1
|
Tabassum S, Wu S, Lee CH, Yang BSK, Gusdon AM, Choi HA, Ren XS. Mitochondrial-targeted therapies in traumatic brain injury: From bench to bedside. Neurotherapeutics 2024:e00515. [PMID: 39721917 DOI: 10.1016/j.neurot.2024.e00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide, with limited effective therapeutic options currently available. Recent research has highlighted the pivotal role of mitochondrial dysfunction in the pathophysiology of TBI, making mitochondria an attractive target for therapeutic intervention. This review comprehensively examines advancements in mitochondrial-targeted therapies for TBI, bridging the gap from basic research to clinical applications. We discuss the underlying mechanisms of mitochondrial damage in TBI, including oxidative stress, impaired bioenergetics, mitochondrial dynamics, and apoptotic pathways. Furthermore, we highlight the complex interplay between mitochondrial dysfunction, inflammation, and blood-brain barrier (BBB) integrity, elucidating how these interactions exacerbate injury and impede recovery. We also evaluate various preclinical studies exploring pharmacological agents, gene therapy, and novel drug delivery systems designed to protect and restore mitochondrial function. Clinical trials and their outcomes are assessed to evaluate the translational potential of mitochondrial-targeted therapies in TBI. By integrating findings from bench to bedside, this review emphasizes promising therapeutic avenues and addresses remaining challenges. It also provides guidance for future research to pave the way for innovative treatments that improve patient outcomes in TBI.
Collapse
Affiliation(s)
- Sidra Tabassum
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Silin Wu
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Bosco Seong Kyu Yang
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Aaron M Gusdon
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Huimahn A Choi
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xuefang S Ren
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
2
|
Liang X, Saleh MG, Xu S, Mayer D, Roys S, Raghavan P, Badjatia N, Gullapalli RP, Zhuo J. Simultaneous Measurement of GABA, Glutathione, and Glutamate-Glutamine in the Thalamus using Edited MR Spectroscopy: Feasibility and Applications in Traumatic Brain Injury. J Magn Reson Imaging 2024; 60:2485-2496. [PMID: 38363087 PMCID: PMC11327382 DOI: 10.1002/jmri.29299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND MR spectroscopy (MRS) is a noninvasive tool for evaluating biochemical alterations, such as glutamate (Glu)/gamma-aminobutyric acid (GABA) imbalance and depletion of antioxidative glutathione (GSH) after traumatic brain injury (TBI). Thalamus, a critical and vulnerable region post-TBI, is challenging for MRS acquisitions, necessitating optimization to simultaneously measure GABA/Glu and GSH. PURPOSE To assess the feasibility and optimize acquisition and processing approaches for simultaneously measuring GABA, Glx (Glu + glutamine (Gln)), and GSH in the thalamus, employing Hadamard encoding and reconstruction of MEscher-GArwood (MEGA)-edited spectroscopy (HERMES). STUDY TYPE Prospective. SUBJECTS 28 control subjects (age: 35.9 ± 15.1 years), and 17 mild TBI (mTBI) patients (age: 32.4 ± 11.3 years). FIELD STRENGTH/SEQUENCE 3T/T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE), HERMES. ASSESSMENT We evaluated the impact of acquisition with spatial saturation bands and post-processing with spectral alignment on HERMES performance in the thalamus among controls. Within-subject variability was examined in five controls through repeated scans within a week. The HERMES spectra in the posterior cingulate cortex (PCC) of controls were used as a reference for assessing HERMES performance in a reliable target. Furthermore, we compared metabolite levels and fitting quality in the thalamus between mTBI patients and controls. STATISTICAL TESTS Unpaired t-tests and within-subject coefficient-of-variation (CV). A P-value <0.05 was deemed significant. RESULTS HERMES spectra, acquired with saturation bands and processed with spectral alignment, yielded reliable metabolite measurements in the thalamus. The mean within-subject CV for GABA, Glx, and GSH levels were 18%, 10%, and 16% in the thalamus (7%, 9%, and 16% in the PCC). GABA (3.20 ± 0.60 vs 2.51 ± 0.55, P < 0.01) and Glx (8.69 ± 1.23 vs 7.72 ± 1.19, P = 0.03) levels in the thalamus were significantly higher in mTBI patients than in controls, with GSH (1.27 ± 0.35 vs 1.22 ± 0.28, P = 0.65) levels showing no significant difference. DATA CONCLUSION Simultaneous measuring GABA/Glx and GSH using HERMES is feasible in the thalamus, providing valuable insight into TBI. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xiao Liang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muhammad G Saleh
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Su Xu
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dirk Mayer
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Steven Roys
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao P Gullapalli
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiachen Zhuo
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Bhargavi KM, Gowthami N, Chetan GK, Srinivas Bharath MM. Neuroprotective effects of nutraceuticals and natural products in traumatic brain injury. Neurochem Int 2024; 182:105904. [PMID: 39551243 DOI: 10.1016/j.neuint.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Traumatic Brain Injury (TBI) is a global healthcare concern with considerable mortality and morbidity. Early diagnosis and timely treatment are critical for optimal clinical prognosis in TBI patients. Injury to the brain tissue following TBI is categorized into primary and secondary injury events, with the former being acute, while the latter evolves over a long period. Although surgical intervention is effective to treat primary injury, secondary injury events that could contribute to long term neurological deterioration, cognitive impairment and neurodegeneration do not have appropriate pharmacotherapy. To address this lacuna, studies based on modern medicine to explore novel drugs in TBI have met with limited success. This has led to focussed efforts to assess natural products capable of targeting multiple pathways in TBI. Complex natural mixtures and isolated phytochemicals capable of targeting redox mechanisms, neuroinflammation, mitochondrial dysfunction, cell death pathways and other specific targets etc. have been characterized. However, the field has met with certain limitations and challenges with inadequate clinical studies and trials being the most important concern. The current review provides an overview of the dietary factors, nutraceuticals, natural extracts, and phytochemicals that could be potentially applied in neuroprotection, TBI therapy and long-term management of cognitive symptoms and other neurological deficits.
Collapse
Affiliation(s)
- K M Bhargavi
- Department of Clinical Psychopharmacology and Neurotoxicology (CPNT), National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India; Department of Human Genetics, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology (CPNT), National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India
| | - G K Chetan
- Department of Human Genetics, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology (CPNT), National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India; Center for Neurobehavioural Toxicology, Department of CPNT, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India.
| |
Collapse
|
4
|
Monti DA, Faezeh V, Zabrecky G, Alizadeh M, Wintering N, Bazzan AJ, Mohamed FB, Newberg AB. Changes in Resting-State Functional Connectivity and Cognitive-Affective Symptoms in Patients With Post-Concussion Syndrome Treated With N-Acetyl Cysteine. J Head Trauma Rehabil 2024:00001199-990000000-00211. [PMID: 39531327 DOI: 10.1097/htr.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Concussion accounts for more than 80% of people experiencing traumatic brain injury. Acute concussion is associated with characteristic cognitive and functional deficits that may persist for weeks to months. A subgroup of these patients (from 10% to 50%) have persistent symptoms referred to as chronic post-concussion syndrome (PCS). There are limited treatment options for these patients and the pathophysiology is poorly understood, though oxidative stress is thought to be a contributing factor. The purpose of this study was to evaluate whether an antioxidant, N-acetylcysteine (NAC), might be beneficial in patients with PCS. SETTING Outpatient medicine center. PARTICIPANTS Fifty patients with chronic PCS for at least 3 months post injury. DESIGN The patients with PCS were enrolled in this randomized unblinded clinical trial to receive the antioxidant NAC as a combination of daily oral and weekly intravenous infusions, or assigned to a waitlist control group where they would continue to receive standard of care. MAIN MEASURES Resting-state functional connectivity (FC) magnetic resonance imaging (rsFC-MRI) was performed pre and post either NAC or the waitlist period along with cognitive, emotional, and sensory symptom assessments. RESULTS The results demonstrated significant (P < .05) improvements in symptoms as determined by the Rivermead Post-Concussion Symptoms Questionnaire, Spielberger State-Trait Anxiety Inventory, and Profile of Mood Scale in the PCS group receiving NAC as compared to patients receiving ongoing standard care. Importantly, there were significant (P< .01) changes in FC in the NAC group, particularly in networks such as the default mode network, salience network, and executive control network. These changes in FC also correlated with improvements in symptoms. CONCLUSIONS In patients with chronic PCS, NAC treatment was associated with significant changes in resting state FC and improvement in a variety of symptoms, particularly cognitive and affective symptoms.
Collapse
Affiliation(s)
- Daniel A Monti
- Author Affiliations: Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA (Drs Monti and Zabrecky, Ms Wintering, and Drs Bazzan and Newberg); and Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA (Ms Vedaei and Drs Alizadeh, Mohamed, and Newberg)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Hu H, Gao H, Wang K, Jin Z, Zheng W, Wang Q, Yang Y, Yu C, Xu K, Gao C. Effective treatment of traumatic brain injury by injection of a selenium-containing ointment. Acta Biomater 2024; 187:161-171. [PMID: 39236795 DOI: 10.1016/j.actbio.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Traumatic brain injury (TBI) is an incurable and overwhelming disease accompanied with serve disability and huge financial burden, where the overproduced reactive oxygen species (ROS) can exacerbate the secondary injury, leading to massive apoptosis of neurons. In this study, β-cyclodextrin (CD)-capped hyperbranched polymers containing selenium element (HSE-CD) were crosslinked with CD-modified hyaluronic acid (HA-CD) and amantadine-modified hyaluronic acid (HA-AD) to obtain a ROS-responsive ointment (R-O). The structures of synthesized polymers were characterized with 1H nuclear magnetic resonance, and the properties of ointment were investigated with rheology and antioxidation. Compared to non-ROS-responsive ointment (N-O), the R-O ointment had stronger efficiency in decreasing the ROS level in BV2 cells in vitro. In a controlled rat cortical impact (CCI) model, the R-O ointment could relieve the DNA damage and decrease apoptosis in injured area via reducing the ROS level. Besides, after the R-O treatment, the rats showed significantly less activated astrocytes and microglia, a lower level of pro-inflammatory cytokines and a higher ratio of M2/M1 macrophage and microglia. Moreover, compared to the TBI group the R-O ointment promoted the doublecortin (DCX) expression and tissue structure integrity around the cavity, and promoted the recovery of nerve function post TBI. STATEMENT OF SIGNIFICANCE: Traumatic brain injury (TBI) is an incurable and overwhelming disease, leading to severe disability and huge social burden, where reactive oxygen species (ROS) are considered as one of the most significant factors in the secondary injury of TBI. A ROS responsive supramolecular ointment containing di-selenide bonds was injected in rats with controlled cortical impact. It relieved the DNA damage and decreased apoptosis in the injured area via reducing the ROS levels, downregulated neuroinflammation, and improved neurological recovery of TBI in vivo. This designed self-adaptive biomaterial effectively regulated the pathological microenvironment in injured tissue, and achieved better therapeutic effect.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huan Gao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zeyuan Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufang Yang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Chaonan Yu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
6
|
Lana JV, Rios A, Takeyama R, Santos N, Pires L, Santos GS, Rodrigues IJ, Jeyaraman M, Purita J, Lana JF. Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions. Nutrients 2024; 16:2476. [PMID: 39125356 PMCID: PMC11314501 DOI: 10.3390/nu16152476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Glutathione (GSH), a tripeptide synthesized intracellularly, serves as a pivotal antioxidant, neutralizing reactive oxygen species (ROS) and reactive nitrogen species (RNS) while maintaining redox homeostasis and detoxifying xenobiotics. Its potent antioxidant properties, particularly attributed to the sulfhydryl group (-SH) in cysteine, are crucial for cellular health across various organelles. The glutathione-glutathione disulfide (GSH-GSSG) cycle is facilitated by enzymes like glutathione peroxidase (GPx) and glutathione reductase (GR), thus aiding in detoxification processes and mitigating oxidative damage and inflammation. Mitochondria, being primary sources of reactive oxygen species, benefit significantly from GSH, which regulates metal homeostasis and supports autophagy, apoptosis, and ferroptosis, playing a fundamental role in neuroprotection. The vulnerability of the brain to oxidative stress underscores the importance of GSH in neurological disorders and regenerative medicine. Nebulization of glutathione presents a novel and promising approach to delivering this antioxidant directly to the central nervous system (CNS), potentially enhancing its bioavailability and therapeutic efficacy. This method may offer significant advantages in mitigating neurodegeneration by enhancing nuclear factor erythroid 2-related factor 2 (NRF2) pathway signaling and mitochondrial function, thereby providing direct neuroprotection. By addressing oxidative stress and its detrimental effects on neuronal health, nebulized GSH could play a crucial role in managing and potentially ameliorating conditions such as Parkinson's Disease (PD) and Alzheimer's Disease (AD). Further clinical research is warranted to elucidate the therapeutic potential of nebulized GSH in preserving mitochondrial health, enhancing CNS function, and combating neurodegenerative conditions, aiming to improve outcomes for individuals affected by brain diseases characterized by oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- João Vitor Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.)
| | - Alexandre Rios
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Renata Takeyama
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Napoliane Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
| | - Izair Jefthé Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
- Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India
| | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
| | - Jose Fábio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.)
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13918-110, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| |
Collapse
|
7
|
Banderwal R, Kadian M, Garg S, Kumar A. 'Comprehensive review of emerging drug targets in traumatic brain injury (TBI): challenges and future scope. Inflammopharmacology 2024:10.1007/s10787-024-01524-w. [PMID: 39023681 DOI: 10.1007/s10787-024-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
Traumatic brain injury (TBI) is a complex brain problem that causes significant morbidity and mortality among people of all age groups. The complex pathophysiology, varied symptoms, and inadequate treatment further precipitate the problem. Further, TBI produces several psychiatric problems and other related complications in post-TBI survival patients, which are often treated symptomatically or inadequately. Several approaches, including neuroprotective agents targeting several pathways of oxidative stress, neuroinflammation, cytokines, immune system GABA, glutamatergic, microglia, and astrocytes, are being tried by researchers to develop effective treatments or magic bullets to manage the condition effectively. The problem of TBI is therefore treated as a challenge among pharmaceutical scientists or researchers to develop drugs for the effective management of this problem. The goal of the present comprehensive review is to provide an overview of the several pharmacological targets, processes, and cellular pathways that researchers are focusing on, along with an update on their current state.
Collapse
Affiliation(s)
- Rittu Banderwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Monika Kadian
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukant Garg
- Department of General Pathology, Dr HS Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Khaksari M, Shahryari M, Raji-Amirhasani A, Soltani Z, Bibak B, Keshavarzi Z, Shakeri F. Aloe vera Leaf Extract Reduced BBB Permeability and Improved Neurological Results after Traumatic Brain Injury: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5586814. [PMID: 39040520 PMCID: PMC11262876 DOI: 10.1155/2024/5586814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/24/2024]
Abstract
Introduction Recognizing the importance of medicinal plants and the absence of specific medications for traumatic brain injury (TBI) treatment, this study was conducted to evaluate the effects of an aqueous extract of Aloe vera on oxidative stress, blood-brain barrier (BBB) permeability, and neurological scores following TBI. Materials and Methods Adult male rats were categorized into five groups: sham, TBI, vehicle, low-dose Aloe vera (LA), and high-dose Aloe vera (HA). We induced diffuse TBI using the Marmaro model and administered the aqueous Aloe vera leaf extract, as well as vehicle, via intraperitoneal injection half an hour after TBI. Neurological outcomes were assessed both before and several hours after TBI. Additionally, oxidative stress factors were measured 24 hr after TBI, and Evans blue content (a BBB permeability index) was determined 5 hr after TBI in both serum and brain. Results Both LA and HA reduced the increase in BBB permeability after TBI, with HA having a more pronounced effect than LA. Both Aloe vera doses decreased brain MDA levels, increased brain TAC, and lowered both serum and brain PC levels. The impact of Aloe vera on brain oxidative parameters was more significant than on serum. HA also counteracted the declining effects of TBI on neurological outcomes at 4 and 24 hr post-TBI. Conclusion This study suggests that Aloe vera extract may reduce BBB permeability and improve neurological outcomes after TBI by decreasing oxidative factors and increasing antioxidant factors.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Shahryari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of PhysiologyNeuroscience Research CenterMedical FacultyGolestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Physiology Research CenterInstitute of NeuropharmacologyKerman University of Medical Sciences, Kerman, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
9
|
Han Y, Weng W, Zhang Y, Feng Q, Ma Y, Quan A, Fu X, Zhao X, Skudder-Hill L, Jiang J, Zhou Y, Chen H, Feng J. Intraoperative application of intelligent, responsive, self-assembling hydrogel rectifies oxygen and energy metabolism in traumatically injured brain. Biomaterials 2024; 306:122495. [PMID: 38309053 DOI: 10.1016/j.biomaterials.2024.122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In managing severe traumatic brain injury (TBI), emergency surgery involving the removal of damaged brain tissue and intracerebral hemorrhage is a priority. Secondary brain injury caused by oxidative stress and energy metabolic disorders, triggered by both primary mechanical brain damage and surgical insult, is also a determining factor in the prognosis of TBI. Unfortunately, the effectiveness of traditional postoperative intravenous neuroprotective agents therapy is often limited by the lack of targeting, timeliness, and side effects when neuroprotective agents systemically delivered. Here, we have developed injectable, intelligent, self-assembling hydrogels (P-RT/2DG) that can achieve precise treatment through intraoperative application to the target area. P-RT/2DG hydrogels were prepared by integrating a reactive oxygen species (ROS)-responsive thioketal linker (RT) into polyethylene glycol. By scavenging ROS and releasing 2-deoxyglucose (2DG) during degradation, these hydrogels functioned both in antioxidation and energy metabolism to inhibit the vicious cycle of post-TBI ROS-lactate which provoked secondary injury. In vitro and in vivo tests confirmed the absence of systemic side effects and the neuroprotective function of P-RT/2DG hydrogels in reducing edema, nerve cell apoptosis, neuroinflammation, and maintaining the blood-brain barrier. Our study thus provides a potential treatment strategy with novel hydrogels in TBI.
Collapse
Affiliation(s)
- Yuhan Han
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Weiji Weng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qiyuan Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yuxiao Ma
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Ankang Quan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xianhua Fu
- Department of Neurosurgery, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Xinxin Zhao
- Radiology Department, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Loren Skudder-Hill
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University School of Clinical Medicine, Beijing, China
| | - Jiyao Jiang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yan Zhou
- Radiology Department, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Honglin Chen
- Department of Neurosurgery, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China.
| | - Junfeng Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
10
|
Kawata K, Rettke DJ, Thompson C, Mannix R, Bazarian JJ, Datta D. Effectiveness of biomedical interventions on the chronic stage of traumatic brain injury: a systematic review of randomized controlled trials. Front Neurol 2024; 15:1321239. [PMID: 38562423 PMCID: PMC10983769 DOI: 10.3389/fneur.2024.1321239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI), in any form and severity, can pose risks for developing chronic symptoms that can profoundly hinder patients' work/academic, social, and personal lives. In the past 3 decades, a multitude of pharmacological, stimulation, and exercise-based interventions have been proposed to ameliorate symptoms, memory impairment, mental fatigue, and/or sleep disturbances. However, most research is preliminary, thus limited influence on clinical practice. This review aims to systematically appraise the evidence derived from randomized controlled trials (RCT) regarding the effectiveness of pharmacological, stimulation, and exercise-based interventions in treating chronic symptoms due to TBI. Our search results indicate that despite the largest volume of literature, pharmacological interventions, especially using neurostimulant medications to treat physical, cognitive, and mental fatigue, as well as daytime sleepiness, have yielded inconsistent results, such that some studies found improvements in fatigue (e.g., Modafinil, Armodafinil) while others failed to yield the improvements after the intervention. Conversely, brain stimulation techniques (e.g., transcranial magnetic stimulation, blue light therapy) and exercise interventions were effective in ameliorating mental health symptoms and cognition. However, given that most RCTs are equipped with small sample sizes, more high-quality, larger-scale RCTs is needed.
Collapse
Affiliation(s)
- Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Devin J. Rettke
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - Christopher Thompson
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Dibyadyuti Datta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
11
|
Jussen D, Saeed S, Jablonski T, Krenzlin H, Lucia K, Kraemer T, Kempski O, Czabanka M, Ringel F, Alessandri B. Influence of Blood Components on Neuroinflammation, Blood-Brain Barrier Breakdown, and Functional Damage After Acute Subdural Hematoma in Rats. Neurotrauma Rep 2024; 5:215-225. [PMID: 38463418 PMCID: PMC10924060 DOI: 10.1089/neur.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
A central component of injury development after acute subdural hematoma (ASDH) is the increased intracranial pressure and consecutive mechanical reduction of cerebral blood flow (CBF). However, the role of different blood constituents in ASDH as additional lesioning factors remains unclear. This study examines the influence of blood components on neuroinflammation, blood-brain barrier (BBB) breakdown, and functional deficits in a rat model of ASDH. We infused corpuscular (whole blood, whole blood lysate, and red cell blood) and plasmatic (blood plasma, anticoagulated blood plasma, and aqueous isotonic solution) blood components into the subdural space while CBF was monitored. Rats then underwent behavioral testing. Lesion analysis and immunohistochemistry were performed 2 days after ASDH. Inflammatory reaction was assessed using staining for ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein, interleukin-1ß, tumor necrosis factor-alpha, and membrane attack complex. Integrity of the BBB was evaluated with albumin and matrix metalloproteinase 9 (MMP9) staining. We observed a significant drop in CBF in the corpuscular group (75% ± 7.5% of baseline) with distinct post-operative deficits and larger lesion volume compared to the plasmatic group (13.6 ± 5.4 vs. 1.3 ± 0.4 mm3). Further, inflammation was significantly increased in the corpuscular group with stronger immunoreaction. After whole blood infusion, albumin and MMP9 immunoreaction were significantly increased, pointing toward a disrupted BBB. The interaction between corpuscular and plasmatic blood components seems to be a key factor in the detrimental impact of ASDH. This interaction results in neuroinflammation and BBB leakage. These findings underscore the importance of performing surgery as early as possible and also provide indications for potential pharmacological targets.
Collapse
Affiliation(s)
- Daniel Jussen
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Syamend Saeed
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Tatjana Jablonski
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Harald Krenzlin
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Kristin Lucia
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Tobias Kraemer
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Oliver Kempski
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Beat Alessandri
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
12
|
Zhang L, Bai W, Peng Y, Lin Y, Tian M. Human umbilical cord mesenchymal stem cell-derived exosomes provide neuroprotection in traumatic brain injury through the lncRNA TUBB6/Nrf2 pathway. Brain Res 2024; 1824:148689. [PMID: 38030103 DOI: 10.1016/j.brainres.2023.148689] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Recently, human umbilical cord mesenchymal stem cell (HucMSC) is a new focus of research in neurological diseases, and the beneficial effect of HucMSC is mediated by paracrine factors which are transported by exosome. Our previous study has shown that HucMSC-derived exosome could provide neuroprotection after traumatic brain injury (TBI). However, the underlying mechanisms were not fully understood. In the present study, we found that administration of exosome suppressed TBI-induced inflammation and ferroptosis. In addition, exosome activated the long non-coding ribonucleic acid (lncRNA) TUBB6/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway after TBI. However, exosome partly failed to provide neuroprotection following TBI when TUBB6 was knockdown. Importantly, exosome treatment also decreased neuron cell death, suppressed inflammation, inhibited ferroptosis and activated the lncRNA TUBB6/Nrf2 pathway after TBI in vitro. Taken together, our results provided the first evidence that HucMSC-derived exosome played a key role in neuroprotection after TBI through the lncRNA TUBB6/Nrf2 pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
13
|
Yatoo MI, Bahader GA, Beigh SA, Khan AM, James AW, Asmi MR, Shah ZA. Neuroprotection or Sex Bias: A Protective Response to Traumatic Brain Injury in the Females. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:906-916. [PMID: 37592792 DOI: 10.2174/1871527323666230817102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023]
Abstract
Traumatic brain injury (TBI) is a major healthcare problem and a common cause of mortality and morbidity. Clinical and preclinical research suggests sex-related differences in short- and longterm outcomes following TBI; however, males have been the main focus of TBI research. Females show a protective response against TBI. Female animals in preclinical studies and women in clinical trials have shown comparatively better outcomes against mild, moderate, or severe TBI. This reflects a favorable protective nature of the females compared to the males, primarily attributed to various protective mechanisms that provide better prognosis and recovery in the females after TBI. Understanding the sex difference in the TBI pathophysiology and the underlying mechanisms remains an elusive goal. In this review, we provide insights into various mechanisms related to the anatomical, physiological, hormonal, enzymatic, inflammatory, oxidative, genetic, or mitochondrial basis that support the protective nature of females compared to males. Furthermore, we sought to outline the evidence of multiple biomarkers that are highly potential in the investigation of TBI's prognosis, pathophysiology, and treatment and which can serve as objective measures and novel targets for individualized therapeutic interventions in TBI treatment. Implementations from this review are important for the understanding of the effect of sex on TBI outcomes and possible mechanisms behind the favorable response in females. It also emphasizes the critical need to include females as a biological variable and in sufficient numbers in future TBI studies.
Collapse
Affiliation(s)
- Mohammad I Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shafayat A Beigh
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Adil M Khan
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Maleha R Asmi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
14
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
15
|
Li S, Qiu N, Ni A, Hamblin MH, Yin KJ. Role of regulatory non-coding RNAs in traumatic brain injury. Neurochem Int 2024; 172:105643. [PMID: 38007071 PMCID: PMC10872636 DOI: 10.1016/j.neuint.2023.105643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Na Qiu
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI, 02903, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 1212 Webber Hall, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ke-Jie Yin
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
16
|
Tarudji AW, Gee CC, Miller HA, Steffen R, Curtis ET, Priester AM, Convertine AJ, Kievit FM. Antioxidant theranostic copolymer-mediated reduction in oxidative stress following traumatic brain injury improves outcome in a mouse model. ADVANCED THERAPEUTICS 2023; 6:2300147. [PMID: 38464558 PMCID: PMC10923536 DOI: 10.1002/adtp.202300147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 03/12/2024]
Abstract
Following a traumatic brain injury (TBI), excess reactive oxygen species (ROS) and lipid peroxidation products (LPOx) are generated and lead to secondary injury beyond the primary insult. A major limitation of current treatments is poor target engagement, which has prevented success in clinical trials. Thus, nanoparticle-based treatments have received recent attention because of their ability to increase accumulation and retention in damaged brain. Theranostic neuroprotective copolymers (NPC3) containing thiol functional groups can neutralize ROS and LPOx. Immediate administration of NPC3 following injury in a controlled cortical impact (CCI) mouse model provides a therapeutic window in reducing ROS levels at 2.08-20.83 mg/kg in males and 5.52-27.62 mg/kg in females. This NPC3-mediated reduction in oxidative stress improves spatial learning and memory in males, while females show minimal improvement. Notably, NPC3-mediated reduction in oxidative stress prevents the bilateral spread of necrosis in male mice, which was not observed in female mice and likely accounts for the sex-based spatial learning and memory differences. Overall, these findings suggest sex-based differences to oxidative stress scavenger nanoparticle treatments, and a possible upper threshold of antioxidant activity that provides therapeutic benefit in injured brain since female mice benefit from NPC3 treatment to a lesser extent than male mice.
Collapse
Affiliation(s)
- Aria W Tarudji
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE, 68583, USA
| | - Connor C Gee
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE, 68583, USA
| | - Hunter A Miller
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE, 68583, USA
| | - Rylie Steffen
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE, 68583, USA
| | - Evan T Curtis
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE, 68583, USA
| | - Aaron M Priester
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, Rolla, MO, 65409, USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, Rolla, MO, 65409, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE, 68583, USA
| |
Collapse
|
17
|
Fesharaki-Zadeh A. Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges. Biomedicines 2023; 11:3158. [PMID: 38137378 PMCID: PMC10740836 DOI: 10.3390/biomedicines11123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the clinical identification and understanding of the complex neuropathological phenomena underlying CTE. This review provides a comprehensive overview of the current understanding of the neuropathological and clinical features of CTE, proposed biomarkers of traumatic brain injury (TBI) in both research and clinical settings, and a range of treatments based on previous preclinical and clinical research studies. Due to the heterogeneity of TBI, there is no universally agreed-upon serum, CSF, or neuroimaging marker for its diagnosis. However, as our understanding of this complex disease continues to evolve, it is likely that there will be more robust, early diagnostic methods and effective clinical treatments. This is especially important given the increasing evidence of a correlation between TBI and neurodegenerative conditions, such as Alzheimer's disease and CTE. As public awareness of these conditions grows, it is imperative to prioritize both basic and clinical research, as well as the implementation of necessary safe and preventative measures.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Abbasloo E, Khaksari M, Sanjari M, Kobeissy F, Thomas TC. Carvacrol decreases blood-brain barrier permeability post-diffuse traumatic brain injury in rats. Sci Rep 2023; 13:14546. [PMID: 37666857 PMCID: PMC10477335 DOI: 10.1038/s41598-023-40915-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Previously, we showed that Satureja Khuzestanica Jamzad essential oil (SKEO) and its major component, carvacrol (CAR), 5-isopropyl-2-methylphenol, has anti-inflammatory, anti-apoptotic, and anti-edematous properties after experimental traumatic brain injury (TBI) in rats. CAR, predominantly found in Lamiaceae family (Satureja and Oregano), is lipophilic, allowing diffusion across the blood-brain barrier (BBB). These experiments test the hypothesis that acute treatment with CAR after TBI can attenuate oxidative stress and BBB permeability associated with CAR's anti-edematous traits. Rats were divided into six groups and injured using Marmarou weight drop: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg) and CAR200-naive treated rats. Intraperitoneal injection of vehicle or CAR was administered thirty minutes after TBI induction. 24 h post-injury, brain edema, BBB permeability, BBB-related protein levels, and oxidative capacity were measured. Data showed CAR 200 mg/kg treatment decreased brain edema and prevented BBB permeability. CAR200 decreased malondialdehyde (MDA) and reactive oxygen species (ROS) and increased superoxide dismutase (SOD) and total antioxidative capacity (T-AOC), indicating the mechanism of BBB protection is, in part, through antioxidant activity. Also, CAR 200 mg/kg treatment suppressed matrix metalloproteinase-9 (MMP-9) expression and increased ZO-1, occludin, and claudin-5 levels. These data indicate that CAR can promote antioxidant activity and decrease post-injury BBB permeability, further supporting CAR as a potential early therapeutic intervention that is inexpensive and more readily available worldwide. However, more experiments are required to determine CAR's long-term impact on TBI pathophysiology.
Collapse
Affiliation(s)
- Elham Abbasloo
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran.
| | - Mohammad Khaksari
- Institute of Neuropharmacology, Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, USA
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
19
|
Liang S, Ti Y, Li X, Zhou W. The Protective Role and Mechanism of Mild Therapeutic Hypothermia Protection on Brain Cells. Neuropsychiatr Dis Treat 2023; 19:1625-1631. [PMID: 37484118 PMCID: PMC10361083 DOI: 10.2147/ndt.s412227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Background Moderate therapeutic hypothermia is protective against several cellular stressors. However, the mechanisms behind this protection are not entirely known. In the current investigation, we investigated that therapeutic hypothermia at 33°C administered following peroxide-induced oxidative stress might protect human oligodendroglioma cells using an in vitro model. Methods and Results Tert-butyl peroxide treatment for one hour significantly increased cell apoptosis and suppressed cell viability. In the range of 50-1000 M tert-butyl peroxide, this cell death was dose-dependent. MTT assay and cell apoptosis assay were applied to analyze cell viability/death at 24 hours after peroxide-induced stress. Therapeutic hypothermia at 33°C delivered for two hours after peroxide exposure significantly increased cell viability and suppressed cell death. Even 15 minutes after peroxide washout when delayed hypothermia was used, this protection was still apparent. Three FDA-approved antioxidants (Tempol, EUK134, and Edaravone at 100 M) were added immediately after tert-butyl peroxide, followed by hypothermia treatment. These three antioxidants greatly increased cell viability and cell apoptosis. RT-qPCR was applied to determine the effects of hypothermia treatment on the expression of caspase-3 and -8 as well as tumor necrosis factor-alpha (TNF-α). Therapeutic hypothermia significantly downregulated these three factors. Conclusion Overall, these findings confirmed that hypothermia and antioxidants quenching reactive oxygen species may lower mitochondrial oxidative stress and/or apoptotic pathways. Further investigation are needed to investigate the role of hypothermia in other cell models.
Collapse
Affiliation(s)
- Suixin Liang
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Yunxing Ti
- Department of Cardiothoracic Surgery, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Xiuhong Li
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Wenjia Zhou
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| |
Collapse
|
20
|
Zhao Q, Li H, Li H, Zhang J. Research progress on pleiotropic neuroprotective drugs for traumatic brain injury. Front Pharmacol 2023; 14:1185533. [PMID: 37475717 PMCID: PMC10354289 DOI: 10.3389/fphar.2023.1185533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) has become one of the most important causes of death and disability worldwide. A series of neuroinflammatory responses induced after TBI are key factors for persistent neuronal damage, but at the same time, such inflammatory responses can also promote debris removal and tissue repair after TBI. The concept of pleiotropic neuroprotection delves beyond the single-target treatment approach, considering the multifaceted impacts following TBI. This notion embarks deeper into the research-oriented treatment paradigm, focusing on multi-target interventions that inhibit post-TBI neuroinflammation with enhanced therapeutic efficacy. With an enriched comprehension of TBI's physiological mechanisms, this review dissects the advancements in developing pleiotropic neuroprotective pharmaceuticals to mitigate TBI. The aim is to provide insights that may contribute to the early clinical management of the condition.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
21
|
Nguyen A, Patel AB, Kioutchoukova IP, Diaz MJ, Lucke-Wold B. Mechanisms of Mitochondrial Oxidative Stress in Brain Injury: From Pathophysiology to Therapeutics. OXYGEN (BASEL, SWITZERLAND) 2023; 3:163-178. [PMID: 37082315 PMCID: PMC10111246 DOI: 10.3390/oxygen3020012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Mitochondrial oxidative stress has been implicated in various forms of brain injury, both traumatic and non-traumatic. Due to its oxidative demand, the brain is intimately dependent on its mitochondrial functioning. However, there remains appreciable heterogeneity in the development of these injuries regarding ROS and their effect on the sequelae. These include traumatic insults such as TBIs and intracranial hemorrhaging secondary to this. In a different vein, such injuries may be attributed to other etiologies such as infection, neoplasm, or spontaneous hemorrhage (strokes, aneurysms). Clinically, the manner of treatment may also be adjusted in relation to each injury and its unique progression in the context of ROS. In the current review, then, the authors highlight the role of mitochondrial ROS in various forms of brain injury, emphasizing both the collective and unique elements of each form. Lastly, these narratives are met with the current therapeutic landscape and the role of emerging therapies in treating reactive oxygen species in brain injuries.
Collapse
Affiliation(s)
- Andrew Nguyen
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anjali B. Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
23
|
Lazzarino G, Mangione R, Saab MW, Tavazzi B, Pittalà A, Signoretti S, Di Pietro V, Lazzarino G, Amorini AM. Traumatic Brain Injury Alters Cerebral Concentrations and Redox States of Coenzymes Q 9 and Q 10 in the Rat. Antioxidants (Basel) 2023; 12:antiox12050985. [PMID: 37237851 DOI: 10.3390/antiox12050985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
To date, there is no information on the effect of TBI on the changes in brain CoQ levels and possible variations in its redox state. In this study, we induced graded TBIs (mild TBI, mTBI and severe TBI, sTBI) in male rats, using the weight-drop closed-head impact acceleration model of trauma. At 7 days post-injury, CoQ9, CoQ10 and α-tocopherol were measured by HPLC in brain extracts of the injured rats, as well as in those of a group of control sham-operated rats. In the controls, about the 69% of total CoQ was in the form of CoQ9 and the oxidized/reduced ratios of CoQ9 and CoQ10 were, respectively, 1.05 ± 0.07 and 1.42 ± 0.17. No significant changes in these values were observed in rats experiencing mTBI. Conversely, in the brains of sTBI-injured animals, an increase in reduced and a decrease in oxidized CoQ9 produced an oxidized/reduced ratio of 0.81 ± 0.1 (p < 0.001 compared with both controls and mTBI). A concomitant decrease in both reduced and oxidized CoQ10 generated a corresponding oxidized/reduced ratio of 1.38 ± 0.23 (p < 0.001 compared with both controls and mTBI). An overall decrease in the concentration of the total CoQ pool was also found in sTBI-injured rats (p < 0.001 compared with both controls and mTBI). Concerning α-tocopherol, whilst no differences compared with the controls were found in mTBI animals, a significant decrease was observed in rats experiencing sTBI (p < 0.01 compared with both controls and mTBI). Besides suggesting potentially different functions and intracellular distributions of CoQ9 and CoQ10 in rat brain mitochondria, these results demonstrate, for the first time to the best of knowledge, that sTBI alters the levels and redox states of CoQ9 and CoQ10, thus adding a new explanation to the mitochondrial impairment affecting ETC, OXPHOS, energy supply and antioxidant defenses following sTBI.
Collapse
Affiliation(s)
- Giacomo Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart of Rome, Largo F. Vito 1, 00168 Rome, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Barbara Tavazzi
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Stefano Signoretti
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
- Department of Emergency and Urgency, Division of Neurosurgery, S. Eugenio/CTO Hospital, A.S.L. Roma2 Piazzale dell'Umanesimo 10, 00144 Rome, Italy
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
24
|
Kuru Bektaşoğlu P, Koyuncuoğlu T, Özaydın D, Kandemir C, Akakın D, Yüksel M, Gürer B, Çelikoğlu E, Yeğen BÇ. Antioxidant and neuroprotective effects of dexpanthenol in rats induced with traumatic brain injury. Injury 2023; 54:1065-1070. [PMID: 36841697 DOI: 10.1016/j.injury.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
Trauma-induced primary damage is followed by secondary damage, exacerbating traumatic brain injury (TBI). Dexpanthenol has been shown to protect tissues against oxidative damage in various inflammation models. This study aimed to investigate possible antioxidant and neuroprotective effects of dexpanthenol in TBI. Wistar albino male rats were randomly assigned to control (n = 16), trauma (n = 16) and dexpanthenol (500 mg/kg; n = 14) groups. TBI was induced under anesthesia by dropping a 300 g weight from 70-cm height onto the skulls of the rats. Twenty-four hours after the trauma, the rats were decapitated and myeloperoxidase (MPO) levels, luminol- and lucigenin-enhanced chemiluminescence (CL), malondialdehyde (MDA) levels, superoxide dismutase (SOD) levels, and catalase (CAT) and caspase-3 activities were measured in brain tissues. Following transcardiac paraformaldehyde perfusion, histopathological damage was graded on hematoxylin-eosin-stained brain tissues. In the trauma group, MPO level, caspase-3 activity and luminol-lucigenin CL levels were elevated (p < 0.05-0.001) when compared to controls; meanwhile in the dexpanthenol group these increases were not seen (p < 0.05-0.001) and MDA levels were decreased (p < 0.05). Decreased SOD and CAT activities (p < 0.01) in the vehicle-treated TBI group were increased above control levels in the dexpanthenol group (p < 0.05-0.001). in the dexpanthenol group there was relatively less neuronal damage observed microscopically in the cortices after TBI. Dexpanthenol reduced oxidative damage, suppressed apoptosis by stimulating antioxidant systems and alleviated brain damage caused by TBI. Further experimental and clinical investigations are needed to confirm that dexpanthenol can be administered in the early stages of TBI.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Biruni University Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Dilan Özaydın
- University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
| | - Cansu Kandemir
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Dilek Akakın
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health-Related Services, Department of Medical Laboratory, Istanbul, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Erhan Çelikoğlu
- University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey
| |
Collapse
|
25
|
Liu T, Su K, Cai W, Ao H, Li M. Therapeutic potential of puerarin against cerebral diseases: From bench to bedside. Eur J Pharmacol 2023:175695. [PMID: 36977450 DOI: 10.1016/j.ejphar.2023.175695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
The incidence of cerebral diseases is rapidly increasing worldwide, and they have become an important challenge for modern medicine. Most of the available chemical drugs used in the treatment of cerebral diseases are highly toxic and single-targeted. Therefore, novel drugs from natural resources have attracted much attention for their potential to manage cerebral diseases. Puerarin is a natural isoflavone isolated from the roots of Pueraria species such as P. lobata (Willd) Ohwi, P. thomsonii, and P. mirifica. Several authors have reported the beneficial effects of puerarin in cerebral ischemic disease, intracerebral hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, anxiety, and traumatic brain injury. This review summarizes the brain pharmacokinetics, brain drug delivery system, clinical use (in cerebral diseases), toxicity, and the adverse clinical reactions of puerarin. We have systematically presented the pharmacological actions and the molecular mechanisms of puerarin in various cerebral diseases to provide a direction for future research on the therapeutic use of puerarin in cerebral diseases.
Collapse
|
26
|
The Vitamin D Receptor as a Potential Target for the Treatment of Age-Related Neurodegenerative Diseases Such as Alzheimer's and Parkinson's Diseases: A Narrative Review. Cells 2023; 12:cells12040660. [PMID: 36831327 PMCID: PMC9954016 DOI: 10.3390/cells12040660] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.
Collapse
|
27
|
Ahmed OAA, Badr-Eldin SM, Caruso G, Fahmy UA, Alharbi WS, Almehmady AM, Alghamdi SA, Alhakamy NA, Mohamed AI, Aldawsari HM, Mady FM. Colon Targeted Eudragit Coated Beads Loaded with Optimized Fluvastatin-Scorpion Venom Conjugate as a Potential Approach for Colon Cancer Therapy: In Vitro Anticancer Activity and In Vivo Colon Imaging. J Pharm Sci 2022; 111:3304-3317. [PMID: 36007556 DOI: 10.1016/j.xphs.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/05/2023]
Abstract
Preclinical studies suggest that most of statins or 3‑hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors possess pleiotropic anticancer activity. The aim of the present work was to investigate the conjugation of the statin fluvastatin (FLV) with scorpion venom (SV), a natural peptide with proven anticancer properties, to enhance FLV cytotoxic activity and prepare colon targeted FLV-SV nanoconjugate beads for management of colon cancer. Response surface design was applied for the optimization of FLV-SV nanoconjugates. FLV-SV particle size and zeta potential were selected as responses. Cytotoxicity of optimized FLV-SV nanoconjugates was carried out on Caco2 cell line. Colon targeted alginate coated Eudragit S100 (ES100) beads for the optimized formula were prepared with the utilization of barium sulfate (BaSO4) as radiopaque contrast substance. Results revealed that optimized FLV-SV nanoconjugates showed a size of 71.21 nm, while the zeta potential was equal to 29.13 mV. Caco2 cells were considerably more sensitive to the FLV-SV formula (half-maximal inhibitory concentration (IC50) = 11.91 µg/mL) compared to SV and FLV used individually, as shown by values of IC50 equal to 30.23 µg/mL and 47.68 µg/mL, respectively. In vivo imaging of colon targeted beads, carried out by employing real-time X-ray radiography, confirmed the efficiency of colon targeted beads. Overall our results indicate that the optimized FLV-SV nanoconjugate loaded alginate coated ES100 beads could represent a promising approach for colon cancer with efficient colon targeting ability.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Neuropharmacology and Translational Neurosciences Research Unit, Troina 94018, Italy.
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A Alghamdi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amir I Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Military Medical Academy, Cairo 11435, Egypt
| | - Hibah M Aldawsari
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatma M Mady
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt.
| |
Collapse
|
28
|
Khalili H, Abdollahifard S, Niakan A, Aryaie M. The effect of Vitamins C and E on clinical outcomes of patients with severe traumatic brain injury: A propensity score matching study. Surg Neurol Int 2022; 13:548. [PMID: 36600753 PMCID: PMC9805612 DOI: 10.25259/sni_932_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Background The aim of this study was to assess the effect of Vitamins C and E on mortality, intensive care unit (ICU) length of stay, and Glasgow Outcome Scale-Extended (GOS-E) score of traumatic brain injury (TBI) patients. Methods Using data from records of patients in a retrospective cohort study, we included 1321 TBI patients, 269 treated and 1052 untreated, aged over 18 years with information on exposure (i.e., Vitamins C and E) and confounders. Age, Glasgow Coma Scale, pupil status, Rotterdam classification, blood sugar, blood pressure, international normalized ratio, and comorbidity of patients were considered as the confounding factors. Endpoints were GOS-E on follow-up, mortality, and ICU length of stay. Propensity score matching was performed to adjust the confounders. Results Based on the average treatment effect estimates, the use of Vitamins C and E reduced the risk of mortality (risk difference [RD]: -0.07; 95% confidence interval [CI]: -0.14--0.003) and reduced the length of ICU stay (RD -1.77 95% CI:-3.71-0.16). Furthermore, our results showed that GOS-E was improved significantly (RD: 0.09, 95% CI : 0.03-0.16). Conclusion Our study suggests that using Vitamins C and E could decrease mortality and length of ICU stay and improve the GOS-E score and functions of the patients with severe TBI. As they are safe and inexpensive medications, they can be used in routine practice in ICUs to improve the outcomes of TBI patients.
Collapse
Affiliation(s)
- Hosseinali Khalili
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Aryaie
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Corresponding author: Mohammad Aryaie, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Fesharaki-Zadeh A. Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232113000. [PMID: 36361792 PMCID: PMC9657447 DOI: 10.3390/ijms232113000] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI) remains a major cause of disability worldwide. It involves a complex neurometabolic cascade, including oxidative stress. The products of this manuscript is examining the underlying pathophysiological mechanism, including reactive oxygen species (ROS) and reactive nitrogen species (RNS). This process in turn leads to secondary injury cascade, which includes lipid peroxidation products. These reactions ultimately play a key role in chronic inflammation and synaptic dysfunction in a synergistic fashion. Although there are no FDA approved antioxidant therapy for TBI, there is a number of antioxidant therapies that have been tested and include free radical scavengers, activators of antioxidant systems, inhibitors of free radical generating enzymes, and antioxidant enzymes. Antioxidant therapies have led to cognitive and functional recovery post TBI, and they offer a promising treatment option for patients recovering from TBI. Current major challenges in treatment of TBI symptoms include heterogenous nature of injury, as well as access to timely treatment post injury. The inherent benefits of antioxidant therapies include minimally reported side effects, and relative ease of use in the clinical setting. The current review also provides a highlight of the more studied anti-oxidant regimen with applicability for TBI treatment with potential use in the real clinical setting.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Yale School of Medicine, Department of Neurology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
30
|
Finnegan E, Daly E, Pearce AJ, Ryan L. Nutritional interventions to support acute mTBI recovery. Front Nutr 2022; 9:977728. [PMID: 36313085 PMCID: PMC9614271 DOI: 10.3389/fnut.2022.977728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 01/09/2023] Open
Abstract
When mild traumatic brain injury (mTBI) occurs following an impact on the head or body, the brain is disrupted leading to a series of metabolic events that may alter the brain's ability to function and repair itself. These changes may place increased nutritional demands on the body. Little is known on whether nutritional interventions are safe for patients to implement post mTBI and whether they may improve recovery outcomes. To address this knowledge gap, we conducted a systematic review to determine what nutritional interventions have been prescribed to humans diagnosed with mTBI during its acute period (<14 days) to support, facilitate, and result in measured recovery outcomes. Methods Databases CINAHL, PubMed, SPORTDiscus, Web of Science, and the Cochrane Library were searched from inception until January 6, 2021; 4,848 studies were identified. After removing duplicates and applying the inclusion and exclusion criteria, this systematic review included 11 full papers. Results Patients that consumed enough food to meet calorie and macronutrient (protein) needs specific to their injury severity and sex within 96 h post mTBI had a reduced length of stay in hospital. In addition, patients receiving nutrients and non-nutrient support within 24-96 h post mTBI had positive recovery outcomes. These interventions included omega-3 fatty acids (DHA and EPA), vitamin D, mineral magnesium oxide, amino acid derivative N-acetyl cysteine, hyperosmolar sodium lactate, and nootropic cerebrolysin demonstrated positive recovery outcomes, such as symptom resolution, improved cognitive function, and replenished nutrient deficiencies (vitamin D) for patients post mTBI. Conclusion Our findings suggest that nutrition plays a positive role during acute mTBI recovery. Following mTBI, patient needs are unique, and this review presents the potential for certain nutritional therapies to support the brain in recovery, specifically omega-3 fatty acids. However, due to the heterogenicity nature of the studies available at present, it is not possible to make definitive recommendations. Systematic review registration The systematic review conducted following the PRISMA guidelines protocol was registered (CRD42021226819), on Prospero.
Collapse
Affiliation(s)
- Emma Finnegan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| | - Ed Daly
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| | - Alan J. Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Lisa Ryan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| |
Collapse
|
31
|
Bulama I, Nasiru S, Bello A, Abbas AY, Nasiru JI, Saidu Y, Chiroma MS, Mohd Moklas MA, Mat Taib CN, Waziri A, Suleman BL. Antioxidant-based neuroprotective effect of dimethylsulfoxide against induced traumatic brain injury in a rats model. Front Pharmacol 2022; 13:998179. [PMID: 36353489 PMCID: PMC9638698 DOI: 10.3389/fphar.2022.998179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 08/03/2023] Open
Abstract
Traumatic brain injury (TBI) has been the result of neurological deficit and oxidative stress. This study evaluated the antioxidative neuroprotective property and learning and memory-enhancing effects of dimethyl sulfoxide (DMSO) in a rat model after the induction of TBI. 21 albino rats with 7 rats per group were used in this study. Group I was induced with TBI and treated with DMSO at 67.5 mg/kg orally once daily which started 30 min after the induction of TBI and lasted 21 days. Group II was induced with TBI but not treated while Group III was neither induced with TBI nor treated. Assessment of behavioral function (Learning and memory, anxiety and motor function), the level of an antioxidant enzymes and their gene expression (superoxide dismutase, catalase, glutathione peroxidase), the biomarkers of oxidative stress (malondialdehyde) and S100B levels as well as brain tissues histological studies were conducted. Administration of DMSO to rats with induced TBI has improved learning and memory, locomotor function and decreased anxiety in Group I compared to Group II. Moreover, the level of S100B was significantly (p < 0.05) lower in Group I compared to Group II. Treatment with DMSO also decreased lipid peroxidation significantly (p < 0.05) compared to Group II. There exists a significant (p < 0.05) increase in CAT, SOD, and GPX activities in Group I compared to Group II. Therefore, DMSO has demonstrated a potential antioxidative neuroprotective effect through its ability to increase the level of antioxidant enzymes which they quench and inhibit the formation of ROS, thereby improving cognitive functions.
Collapse
Affiliation(s)
- Ibrahim Bulama
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suleiman Nasiru
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Abubakar Bello
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Abdullahi Yahaya Abbas
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| | - Jinjiri Ismail Nasiru
- Department of Surgery, Faculty of Clinical Sciences, Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | - Yusuf Saidu
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| | - Musa Samaila Chiroma
- Department of Human Anatomy, Faculty of Basic Clinical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ali Waziri
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Bilbis Lawal Suleman
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
32
|
Davis CK, Bathula S, Hsu M, Morris-Blanco KC, Chokkalla AK, Jeong S, Choi J, Subramanian S, Park JS, Fabry Z, Vemuganti R. An Antioxidant and Anti-ER Stress Combo Therapy Decreases Inflammation, Secondary Brain Damage and Promotes Neurological Recovery following Traumatic Brain Injury in Mice. J Neurosci 2022; 42:6810-6821. [PMID: 35882557 PMCID: PMC9436019 DOI: 10.1523/jneurosci.0212-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The complex pathophysiology of post-traumatic brain damage might need a polypharmacological strategy with a combination of drugs that target multiple, synergistic mechanisms. We currently tested a combination of apocynin (curtails formation of reactive oxygen species), tert-butylhydroquinone (promotes disposal of reactive oxygen species), and salubrinal (prevents endoplasmic reticulum stress) following a moderate traumatic brain injury (TBI) induced by controlled cortical impact in adult mice. Adult mice of both sexes treated with the above tri-combo showed alleviated motor and cognitive deficits, attenuated secondary lesion volume, and decreased oxidative DNA damage. Concomitantly, tri-combo treatment regulated post-TBI inflammatory response by decreasing the infiltration of T cells and neutrophils and activation of microglia in both sexes. Interestingly, sexual dimorphism was seen in the case of TBI-induced microgliosis and infiltration of macrophages in the tri-combo-treated mice. Moreover, the tri-combo treatment prevented TBI-induced white matter volume loss in both sexes. The beneficial effects of tri-combo treatment were long-lasting and were also seen in aged mice. Thus, the present study supports the tri-combo treatment to curtail oxidative stress and endoplasmic reticulum stress concomitantly as a therapeutic strategy to improve TBI outcomes.SIGNIFICANCE STATEMENT Of the several mechanisms that contribute to TBI pathophysiology, oxidative stress, endoplasmic reticulum stress, and inflammation play a major role. The present study shows the therapeutic potential of a combination of apocynin, tert-butylhydroquinone, and salubrinal to prevent oxidative stress and endoplasmic reticulum stress and the interrelated inflammatory response in mice subjected to TBI. The beneficial effects of the tri-combo include alleviation of TBI-induced motor and cognitive deficits and lesion volume. The neuroprotective effects of the tri-combo are also linked to its ability to prevent TBI-induced white matter damage. Importantly, neuroprotection by the tri-combo treatment was observed to be not dependent on sex or age. Our data demonstrate that a polypharmacological strategy is efficacious after TBI.
Collapse
Affiliation(s)
| | | | - Martin Hsu
- Department of Pathology and Laboratory Medicine
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | | | - Anil K Chokkalla
- Department of Neurological Surgery
- Cellular and Molecular Pathology Graduate Program
| | - Soomin Jeong
- Department of Neurological Surgery
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | | | | | | | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine
- Cellular and Molecular Pathology Graduate Program
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | - Raghu Vemuganti
- Department of Neurological Surgery
- Cellular and Molecular Pathology Graduate Program
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
- William S. Middleton Veterans Administration Hospital, Madison, Wisconsin 53705
| |
Collapse
|
33
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
34
|
Yan C, Mao J, Yao C, Liu Y, Yan H, Jin W. Neuroprotective effects of mild hypothermia against traumatic brain injury by the involvement of the Nrf2/ARE pathway. Brain Behav 2022; 12:e2686. [PMID: 35803901 PMCID: PMC9392531 DOI: 10.1002/brb3.2686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is the leading cause of death and disability worldwide. Mild hypothermia (32-35°C) has been found to show neuroprotective effects against TBI. However, the specific mechanism is still elusive. In the current study, we explored the relationship between oxidative damage after TBI and treatment with mild hypothermia as well as the underlying molecular mechanisms. METHODS We used the closed cortex injury model to perform the brain injury and a temperature monitoring and control system to regulate the body temperature of mice after injury. Adult male C57BL/6 mice were adopted in this study and divided into four experimental groups. Tissue samples were harvested 24 h after injury. RESULTS First, our results showed that treatment with mild hypothermia significantly improved neurobehavioral dysfunction and alleviated brain edema after TBI. Moreover, treatment with mild hypothermia enhanced the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase and reduced the accumulation of lipid peroxidation malondialdehyde. Importantly, the expression and activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway were upregulated by mild hypothermia after TBI. Finally, treatment with hypothermia significantly decreased the cell apoptosis induced by TBI. CONCLUSION Our results showed that the protective effects of mild hypothermia after TBI may be achieved by the upregulation of the Nrf2-ARE pathway and revealed Nrf2 as a potentially important target to improve the prognosis of TBI.
Collapse
Affiliation(s)
- Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Department of Neurosurgery, Zhongshan Hospital, The Affiliated Hospital of Fudan University, Shanghai, China
| | - Jiannan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenbei Yao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
35
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
ILB®, a Low Molecular Weight Dextran Sulphate, Restores Glutamate Homeostasis, Amino Acid Metabolism and Neurocognitive Functions in a Rat Model of Severe Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23158460. [PMID: 35955592 PMCID: PMC9368799 DOI: 10.3390/ijms23158460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In a previous study, we found that administration of ILB®, a new low molecular weight dextran sulphate, significantly improved mitochondrial functions and energy metabolism, as well as decreased oxidative/nitrosative stress, of brain tissue of rats exposed to severe traumatic brain injury (sTBI), induced by the closed-head weight-drop model of diffused TBI. Using aliquots of deproteinized brain tissue of the same animals of this former study, we here determined the concentrations of 24 amino acids of control rats, untreated sTBI rats (sacrificed at 2 and 7 days post-injury) and sTBI rats receiving a subcutaneous ILB® administration (at the dose levels of 1, 5 and 15 mg/kg b.w.) 30 min post-impact (sacrificed at 2 and 7 days post-injury). Additionally, in a different set of experiments, new groups of control rats, untreated sTBI rats and ILB®-treated rats (administered 30 min after sTBI at the dose levels of 1 or 5 mg/kg b.w.) were studied for their neurocognitive functions (anxiety, locomotor capacities, short- and long-term memory) at 7 days after the induction of sTBI. Compared to untreated sTBI animals, ILB® significantly decreased whole brain glutamate (normalizing the glutamate/glutamine ratio), glycine, serine and g-aminobutyric acid. Furthermore, ILB® administration restored arginine metabolism (preventing nitrosative stress), levels of amino acids involved in methylation reactions (methionine, L-cystathionine, S-adenosylhomocysteine), and N-acetylaspartate homeostasis. The macroscopic evidences of the beneficial effects on brain metabolism induced by ILB® were the relevant improvement in neurocognitive functions of the group of animals treated with ILB® 5 mg/kg b.w., compared to the marked cognitive decline measured in untreated sTBI animals. These results demonstrate that ILB® administration 30 min after sTBI prevents glutamate excitotoxicity and normalizes levels of amino acids involved in crucial brain metabolic functions. The ameliorations of amino acid metabolism, mitochondrial functions and energy metabolism in ILB®-treated rats exposed to sTBI produced significant improvement in neurocognitive functions, reinforcing the concept that ILB® is a new effective therapeutic tool for the treatment of sTBI, worth being tested in the clinical setting.
Collapse
|
37
|
Yang W, Zhang M, He J, Gong M, Sun J, Yang X. Central nervous system injury meets nanoceria: opportunities and challenges. Regen Biomater 2022; 9:rbac037. [PMID: 35784095 PMCID: PMC9245649 DOI: 10.1093/rb/rbac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) injury, induced by ischemic/hemorrhagic or traumatic damage, is one of the most common causes of death and long-term disability worldwide. Reactive oxygen and nitrogen species (RONS) resulting in oxidative/nitrosative stress play a critical role in the pathological cascade of molecular events after CNS injury. Therefore, by targeting RONS, antioxidant therapies have been intensively explored in previous studies. However, traditional antioxidants have achieved limited success thus far, and the development of new antioxidants to achieve highly effective RONS modulation in CNS injury still remains a great challenge. With the rapid development of nanotechnology, novel nanomaterials provided promising opportunities to address this challenge. Within these, nanoceria has gained much attention due to its regenerative and excellent RONS elimination capability. To promote its practical application, it is important to know what has been done and what has yet to be done. This review aims to present the opportunities and challenges of nanoceria in treating CNS injury. The physicochemical properties of nanoceria and its interaction with RONS are described. The applications of nanoceria for stroke and neurotrauma treatment are summarized. The possible directions for future application of nanoceria in CNS injury treatment are proposed.
Collapse
Affiliation(s)
- Wang Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
- Army Health Service Training Base, Army Medical University, Chongqing 400038, China
| | - Maoting Zhang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Jian He
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Mingfu Gong
- Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Jian Sun
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| |
Collapse
|
38
|
Alhakamy NA, Caruso G, Privitera A, Ahmed OAA, Fahmy UA, Md S, Mohamed GA, Ibrahim SRM, Eid BG, Abdel-Naim AB, Caraci F. Fluoxetine Ecofriendly Nanoemulsion Enhances Wound Healing in Diabetic Rats: In Vivo Efficacy Assessment. Pharmaceutics 2022; 14:1133. [PMID: 35745706 PMCID: PMC9227110 DOI: 10.3390/pharmaceutics14061133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Impaired diabetic wound healing is a major concern for health care professionals worldwide, imposing an intense financial burden and reducing the quality of life of patients. A dysregulation of this process can be responsible for the development of intractable ulcers and the formation of excessive scars. Therefore, the identification of novel pharmacological strategies able to promote wound healing and restore the mechanical integrity of injured tissue becomes essential. In the present study, fluoxetine ecofriendly nanoemulsion (FLX-EFNE) was prepared and its potential efficacy in enhancing wound healing was tested in diabetic rats. The Box-Behnken response surface design was used to select the optimized formulation that was prepared by the high-shear homogenization-based technique. A Zetasizer was used for the characterization of the optimized formulation, providing a FLX-EFNE with a globule size of 199 nm. For the in vivo study, a wound was induced by surgical methods, and diabetic rats (streptozotocin-induced) were divided into five groups: untreated control, vehicle-treated, FLX, FLX-EFNE, and positive control receiving a commercially available formula. The treatment continued from the day of wound induction to day 21. Then, the animals were sacrificed and skin tissues were collected at the site of wounding and used for biochemical, histopathological, immunohistochemical, and mRNA expression assessments. In the FLX-EFNE treated group, the rate of wound contraction and signs of healing were significantly higher compared to all other groups. In addition, angiogenesis, proliferation, and collagen deposition were enhanced, while oxidative stress and inflammation decreased. The present data highlight the enhanced wound healing activity of the optimized FLX-EFNE formulation.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.); (S.M.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.P.); (F.C.)
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.P.); (F.C.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.); (S.M.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.); (S.M.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.); (S.M.)
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.P.); (F.C.)
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
39
|
Shin SS, Gottschalk AC, Mazandi VM, Kilbaugh TJ, Hefti MM. Transcriptional Profiling in a Novel Swine Model of Traumatic Brain Injury. Neurotrauma Rep 2022; 3:178-184. [PMID: 35558731 PMCID: PMC9081013 DOI: 10.1089/neur.2021.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transcriptomic investigations of traumatic brain injury (TBI) can give us deep insights into the pathological and compensatory processes post-injury. Thus far, transcriptomic studies in TBI have mostly used microarrays and have focused on rodent models. However, a large animal model of TBI bears a much stronger resemblance to human TBI with regard to the anatomical details, mechanics of injury, genetics, and, possibly, molecular response. Because of the advantages of a large animal TBI model, we investigated the gene expression changes between injured and uninjured sides of pig cerebral cortex after TBI. Given acute inflammation that follows after TBI and the important role that immune response plays in neuroplasticity and recovery, we hypothesized that transcriptional changes involving immune function will be upregulated. Eight female 4-week-old piglets were injured on the right hemisphere with controlled cortical impact (CCI). At 5 days after TBI, pericontusional cortex tissues from the injured side and contralateral cortical tissues were collected. After RNA extraction, library preparation and sequencing as well as gene expression changes between the ipsi- and contralateral sides were compared. There were 6642 genes that were differentially expressed between the ipsi- and contralateral sides, and 1993 genes among them had at least 3-fold differences. Differentially expressed genes were enriched for biological processes related to immune system activation, regulation of immune response, and leukocyte activation. Many of the differentially expressed genes, such as CD4, CD86, IL1A, IL23R, and IL1R1, were major regulators of immune function. This study demonstrated some of the major transcriptional changes between the pericontusional and contralateral tissue at an acute time point after TBI in pigs.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, Hospital of University of Pennsylvania, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy C. Gottschalk
- College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Vanessa M. Mazandi
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
40
|
Hu J, Wang X, Chen X, Fang Y, Chen K, Peng W, Wang Z, Guo K, Tan X, Liang F, Lin L, Xiong Y. Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway. J Neuroinflammation 2022; 19:71. [PMID: 35346242 PMCID: PMC8961949 DOI: 10.1186/s12974-022-02430-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Background After traumatic brain injury (TBI), an acute, robust inflammatory cascade occurs that is characterized by the activation of resident cells such as microglia, the migration and recruitment of peripheral immune cells and the release of inflammatory mediators that induce secondary cell death and impede neurological recovery. In addition, neuroinflammation can alter blood–brain barrier (BBB) permeability. Controlling inflammatory responses is considered a promising therapeutic approach for TBI. Hydroxychloroquine (HCQ) has already been used clinically for decades, and it is still widely used to treat various autoimmune diseases. However, the effects of HCQ on inflammation and the potential mechanism after TBI remain to be defined. The aim of the current study was to elucidate whether HCQ could improve the neurological recovery of mice post-TBI by inhibiting the inflammatory response via the TLR4/NF-κB signaling pathway. Methods C57BL/6 mice were subjected to controlled cortical impact (CCI) and randomly divided into groups that received intraperitoneal HCQ or vehicle daily after TBI. TAK-242 (3.0 mg/kg), an exogenous TLR4 antagonist, was injected intraperitoneally 1 h before TBI. Behavioral assessments were performed on days 1 and 3 post-TBI, and the gene expression levels of inflammatory cytokines were analyzed by qRT-PCR. The presence of infiltrated immune cells was examined by flow cytometry and immunostaining. In addition, BBB permeability, tight junction expression and brain edema were investigated. Results HCQ administration significantly ameliorated TBI-induced neurological deficits. HCQ alleviated neuroinflammation, the activation and accumulation of microglia and immune cell infiltration in the brain, attenuated BBB disruption and brain edema, and upregulated tight junction expression. Combined administration of HCQ and TAK-242 did not enhance the neuroprotective effects of HCQ. Conclusions HCQ reduced proinflammatory cytokine expression, and the underlying mechanism may involve suppressing the TLR4/NF-κB signaling pathway, suggesting that HCQ is a potential therapeutic agent for TBI treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02430-0.
Collapse
|
41
|
Priester A, Waters R, Abbott A, Hilmas K, Woelk K, Miller HA, Tarudji AW, Gee CC, McDonald B, Kievit FM, Convertine AJ. Theranostic Copolymers Neutralize Reactive Oxygen Species and Lipid Peroxidation Products for the Combined Treatment of Traumatic Brain Injury. Biomacromolecules 2022; 23:1703-1712. [PMID: 35316025 PMCID: PMC9031337 DOI: 10.1021/acs.biomac.1c01635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) results in the generation of reactive oxygen species (ROS) and lipid peroxidation product (LPOx), including acrolein and 4-hydroxynonenal (4HNE). The presence of these biochemical derangements results in neurodegeneration during the secondary phase of the injury. The ability to rapidly neutralize multiple species could significantly improve outcomes for TBI patients. However, the difficulty in creating therapies that target multiple biochemical derangements simultaneously has greatly limited therapeutic efficacy. Therefore, our goal was to design a material that could rapidly bind and neutralize both ROS and LPOx following TBI. To do this, a series of thiol-functionalized biocompatible copolymers based on lipoic acid methacrylate and polyethylene glycol monomethyl ether methacrylate (FW ∼ 950 Da) (O950) were prepared. A polymerizable gadolinium-DOTA methacrylate monomer (Gd-MA) was also synthesized starting from cyclen to facilitate direct magnetic resonance imaging and in vivo tracking of accumulation. These neuroprotective copolymers (NPCs) were shown to rapidly and effectively neutralize both ROS and LPOx. Horseradish peroxidase absorbance assays showed that the NPCs efficiently neutralized H2O2, while R-phycoerythrin protection assays demonstrated their ability to protect the fluorescent protein from oxidative damage. 1H NMR studies indicated that the thiol-functional NPCs rapidly form covalent bonds with acrolein, efficiently removing it from solution. In vitro cell studies with SH-SY5Y-differentiated neurons showed that NPCs provide unique protection against toxic concentrations of both H2O2 and acrolein. NPCs rapidly accumulate and are retained in the injured brain in controlled cortical impact mice and reduce post-traumatic oxidative stress. Therefore, these materials show promise for improved target engagement of multiple biochemical derangements in hopes of improving TBI therapeutic outcomes.
Collapse
Affiliation(s)
- Aaron Priester
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Richard Waters
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Ashleigh Abbott
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Krista Hilmas
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Klaus Woelk
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hunter A Miller
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, United States
| | - Aria W Tarudji
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, United States
| | - Connor C Gee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, United States
| | - Brandon McDonald
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, United States
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, United States
| | - Anthony J Convertine
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
42
|
2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects against neuronal cell death and traumatic brain injury-induced pathophysiology. Aging (Albany NY) 2022; 14:2607-2627. [PMID: 35314517 PMCID: PMC9004580 DOI: 10.18632/aging.203958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a global health issue that affects at least 10 million people per year. Neuronal cell death and brain injury after TBI, including apoptosis, inflammation, and excitotoxicity, have led to detrimental effects in TBI. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a water-soluble compound extracted from the Chinese herb Polygonum multiflorum, has been shown to exert various biological functions. However, the effects of THSG on TBI is still poorly understood. THSG reduced L-glutamate-induced DNA fragmentation and protected glial and neuronal cell death after L-glutamate stimulation. Our results also showed that TBI caused significant behavioral deficits in the performance of beam walking, mNSS, and Morris water maze tasks in a mouse model. Importantly, daily administration of THSG (60 mg/kg/day) after TBI for 21 days attenuated the injury severity score, promoted motor coordination, and improved cognitive performance post-TBI. Moreover, administration of THSG also dramatically decreased the brain lesion volume. THSG reduced TBI-induced neuronal apoptosis in the brain cortex 24 h after TBI. Furthermore, THSG increased the number of immature neurons in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Our results demonstrate that THSG exerts neuroprotective effects on glutamate-induced excitotoxicity and glial and neuronal cell death. The present study also demonstrated that THSG effectively protects against TBI-associated motor and cognitive impairment, at least in part, by inhibiting TBI-induced apoptosis and promoting neurogenesis.
Collapse
|
43
|
White SM. Traumatic brain injury, omega-3 fatty acids, glutathione and ketosis. Anaesthesia 2022; 77:495. [PMID: 35178705 DOI: 10.1111/anae.15674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Affiliation(s)
- S M White
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| |
Collapse
|
44
|
Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022. [PMID: 35215469 DOI: 10.3390/nu14040819.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
|
45
|
Caruso G, Godos J, Privitera A, Lanza G, Castellano S, Chillemi A, Bruni O, Ferri R, Caraci F, Grosso G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022; 14:nu14040819. [PMID: 35215469 PMCID: PMC8875888 DOI: 10.3390/nu14040819] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Alessio Chillemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, 00185 Rome, Italy;
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
- Correspondence:
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| |
Collapse
|
46
|
Morland C, Nordengen K. N-Acetyl-Aspartyl-Glutamate in Brain Health and Disease. Int J Mol Sci 2022; 23:ijms23031268. [PMID: 35163193 PMCID: PMC8836185 DOI: 10.3390/ijms23031268] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
N-acetyl-aspartyl-glutamate (NAAG) is the most abundant dipeptide in the brain, where it acts as a neuromodulator of glutamatergic synapses by activating presynaptic metabotropic glutamate receptor 3 (mGluR3). Recent data suggest that NAAG is selectively localized to postsynaptic dendrites in glutamatergic synapses and that it works as a retrograde neurotransmitter. NAAG is released in response to glutamate and provides the postsynaptic neuron with a feedback mechanisms to inhibit excessive glutamate signaling. A key regulator of synaptically available NAAG is rapid degradation by the extracellular enzyme glutamate carboxypeptidase II (GCPII). Increasing endogenous NAAG—for instance by inhibiting GCPII—is a promising treatment option for many brain disorders where glutamatergic excitotoxicity plays a role. The main effect of NAAG occurs through increased mGluR3 activation and thereby reduced glutamate release. In the present review, we summarize the transmitter role of NAAG and discuss the involvement of NAAG in normal brain physiology. We further present the suggested roles of NAAG in various neurological and psychiatric diseases and discuss the therapeutic potential of strategies aiming to enhance NAAG levels.
Collapse
Affiliation(s)
- Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, 1068 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| | - Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| |
Collapse
|
47
|
Xun Z, Wipf P, McMurray CT. XJB-5-131 Is a Mild Uncoupler of Oxidative Phosphorylation. J Huntingtons Dis 2022; 11:141-151. [PMID: 35404288 PMCID: PMC9798833 DOI: 10.3233/jhd-220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mitochondria (MT) are energy "powerhouses" of the cell and the decline in their function from oxidative damage is strongly correlated in many diseases. To suppress oxygen damage, we have developed and applied XJB-5-131 as a targeted platform for neutralizing reactive oxygen species (ROS) directly in MT. Although the beneficial activity of XJB-5-131 is well documented, the mechanism of its protective effects is not yet fully understood. OBJECTIVE Here, we elucidate the mechanism of protection for XJB-5-131, a mitochondrial targeted antioxidant and electron scavenger. METHODS The Seahorse Flux Analyzer was used to probe the respiratory states of isolated mouse brain mitochondria treated with XJB-5-131 compared to controls. RESULTS Surprisingly, there is no direct impact of XJB-5-131 radical scavenger on the electron flow through the electron transport chain. Rather, XJB-5-131 is a mild uncoupler of oxidative phosphorylation. The nitroxide moiety in XJB-5-131 acts as a superoxide dismutase mimic, which both extracts or donates electrons during redox reactions. The electron scavenging activity of XJB-5-131 prevents the leakage of electrons and reduces formation of superoxide anion, thereby reducing ROS. CONCLUSION We show here that XJB-5-131 is a mild uncoupler of oxidative phosphorylation in MT. The mild uncoupling property of XJB-5-131 arises from its redox properties, which exert a protective effect by reducing ROS-induced damage without sacrificing energy production. Because mitochondrial decline is a common and central feature of toxicity, the favorable properties of XJB-5-131 are likely to be useful in treating Huntington's disease and a wide spectrum of neurodegenerative diseases for which oxidative damage is a key component. The mild uncoupling properties of XJB-5-131 suggest a valuable mechanism of action for the design of clinically effective antioxidants.
Collapse
Affiliation(s)
- Zhiyin Xun
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Correspondence to: Cynthia T. McMurray, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Tel.: +1 510 486 6526; Fax: +1 510 486 6880;
| |
Collapse
|
48
|
Antioxidant therapies in traumatic brain injury. Neurochem Int 2021; 152:105255. [PMID: 34915062 DOI: 10.1016/j.neuint.2021.105255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress plays a crucial role in traumatic brain injury (TBI) pathogenesis. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) formed in excess after TBI synergistically contribute to secondary brain damage together with lipid peroxidation products (reactive aldehydes) and inflammatory mediators. Furthermore, oxidative stress, endoplasmic reticulum stress and inflammation potentiate each other. Following TBI, excessive oxidative stress overloads the endogenous cellular antioxidant system leading to cell death. To combat oxidative stress, several antioxidant therapies were tested in preclinical animal models of TBI. These include free radical scavengers, activators of antioxidant systems, Inhibitors of free radical generating enzymes and antioxidant enzymes. Many of these therapies showed promising outcomes including reduced edema, blood-brain barrier (BBB) protection, smaller contusion volume, and less inflammation. In addition, many antioxidant therapies also promoted better sensory, motor, and cognitive functional recovery after TBI. Overall, preventing oxidative stress is a viable therapeutic option to minimize the secondary damage and to improve the quality of life after TBI.
Collapse
|
49
|
Mishra S, Singh VJ, Chawla PA, Chawla V. Neuroprotective Role of Nutritional Supplementation in Athletes. Curr Mol Pharmacol 2021; 15:129-142. [PMID: 34886789 DOI: 10.2174/1874467214666211209144721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. AIMS The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. METHODS This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. RESULTS The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. CONCLUSION Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacology, SRM College of Pharmacy, Delhi-NCR. India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, Punjab. India
| |
Collapse
|
50
|
Daines SA. The Therapeutic Potential and Limitations of Ketones in Traumatic Brain Injury. Front Neurol 2021; 12:723148. [PMID: 34777197 PMCID: PMC8579274 DOI: 10.3389/fneur.2021.723148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) represents a significant health crisis. To date, no FDA approved pharmacotherapies are available to prevent the neurological deficits caused by TBI. As an alternative to pharmacotherapy treatment of TBI, ketones could be used as a metabolically based therapeutic strategy. Ketones can help combat post-traumatic cerebral energy deficits while also reducing inflammation, oxidative stress, and neurodegeneration. Experimental models of TBI suggest that administering ketones to TBI patients may provide significant benefits to improve recovery. However, studies evaluating the effectiveness of ketones in human TBI are limited. Unanswered questions remain about age- and sex-dependent factors, the optimal timing and duration of ketone supplementation, and the optimal levels of circulating and cerebral ketones. Further research and improvements in metabolic monitoring technology are also needed to determine if ketone supplementation can improve TBI recovery outcomes in humans.
Collapse
Affiliation(s)
- Savannah Anne Daines
- Department of Biology, Utah State University, Logan, UT, United States
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States
| |
Collapse
|