 [1/10]), numerically lower in one study (0.80 [672/839] vs 0.82 [709/869]), and numerically higher in one study (0.33 [24/73] vs 0.23 [17/74]). Six double-blind randomized controlled trials reported no adverse event in either group. Five cases of oxalate nephropathy, five cases of hypernatremia, three cases of hemolysis in glucose-6-phosphate dehydrogenase deficiency patients, two cases of glucometer error, and one case of kidney stones were also reported overall. CONCLUSIONS There is no consistent evidence that IV high-dose vitamin C therapy is more harmful than placebo in double-blind randomized controlled trials. However, reports of oxalate nephropathy, hypernatremia, glucometer error, and hemolysis in glucose-6-phosphate dehydrogenase deficiency patients warrant specific monitoring.
Collapse
|
33
|
Renner O, Burkard M, Michels H, Vollbracht C, Sinnberg T, Venturelli S. Parenteral high‑dose ascorbate - A possible approach for the treatment of glioblastoma (Review). Int J Oncol 2021; 58:35. [PMID: 33955499 PMCID: PMC8104923 DOI: 10.3892/ijo.2021.5215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
For glioblastoma, the treatment with standard of care therapy comprising resection, radiation, and temozolomide results in overall survival of approximately 14-18 months after initial diagnosis. Even though several new therapy approaches are under investigation, it is difficult to achieve life prolongation and/or improvement of patient's quality of life. The aggressiveness and progression of glioblastoma is initially orchestrated by the biological complexity of its genetic phenotype and ability to respond to cancer therapy via changing its molecular patterns, thereby developing resistance. Recent clinical studies of pharmacological ascorbate have demonstrated its safety and potential efficacy in different cancer entities regarding patient's quality of life and prolongation of survival. In this review article, the actual glioblastoma treatment possibilities are summarized, the evidence for pharmacological ascorbate in glioblastoma treatment is examined and questions are posed to identify current gaps of knowledge regarding accessibility of ascorbate to the tumor area. Experiments with glioblastoma cell lines and tumor xenografts have demonstrated that high-dose ascorbate induces cytotoxicity and oxidative stress largely selectively in malignant cells compared to normal cells suggesting ascorbate as a potential therapeutic agent. Further investigations in larger cohorts and randomized placebo-controlled trials should be performed to confirm these findings as well as to improve delivery strategies to the brain, through the inherent barriers and ultimately to the malignant cells.
Collapse
Affiliation(s)
- Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Holger Michels
- Pascoe Pharmazeutische Praeparate GmbH, D‑35394 Giessen, Germany
| | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tuebingen, D‑72076 Tuebingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| |
Collapse
|
34
|
Travassos IO, Mello-Andrade F, Caldeira RP, Pires WC, da Silva PFF, Correa RS, Teixeira T, Martins-Oliveira A, Batista AA, de Silveira-Lacerda EP. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J Biol Inorg Chem 2021; 26:385-401. [PMID: 33837856 DOI: 10.1007/s00775-021-01862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.
Collapse
Affiliation(s)
- Ingrid O Travassos
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.,Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Raíssa P Caldeira
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Wanessa C Pires
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Paula F F da Silva
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | - Tamara Teixeira
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | | | - Alzir A Batista
- Department of Chemistry, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP, 13565-905, Brazil
| | - Elisângela P de Silveira-Lacerda
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.
| |
Collapse
|
35
|
High-Dose Vitamin C: Preclinical Evidence for Tailoring Treatment in Cancer Patients. Cancers (Basel) 2021; 13:cancers13061428. [PMID: 33804775 PMCID: PMC8003833 DOI: 10.3390/cancers13061428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Vitamin C is an indispensable micronutrient in the human diet due to the multiple functions it carries out in the body. Reports of clinical studies have indicated that, when administered at high dosage by the intravenous route, vitamin C may exert beneficial antitumor effects in patients with advanced stage cancers, including those refractory to previous treatment with chemotherapy. The aim of this article is to provide an overview of the current scientific evidence concerning the different mechanisms of action by which high-dose vitamin C may kill tumor cells. A special focus will be given to those mechanisms that provide the rationale basis for tailoring vitamin C treatment according to specific molecular alterations present in the tumor and for the selection of the most appropriate companion drugs. Abstract High-dose vitamin C has been proposed as a potential therapeutic approach for patients with advanced tumors who failed previous treatment with chemotherapy. Due to vitamin C complex pharmacokinetics, only intravenous administration allows reaching sufficiently high plasma concentrations required for most of the antitumor effects observed in preclinical studies (>0.250 mM). Moreover, vitamin C entry into cells is tightly regulated by SVCT and GLUT transporters, and is cell type-dependent. Importantly, besides its well-recognized pro-oxidant effects, vitamin C modulates TET enzymes promoting DNA demethylation and acts as cofactor of HIF hydroxylases, whose activity is required for HIF-1α proteasomal degradation. Furthermore, at pharmacological concentrations lower than those required for its pro-oxidant activity (<1 mM), vitamin C in specific genetic contexts may alter the DNA damage response by increasing 5-hydroxymethylcytosine levels. These more recently described vitamin C mechanisms offer new treatment opportunities for tumors with specific molecular defects (e.g., HIF-1α over-expression or TET2, IDH1/2, and WT1 alterations). Moreover, vitamin C action at DNA levels may provide the rationale basis for combination therapies with PARP inhibitors and hypomethylating agents. This review outlines the pharmacokinetic and pharmacodynamic properties of vitamin C to be taken into account in designing clinical studies that evaluate its potential use as anticancer agent.
Collapse
|
36
|
TET family dioxygenases and the TET activator vitamin C in immune responses and cancer. Blood 2021; 136:1394-1401. [PMID: 32730592 DOI: 10.1182/blood.2019004158] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Vitamin C serves as a cofactor for Fe(II) and 2-oxoglutarate-dependent dioxygenases including TET family enzymes, which catalyze the oxidation of 5-methylcytosine into 5-hydroxymethylcytosine and further oxidize methylcytosines. Loss-of-function mutations in epigenetic regulators such as TET genes are prevalent in hematopoietic malignancies. Vitamin C deficiency is frequently observed in cancer patients. In this review, we discuss the role of vitamin C and TET proteins in cancer, with a focus on hematopoietic malignancies, T regulatory cells, and other immune system cells.
Collapse
|
37
|
Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I, Alvarez Secord A. H 2O 2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6653790. [PMID: 33815656 PMCID: PMC7987459 DOI: 10.1155/2021/6653790] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Mn(III) ortho-N-alkyl- and N-alkoxyalkyl porphyrins (MnPs) were initially developed as superoxide dismutase (SOD) mimics. These compounds were later shown to react with numerous reactive species (such as ONOO-, H2O2, H2S, CO3 •-, ascorbate, and GSH). Moreover, the ability of MnPs to oxidatively modify activities of numerous proteins has emerged as their major mechanism of action both in normal and in cancer cells. Among those proteins are transcription factors (NF-κB and Nrf2), mitogen-activated protein kinases, MAPKs, antiapoptotic bcl-2, and endogenous antioxidative defenses. The lead Mn porphyrins, namely, MnTE-2-PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001), and MnTnHex-2-PyP5+, were tested in numerous injuries of normal tissue and cellular and animal cancer models. The wealth of the data led to the progression of MnTnBuOE-2-PyP5+ into four Phase II clinical trials on glioma, head and neck cancer, anal cancer, and multiple brain metastases, while MnTE-2-PyP5+ is in Phase II clinical trial on atopic dermatitis and itch.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weina Duan
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Du
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Zhipeng Cao
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huaxin Sheng
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
38
|
Kangisser L, Tan E, Bellomo R, Deane AM, Plummer MP. Neuroprotective Properties of Vitamin C: A Scoping Review of Pre-Clinical and Clinical Studies. J Neurotrauma 2021; 38:2194-2205. [PMID: 33544035 DOI: 10.1089/neu.2020.7443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There is a need for novel neuroprotective therapies. We aimed to review the evidence for exogenous vitamin C as a neuroprotective agent. MEDLINE, Embase, and Cochrane library databases were searched from inception to May 2020. Pre-clinical and clinical reports evaluating vitamin C for acute neurological injury were included. Twenty-two pre-clinical and 11 clinical studies were eligible for inclusion. Pre-clinical studies included models of traumatic and hypoxic brain injury, subarachnoid and intracerebral hemorrhage, and ischemic stroke. The median [IQR] maximum daily dose of vitamin C in animal studies was 120 [50-500] mg/kg. Twenty-one animal studies reported improvements in biomarkers, functional outcome, or both. Clinical studies included single reports in neonatal hypoxic encephalopathy, traumatic brain injury, and subarachnoid hemorrhage and eight studies in ischemic stroke. The median maximum daily dose of vitamin C was 750 [500-1000] mg, or ∼10 mg/kg for an average-size adult male. Apart from one case series of intracisternal vitamin C administration in subarachnoid hemorrhage, clinical studies reported no patient-centered benefit. Although pre-clinical trials suggest that exogenous vitamin C improves biomarkers of neuroprotection, functional outcome, and mortality, these results have not translated to humans. However, clinical trials used approximately one tenth of the vitamin C dose of animal studies.
Collapse
Affiliation(s)
- Lauren Kangisser
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Elinor Tan
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam M Deane
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark P Plummer
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Ascorbic acid analogue 6-Deoxy-6-[ 18F] fluoro-L-ascorbic acid as a tracer for identifying human colorectal cancer with SVCT2 overexpression. Transl Oncol 2021; 14:101055. [PMID: 33677235 PMCID: PMC8046958 DOI: 10.1016/j.tranon.2021.101055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
6-Deoxy-6-[18F]fluoro-L-ascorbic Acid (18F-DFA) was successfully prepared and biological evaluated. Cancer cells with high expression of SVCT2 have higher AA uptake than cancer cells with low expression of SVCT2. 18F-DFA PET imaging showed cancer cells with high expression of SVCT2 had higher 18F-DFA accumulation after tumorigenesis in mice. The first time (to our knowledge), PET imaging directly verified the high accumulation of AA in adrenal gland.
L-ascorbic acid (AA) was reported to have an anti-cancer effect over 40 years. In recent years, several ongoing clinical trials are exploring the safety and efficacy of intravenous high-dose AA for cancer treatment. The lack of appropriate imaging modality limits the identification of potentially suitable patients for AA treatment. This study focuses on identifying AA-sensitive tumor cells using molecular imaging. 6-Deoxy-6-[18F] fluoro-L-ascorbic Acid (18F-DFA), a structural analog of AA, was synthesized and labeled to visualize the metabolism of AA in vivo. Colorectal cancer (CRC) cell lines with high and low expression of sodium-dependent vitamin C transporters 2 (SVCT2) were used for a series of cellular uptake tests. PET imaging was performed on xenograft tumor-bearing mice. More AA uptake was observed in CRC cells with high SVCT2 expression than in cells with low SVCT2 expression. The substrate (unlabeled AA) can competitively inhibit the 18F-DFA tracer uptake by CRC cells. The biodistribution of 18F-DFA in mice showed high radioactivity was seen in organs such as adrenal glands, kidneys, and liver that were known to have high concentrations of AA. Both PET imaging and tissue distribution showed that cancer cells with high SVCT2 expression enhanced the accumulation of 18F-DFA in mice after tumor formation. Immunohistochemistry was used to verify the corresponding results. As a radiotracer, 18F-DFA can provide powerful imaging information to identify tumor with high affinity of AA, and SVCT2 can be a potential biomarker in this process.
Collapse
|
40
|
Panday S, Kar S, Kavdia M. How does ascorbate improve endothelial dysfunction? - A computational analysis. Free Radic Biol Med 2021; 165:111-126. [PMID: 33497797 DOI: 10.1016/j.freeradbiomed.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 μM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA.
| |
Collapse
|
41
|
Aboelella NS, Brandle C, Kim T, Ding ZC, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13050986. [PMID: 33673398 PMCID: PMC7956301 DOI: 10.3390/cancers13050986] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer cells are consistently under oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. This feature has been exploited to develop therapeutic strategies that control tumor growth by modulating the oxidative stress in tumor cells. This review provides an overview of recent advances in cancer therapies targeting tumor oxidative stress, and highlights the emerging evidence implicating the effectiveness of cancer immunotherapies in intensifying tumor oxidative stress. The promises and challenges of combining ROS-inducing agents with cancer immunotherapy are also discussed. Abstract It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.
Collapse
Affiliation(s)
- Nada S. Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
| | - Timothy Kim
- The Center for Undergraduate Research and Scholarship, Augusta University, Augusta, GA 30912, USA;
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-4472
| |
Collapse
|
42
|
Doseděl M, Jirkovský E, Macáková K, Krčmová LK, Javorská L, Pourová J, Mercolini L, Remião F, Nováková L, Mladěnka P. Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021; 13:615. [PMID: 33668681 PMCID: PMC7918462 DOI: 10.3390/nu13020615] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (L-ascorbic acid) has been known as an antioxidant for most people. However, its physiological role is much larger and encompasses very different processes ranging from facilitation of iron absorption through involvement in hormones and carnitine synthesis for important roles in epigenetic processes. Contrarily, high doses act as a pro-oxidant than an anti-oxidant. This may also be the reason why plasma levels are meticulously regulated on the level of absorption and excretion in the kidney. Interestingly, most cells contain vitamin C in millimolar concentrations, which is much higher than its plasma concentrations, and compared to other vitamins. The role of vitamin C is well demonstrated by miscellaneous symptoms of its absence-scurvy. The only clinically well-documented indication for vitamin C is scurvy. The effects of vitamin C administration on cancer, cardiovascular diseases, and infections are rather minor or even debatable in the general population. Vitamin C is relatively safe, but caution should be given to the administration of high doses, which can cause overt side effects in some susceptible patients (e.g., oxalate renal stones). Lastly, analytical methods for its determination with advantages and pitfalls are also discussed in this review.
Collapse
Affiliation(s)
- Martin Doseděl
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic;
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic;
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (L.K.K.); (L.N.)
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | - Laura Mercolini
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (L.K.K.); (L.N.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | | |
Collapse
|
43
|
Michalczyk K, Pawlik J, Czekawy I, Kozłowski M, Cymbaluk-Płoska A. Complementary Methods in Cancer Treatment-Cure or Curse? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E356. [PMID: 33466517 PMCID: PMC7796472 DOI: 10.3390/ijerph18010356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
(1) Background: The prevalence of complementary and alternative methods (CAM) use among oncological patients has been rising constantly over the last few decades and a variety of both pharmacological and non-pharmacological methods have been developed. Many advertisements promise to relieve side effects of chemotherapy or even to cure the disease, thus encouraging patients to use CAM; (2) Methods: The objective of the study was to determine which patients' characteristics are associated with the use of complementary medicine during cancer treatment, their pattern of use, and if it has any association with its safety profile. This survey-based prospective multicenter study of 316 patients examined the use of complementary medicine among patients undergoing chemotherapy treatment in cancer centers in Poland between 2017 and 2019; (3) Results: The Chi2 analysis showed that patients' opinion regarding the safety of unconventional methods is related to the use of CAM (p = 0.00147). Moreover, patients' thinking that alternative medicine can replace traditional therapy was correlated with his/her education (p = 0.01198). Moreover, we performed univariate and multivariate analysis to determine factors associated with CAM use including sociodemographic and clinical characteristics. Finally, we conducted survival analysis of patients undergoing chemotherapy treatment with 42 months of follow-up time of our prospective study. Using Kaplan-Meier curves and log-rank analysis, we found no statistical difference in overall survival between the groups that used and did not use any form of CAM (p = 0.211); (4) Conclusions: CAM use is common among patients undergoing chemotherapy treatment and should be considered by medical teams as some agents may interact with chemotherapy drugs and affect their efficacy or cause adverse effects.
Collapse
Affiliation(s)
- Kaja Michalczyk
- Department of Gynecological Surgery and Oncology of Adults and Adolescents, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (I.C.); (M.K.); (A.C.-P.)
| | | | | | | | | |
Collapse
|
44
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|
45
|
Darwiche W, Gomila C, Ouled-Haddou H, Naudot M, Doualle C, Morel P, Nguyen-Khac F, Garçon L, Marolleau JP, Ghamlouch H. Ascorbic acid (vitamin C) synergistically enhances the therapeutic effect of targeted therapy in chronic lymphocytic leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:228. [PMID: 33115525 PMCID: PMC7594454 DOI: 10.1186/s13046-020-01738-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 02/17/2023]
Abstract
Background Novel, less toxic, cost-effective and safe therapeutic strategies are needed to improve treatment of chronic lymphocytic leukemia (CLL). Ascorbic acid (AA, vitamin C) has shown a potential anti-cancer therapeutic activity in several cancers. However, the anti-cancer effects of ascorbic acid on CLL B-cells have not been extensively studied. We aimed in this study to evaluate the in vitro therapeutic activity using clinically relevant conditions. Methods Primary CLL B-cells and two CLL cell lines were exposed to a dose that is clinically achievable by AA oral administration (250 μM), and cell death and potential mechanisms were assessed. The role of the protective CLL microenvironment was studied. Synergistic interaction between AA and CLL approved drugs (Ibrutinib, Idelalisib and Venetoclax) was also evaluated. Results Ascorbic acid is cytotoxic for CLL B-cells at low dose (250 μM) but spares healthy B-cells. Ascorbic-acid-induced cytotoxicity involved pro-oxidant damage through the generation of reactive oxygen species in the extracellular media and in CLL cells, and induced caspase-dependent apoptosis. We also found that AA treatment overcame the supportive survival effect provided by microenvironment including bone marrow mesenchymal stem cells, T-cell cues (CD40L + IL-4), cytokines and hypoxia. Our data suggest that resistance to AA could be mediated by the expression of the enzyme catalase in some CLL samples and by the glucose metabolite pyruvate. We also demonstrated that AA synergistically potentiates the cytotoxicity of targeted therapies used in or being developed for CLL. Conclusion These preclinical results point to AA as an adjuvant therapy with potential to further improve CLL treatments in combination with targeted therapies. Supplementary information Supplementary information accompanies this paper at 10.1186/s13046-020-01738-0.
Collapse
Affiliation(s)
- Walaa Darwiche
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Cathy Gomila
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Hakim Ouled-Haddou
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Marie Naudot
- EA 7516, CHIMERE, Université de Picardie Jules Verne, Amiens, France
| | - Cécile Doualle
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Pierre Morel
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France
| | - Florence Nguyen-Khac
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France.,Hôpital Pitié-Salpêtrière, Sorbonne Université, APHP, Service d'Hématologie Biologique, Paris, France
| | - Loïc Garçon
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France.,Service d'hématologie Biologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Jean-Pierre Marolleau
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Hussein Ghamlouch
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,INSERM U1170, équipe labélisée Ligue Nationale Contre le Cancer, Gustave Roussy, 39 rue Camille Desmoulins, 94805, Villejuif Cedex, France.
| |
Collapse
|
46
|
Liu Y, Liu C, Li J. Comparison of Vitamin C and Its Derivative Antioxidant Activity: Evaluated by Using Density Functional Theory. ACS OMEGA 2020; 5:25467-25475. [PMID: 33043226 PMCID: PMC7542841 DOI: 10.1021/acsomega.0c04318] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 05/11/2023]
Abstract
Vitamin C (VC) is an essential antioxidant, but its application is limited because of its unstable chemical properties. Hence, a variety of VC derivatives have emerged in practical antioxidant applications. To explore the relationship between the antioxidant properties and the chemical structures of vitamin C and its derivatives, density functional theory (DFT) was used in this work to calculate the reaction enthalpies of the mechanisms related to radical scavenging activity. The structures were optimized at the B3LYP-D3(BJ)/6-31G* level of theory. Single point calculations (SPE) were performed at the PWPB95-D3 (BJ)/def2-QZVPP level. To estimate the solvent effect on antioxidant properties, the SMD (solvation model based on density) method was used. The results showed that in the process of optimizing the chemical structure of vitamin C, the antioxidant capacity of its derivatives decreased slightly in aqueous solvents. In the calculation process, it is also found that in the choice of antioxidant mechanism, these compounds are more inclined to the hydrogen atom transfer (HAT) mechanism, and from the chemical structure point of view, the double bond of the lactone ring is essential for its free radical scavenging activity. In general, it is necessary to continue to optimize the structure of VC to obtain derivatives with better oxidation resistance and more practical value.
Collapse
Affiliation(s)
- Yuyang Liu
- Department
of Orthopedics, Shengjing Hospital of China
Medical University, Shenyang 110004, China
| | - Chuanqun Liu
- School
of Energy and Power Engineering, Northeast
Electric Power University, Jilin 132000, China
| | - Jianjun Li
- Department
of Orthopedics, Shengjing Hospital of China
Medical University, Shenyang 110004, China
- . Phone: +86-18940259895
| |
Collapse
|
47
|
Ciebiera M, Ali M, Zgliczyńska M, Skrzypczak M, Al-Hendy A. Vitamins and Uterine Fibroids: Current Data on Pathophysiology and Possible Clinical Relevance. Int J Mol Sci 2020; 21:ijms21155528. [PMID: 32752274 PMCID: PMC7432695 DOI: 10.3390/ijms21155528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/27/2023] Open
Abstract
Uterine fibroid (UF) is the most common benign tumor pathology of the female reproductive organs. UFs constitute the main reason for a hysterectomy and hospitalization due to gynecological conditions. UFs consist of uterine smooth muscle immersed in a large amount of extracellular matrix (ECM). Genetic studies have demonstrated that UFs are monoclonal tumors originating from the myometrial stem cells that have underwent specific molecular changes to tumor initiating stem cells which proliferate and differentiate later under the influence of steroid hormones. There is growing interest in the role of micronutrients, for example, vitamins, in UFs. This article is a comprehensive review of publications regarding the available data concerning the role of vitamins in the biology and management of UFs. In summary, the results showed that some vitamins are important in the biology and pathophysiology of UFs. For example, vitamins A and D deserve particular attention following studies of their influence on the treatment of UF tumors. Vitamins B3, C, and E have not been as widely studied as the abovementioned vitamins. However, more research could reveal their potential role in UF biology.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (M.C.); (A.A.-H.); Tel.: +48-225690274 (M.C.); +1-312-996-7006 (A.A.-H.)
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Magdalena Zgliczyńska
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (M.C.); (A.A.-H.); Tel.: +48-225690274 (M.C.); +1-312-996-7006 (A.A.-H.)
| |
Collapse
|
48
|
Bajor M, Graczyk-Jarzynka A, Marhelava K, Kurkowiak M, Rahman A, Aura C, Russell N, Zych AO, Firczuk M, Winiarska M, Gallagher WM, Zagozdzon R. Triple Combination of Ascorbate, Menadione and the Inhibition of Peroxiredoxin-1 Produces Synergistic Cytotoxic Effects in Triple-Negative Breast Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9040320. [PMID: 32316111 PMCID: PMC7222372 DOI: 10.3390/antiox9040320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of mammary malignancy currently without satisfactory systemic treatment options. Agents generating reactive oxygen species (ROS), such as ascorbate (Asc) and menadione (Men), especially applied in combination, have been proposed as an alternative anticancer modality. However, their effectiveness can be hampered by the cytoprotective effects of elevated antioxidant enzymes (e.g., peroxiredoxins, PRDX) in cancer. In this study, PRDX1 mRNA and protein expression were assessed in TNBC tissues by analysis of the online RNA-seq datasets and immunohistochemical staining of tissue microarray, respectively. We demonstrated that PRDX1 mRNA expression was markedly elevated in primary TNBC tumors as compared to non-malignant controls, with PRDX1 protein staining intensity correlating with favorable survival parameters. Subsequently, PRDX1 functionality in TNBC cell lines or non-malignant mammary cells was targeted by genetic silencing or chemically by auranofin (AUR). The PRDX1-knockdown or AUR treatment resulted in inhibition of the growth of TNBC cells in vitro. These cytotoxic effects were further synergistically potentiated by the incubation with a combination of the prooxidant agents, Asc and Men. In conclusion, we report that the PRDX1-related antioxidant system is essential for maintaining redox homeostasis in TNBC cells and can be an attractive therapeutic target in combination with ROS-generating agents.
Collapse
Affiliation(s)
- Malgorzata Bajor
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.B.); (K.M.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland; (A.G.-J.); (A.O.Z.); (M.F.); (M.W.)
| | - Katsiaryna Marhelava
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.B.); (K.M.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a, 02-091 Warsaw, Poland
| | - Malgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Arman Rahman
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 Dublin 4, Ireland; (A.R.); (C.A.); (N.R.); (W.M.G.)
| | - Claudia Aura
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 Dublin 4, Ireland; (A.R.); (C.A.); (N.R.); (W.M.G.)
| | - Niamh Russell
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 Dublin 4, Ireland; (A.R.); (C.A.); (N.R.); (W.M.G.)
| | - Agata O. Zych
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland; (A.G.-J.); (A.O.Z.); (M.F.); (M.W.)
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland; (A.G.-J.); (A.O.Z.); (M.F.); (M.W.)
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland; (A.G.-J.); (A.O.Z.); (M.F.); (M.W.)
| | - William M. Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 Dublin 4, Ireland; (A.R.); (C.A.); (N.R.); (W.M.G.)
- OncoMark Ltd., Nova UCD, D04 Dublin 4, Ireland
| | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.B.); (K.M.)
- Department of Immunology, Transplantology, and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
- Correspondence:
| |
Collapse
|
49
|
Lorenzato A, Magrì A, Matafora V, Audrito V, Arcella P, Lazzari L, Montone M, Lamba S, Deaglio S, Siena S, Bertotti A, Trusolino L, Bachi A, Di Nicolantonio F, Bardelli A, Arena S. Vitamin C Restricts the Emergence of Acquired Resistance to EGFR-Targeted Therapies in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12030685. [PMID: 32183295 PMCID: PMC7140052 DOI: 10.3390/cancers12030685] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023] Open
Abstract
The long-term efficacy of the Epidermal Growth Factor Receptor (EGFR)-targeted antibody cetuximab in advanced colorectal cancer (CRC) patients is limited by the emergence of drug-resistant (persister) cells. Recent studies in other cancer types have shown that cells surviving initial treatment with targeted agents are often vulnerable to alterations in cell metabolism including oxidative stress. Vitamin C (VitC) is an antioxidant agent which can paradoxically trigger oxidative stress at pharmacological dose. Here we tested the hypothesis that VitC in combination with cetuximab could restrain the emergence of secondary resistance to EGFR blockade in CRC RAS/BRAF wild-type models. We found that addition of VitC to cetuximab impairs the emergence of drug persisters, limits the growth of CRC organoids, and significantly delays acquired resistance in CRC patient-derived xenografts. Mechanistically, proteomic and metabolic flux analysis shows that cetuximab blunts carbohydrate metabolism by blocking glucose uptake and glycolysis, beyond promoting slow but progressive ROS production. In parallel, VitC disrupts iron homeostasis and further increases ROS levels ultimately leading to ferroptosis. Combination of VitC and cetuximab orchestrates a synthetic lethal metabolic cell death program triggered by ATP depletion and oxidative stress, which effectively limits the emergence of acquired resistance to anti-EGFR antibodies. Considering that high-dose VitC is known to be safe in cancer patients, our findings might have clinical impact on CRC patients treated with anti-EGFR therapies.
Collapse
Affiliation(s)
- Annalisa Lorenzato
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Alessandro Magrì
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Vittoria Matafora
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, Milan 20139, Italy; (V.M.); (L.L.); (A.B.)
| | - Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin 10126, Italy; (V.A.); (S.D.)
| | - Pamela Arcella
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Luca Lazzari
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, Milan 20139, Italy; (V.M.); (L.L.); (A.B.)
| | - Monica Montone
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
| | - Simona Lamba
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin 10126, Italy; (V.A.); (S.D.)
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy;
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan 20133, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, Milan 20139, Italy; (V.M.); (L.L.); (A.B.)
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
- Correspondence:
| |
Collapse
|
50
|
Roa FJ, Peña E, Gatica M, Escobar-Acuña K, Saavedra P, Maldonado M, Cuevas ME, Moraga-Cid G, Rivas CI, Muñoz-Montesino C. Therapeutic Use of Vitamin C in Cancer: Physiological Considerations. Front Pharmacol 2020; 11:211. [PMID: 32194425 PMCID: PMC7063061 DOI: 10.3389/fphar.2020.00211] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Since the early studies of William J. McCormick in the 1950s, vitamin C has been proposed as a candidate for the treatment of cancer. A number of reports have shown that pharmacological concentrations of vitamin C selectively kill cancer cells in vitro and decrease the growth rates of a number of human tumor xenografts in immunodeficient mice. However, up to the date there is still doubt regarding this possible therapeutic role of vitamin C in cancer, mainly because high dose administration in cancer patients has not showed a clear antitumor activity. These apparent controversial findings highlight the fact that we lack information on the interactions that occurs between cancer cells and vitamin C, and if these transformed cells can uptake, metabolize and compartmentalize vitamin C like normal human cells do. The role of SVCTs and GLUTs transporters, which uptake the reduced form and the oxidized form of vitamin C, respectively, has been recently highlighted in the context of cancer showing that the relationship between vitamin C and cancer might be more complex than previously thought. In this review, we analyze the state of art of the effect of vitamin C on cancer cells in vitro and in vivo, and relate it to the capacity of cancer cells in acquiring, metabolize and compartmentalize this nutrient, with its implications on the potential therapeutic role of vitamin C in cancer.
Collapse
Affiliation(s)
- Francisco J Roa
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eduardo Peña
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcell Gatica
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar-Acuña
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paulina Saavedra
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Mafalda Maldonado
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Magdalena E Cuevas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carola Muñoz-Montesino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|