1
|
Shaat AR, Sadek KM, Mahmoud SF, Saleh H, Sayed S, Shukry M, Ghamry HI, Zeweil MM. Assessing the Impact of Ghee, Olive Oil and Margarine on Male Rabbit Fertility and Reproductive Hormones. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39548714 DOI: 10.1111/jpn.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
In the present investigation, the impact of natural ghee, olive oil and synthetic margarine on the fertility parameters of male rabbits was evaluated by examining semen quality, fertility hormones, antioxidant markers, lipid profile, and liver and kidney functions. Eighty male rabbits were randomly allotted into four groups (20 rabbits each, four replicates/group). The basal diet supplemented the control group; the margarine group was fed a 10% margarine diet, the ghee group was fed a 10% ghee diet, and the olive oil group was fed a 10% olive oil diet. In the margarine group, the semen quality parameters, total testosterone levels, free testosterone, luteinizing hormone (LH) and antioxidant enzyme levels as catalase showed a significant reduction compared to other groups. At the same time, they were enhanced in ghee and olive oil groups. A substantial increase of triglyceride (TAG), low-density lipoprotein (LDL) and cholesterol, with a decrease of high-density lipoprotein (HDL) levels, were observed in the margarine group contrasted to ghee and olive oil groups. The ghee and the olive oil-treated group showed strong immunoreactions of androgen, FSH, LH receptors and mild caspase 3 in testicular tissue compared to the margarine-treated group. Finally, histopathological examination of rabbit testicular tissue showed proliferation of basal spermatogenic cells, increased luminal spermatid of seminiferous epithelium, and proliferation of interstitial cells in normal interstitial tissue in the ghee and olive oil treated group. Still, it showed severe vacuolation and necrosis in the basal luminal seminiferous epithelium and congestion of blood vessels in the margarine group. This present study revealed that the health influence of olive oil and ghee is better than margarine on male fertility parameters.
Collapse
Affiliation(s)
- Adel R Shaat
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sahar F Mahmoud
- Department of Histology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Hamida Saleh
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Zeweil
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Frungieri MB, Calandra RS, Matzkin ME, Rossi SP. Melatonin as a natural anti-inflammatory and anti-oxidant therapy in the testis: a focus on infertility and aging†. Biol Reprod 2024; 111:543-556. [PMID: 38869910 DOI: 10.1093/biolre/ioae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Melatonin is a pineal hormone that regulates testicular activity (i.e., steroidogenesis and spermatogenesis) through two complementary mechanisms, indirect effects exerted via the hypothalamic-adenohypophyseal axis and direct actions that take place on the different cell populations of the male gonad. The effects of increased age on the testis and the general mechanisms involved in testicular pathology leading to infertility are still only poorly understood. However, there is growing evidence that link testicular aging and idiopathic male infertility to local inflammatory and oxidative stress events. Because literature data strongly indicate that melatonin exhibits anti-inflammatory and anti-oxidant properties, this review focuses on the potential benefits exerted by this indoleamine at testicular level in male reproductive fertility and aging. Taking into account that the effects of melatonin supplementation on testicular function are currently being investigated, the overview covers not only promising prospects but also many questions concerning the future therapeutic value of this indoleamine as an anti-aging drug as well as in the management of cases of male infertility for which there are no medical treatments currently available.
Collapse
Affiliation(s)
- Mónica Beatriz Frungieri
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Ricardo Saúl Calandra
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - María Eugenia Matzkin
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Soledad Paola Rossi
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Cao H, Li Z, Jin T, He S, Liu S, Li L, Wang Y, Gong Y, Wang G, Yang F, Dong W. Maslinic acid supplementation prevents di(2-ethylhexyl) phthalate-induced apoptosis via PRDX6 in peritubular myoid cells of Chinese forest musk deer. J Environ Sci (China) 2024; 143:47-59. [PMID: 38644023 DOI: 10.1016/j.jes.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 04/23/2024]
Abstract
Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Gang Wang
- Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
4
|
Abarikwu SO, Coimbra JLP, Campolina-Silva G, Rocha ST, Costa VV, Lacerda SMSN, Costa GMJ. Acute effects of atrazine on the immunoexpressions of sertoli and germ cells molecular markers, cytokines, chemokines, and sex hormones levels in mice testes and epididymides. CHEMOSPHERE 2024; 363:142852. [PMID: 39019188 DOI: 10.1016/j.chemosphere.2024.142852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Atrazine is currently one of the most commonly used agrochemicals in the United States and elsewhere. Here, we studied the immunoexpression of molecular markers of mammalian testicular functions: androgen receptor (AR), promyelocytic leukemia zinc finger (PLZF), GDNF family receptor alpha-1 (GFRA1), VASA/DDX4 (DEAD-Box Helicase 4) as well as the levels of intratesticular and intra-epididymal estradiol (E2) and dihydrotestosterone (DHT), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukins (IL-1β and IL-6, IL-10) and testicular chemokines (CXCL-1, CCL-2 and CCL3) in BalB/c mice after a sub-acute gavage treatment with a gonado-toxin, atrazine (50 mg/kg body wt.) for three days. We found high numbers of AR immunopositive Sertoli cells and low numbers of GFRA1, PLZF and VASA/DDX4-positive germ cells in the seminiferous tubule regions of the testes. While TNF-α level in the testes fell and remained unchanged in the epididymides, IFN-γ levels in the testes remained constant but increased in the epididymides. E2 and DHT concentrations remained unaltered in the testes but were changed in the epididymides. There were no significant changes in the levels of interleukins in the testis and epididymis. Intratesticular chemokines were also not significantly altered, except for CCL-4, which was increased in the testis. Light microscopy of the epididymis showed detached epithelium and some detached cells in the lumen. It is concluded that atrazine changed the inflammatory status of the gonads and highlighted Sertoli and undifferentiated spermatogonia as important targets for atrazine's toxic effects in the testis of mice. Concerning the epididymis, atrazine altered the epididymal hormonal concentrations and promoted histopathological modifications in its parenchyma.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria.
| | - John L P Coimbra
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | | | - Samuel Tadeu Rocha
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Samyra M S N Lacerda
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Guilherme M J Costa
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| |
Collapse
|
5
|
Mararajah S, Giribabu N, Salleh N. Chlorophytum borivilianum aqueous root extract prevents deterioration of testicular function in mice and preserves human sperm function in hydrogen peroxide (H 2O 2)-induced oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117026. [PMID: 37572930 DOI: 10.1016/j.jep.2023.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chlorophytum borivilianum (C. borivilianum) (CB) has traditionally been used to treat male sexual dysfunctions and has been claimed to possess aphrodisiac properties. AIM OF THE STUDY To investigate the ability of CB to ameliorate H2O2-induced oxidative stress in testes and sperm in mice and prevent H2O2-induced oxidative in human sperm. MATERIALS AND METHODS Oxidative stress was induced in male mice by pre-exposure to 2% H2O2 orally for seven consecutive days, followed by 100 and 200 mg/kg b. w. administration. CB for another seven days. At the end of treatment, mice were sacrificed and testes and epididymal sperm were harvested. Serum FSH, LH and testosterone levels were measured and sperm parameters were obtained. Meanwhile, oxidative stress levels in mice testes and sperm, steroidogenesis and spermatogenesis markers in mice testes were assessed by molecular biological techniques. In another experiment, sperm from thirty-two healthy fertile men were incubated with 200 μM H2O2 and CB (100 and 200 μg/ml) simultaneously and were then evaluated for sperm parameter changes. RESULTS In mice, CB administration ameliorates persistent increases in oxidative stress and decreases in anti-oxidative enzyme levels in testes and sperm following H2O2 pre-exposure. Additionally, CB also helps to ameliorate deterioration in sperm parameters and testicular steroidogenesis and spermatogenesis and restores the serum FSH, LH and testosterone levels near normal in mice. In humans, CB helps to prevent deterioration in sperm parameters following H2O2 exposure. CONCLUSION CB is potentially useful to preserve the male reproductive capability and subsequently male fertility in high oxidative stress conditions.
Collapse
Affiliation(s)
- Selvakumar Mararajah
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Owembabazi E, Nkomozepi P, Mbajiorgu EF. Potential role of inducible nitric oxide synthase (iNOS) activity in testicular dysfunction following co-administration of alcohol and combination antiretroviral therapy (cART) in diabetic rats: an immunohistochemistry study. Toxicol Res 2024; 40:31-43. [PMID: 38223677 PMCID: PMC10787109 DOI: 10.1007/s43188-023-00200-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 01/16/2024] Open
Abstract
Diabetes, alcohol abuse, and combination antiretroviral therapy (cART) use have been reported to cause multi-organ complications via induction of oxidative stress and inflammation. Moreover, these are the most common factors implicated in male reproductive dysfunctions. This study evaluated testicular oxidative stress, inflammation, apoptosis, and germ cell proliferation in diabetic rats receiving alcohol or cART and their combination. Thirty adult male Sprague Dawley rats were divided into five groups, each consisting of six rats; control, diabetic only (DM), diabetic treated with alcohol (DM + A), diabetic treated with cART (DM + cART), and diabetic treated with both alcohol and cART (DM + A + cART). After 90 days of treatment, the rats were terminated, and the testes were extracted and processed for immunohistochemistry analysis for oxidative stress, inflammatory cytokines, apoptosis, and cell proliferation marker. In comparison to the control, oxidative stress markers, inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHDG) increased significantly in all treated groups. Expression of testicular proinflammatory cytokines, interleukin-1β, and tumor necrosis factor-α was upregulated in all treated groups, but interleukin-6 was upregulated in DM, DM + cART, and DM + A + cART treated groups and was downregulated in the DM + A treated group. All treated animal groups showed an upregulation of apoptotic marker (caspase 3) and a downregulation of proliferation marker (Ki-67). However, Ki-67 staining intensity significantly increased in treated animals compared to the control. These findings suggest that diabetes, alcohol abuse, cART use, and their combination via iNOS activity upregulation can induce inflammation and oxidative stress in testicular tissue, stimulating germ cell apoptosis and proliferation inhibition leading to failure of spermatogenesis.
Collapse
Affiliation(s)
- Elna Owembabazi
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, 2193 South Africa
- Department of Human Anatomy, Kampala International University, Western Campus, P.O. Box 71, Ishaka-Bushenyi, Uganda
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, University of Johannesburg, Johannesburg, 2028 South Africa
| | - Ejikeme F. Mbajiorgu
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, 2193 South Africa
| |
Collapse
|
7
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
8
|
Owumi SE, Umez AO, Arunsi U, Irozuru CE. Dietary aflatoxin B1 and antimalarial-a lumefantrine/artesunate-therapy perturbs male rat reproductive function via pro-inflammatory and oxidative mechanisms. Sci Rep 2023; 13:12172. [PMID: 37500724 PMCID: PMC10374580 DOI: 10.1038/s41598-023-39455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
We investigated the impact of Coartem™ (COA) and aflatoxin B1 (AFB1) on rats' hypothalamus, epididymis, and testis. Male rats were randomly grouped (n = 5 rats) and treated: control group (corn oil), AFB1 (70 µg/kg), COA (5 mg/kg), COA + AFB1 (5 + 0.035 mg/kg) and COA + AFB1 (5 + 0.07 mg/kg) for 28 days. Blood samples were collected for serum prolactin, testosterone, follicle-stimulating and luteinising hormones (FSH and LH) assay upon sacrifice. The semen, hypothalamus, epididymis, and testes were harvested for morphological, biochemical, and histopathology determination of oxidative, inflammation stress, genomic integrity, and pathological alterations. Exposure to the COA and AFB1 caused the cauda epididymal spermatozoa to display low motility, viability, and volume, with increased abnormalities. Hormonal disruption ensued in animals exposed to COA and AFB1 alone or together, exemplified by increased prolactin, and decreased testosterone, FSH and LH levels. Treatment-related reduction in biomarkers of testicular metabolism-acid and alkaline phosphatases, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase-were observed. Also, COA and AFB1 treatment caused reductions in antioxidant (Glutathione and total thiols) levels and antioxidant enzyme (Catalase, superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase) activities in the examined organs. At the same time, treatment-related increases in DNA damage (p53), oxidative stress (xanthine oxidase, reactive oxygen and nitrogen species and lipid peroxidation), inflammation (nitric oxide and tumour necrosis factor-alpha), and apoptosis (caspase-9, and -3) were observed. Chronic exposure to COA and AFB1 led to oxidative stress, inflammation, and DNA damage in male rats' hypothalamic-reproductive axis, which might potentiate infertility if not contained.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria.
- ChangeLab-changing Lives, Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, University of Ibadan, Rm NB 302, Ibadan, 200005, Oyo State, Nigeria.
| | - Angel O Umez
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Uche Arunsi
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Chioma E Irozuru
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
9
|
Balló A, Czétány P, Busznyákné KS, Márk L, Mike N, Török A, Szántó Á, Máté G. Oxido-Reduction Potential as a Method to Determine Oxidative Stress in Semen Samples. Int J Mol Sci 2023; 24:11981. [PMID: 37569357 PMCID: PMC10418886 DOI: 10.3390/ijms241511981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
There are different estimates for the incidence of infertility. Its occurrence may vary from area to area, but on average, it affects 15% of couples and 10-12% of men worldwide. Many aspects of infertility can be linked to reactive oxygen species (ROS) and the process of oxidative stress (OS). The association between poor semen quality and OS is well known. Unfortunately, there is no accepted protocol for the diagnosis and treatment of OS in andrology. Oxido-reduction potential (ORP) measurement is a new method for determining the ratio between oxidant and antioxidant molecules. Currently, ORP measurement is one of the fastest and most user-friendly methods of andrological OS determination and our goals were to confirm published correlations between ORP values and sperm parameters, examine how sperm concentration influences these results, and investigate whether intracellular ROS formations are also manifested in the ORP values or not after artificial ROS induction. Intracellular ROS formations were induced by menadione (superoxide anion inducer), hydrogen peroxide, and tert-butyl hydroperoxide (lipid peroxidation inducer) treatments; sperm parameters like motility and viability were determined with an SCA Scope system, and ORP changes were recorded by the Mioxsys system. Significant correlations were noticed among the ORP, spermatozoa concentration, motility, progressive motility, and viability. Nevertheless, only the ORP value after normalization with the sperm count correlated with these parameters. Due to normalization, very low and very high sperm concentrations can give misleading results. The means of the non-normalized ORP values were almost the same. All of the applied treatments resulted in decreases in the viability, motility, and progressive motility, and interestingly, altered ORP levels were detected. In addition, it was determined that seminal plasma had a significant protective effect on spermatozoa. The elimination of seminal plasma caused higher sensitivity of spermatozoa against used OS inducers, and higher ORP levels and decreased viabilities and motilities were measured. The ORP level could be a good indicator of male OS; however, in cases of low and high sperm counts, its result can be misleading. Overall, the conclusion can be drawn that ORP determination is a suitable method for detecting intracellular ROS accumulation, but it has limitations that still need to be clarified.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Péter Czétány
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | | | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Nóra Mike
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
10
|
Qin Y, He S, Peng H, Ye X, Zhang H, Ding S. Dibutyl Phthalate Adsorbed on Multiwalled Carbon Nanotubes Causes Fetal Developmental Toxicity in Balb/C Mice. TOXICS 2023; 11:565. [PMID: 37505531 PMCID: PMC10385951 DOI: 10.3390/toxics11070565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether using multiwalled carbon nanotubes (MWCNTs) as a carrier for dibutyl phthalate (DBP) could delay the degradation rate of DBP in mice and increase its estrogen-like interference effect. Pregnant Balb/C mice were divided into four groups and exposed to different treatments via tail-vein injection every 3 days until gestational day 20. The female and male mice were then sacrificed for toxicological study. The results showed that the combination of MWCNTs and DBP resulted in a higher fetal mortality rate than if the mice were exposed to MWCNTs or DBP alone. H&E staining showed that the estrous period of the exposed mice was delayed, the development of oocytes was blocked in the combination group, the number of spermatogenic cells decreased, and the quality of sperm decreased. Our experiment showed that the expression levels of the genes involved in sex hormone synthesis in the testis and ovaries were significantly increased after combined treatment compared with the MWCNT group (p < 0.01). The study suggests that DBP degradation is delayed when absorbed on MWCNTs, which increases its estrogen-like interference and interferes with fetal development, ultimately leading to increased fetal mortality.
Collapse
Affiliation(s)
- Yujie Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Suli He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Haiyan Peng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xin Ye
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
11
|
Bordalo D, Cuccaro A, Meucci V, De Marchi L, Soares AMVM, Pretti C, Freitas R. Will warmer summers increase the impact of UV filters on marine bivalves? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162108. [PMID: 36773902 DOI: 10.1016/j.scitotenv.2023.162108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Marine organisms are constantly exposed to multiple stressors including pollutants released into the environment, such as personal care products (PCPs), and climate change-derived factors, namely warming, which are aggravated by anthropogenic drivers and pose increasing pressure on coastal ecosystems. Avobenzone (AVO) is one of the most used ultraviolet (UV) filters in PCPs which have been increasingly used and, thereby, identified in aquatic environments. However, data regarding the influence of warming on the impacts caused by AVO in bivalves is lacking. Mussels are considered good bioindicators thus being often employed in ecotoxicology studies. Hence, the present study aimed to evaluate the toxic effects of an environmentally relevant concentration of AVO (0.5 μg/L) and warming (21 °C), acting alone or in combination, on sperm and adults of the Mediterranean mussel species Mytilus galloprovincialis, through in vitro and in vivo tests, respectively. AVO and warming effects were evaluated by assessing oxidative status, viability, genotoxicity, motility, and kinetics in sperm, together with the quantification of energy content, metabolic capacity, biological defence mechanisms, cellular damage, and neurotoxicity in adults. AVO induced genotoxicity and increased respiration rate in sperm while enhancing the biotransformation enzymes' activity in adults. Exposure to warming led to an increase in respiration rate, ROS overproduction, cellular damage, and viability decrease in sperm whereas metabolic capacity increased in adults. AVO combined with warming caused oxidative stress, cellular damage, genotoxicity, and decreased motility in sperm, while only antioxidant enzymes' activity was enhanced in adults. Overall, the present study demonstrated that when acting in combination the effects of both stressors were more prominent. Furthermore, considering the multiple-stressor scenario tested, major toxic effects occurred in male gametes in comparison to adults.
Collapse
Affiliation(s)
- Diana Bordalo
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Alessia Cuccaro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128 Livorno, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128 Livorno, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Zhao YC, Wang CC, Yang JY, Li XY, Yanagita T, Xue CH, Zhang TT, Wang YM. N-3 PUFA Deficiency from Early Life to Adulthood Exacerbated Susceptibility to Reactive Oxygen Species-Induced Testicular Dysfunction in Adult Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6908-6919. [PMID: 37098125 DOI: 10.1021/acs.jafc.2c07328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Homeostasis of reactive oxygen species is required to maintain sperm maturation and capacitation. Docosahexaenoic acid (DHA) is accumulated in testicles and spermatozoa and has the ability to manipulate the redox status. The effects of dietary n-3 polyunsaturated fatty acid (n-3 PUFA) deficiency from early life to adulthood on the physiological and functional properties of males under the redox imbalance of testicular tissue deserve attention. The consecutive injection of hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) for 15 days to induce oxidative stress in testicular tissue was used to elucidate the consequences of testicular n-3 PUFA deficiency. The results indicated that reactive oxygen species treatment in adult male mice with DHA deficiency in the testis could reduce spermatogenesis and disrupt sex hormone production, as well as trigger testicular lipid peroxidation and tissue damage. N-3 PUFA deficiency from early life to adulthood resulted in higher susceptibility to testicular dysfunction in the germinal function of supplying germ cells and the endocrine role of secreting hormones through the mechanism of aggravating mitochondria-mediated apoptosis and destruction of blood testicular barrier under oxidative stress, which might provide a basis for humans to reduce susceptibility to chronic disease and maintain reproductive health in adulthood through dietary interventions of n-3 PUFAs.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| |
Collapse
|
13
|
Machado-Neves M. Arsenic exposure and its implications in male fertility. Anim Reprod 2023; 19:e20220119. [PMID: 36819483 PMCID: PMC9924305 DOI: 10.1590/1984-3143-ar2022-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Arsenic exposure is a global health concern. This toxic metalloid is ubiquitous in the environment and contaminates food and drinking water. Once ingested, it undergoes a complex metabolic process within the body, which contributes to its accumulation and reactivity. Arsenic toxicity stems from the induction of oxidative stress, inhibition of thiol-containing proteins, and mimicry of inorganic phosphates. Arsenic poisoning is associated with the development of reproductive disorders. In males, arsenic causes a reduction in testicular weight and alterations in steroidogenesis and spermatogenesis. Moreover, it reduces the number and quality of spermatozoa harvested from the cauda epididymis. The mitochondria are targets of arsenic toxicity because of the production of free radicals and their high content of cysteine-rich proteins and fatty acids. Mitochondrial dysfunction may contribute to reproductive disorders because this organelle is crucial for controlling testicular and epididymal events related to sperm production and maturation. All of these alterations mediated by arsenic exposure contribute to the failure of male reproductive competence by reducing gamete viability. This review describes the potential mechanisms of arsenic toxicity, its detrimental effects on male reproductive organs, and consequences on sperm fertility.
Collapse
Affiliation(s)
- Mariana Machado-Neves
- Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaMGBrasilDepartamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brasil,Corresponding author:
| |
Collapse
|
14
|
Vyas R, Kesari KK, Lukac N, Slama P, Roychoudhury S, Sisodia R. Radical scavenging activity of Chlorophytum borivilianum L. root extract and its protective role in cauda epididymal sperm integrity in Mus musculus after gamma irradiation. Front Cell Dev Biol 2023; 11:1064574. [PMID: 37025174 PMCID: PMC10070789 DOI: 10.3389/fcell.2023.1064574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Chlorophytum borivilianum L. is a recognized herbal medicine for the management of impotency in South Asian countries. In Ayurveda, it is used for the management of multiple health conditions, including diabetes, infection, and cardiovascular diseases. Parts of the plant have been used as excellent antioxidants and scavengers of free radicals. Since oxidative stress plays an important role in spermatogenesis and fertility in male populations, this study evaluated the role of ethanolic extract of C. borivilianum roots in epididymal sperm maturation against adversities posed by ionizing gamma irradiation. Materials and methods: Antioxidant potential of C. borivilianum root extract (CRE) was evaluated through DPPH (2,2-diphenylpicrylhydrazyl) and NO (nitric oxide) scavenging assays. Four groups of healthy Swiss albino mice were constituted, which were labeled as follows: Group I: sham control, Group II: 7-day pre-treatment with 50 mg/kg CRE, Group III: 6 Gy irradiation without pre-treatment, and Group IV: 7-day pre-treatment with 50 mg/kg CRE and 6 Gy irradiation on day 7. Swiss albino mice were observed for 30 days and later sacrificed to evaluate sperm quality parameters. Results: CRE showed a remarkable antioxidant potential with IC50 values of 46.37 μg/ml and 98.39 μg/ml for DPPH and NO, respectively. A significant decline (p < 0.001) in cauda epididymal sperm count, motility, and viability was observed in Group III animals. Group IV also showed a substantial decline (p < 0.01) in all three parameters compared to Group I; nonetheless, these were significantly higher than Group III. Morphological alterations indicated a coiled and bent tail, with the presence of cytoplasmic droplets in Group III, which declined substantially in Group IV. The ultrastructure of sperm indicated higher curvature of hook in Group III than Group IV, indicating specific interferences in the sperm maturation process. Conclusion: It was concluded that pre-treatment with 50 mg/kg body weight of CRE could protect sperm during epididymal maturation against oxidative stress.
Collapse
Affiliation(s)
- Ruchi Vyas
- Department of Zoology, University of Rajasthan, Jaipur, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
- *Correspondence: Kavindra Kumar Kesari, ; Petr Slama, ; Shubhadeep Roychoudhury, ; Rashmi Sisodia,
| | - Norbert Lukac
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- *Correspondence: Kavindra Kumar Kesari, ; Petr Slama, ; Shubhadeep Roychoudhury, ; Rashmi Sisodia,
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
- *Correspondence: Kavindra Kumar Kesari, ; Petr Slama, ; Shubhadeep Roychoudhury, ; Rashmi Sisodia,
| | - Rashmi Sisodia
- Department of Zoology, University of Rajasthan, Jaipur, India
- *Correspondence: Kavindra Kumar Kesari, ; Petr Slama, ; Shubhadeep Roychoudhury, ; Rashmi Sisodia,
| |
Collapse
|
15
|
Tijani AS, Farombi EO, Olori DO. Thymol co-administration abrogates hexachlorobenzene-induced reproductive toxicities in male rats. Hum Exp Toxicol 2023; 42:9603271221149201. [PMID: 36606752 DOI: 10.1177/09603271221149201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This present study was designed to investigate ameliorating potential of thymol (THY) on hexachlorobenzene (HBC)-induced epididymal and testicular toxicities in adult male rats. Forty adult male rats were orally treated by gavage daily for 28 consecutive days and divided into four groups; control group administered with corn oil, HBC-treated group (16 mg/kg b. wt), thymol-treated group (30 mg/kg b. wt), and HBC + THY-treated group. The results revealed that HBC exposure caused a significant decrease in the body weight change, organ weights, sperm functional parameters, serum testosterone level with widespread histological abnormalities. Furthermore, HBC-treated rats showed increased in the serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), epididymal and testicular myeloperoxidase activity, tumor necrosis-α, interleukin-1β level and caspase-3 activity, induced oxidative damage as evidenced by elevated malondialdehyde (MDA), reactive oxygen species (RONS) levels and significant reduction in antioxidant enzyme activities and reduced glutathione (GSH). However, co-treatment of THY with HBC alleviated the HBC-induced epididymal and testicular toxicities. Our findings revealed that HBC acts as a reproductive toxicant in rats and thymol could be a potential remedial agent for HBC-induced reproductive toxicity.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, 58987University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, 58987University of Ibadan, Ibadan, Nigeria
| | - David O Olori
- Department of Biochemistry, Bowen University, Iwo, Nigeria
| |
Collapse
|
16
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
17
|
Mowaad NA, Asaad GF, El-Shamarka ME, Khalil S. Cross-talk between down-regulation of steroidogenic genes expression and oxidative and apoptotic biomarkers in testes induced by administration of tramadol and boldenone and their combination in male albino rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:808-815. [PMID: 36033952 PMCID: PMC9392572 DOI: 10.22038/ijbms.2022.61745.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The testis is the male reproductive gland or gonad having two vital functions: to produce both sperm and androgens, primarily testosterone. The study aimed to investigate the effect of tramadol and boldenone injected alone or in combination for 2 months in rats on testicular function. MATERIALS AND METHODS Group 1, normal control; Group 2, tramadol HCl (TRAM) (20 mg/kg bwt.) (IP); Group 3, boldenone undecylenate (BOLD) (5 mg/kg bwt) (i.m); Group 4, combination of TRAM (20 mg/kg bwt.) and BOLD (5 mg/kg); respectively for 2 months. RESULTS TRAM and BOLD alone and in combination showed deteriorated testicular functions, lowered serum steroid levels (FSH, LH, and testosterone), elevation in oxidative biomarkers (MDA & NO) and reduction in GSH and SOD, down-regulation of StaR and HSD17B3 as well as histopathological testicular assessment using H&E staining revealing massive degenerative changes in the seminiferous epithelium and vacuolar changes of most of the spermatogenic stages in both TRAM and BOLD groups. PAS stain showed an intensive reaction in the interstitial tissue between the tubules in the TRAM group. Masson trichrome stain showed abundant collagen fiber deposits in the tunica albuginea with congested BV in the TRAM group. CONCLUSION The study illuminated the hazard of administration of these drugs for a long period as well as the prominent deleterious effects reported on concurrent use of both drugs.
Collapse
Affiliation(s)
- Noha A. Mowaad
- Department of Narcotics, Ergogenics, and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt,Corresponding author: Noha A.Mowaad. Department of Narcotics, Ergogenics, and Poisons, Medical Research and Clinical Studies Institute, National Research Centre.33 EL Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt. Tel: 0201003385528;
| | - Gihan F. Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Marwa E.A. El-Shamarka
- Department of Narcotics, Ergogenics, and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Sahar Khalil
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
18
|
Keshtgar S, Ghani E. Impact of calcium and reactive oxygen species on human sperm function: Role of NOX5. Andrologia 2022; 54:e14470. [PMID: 35679508 DOI: 10.1111/and.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
NOX5 is introduced as a new therapeutic target for infertility treatment. This study aimed to compare the basal and stimulated reactive oxygen species (ROS) production and sperm function in human teratozoospermic (n = 15) and normozoospermic (n = 17) semen samples following calcium overload and NOX5 activation. Washed spermatozoa incubated for 1 h under five various conditions: control group, adding a calcium ionophore A23187, phorbol myristate acetate (PMA), A23187 + PMA, and diphenylene iodonium (DPI) + A23187 + PMA. ROS generation was measured immediately after treatment for 30 min. Motility, viability, acrosome reaction, and apoptosis were evaluated after 1-h incubation. ROS production significantly increased when A23187 or PMA was added to the sperm medium. DPI had suppressive effects on ROS generation. Progressive and total motility significantly decreased following calcium elevation and NOX5 activation, which was somewhat returned by DPI. Necrotic and live cells in teratozoospermia was, respectively, higher and lower than normozoospermia samples. Incubation with A23187 significantly increased the percentage of early and late apoptosis. Teratozoosperm are more vulnerable than normal spermatozoa, and produce more basal and stimulated ROS. It seems that calcium overload induces apoptosis in spermatozoa and loss of viability through MPT pore opening and increased intracellular ROS.
Collapse
Affiliation(s)
- Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
19
|
Mohamed WH, Ali MF, Yahia D, Hussein HA. Reproductive effects of sulfoxaflor in male Sprague Dawley rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45751-45762. [PMID: 35149940 PMCID: PMC9209377 DOI: 10.1007/s11356-022-19006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The study objective was to evaluate the potential reproductive toxicity of sulfoxaflor (SFX) insecticide in male Sprague Dawley rats. To attain these objectives, forty male Sprague Dawley rats of 10-12 weeks old were randomly divided into four equal groups; the 1st group was used as a control group; the other three groups were exposed to 25, 100, and 500 mg/kg body weight SFX by oral gavage for 4 weeks. Relative testicular weight, testosterone, FSH, LH, MDA, and GPx levels, sperm viability, sperm morphology, sperm DNA damage, and histopathological changes in testes, epididymis, and seminal vesical of these rats were investigated after 4 weeks. The results showed that SFX exposure resulted in a significant increase in FSH, LH, MDA, and GPx levels as well as the percentage of dead and abnormal sperms and DNA damage in rat sperms. Histopathological examination of testes established testicular degeneration with coagulative necrosis as well as the proliferation of interstitial connective tissue infiltrated with inflammatory cells with congestion of intertubular blood vessels in epididymis and degeneration of lining epithelium of seminal vesicles.
Collapse
Affiliation(s)
- Wafaa H Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt.
| | - Marwa F Ali
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hassan A Hussein
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
20
|
Machado-Neves M. Effect of heavy metals on epididymal morphology and function: An integrative review. CHEMOSPHERE 2022; 291:133020. [PMID: 34848222 DOI: 10.1016/j.chemosphere.2021.133020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Male fertility has deteriorated over the last decades, and environmental risk factors are among the possible causes of this phenomenon. Pollutants such as heavy metals might accumulate in male reproductive organs to levels that are associated with reproductive disorders. Several studies reported detrimental effects of inorganic arsenic (iAs+3/iAs+5), cadmium (Cd+2), lead (Pb+2), and mercury (Hg+2/CH3Hg+2) on the epididymis, which plays a crucial role in sperm maturation. However, the magnitude of their effects and the consequences on the physiology of the epididymis are still unclear. Therefore, an integrative review with meta-analyses was conducted examining 138 studies to determine how exposure to arsenic, cadmium, lead, and mercury affects epididymal morphology and functions, using primarily murine data from experimental studies as a source. This study showed that exposure to metal(loids) reduced epididymal weight, sperm motility, and sperm number. Inorganic arsenic, cadmium, and lead damaged sperm structures within the epididymal duct. While sodium arsenite, sodium arsenate, and lead acetate generate oxidative stress by an imbalance between ROS production and scavenging, cadmium chloride causes an increase in the pH level of the luminal fluid (from 6.5 to 7.37) that diminishes sperm viability. Inorganic arsenic induced a delay in the sperm transit time by modulating noradrenaline and dopamine secretion. Subacute exposure to heavy metals at concentrations < 0.1 mg L-1 initiates a dyshomeostasis of calcium, copper, iron, and zinc that disturbs sperm parameters and reduces epididymal weight. These alterations worsen with prolonged exposure time and higher doses. Most studies evaluated the effects of concentrations > 1.1 mg L-1 of heavy metals on the epididymis rather than doses with relevant importance for human health risk. This meta-analytical study faced limitations regarding a deeper analysis of epididymis physiology. Hence, several recommendations for future investigations are provided. This review creates a baseline for the comprehension of epididymal toxicology.
Collapse
Affiliation(s)
- Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, DBG, Campus Universitário, Viçosa, 36570-900, Minas Gerais, Brasil.
| |
Collapse
|
21
|
α-Tocopherol Prevents Sperm Apoptosis and Necrosis in Rats Exposed to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Vet Med Int 2022; 2022:3685686. [PMID: 35237404 PMCID: PMC8885270 DOI: 10.1155/2022/3685686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant that induces overproduction of reactive oxygen species (ROS). Studies on avoiding the adverse effects of dioxin pollution exposure are needed in all aspects, including reproductive health. This study aimed to determine the effect of α-tocopherol on superoxide dismutase (SOD) and malondialdehyde (MDA) levels, live spermatozoa, apoptosis, and necrosis in male rats exposed to dioxin as a model. Thirty healthy 12-week-old male rats were randomly divided into five groups. Rats in the control group were given corn oil twice daily at 4-hour intervals. The remaining rats were given TCDD 700 mg/kg BW daily, followed by administration of corn oil and α-tocopherol at doses of 77, 140, and 259 mg/kg BW/d for T0, T1, T2, and T3 groups, respectively. The treatments were conducted for 45 days; all rats were euthanized to collect blood and testicular samples on day 46. The results showed that exposure of TCDD resulted in a decrease in SOD activity and live spermatozoa and increased MDA level and death, apoptosis, and necrosis of spermatozoa (T0) compared to the control (C) group (p < 0.05). The administration of α-tocopherol, starting from the doses of 77 (T1), 149 (T2), and 259 mg (T3) per kg BW, was sequentially followed by returning MDA levels, recovering SOD activities, and restoration in the percentage of living, dead, apoptotic, and necrotic spermatozoa, similar (p > 0.05) to those of the control group. It could be concluded that the administration of α-tocopherol resolves the harmful effects of TCDD on the viability of spermatozoa in rats as a model.
Collapse
|
22
|
Wurlina W, Mustofa I, Meles DK, Safitri E, Susilowati S, Mulyati S, Utomo B, Utama S. α-Tocopherol restores semen quality in rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Vet World 2022; 15:316-323. [PMID: 35400953 PMCID: PMC8980384 DOI: 10.14202/vetworld.2022.316-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background and Aim: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant toxic to the human reproductive system. This study aimed to evaluate the effect of α-Tocopherol administration on the male fertility parameters of a rat model exposed to TCDD. Materials and Methods: Fifty healthy 12-week-old male rats were randomly divided into five groups. Rats in the control group were given corn oil twice daily in 4 h intervals. In the treatment groups, all rats were given TCDD at a dose of 700 ng/kg of body weight (BW)/day for 45 days. Four hours after receiving the TCDD, T0 rats were given corn oil, and T1, T2, and T3 rats were given α-Tocopherol at doses of 77, 140, and 259 mg/kg BW/day, respectively, for 45 days. On day 46, experimental animals were sacrificed to collect blood and testicular samples. Results: TCDD exposure decreased superoxide dismutase activity, plasma membrane integrity, Leydig cell count, sperm cell count, sperm viability and motility, and increased malondialdehyde levels, serum testosterone levels, and sperm morphological abnormalities. The administration of α-Tocopherol mitigated the effects of TCDD exposure, and the 140 and 259 mg/kg BW/day treatments returned those male fertility parameters to normal levels. Conclusion: The administration of 140 mg/kg BW/day α-Tocopherol restored male semen quality in rats exposed to TCDD. We found dynamics serum testosterone levels in rats exposed to TCDD that need to be further studied.
Collapse
Affiliation(s)
- Wurlina Wurlina
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Imam Mustofa
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Dewa Ketut Meles
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Erma Safitri
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Suherni Susilowati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Sri Mulyati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Budi Utomo
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Suzanita Utama
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| |
Collapse
|
23
|
Peroxiredoxin 6 Peroxidase and Ca 2+-Independent Phospholipase A 2 Activities Are Essential to Support Male-Mouse Fertility. Antioxidants (Basel) 2022; 11:antiox11020226. [PMID: 35204109 PMCID: PMC8868156 DOI: 10.3390/antiox11020226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Human infertility is an important health problem that affects one in six couples worldwide. Half of these cases are due to male infertility. Oxidative stress is a common culprit of male infertility, promoting lipid peroxidation and the oxidation of proteins and DNA in spermatozoa, thereby impairing motility, capacitation and fertilization. Peroxiredoxin 6 (PRDX6) possesses peroxidase and Ca2+-independent-phospholipase-A2 (iPLA2) activities that scavenge ROS and repair oxidized sperm membranes, respectively. PRDX6 protects spermatozoa against oxidative stress. Infertile men’s spermatozoa have impaired motility, elevated lipid peroxidation levels and DNA damage due to low PRDX6 levels. A lack of PRDX6 is associated with male-mouse infertility. Here, we determined the impact of the absence of PRDX6 peroxidase or iPLA2 activities on male-mouse fertility. Two-month-old male C57Bl6/J (wild-type), Prdx6−/−, C47S and D140A knock-in (peroxidase- and iPLA2-deficient, respectively) male mice were challenged with an in vivo oxidative stress triggered by tert-butyl hydroperoxide (t-BHP). C47S and D140A males produced smaller litters compared to wild-type controls. The t-BHP treatment promoted a lower number of pups, high levels of lipid peroxidation, tyrosine nitration, and DNA oxidation in all mutant spermatozoa compared to wild-type controls. All mutant spermatozoa had impaired capacitation and motility. In summary, both PRDX6 peroxidase and iPLA2 activities are essential to support male-mouse fertility.
Collapse
|
24
|
Oxidative Stress-Induced Male Infertility: Role of Antioxidants in Cellular Defense Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:275-309. [PMID: 36472828 DOI: 10.1007/978-3-031-12966-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is linked to several environmental and mutagenic factors. Most of these factors, i.e., lifestyle, radiations, and chemical contaminations, work on the fundamental principles of physics, chemistry, and biology. Principally, it may induce oxidative stress (OS) and produce free radicals within the cells. The negative effect of OS may enhance the reactive oxygen species (ROS) levels in male reproductive organs and impair basic functions in a couple's fertility. Evidence suggests that infertile men have significantly increased ROS levels and a reduced antioxidant capacity compared with fertile men. Although, basic spermatic function and fertilizing capacity depend on a delicate balance between physiological activity of ROS and antioxidants to protect from cellular oxidative injury in sperm, that is essential to achieve pregnancy. The ideal oxidation-reduction (REDOX) equilibrium requires a maintenance of a range of ROS concentrations and modulation of antioxidants. For this reason, the chapter focuses on the effects of ROS in sperm functions and the current concepts regarding the benefits of medical management in men with diminished fertility and amelioration of the effect to improve sperm function. Also, this evidence-based study suggests an increasing rate of infertility that poses a global challenge for human health, urging the need of health care professionals to offer a correct diagnosis, comprehension of the process, and an individualized management of the patients.
Collapse
|
25
|
Nagaki CAP, Hamilton TRDS, Assumpção MEODÁ. What is known so far about bull sperm protamination: a review. Anim Reprod 2022; 19:e20210109. [DOI: 10.1590/1984-3143-ar2021-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
|
26
|
Tariba Lovaković B, Kašuba V, Sekovanić A, Orct T, Jančec A, Pizent A. Effects of Sub-Chronic Exposure to Imidacloprid on Reproductive Organs of Adult Male Rats: Antioxidant State, DNA Damage, and Levels of Essential Elements. Antioxidants (Basel) 2021; 10:1965. [PMID: 34943068 PMCID: PMC8750738 DOI: 10.3390/antiox10121965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Although considered a good alternative to organophosphate pesticides, there are reports indicating adverse effects of neonicotinoid insecticides on reproduction. Our aim was to assess the effects of exposure to low doses of imidacloprid on antioxidant state, DNA damage, and concentration of essential elements in the testes and epididymis using a rat model. Adult male Wistar rats were orally treated with doses comparable to currently proposed health-based reference values: 0.06 (ADI), 0.80 (10× AOEL), or 2.25 (1/200 LD50) mg/kg b.w./day for 28 consecutive days. Exposure to 2.25 mg/kg b.w./day of imidacloprid resulted in a significantly lower testis weight (1.30 ± 0.17 g compared to 1.63 ± 0.15 g in controls). Treatment with 0.06 mg/kg b.w./day increased the level of reduced glutathione in the epididymis (73%), while the activities of epididymal glutathione peroxidase and superoxide dismutase significantly increased in all treated rats (74-92% and 26-39%, respectively). Exposure to imidacloprid resulted in a low, but significant, level of DNA damage in testicular sperm cells regardless of the concentration applied (<28% compared to the negative control). Higher concentrations of Mo were measured in the testes of rats treated with 0.80 and 2.25 mg/kg b.w./day (72.9 ± 7.9 and 73.9 ± 9.1 mg/g, respectively) compared to the control animals (60.5 ± 7.8 mg/g). Higher concentrations of Na were measured in the testes of rats treated with 2.25 mg/kg b.w./day (1679 ± 82 mg/g compared to 1562 ± 56 mg/g in controls). The fact that such low doses of imidacloprid were able to produce measurable biological effects calls for the further evaluation of this widely used insecticide.
Collapse
Affiliation(s)
- Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Vilena Kašuba
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia;
| | - Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Antonija Jančec
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| |
Collapse
|
27
|
Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, Mandi M, Khatun S. Understanding the cross-talk between mediators of infertility and COVID-19. Reprod Biol 2021; 21:100559. [PMID: 34547545 PMCID: PMC8407955 DOI: 10.1016/j.repbio.2021.100559] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
COVID-19 is the ongoing health emergency affecting individuals of all ages around the globe. Initially, the infection was reported to affect pulmonary structures. However, recent studies have delineated the impacts of COVID-19 on the reproductive system of both men and women. Hence, the present review aims to shed light on the distribution of SARS-CoV-2 entry factors in various reproductive organs. In addition, impacts of COVID-19 mediators like disrupted renin angiotensin system, oxidative stress, cytokine storm, fever, and the mental stress on reproductive physiology have also been discussed. For the present study, various keywords were used to search literature on PubMed, ScienceDirect, and Google Scholar databases. Articles were screened for relevancy and were studied in detail for qualitative synthesis of the review. Through our literature review, we found a multitude of effects of COVID-19 mediators on reproductive systems. Studies reported expression of receptors like ACE-2, TMPRSS2, and CD147 in the testes, epididymis, prostrate, seminal vesicles, and ovarian follicles. These proteins are known to serve as major SARS-CoV-2 entry factors. The expression of lysosomal cathepsins (CTSB/CTSL) and/ neuropilin-1 (NRP-1) are also evident in the testes, epididymis, seminal vesicles, fallopian tube, cervix, and endometrium. The binding of viral spike protein with ACE-2 was found to alter the renin-angiotensin cascade, which could invite additional infertility problems. Furthermore, COVID-19 mediated cytokine storm, oxidative stress, and elevated body temperature could be detrimental to gametogenesis, steroidogenesis, and reproductive cycles in patients. Finally, social isolation, confinement, and job insecurities have fueled mental stress and frustration that might promote glucocorticoid-mediated subnormal sperm quality in men and higher risk of miscarriage in women. Hence, the influence of COVID-19 on the alteration of reproductive health and fertility is quite apparent.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sumedha Roy
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sayanti Podder
- Post Graduate Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, India
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya, Gushkara, Purba Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India
| |
Collapse
|
28
|
De Luca MN, Colone M, Gambioli R, Stringaro A, Unfer V. Oxidative Stress and Male Fertility: Role of Antioxidants and Inositols. Antioxidants (Basel) 2021; 10:antiox10081283. [PMID: 34439531 PMCID: PMC8389261 DOI: 10.3390/antiox10081283] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Infertility is defined as a couple’s inability to conceive after at least one year of regular unprotected intercourse. This condition has become a global health problem affecting approximately 187 million couples worldwide and about half of the cases are attributable to male factors. Oxidative stress is a common reason for several conditions associated with male infertility. High levels of reactive oxygen species (ROS) impair sperm quality by decreasing motility and increasing the oxidation of DNA, of protein and of lipids. Multi-antioxidant supplementation is considered effective for male fertility parameters due to the synergistic effects of antioxidants. Most of them act by decreasing ROS concentration, thus improving sperm quality. In addition, other natural molecules, myo-inositol (MI) and d-chiro–inositol (DCI), ameliorate sperm quality. In sperm cells, MI is involved in many transduction mechanisms that regulate cytoplasmic calcium levels, capacitation and mitochondrial function. On the other hand, DCI is involved in the downregulation of steroidogenic enzyme aromatase, which produces testosterone. In this review, we analyze the processes involving oxidative stress in male fertility and the mechanisms of action of different molecules.
Collapse
Affiliation(s)
- Maria Nunzia De Luca
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Riccardo Gambioli
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
- Correspondence:
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| |
Collapse
|
29
|
Mohammadi T, Soltani L. Effects of hydroethanolic extracts of Terminalia chebula and Thymbra spicata on ram fresh semen under normal and oxidative stress conditions. Vet Med Sci 2021; 7:1778-1785. [PMID: 34288575 PMCID: PMC8464289 DOI: 10.1002/vms3.580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate protective effects of hydroethanolic extracts of Terminalia chebula and Thymbra spicata on viability, lipid peroxidation (LPO) and DNA integrity of ram fresh semen under normal and oxidative stress (OS) conditions. Antioxidant activities of different concentrations of Terminalia chebula and Thymbra spicata extracts were evaluated with DPPH assay. Semen samples were taken from three fertile adult rams. After diluting semen with Tris-base extender, different concentrations of Terminalia chebula and Thymbra spicata (30, 300, and 3000 μg/ml) extracts were used under normal and induced OS conditions. The group not receiving any supplements was considered as control group. A total of 50 μM hydrogen peroxide was used to induce OS. MTT solution was added to each of treatment groups which were kept in an incubator at 37°C for 2 h. After incubation, readings were obtained by ELISA reader. DNA integrity and LPO were determined with acridine orange (AO) staining and malondialdehyde (MDA) assay. Higher concentrations of Terminalia chebula and Thymbra spicata extracts preserved viability and DNA integrity while reducing MDA concentrations compared to other treatment groups. Also, under induced OS, higher concentrations of both extracts reduced detrimental effects of H2 O2 . In conclusion, it seems that addition of Terminalia chebula and Thymbra spicata extracts can reduce induced OS in spermatozoa.
Collapse
Affiliation(s)
- Tayebeh Mohammadi
- Basic Sciences and Pathobiology Department, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
30
|
Erukainure OL, Salau VF, Oyenihi AB, Mshicileli N, Chukwuma CI, Islam MS. Strawberry fruit (Fragaria x ananassa Romina) juice attenuates oxidative imbalance with concomitant modulation of metabolic indices linked to male infertility in testicular oxidative injury. Andrologia 2021; 53:e14175. [PMID: 34255375 DOI: 10.1111/and.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
This study investigated the protective properties of strawberry fruit on testicular oxidative injury. Oxidative injury was induced in vitro in testicular tissue homogenates by incubation with ferrous sulphate (FeSO4 ) in the presence and absence of strawberry fruit extract (SFE) for 30 min at 37˚C, with gallic acid serving as the standard antioxidant drug. Induction of oxidative injury significantly reduced glutathione, cholesterol and triglyceride levels; and inhibited SOD, catalase and ENTPDase activities when compared to normal control. It also led to exacerbated nitric oxide, malondialdehyde, LDL-cholesterol levels, acetylcholinesterase, ATPase and lipase activities. These effects were, however, reversed following treatment with SFE when compared to the untreated control, except for cholesterol and triglyceride levels. Additionally, the induction of the oxidative injury led to alterations in testicular lipid metabolites that were accompanied by the activation of α-linolenic acid and linoleic acid metabolic pathways. While SFE treatment had no significant impact on the altered metabolites, it repressed pathways for mitochondrial beta-oxidation of long-chain saturated fatty acids and plasmalogen synthesis. High-performance liquid chromatography analysis of SFE revealed the presence of rutin, caffeic acid, p-coumarin and cinnamic acid. These data imply the protective potentials of strawberry fruits against testicular oxidative injury.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| | - Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Ndumiso Mshicileli
- AgriFood Technology Station, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| |
Collapse
|
31
|
Olofinsan KA, Salau VF, Erukainure OL, Islam MS. Ocimum tenuiflorum mitigates iron-induced testicular toxicity via modulation of redox imbalance, cholinergic and purinergic dysfunctions, and glucose metabolizing enzymes activities. Andrologia 2021; 53:e14179. [PMID: 34228819 DOI: 10.1111/and.14179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a primary culprit in the pathophysiology of infertility conditions in males. This study investigated the effects of Ocimum tenuiflorum on redox imbalance, cholinergic and purinergic dysfunctions and glucose dysmetabolism in oxidative-mediated testicular toxicity using in vitro, ex vivo and in silico models. Induction of oxidative testicular injury was carried out by incubating normal testicular tissue with 0.1 mM FeSO4 and treated by co-incubating with different concentrations of O. tenuiflorum infusion for 30 min at 37°C. O. tenuiflorum displayed significant ferric reducing power activity while scavenging DPPH and hydroxyl (OH˙) free radicals in vitro. Oxidative testicular injury significantly reduced the glutathione level and superoxide dismutase and catalase activities with concomitant elevation of malondialdehyde and nitric oxide levels and acetylcholinesterase, ATPase, fructose-1,6-bisphosphatase and glycogen phosphorylase (GlyP) activities. Incubation with the infusion significantly reversed these levels and activities. The phytochemical constituent of the infusion was detected by gas chromatography-mass spectroscopy analysis and revealed favourable binding energies when docked with some of the studied proteins. These results suggest O. tenuiflorum exerts a protective effect against Fe2+ induced testicular toxicity via mitigation of redox imbalance while modulating metabolic dysfunctions linked to male infertility.
Collapse
Affiliation(s)
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
32
|
Jimoh OA, Oyeyemi WA, Okin-Aminu HO, Oyeyemi BF. Reproductive characteristics, semen quality, seminal oxidative status, steroid hormones, sperm production efficiency of rabbits fed herbal supplements. Theriogenology 2021; 168:41-49. [PMID: 33845263 DOI: 10.1016/j.theriogenology.2021.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
Today, orthodox medicine has almost exceeded its limits in resolving subfertility problems in animals, thus making phytomedicine a primary tool in the treatment of infertility. In this work, three herbal supplements obtained from freshly air-dried Moringa oleifera, Phyllanthus amarus and Viscum album leaves were evaluated to ascertain their comparative effect on the reproductive potentials of bucks. Sixty bucks were allotted four diets made up of standard grower rabbit ration without supplement and with 5% Moringa, Mistletoe and Phyllanthus supplementation for 84 days. Semen samples were collected from all bucks using artificial vagina, for semen quality and seminal oxidative stress markers. The organ weights, testicular and epididymal spermatozoa reserves were assessed to determine sperm production potentials using standard procedures. The result obtained revealed that spermatozoa concentration, progressive motility, curvilinear velocity, average path velocity and the amplitude of lateral head was significantly (p < 0.05) higher in the group fed with mistletoe supplemented diet compared to that recorded in the control groups. The inclusion of herbal supplements linearly (p < 0.05) increased the seminal total antioxidant activity with a corresponding decrease in the seminal lipid peroxidation across the herbal supplemented treatments compared to the control. The gonadal and extra-gonadal sperm reserves of bucks fed on the herbal supplements were depleted compared to bucks on control. Bucks on mistletoe supplementation rivalled the superior daily sperm production and testicular sperm reserve in bucks without herbal supplements. In conclusion, Viscum album supplements in bucks' diets encouraged daily sperm production, testicular sperm reserves, testosterone, as well as spermatozoa kinetics. The three herbal supplements did enhance semen oxidative stability.
Collapse
Affiliation(s)
- Olatunji Abubakar Jimoh
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ekiti State, Nigeria.
| | | | | | - Bolaji Fatai Oyeyemi
- Department of Science Technology, Federal Polytechnic Ado Ekiti, Ekiti State, Nigeria.
| |
Collapse
|
33
|
Kianifard D, Shoar SMM, Karkan MF, Aly A. Effects of monosodium glutamate on testicular structural and functional alterations induced by quinine therapy in rat: An experimental study. Int J Reprod Biomed 2021; 19:167-180. [PMID: 33718761 PMCID: PMC7922298 DOI: 10.18502/ijrm.v19i2.8475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/04/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Quinine (QU) as an anti-malarial drug induces alterations in testicular tissue. Toxic effects of monosodium glutamate (MSG) on the male reproductive system have been recognized. OBJECTIVE To investigate the impact of MSG administration on the intensity of gonadotoxicity of QU. MATERIALS AND METHODS Sixty eight-wk old Wistar rats weighing 180-200 gr were divided into six groups (n = 10/each): the first group as a control; the second and third groups received low and high doses of MSG (2 & 4 gr/kg i.p.), respectively, for 28 days; the fourth group received QU for seven days (25 mg/kg); and in the fifth and sixth groups, QU was gavaged following the MSG administration (MSG + QU) from day 22 to day 28. Serum testosterone and malondialdehyde (MDA) levels were measured. Testes samples were prepared for tissue MDA levels, histomorphometry, and immunohistochemistry of p53. Sperm analysis was performed on cauda epididymis. RESULTS Serum and tissue MDA levels were increased in treated groups compared to the control group. This increment was higher in the MSG + QU groups. The testosterone levels were reduced significantly (p < 0.0001) in all treated groups. In addition, histomorphometric indices and tubular epithelium population were reduced significantly (p < 0.0001) in QU, MSG + QU, and consequently in high-dose MSG, QU, MSG + QU groups. All spermatogenic indices were reduced in the treated groups, particularly in the MSG + QU groups. Sperm motility and viability indices were reduced significantly (p = 0.003) in the MSG + QU groups. Finally, the overexpression of p53 was observed in the MSG + QU groups. CONCLUSION The administration of MSG before and during QU therapy may intensify testicular tissue alterations.
Collapse
Affiliation(s)
- Davoud Kianifard
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyyed Maysam Mousavi Shoar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Morteza Fallah Karkan
- Department of Urology, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmed Aly
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
| |
Collapse
|
34
|
Erukainure OL, Matsabisa MG, Salau VF, Erhabor JO, Islam MS. Cannabis sativa L. Mitigates Oxidative Stress and Cholinergic Dysfunction; and Modulates Carbohydrate Metabolic Perturbation in Oxidative Testicular Injury. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s00580-021-03200-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Roychoudhury S, Das A, Jha NK, Kesari KK, Roychoudhury S, Jha SK, Kosgi R, Choudhury AP, Lukac N, Madhu NR, Kumar D, Slama P. Viral pathogenesis of SARS-CoV-2 infection and male reproductive health. Open Biol 2021; 11:200347. [PMID: 33465325 PMCID: PMC7881178 DOI: 10.1098/rsob.200347] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a new public health crisis, threatening almost all aspects of human life. Originating in bats, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted to humans through unknown intermediate hosts, where it is primarily known to cause pneumonia-like complications in the respiratory system. Organ-to-organ transmission has not been ruled out, thereby raising the possibility of the impact of SARS-CoV-2 infection on multiple organ systems. The male reproductive system has been hypothesized to be a potential target of SARS-CoV-2 infection, which is supported by some preliminary evidence. This may pose a global threat to male fertility potential, as men are more prone to SARS-CoV-2 infection than women, especially those of reproductive age. Preliminary reports have also indicated the possibility of sexual transmission of SARS-CoV-2. It may cause severe complications in infected couples. This review focuses on the pathophysiology of potential SARS-CoV-2 infection in the reproductive organs of males along with their invasion mechanisms. The risks of COVID-19 on male fertility as well as the differences in vulnerability to SARS-CoV-2 infection compared with females have also been highlighted.
Collapse
Affiliation(s)
| | - Anandan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP, India
| | | | - Shatabhisha Roychoudhury
- Department of Microbiology, R. G. Kar Medical College and Hospital, Kolkata, India.,Health Centre, Assam University, Silchar, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP, India
| | - Raghavender Kosgi
- Department of Urology and Andrology, AIG Hospitals, Gachibowli, Hyderabad, India
| | - Arun Paul Choudhury
- Department of Obstetrics and Gynecology, Silchar Medical College and Hospital, Silchar, India
| | - Norbert Lukac
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Nithar Ranjan Madhu
- Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, North 24 Parganas, West Bengal, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
36
|
Arun S, Chaiyamoon A, Lapyuneyong N, Bunsueb S, Wu ATH, Iamsaard S. Chronic stress affects tyrosine phosphorylated protein expression and secretion of male rat epididymis. Andrologia 2021; 53:e13981. [PMID: 33469986 DOI: 10.1111/and.13981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress (CS) is shown to decrease the semen quality with changed expression of tyrosine phosphorylated (TyrPho) proteins in testicular and seminal tissues. However, the alterations of such proteins and fluid contents in the epididymis, producing sperm maturation factors, have never been reported. Sixteen adult rats were randomly divided into 2 groups (n = 8). The control animals were not subjected to stressors whereas CS rats were immobilised within restraint cage (4 hr/day) before cold forced-water swimming (15 min/day) for 60 days. Corticosterone, testosterone, blood glucose level (BGL), malondialdehyde (MDA) and biochemical components in epididymal fluid were assayed. Expressions of heat shock protein 70 (HSP-70), androgen receptor (AR) and TyrPho protein were investigated in epididymal tissue and fluid. Significantly, CS increased the corticosterone and BGL but decreased testosterone and epididymal substance levels. MDA level in tail epididymal fluid and HSP-70 expression in both regions of epididymal tissues and fluids, except in head epididymal fluid of CS were increased. Epididymal tissues showed the decrease of AR expression. Presence and changes of many TyrPho proteins were observed in CS. In conclusion, CS could affect functional proteins particularly TyrPho in epididymis, resulted in low semen quality.
Collapse
Affiliation(s)
- Supatcharee Arun
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Natthapol Lapyuneyong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sudtida Bunsueb
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alexander Tsang-Hsien Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
37
|
Park YJ, Pang MG. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants (Basel) 2021; 10:antiox10010098. [PMID: 33445610 PMCID: PMC7826524 DOI: 10.3390/antiox10010098] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are structurally and functionally distinct organelles that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), to provide energy to spermatozoa. They can also produce reactive oxidation species (ROS). While a moderate concentration of ROS is critical for tyrosine phosphorylation in cholesterol efflux, sperm–egg interaction, and fertilization, excessive ROS generation is associated with male infertility. Moreover, mitochondria participate in diverse processes ranging from spermatogenesis to fertilization to regulate male fertility. This review aimed to summarize the roles of mitochondria in male fertility depending on the sperm developmental stage (from male reproductive tract to female reproductive tract). Moreover, mitochondria are also involved in testosterone production, regulation of proton secretion into the lumen to maintain an acidic condition in the epididymis, and sperm DNA condensation during epididymal maturation. We also established the new signaling pathway using previous proteomic data associated with male fertility, to understand the overall role of mitochondria in male fertility. The pathway revealed that male infertility is associated with a loss of mitochondrial proteins in spermatozoa, which induces low sperm motility, reduces OXPHOS activity, and results in male infertility.
Collapse
|
38
|
Homma T, Kurahashi T, Ishii N, Shirasawa N, Fujii J. Testis-specific peroxiredoxin 4 variant is not absolutely required for spermatogenesis and fertility in mice. Sci Rep 2020; 10:17934. [PMID: 33087733 PMCID: PMC7577974 DOI: 10.1038/s41598-020-74667-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022] Open
Abstract
PRDX4, a member of peroxiredoxin family, is largely concentrated in the endoplasmic reticulum (ER) and plays a pivotal role in the redox relay during oxidative protein folding as well as in peroxidase reactions. A testis-specific PRDX4 variant transcript (PRDX4t) lacks the conventional exon 1, which encodes the signal peptide that is required for entry into the ER lumen, but instead carries alternative exon 1, which is transcribed from the upstream promoter in a testis-specific manner and results in the PRDX4t protein being localized in the cytosol. However, the potential roles of PRDX4t in male genital action remain unknown. Using a CRISPR/Cas9 system, we first disrupted the testis-specific promoter/exon 1 and generated mice that were specifically deficient in PRDX4t. The resulting PRDX4t knockout (KO) mice underwent normal spermatogenesis and showed no overt abnormalities in the testis. Mating PRDX4t KO male mice with wild-type (WT) female mice produced normal numbers of offspring, indicating that a PRDX4t deficiency alone had no effect on fertility in the male mice. We then generated mice lacking both PRDX4 and PRDX4t by disrupting exon 2, which is communal to these variants. The resulting double knockout (DKO) mice were again fertile, and mature sperm isolated from the epididymis of DKO mice exhibited a normal fertilizing ability in vitro. In the meantime, the protein levels of glutathione peroxidase 4 (GPX4), which plays an essential role in the disulfide bond formation during spermatogenesis, were significantly increased in the testis and caput epididymis of the DKO mice compared with the WT mice. Based on these results, we conclude that the disruption of the function of PRDX4t in the spermatogenic process appears to be compensated by other factors including GPX4.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.,Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| | - Nobuyuki Shirasawa
- Department of Rehabilitation, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, 981-8551, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| |
Collapse
|
39
|
Otuechere CA, Adewuyi A, Adebayo OL, Yawson E, Kabiawu O, Al-Rashed S, Okubio B, Beshbishy AM, Batiha GES. Histomorphological and Redox Delineations in the Testis and Epididymis of Albino Rats Fed with Green-Synthesized Cellulose. BIOLOGY 2020; 9:biology9090246. [PMID: 32854280 PMCID: PMC7564467 DOI: 10.3390/biology9090246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/21/2022]
Abstract
It has also become increasingly necessary to diversify the production of cellulose for biomedical applications. In this study, cellulose-green-synthesized from Sesamum indicum (GSC)—was administered orally to rats for 14 days as follows: control, 100, 200 and 400 mg/kg GSC. The impact of GSC on the antioxidant status and histomorphology of the testes and epididymis were studied. GSC had no effects on organ weights and organosomatic indices. In the testes, GSC caused nonsignificant changes in superoxide dismutase, catalase, reduced glutathione and nitric oxide levels, whereas it significantly decreased glutathione peroxidase and malondialdehyde levels. In the epididymis, GSC significantly decreased superoxide dismutase and nitric oxide levels, but caused a significant increase in glutathione peroxidase and reduced glutathione levels. Furthermore, at ×200 magnification, testicular morphology appeared normal at all doses, however, extravasation of the germinal epithelium of the epididymis was observed at doses of 200 and 400 mg/kg GSC. Conversely, at ×400 magnification, spermatogenic arrest (testes) and chromatolytic alterations (epididymis) were observed at the higher doses (200 and 400 mg/kg GSC). This study reports on the effect of green-synthesized cellulose on testicular and epididymal histology and redox status and further extends the frontiers of research on cellulose.
Collapse
Affiliation(s)
- Chiagoziem A. Otuechere
- Department of Biochemistry, Redeemer’s University, Ede, Osun State 232102, Nigeria; (O.L.A.); (O.K.); (B.O.)
- Correspondence:
| | - Adewale Adewuyi
- Department of Chemical Sciences, Redeemer’s University, Ede, Osun State 232102, Nigeria;
| | - Olusegun L. Adebayo
- Department of Biochemistry, Redeemer’s University, Ede, Osun State 232102, Nigeria; (O.L.A.); (O.K.); (B.O.)
| | - Emmanuel Yawson
- Department of Anatomy, Redeemer’s University, Ede, Osun State 232102, Nigeria;
| | - Omolara Kabiawu
- Department of Biochemistry, Redeemer’s University, Ede, Osun State 232102, Nigeria; (O.L.A.); (O.K.); (B.O.)
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Blessing Okubio
- Department of Biochemistry, Redeemer’s University, Ede, Osun State 232102, Nigeria; (O.L.A.); (O.K.); (B.O.)
| | - Amany M. Beshbishy
- National Research Center for Protozoan Disease, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt;
| |
Collapse
|
40
|
Reactive Oxygen Species and Male Fertility. Antioxidants (Basel) 2020; 9:antiox9040287. [PMID: 32235383 PMCID: PMC7222198 DOI: 10.3390/antiox9040287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
Human infertility affects ~15% of couples worldwide, and it is now recognized that in half of these cases, the causes of infertility can be traced to men[...].
Collapse
|