1
|
Chrysargyris A, Tzortzakis N. Nitrogen, phosphorus, and potassium requirements to improve Sideritis cypria growth, nutrient and water use efficiency in hydroponic cultivation. Heliyon 2025; 11:e40755. [PMID: 39758398 PMCID: PMC11699360 DOI: 10.1016/j.heliyon.2024.e40755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Medicinal and aromatic plant (MAP) production is gaining popularity for industrial agriculture, with phytochemical compounds having a significant impact on human health. Plant fertilization must be carefully considered as it is strongly affecting the biochemical profile of MAPs. The present study examined the Sideritis cypria responses to different nitrogen (N: 75, 150, and 300 mg/L), potassium (K: 150, 350, and 550 mg/L), and phosphorus (P: 50, 75, and 100 mg/L) concentration in the nutrient solution (NS) in hydroponics. The NPK levels (150 mg N/L; 75 mg P/L and 350 mg K/L) in the NS, which was regarded an intermediate fertilization scheme, showed a rise in nutritional value with high phenols, flavonoids and antioxidant activity in plants. S. cypria grown in N75 levels revealed a decreased plant fresh weight and chlorophylls content while plants grown in N300 levels revealed increases in mineral accumulation, nutrient and water use efficiency. The NPK and the K550 levels caused oxidative stress as demonstrated by the raised lipid peroxidation and the stimulation of enzymes' antioxidant activities. The P50 levels in the NS, increased the plant biomass and water use efficiency (WUE) and revealed the lower oxidative stress (malondialdehyde) and increased enzymes antioxidant (superoxide dismutase and peroxidase) activities. As a result, modifying the NS composition in hydroponic culture for S. cypria by using P levels of 50 mg P/L, higher biomass, nutritive value and WUE can be obtained.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus
| |
Collapse
|
2
|
Chrysargyris A, Petrovic JD, Tomou EM, Kyriakou K, Xylia P, Kotsoni A, Gkretsi V, Miltiadous P, Skaltsa H, Soković MD, Tzortzakis N. Phytochemical Profiles and Biological Activities of Plant Extracts from Aromatic Plants Cultivated in Cyprus. BIOLOGY 2024; 13:45. [PMID: 38248476 PMCID: PMC10813336 DOI: 10.3390/biology13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Medicinal and aromatic plants' properties, still an interesting research area, are attributed to the presence of various specialized products that possess important pharmacological activities. In the present study, six medicinal/aromatic plants (Sideritis cypria, Origanum dubium, Melissa officinalis, Mentha piperita, Thymus capitatus, and Salvia fruticosa) were evaluated for their phytochemical and nutritive composition, as well as their biological activities, including antioxidant, antimicrobial, and cytotoxic properties. The results obtained indicate that M. piperita was rich in proteins and minerals such as N and Mg, while S. cypria accumulated more K, Na, P, and Ca. The highest content of phenols and flavonoids was observed in M. piperita, followed by O. dubium and T. capitatus, which eventually influenced their high antioxidant capacity. NMR screening revealed the presence of (i) triterpenoids and hydroxycinnamic acid derivatives in M. officinalis; (ii) terpenoids, flavonoids, and phenolic acid derivatives in S. fruticosa; (iii) flavonoids and phenolic acid derivatives in M. piperita; (iv) phenolic monoterpenes in O. dubium and T. capitatus; and (v) terpenoids, flavones, and phenylethanoid glycosides in S. cypria. The results of the antimicrobial activity showed that the tested samples overall had quite good antimicrobial potential. High antibacterial activity was found in O. dubium and T. capitatus, while O. dubium and S. cypria exhibited great antifungal activities. The studied species also had an important effect on the viability of female-derived and colon cancer cells. In particular, in colon cancer cells, the extracts from T. capitatus, M. officinalis, M. piperita, and S. fruticosa exhibited a stronger effect on cell viability in the more metastatic cell line at significantly lower concentrations, indicating an important therapeutic potential in targeting highly metastatic tumors. This finding is worth further investigation. The present study unveiled interesting phytochemical profiles and biological properties of the six medicinal/aromatic plants, which should be further explored, contributing to green chemistry and the possible creation of natural health products for humans' health/nutrition and additives in cosmetics.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Jovana D. Petrovic
- Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (J.D.P.)
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Kalia Kyriakou
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus; (K.K.)
| | - Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Andria Kotsoni
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus; (A.K.); (V.G.)
- Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus
| | - Vasiliki Gkretsi
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus; (A.K.); (V.G.)
- Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus
| | - Panagiota Miltiadous
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus; (K.K.)
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Marina D. Soković
- Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (J.D.P.)
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
3
|
Tomou EM, Bieler L, Spöttl T, Couillard-Despres S, Skaltsa H, Urmann C. Metabolic Fingerprinting of Different Sideritis Taxa Infusions and Their Neurogenic Activity. PLANTA MEDICA 2023; 89:1087-1096. [PMID: 37044130 DOI: 10.1055/a-2072-2351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the last years, Sideritis extracts were shown to improve memory. However, their potential to promote the generation of new neurons, starting with the neuronal differentiation of neural stem cells, remains unexplored. Therefore, the present study aimed to evaluate the neurogenic effects of different Sideritis infusions in neural stem and precursor cells and their impact on cell viability. Moreover, the metabolic fingerprints were recorded using LC-DAD, LC-HRESIMS, and GC-MS. The neurogenic potential of infusions of the eight Sideritis taxa tested was as potent as the classical neuronal inducer combination of retinoic acid and valproic acid. Further cytotoxicity assays revealed that the IC50 values of the extracts were between 163 and 322 µg/mL. Hierarchical cluster analyses of the metabolic fingerprints unveiled that the two Sideritis taxa with the lowest IC50 values were the most divergent in the analytical techniques used. As the analysis focused on polyphenols, it is reasonable to assume that these compounds are responsible for the effect on the cell viability of SH-SY5Y neuroblastoma cells. This study is the first report on the neurogenic potential of Sideritis taxa and might support the use of Sideritis herbal preparations in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-Analytical Chemistry, Straubing, Germany
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tobias Spöttl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helen Skaltsa
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Corinna Urmann
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-Analytical Chemistry, Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| |
Collapse
|
4
|
Chrysargyris A, Tomou EM, Goula K, Dimakopoulou K, Tzortzakis N, Skaltsa H. Sideritis L. essential oils: A systematic review. PHYTOCHEMISTRY 2023; 209:113607. [PMID: 36746369 DOI: 10.1016/j.phytochem.2023.113607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Essential oils are extensively used in the food, cosmetic, perfume, pharmaceutical, and agrochemical industries due to their aroma and pharmacological properties. The Lamiaceae family is mainly represented by widely well-known medicinal and aromatic plants that produce essential oil. Over the years, Sideritis L. essential oils have attracted great interest due to their chemical variability among the different taxa and their pharmacological activities. In-depth research of previously published literature was performed on electronic databases with several key search words for the collection of the available data and a total of 128 scientific studies were used since 1983. To date, 155 accepted Sideritis samples have been studied originating from 15 countries and more than 250 compounds have been reported in 87 Sideritis taxa overall. Furthermore, antimicrobial and antioxidant effects have been the most studied pharmacological activities. This review summarizes and critically discusses the research work on the chemical composition and pharmacological activities of essential oil of the genus Sideritis based on the currently valid taxonomy. Additionally, statistical analysis is encompassed to provide a deeper comprehensive understanding of the high chemical polymorphism of Sideritis essential oils. We expect that this review will encourage researchers to investigate unexplored Sideritis taxa and will contribute to revealing uncharted scientific territory and future perspectives on these plants.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus.
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| | - Katerina Goula
- Section of Ecology and Systematics, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece.
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus.
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
5
|
Nurzyńska-Wierdak R. Phenolic Compounds from New Natural Sources-Plant Genotype and Ontogenetic Variation. Molecules 2023; 28:1731. [PMID: 36838719 PMCID: PMC9959341 DOI: 10.3390/molecules28041731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Phenolic compounds (PCs) are widespread secondary metabolites with potent biological activity. Their sources are mainly plants from cultivated and natural states, providing valuable protective and health-promoting extracts. The wide biological activity of PCs (antioxidant, anti-inflammatory, antimicrobial, antiatherosclerotic, antidiabetic, antiallergic, prebiotic, antimutagenic) means that new sources of PCs are constantly being sought, as exemplified by extracting these compounds from tissue culture or agricultural by-products. Plant phenols show marked qualitative and quantitative variation not only at different genetic levels (between and within species and clones) but also between different physiological and developmental stages. Assessing genetic and seasonal variations in phenolic content and activity allows for selecting the best time to harvest the plant. Learning about the causes of PCs' variability and putting this knowledge into practice can significantly increase PCs' yields and extract the most valuable compounds. The health-promoting properties resulting from consuming products rich in plant PCs are undeniable, so it is worth promoting high-phenolic products as a regular diet. This paper presents an overview of different sources of PCs for use as potential therapeutic alternatives. Additionally, factors of variation in the phenolic complex at the genome and ontogeny levels, relevant in practical terms and as a basis for further scientific research, are presented.
Collapse
Affiliation(s)
- Renata Nurzyńska-Wierdak
- Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland
| |
Collapse
|
6
|
Jugreet BS, Lall N, Anina Lambrechts I, Reid AM, Maphutha J, Nel M, Hassan AH, Khalid A, Abdalla AN, Van BL, Mahomoodally MF. In Vitro and In Silico Pharmacological and Cosmeceutical Potential of Ten Essential Oils from Aromatic Medicinal Plants from the Mascarene Islands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248705. [PMID: 36557842 PMCID: PMC9788324 DOI: 10.3390/molecules27248705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
In this study, 10 essential oils (EOs), from nine plants (Cinnamomum camphora, Curcuma longa, Citrus aurantium, Morinda citrifolia, Petroselinum crispum, Plectranthus amboinicus, Pittosporum senacia, Syzygium coriaceum, and Syzygium samarangense) were assessed for their antimicrobial, antiaging and antiproliferative properties. While only S. coriaceum, P. amboinicus (MIC: 0.50 mg/mL) and M. citrifolia (MIC: 2 mg/mL) EOs showed activity against Cutibacterium acnes, all EOs except S. samarangense EO demonstrated activity against Mycobacterium smegmatis (MIC: 0.125-0.50 mg/mL). The EOs were either fungistatic or fungicidal against one or both tested Candida species with minimum inhibitory/fungicidal concentrations of 0.016-32 mg/mL. The EOs also inhibited one or both key enzymes involved in skin aging, elastase and collagenase (IC50: 89.22-459.2 µg/mL; 0.17-0.18 mg/mL, respectively). Turmerone, previously identified in the C. longa EO, showed the highest binding affinity with the enzymes (binding energy: -5.11 and -6.64 kcal/mol). Only C. aurantium leaf, C. longa, P. amboinicus, P. senacia, S. coriaceum, and S. samarangense EOs were cytotoxic to the human malignant melanoma cells, UCT-MEL1 (IC50: 88.91-277.25 µg/mL). All the EOs, except M. citrifolia EO, were also cytotoxic to the human keratinocytes non-tumorigenic cells, HaCat (IC50: 33.73-250.90 µg/mL). Altogether, some interesting therapeutic properties of the EOs of pharmacological/cosmeceutical interests were observed, which warrants further investigations.
Collapse
Affiliation(s)
- Bibi Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Isa Anina Lambrechts
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Anna-Mari Reid
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Jacqueline Maphutha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Marizé Nel
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Abdallah H. Hassan
- Chemistry Department, College of Education, Salahaddin University, Erbil 44002, Iraq
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum P.O. Box 2404, Sudan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bao Le Van
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence:
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Chennai 600077, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
7
|
Phytochemical Composition and Cytoprotective Properties of the Endemic Sideritis sipylea Boiss Greek Species: A Valorization Study. Pharmaceuticals (Basel) 2022; 15:ph15080987. [PMID: 36015136 PMCID: PMC9414158 DOI: 10.3390/ph15080987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Sideritis sipylea Boiss. (Fam. Lamiaceae) is an endemic plant of the North Aegean Islands (Greece), commonly known as ironwort. Traditionally, its aerial parts have been used to relieve several ailments, especially gastrointestinal disorders, however, with scant knowledge about the pharmacological basis. In the present study, an endemic S. sipylea Greek species from Lesvos Island has been characterized for phytochemical composition and biological activities, in order to give a possible scientific basis to its traditional use and to highlight a further nutraceutical interest as a source of bioactive phytochemicals and extracts. Three different fractions obtained from a methanolic extract of S. sipylea aerial parts by using ethyl acetate with 10 (S10), 20 (S20), and 50% (S50) methanol as fractionation solvents were phytochemically characterized. Moreover, their antioxidant power and cytoprotective activity in different human cell lines were evaluated. The phytochemical analysis highlighted the presence of flavonoids, iridoids, and phenolic acids in all the tested samples. Particularly, the S10 fraction mainly contained iridoids, while S20 and S50 lavandulifolioside and chlorogenic acid, respectively. The fractions also showed antioxidant properties, S10 and S20 being the most potent. When assessed in human cholangiocytes, they counteracted the cytotoxicity of the tBOOH pro-oxidant agent, by reducing ROS levels and affecting GSH antioxidant system. The present findings highlight a possible interest in S10 and S20 fractions from S. sipylea as sources of bioactive molecules and stimulate further studies in order to characterize their possible application for nutraceutical and pharmaceutical purposes.
Collapse
|
8
|
Tomou EM, Lytra K, Chrysargyris A, Christofi MD, Miltiadous P, Corongiu GL, Tziouvelis M, Tzortzakis N, Skaltsa H. Polar constituents, biological effects and nutritional value of Sideritis sipylea Boiss. Nat Prod Res 2021; 36:4200-4204. [PMID: 34498964 DOI: 10.1080/14786419.2021.1969649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study focuses on the polar constituents and biological effects of the methanol extract and the infusion of wild Sideritis sipylea Boiss. from Samos island (Greece), as well as on the nutritional and mineral contents of this plant. The total phenolic content and antioxidant activity were examined. In addition, the anti-acetylcholinesterase property was evaluated, revealing strictly lower results than the control, galanthamine. Furthermore, the nutritional value of the plant is reported herein for the first time, revealing a promising source of protein. To the best of our knowledge, this study is the first work on the infusion of this species and the nutritional value of the plant.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Department of Pharmacognosy and Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Krystalia Lytra
- Department of Pharmacognosy and Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Maria-Dolores Christofi
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Panagiota Miltiadous
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Gian Luca Corongiu
- Department of Pharmacognosy and Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos Tziouvelis
- Department of Pharmacognosy and Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Helen Skaltsa
- Department of Pharmacognosy and Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Dimou I, Dritsas S, Aggelopoulou P, Vassilatou K, Damianaki S, Giaouris E. Development of a herbal mouthwash containing a mixture of essential oils and plant extracts and in vitro testing of its antimicrobial efficiency against the planktonic and biofilm-enclosed cariogenic bacterium Streptococcus mutans. BIOFOULING 2021; 37:397-409. [PMID: 34027763 DOI: 10.1080/08927014.2021.1924693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
A herbal mouthwash containing essential oils of holy basil and mountain tea, extracts of St John's wort and European goldenrod (Bucovia™) and cetylpyridinium chloride, was developed and in vitro tested for its efficiency against biofilm formation by Streptococcus mutans, together with its eradicating activity against already preformed (48 h with saccharose) streptococcal biofilm. The minimum inhibitory (MIC) and bactericidal concentrations (MBC) of the final formulation, as well as of its individual components, were initially determined. The results revealed that the mouthwash needed to be applied at two-times its MIC (0.63% v.v-1) to completely inhibit biofilm formation by S. mutans, which was otherwise capable of developing a robust biofilm on the tested surface. Once fully developed, the matrix of the biofilm was found to contain a significant amount of exopolysaccharides protecting the cells, being impossible to eradicate even when exposed to pure mouthwash for 15 min, highlighting the great recalcitrance of biofilm-embedded S. mutans.
Collapse
Affiliation(s)
- Ioanna Dimou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stavros Dritsas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Paraskevi Aggelopoulou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
- The NuCLab, Nutrition and Cosmetics R&D Laboratory, Athens, Greece
| | | | | | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
11
|
Gam DH, Hong JW, Kim JH, Kim JW. Skin-Whitening and Anti-Wrinkle Effects of Bioactive Compounds Isolated from Peanut Shell Using Ultrasound-Assisted Extraction. Molecules 2021; 26:molecules26051231. [PMID: 33669031 PMCID: PMC7956768 DOI: 10.3390/molecules26051231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) conditions for simultaneous optimization of dependent variables, including DPPH radical scavenging activity (RSA), tyrosinase activity inhibition (TAI), and collagenase activity inhibition (CAI) of peanut shell extracts. The effects of the main variables including extraction time (5.0~55.0 min, X1), extraction temperature (26.0~94.0 °C, X2), and ethanol concentration (0.0%~99.5%, X3) were optimized. Based on experimental values from each condition, quadratic regression models were derived for the prediction of optimum conditions. The coefficient of determination (R2) of the independent variable was in the range of 0.89~0.96, which demonstrates that the regression model is suitable for the prediction. In predicting optimal UAE conditions based on the superimposing method, extraction time of 31.2 min, extraction temperature of 36.6 °C, and ethanol concentration of 93.2% were identified. Under these conditions, RSA of 74.9%, TAI of 50.6%, and CAI of 86.8% were predicted, showing good agreement with the experimental values. A reverse transcription polymerase chain reaction showed that peanut shell extract decreased mRNA levels of tyrosinase-related protein-1 and matrix metalloproteinase-3 genes in B16-F0 cell. Therefore, we identified the skin-whitening and anti-wrinkle effects of peanut shell extracts at protein as well as gene expression levels, and the results show that peanut shell is an effective cosmetic material for skin-whitening and anti-wrinkle effects. Based on this study, peanut shell, which was considered a byproduct, can be used for the development of healthy foods, medicines, and cosmetics.
Collapse
Affiliation(s)
- Da Hye Gam
- Department of Food Science, Sunmoon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea; (D.H.G.); (J.W.H.); (J.H.K.)
| | - Ji Woo Hong
- Department of Food Science, Sunmoon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea; (D.H.G.); (J.W.H.); (J.H.K.)
| | - Jun Hee Kim
- Department of Food Science, Sunmoon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea; (D.H.G.); (J.W.H.); (J.H.K.)
| | - Jin Woo Kim
- Department of Food Science, Sunmoon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea; (D.H.G.); (J.W.H.); (J.H.K.)
- FlexPro Biotechnology, Natural Science 128, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea
- Center for Next-Generation Semiconductor Technology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Korea
- Correspondence: ; Tel.: +82-41-530-2226
| |
Collapse
|
12
|
Lytra K, Tomou EM, Chrysargyris A, Drouza C, Skaltsa H, Tzortzakis N. Traditionally Used Sideritis cypria Post.: Phytochemistry, Nutritional Content, Bioactive Compounds of Cultivated Populations. Front Pharmacol 2020; 11:650. [PMID: 32477129 PMCID: PMC7235332 DOI: 10.3389/fphar.2020.00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
Sideritis species are recognized as important medicinal plants and their commercial demand is continuously on the rise both in the European and in the global market. Consequently, the cultivation of Sideritis species has been occurred to successfully meet the need for mass production of high-quality plant material. The present study was undertaken in order to investigate the chemical composition of cultivated S. cypria. Infusions of flowers and leaves were prepared separately, according to the European Medicine Agency (EMA) monograph. The infusion of the flowers revealed the presence of four flavones, isoscutellarein-7-O-[6′″-O-acetyl-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside, its 4′-O-methyl-derivative, 4′-O-methyl-hypolaetin-7-O-[6′″-O-acetyl-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside, and isoscutellarein-7-O-[6′″-O-acetyl-β-D-allopyranosyl-(1→2)]-6″-O-acetyl-β-D-glucopyranoside; four phenylethanoid glucosides, acteoside, leucosceptoside A, lamalboside, and leonoside A; one iridoid, melittoside, and one phenolic acid, chlorogenic acid, while the infusion of the leaves of the same population afforded the same first two flavones; five phenylethanoid glucosides, acteoside, leucosceptoside A, lavandulifolioside, leonoside A, and lamalboside; melittoside and chlorogenic acid. The structural elucidation of the isolated compounds was undertaken by high-field NMR spectroscopy. Moreover, the essential oils of the flowers and leaves were studied by GC-MS, separately. In addition, the mineral, bioactive compounds, protein and carbohydrate contents were evaluated for both plant materials.
Collapse
Affiliation(s)
- Krystalia Lytra
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Athens, Greece
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Chryssoula Drouza
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
13
|
Axiotis E, Petrakis EA, Halabalaki M, Mitakou S. Phytochemical Profile and Biological Activity of Endemic Sideritis sipylea Boiss. in North Aegean Greek Islands. Molecules 2020; 25:molecules25092022. [PMID: 32357535 PMCID: PMC7248978 DOI: 10.3390/molecules25092022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Sideritis sipylea Boiss. is an endemic plant of the Mediterranean basin that is distributed in the Greek islands of the North Aegean Sea, i.e., Lesvos, Chios, Samos, and Ikaria, and in the West and Middle peninsula of Turkey. It is considered an endangered species because of its uncontrolled collection from its original habitat. Although the antioxidant, anti-inflammatory and antimicrobial properties have been previously reported, the total chemical profile has not yet been explored. In this context, the chemical profiles of the water/methanol (HA), methanol (ME), and ethyl acetate (EtOAc) extracts were analyzed using ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS). In parallel, analysis by gas chromatography-mass spectrometry (GC-MS) was employed for the dichloromethane extract (DCM) as well as for the essential oil (EO) and the extract obtained by supercritical fluid extraction (SFE). Furthermore, the total phenolic content (TPC) along with the in vitro tyrosinase and elastase enzyme inhibitory activity of different extracts was evaluated, towards the discovery of new active agents for cosmetic formulations. These activities are in accordance with its well-known antioxidant and anti-inflammatory properties, confirming the importance of ethnopharmacological references for S. sipylea in Greece and Turkey.
Collapse
|
14
|
Barros L. Antioxidants Properties of Natural Products: A Themed Issue in Honor of Professor Isabel C.F.R. Ferreira. Antioxidants (Basel) 2020; 9:antiox9040286. [PMID: 32231030 PMCID: PMC7222204 DOI: 10.3390/antiox9040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
15
|
Sarikurkcu C, Locatelli M, Mocan A, Zengin G, Kirkan B. Phenolic Profile and Bioactivities of Sideritis perfoliata L.: The Plant, Its Most Active Extract, and Its Broad Biological Properties. Front Pharmacol 2020; 10:1642. [PMID: 32116669 PMCID: PMC7034418 DOI: 10.3389/fphar.2019.01642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Sideritis, also named “ironwort,” “mountain tea,” or “shepherd's tea,” is a genus of flowering plants used as herbal medicine in traditional Mediterranean-area medicine systems, and these plants are generally consumed as a herbal tea. Its use as herbal tea and in traditional herbal medicine is quite popular. There are currently few studies on Sideritis perfoliata L., and only one reports the use of a liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-MSn) profile and the content of phenolic compounds without considering a possible correlation with its biological activities. This paper aims to investigate the antioxidant activities by means of several different biological/biochemical assays (radical scavenging, reducing power, ferrous ion chelating, and total antioxidant by phosphomolybdenum and β-carotene bleaching methods) as well as analyze the enzyme inhibitory activities (against AChE (acetylcholinesterase), BChE (butyrylcholinesterase), tyrosinase, α-glucosidase, and α-amylase) as well as the total phenolics, flavonoids, and condensed tannins. The reported results on Sideritis perfoliata highlighted that methanol and water extracts generally showed higher radical scavenging and reducing power activities. A similar trend could be observed for phosphomolybdenum and ferrous ion chelating activities. Methanol extracts showed lower activity only for the β-carotene bleaching assay.
Collapse
Affiliation(s)
- Cengiz Sarikurkcu
- Department of Analytical Chemistry, Afyonkarahisar University of Health Sciences, Faculty of Pharmacy, Afyonkarahisar, Turkey
| | - Marcello Locatelli
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gokhan Zengin
- Department of Biology, Selcuk University, Science Faculty, Konya, Turkey
| | - Bulent Kirkan
- Water Institute, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|