1
|
Zio S, Tarnagda B, Tapsoba F, Zongo C, Savadogo A. Health interest of cholesterol and phytosterols and their contribution to one health approach: Review. Heliyon 2024; 10:e40132. [PMID: 39583830 PMCID: PMC11584608 DOI: 10.1016/j.heliyon.2024.e40132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Plants and animals are potential sources of food, particularly lipids. They are sources of nutrients for humans, and are used in various applications in food industries. Foods whose lipids consumed, have benefits for animal and human health. Sterols are among the compounds essential to the well-being of living beings. Phytosterols are derived from plants and algae, and zoosterols from animals dominated by cholesterol. Cholesterol is found in small quantities in some plant lipids. Also, cholesterol is produced by herbivorous insects by metabolizing phytosterols. Oilseeds and vegetable oils contain sterols and are the richest natural sources of phytosterols. Vegetables and fruit also contain small quantities. These compounds play an undeniable role in our diet. Foods, particularly vegetable oils, when produced, preserved and used according to established prescriptions, help to ensure consumer health and prevent certain pathologies. Sterols, and in particular phytosterols, play a number of roles in the pharmaceutical field (therapeutic steroids), nutrition (anti-cholesterol, anti-cancer properties). These natural molecules with their nutritional and therapeutic properties have a positive impact on human and animal health, and possibly on vegetative growth (development cycle of plants). The same is true for cholesterol, which has multiple functions in humans and animals. Also, a diet based on plants or their by-products with positive effects on human and animal health is closely in line with the objectives of the 'One health approach'. Indeed, sterols can have adverse effects on health when established standards are not respected. As a result, the health benefits of sterols (cholesterol and phytosterols) require particular attention, given their contribution to the public health problems facing our countries. The aim of the present research is to highlight the health benefits of cholesterol and phytosterols for living organisms, particularly humans, and their contribution to the One Health approach.
Collapse
Affiliation(s)
- Souleymane Zio
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Bakary Tarnagda
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre Universitaire de Banfora, Université Nazi BONI, 01 BP, Bobo Dioulasso 01, Burkina Faso
| | - François Tapsoba
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Cheikna Zongo
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Aly Savadogo
- Université Joseph KI-ZERBO, Laboratoire de Biochimie et d’Immunologie Appliquées, 03 BP 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
2
|
Edo GI, Samuel PO, Nwachukwu SC, Ikpekoro VO, Promise O, Oghenegueke O, Ongulu J, Otunuya CF, Rapheal OA, Ajokpaoghene MO, Okolie MC, Ajakaye RS. A review on the biological and bioactive components of Cyperus esculentus L.: insight on food, health and nutrition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8414-8429. [PMID: 38769860 DOI: 10.1002/jsfa.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Tiger nut (Cyperus esculentus L.) is a small, tuberous root vegetable that has gained increasing attention in recent years due to its potential health benefits. This review article provides an elaborate overview of tiger nut, including its botany, historical uses, nutritional composition, potential health benefits and traditional medicinal uses. This review article comprehensively discusses the nutritional profile of tiger nut, providing a detailed understanding of its nutrient content. Furthermore, the potential health benefits of tiger nut are thoroughly reviewed, including its effects on digestive health, cardiovascular health, blood sugar control, immune function and other potential therapeutic uses. Scientific articles used for this review were retrieved from ScienceDirect, Google Scholar, PubMed and SciELO databases. Only articles published between 1997 and 2022 were used for research. This review contributes to a better understanding of tiger nut and its prospective uses in functional foods and medicine by combining the available scientific material. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Faculty of Science, Department of Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Princess Oghenekeno Samuel
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Susan Chinedu Nwachukwu
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Victor Ovie Ikpekoro
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Obasohan Promise
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ogheneochuko Oghenegueke
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Jonathan Ongulu
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Chinenye Favour Otunuya
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Opiti Ajiri Rapheal
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Mercy Orezimena Ajokpaoghene
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Michael Chukwuma Okolie
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ruth Sheyi Ajakaye
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
3
|
Segneanu AE, Vlase G, Vlase T, Bejenaru LE, Mogoşanu GD, Buema G, Herea DD, Ciocîlteu MV, Bejenaru C. Insight into Romanian Wild-Grown Heracleum sphondylium: Development of a New Phytocarrier Based on Silver Nanoparticles with Antioxidant, Antimicrobial and Cytotoxicity Potential. Antibiotics (Basel) 2024; 13:911. [PMID: 39335084 PMCID: PMC11428303 DOI: 10.3390/antibiotics13090911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Heracleum sphondylium, a medicinal plant used in Romanian ethnopharmacology, has been proven to have remarkable biological activity. The escalating concerns surrounding antimicrobial resistance led to a special attention being paid to new efficient antimicrobial agents based on medicinal plants and nanotechnology. We report the preparation of a novel, simple phytocarrier that harnesses the bioactive properties of H. sphondylium and silver nanoparticles (HS-Ag system). Methods: H. sphondylium's low metabolic profile was determined through gas chromatography-mass spectrometry and electrospray ionization-quadrupole time-of-flight-mass spectrometry. The morphostructural properties of the innovative phytocarrier were analyzed by X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The antioxidant activity was evaluated using total phenolic content, ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro assays. The antimicrobial activity screening against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli was conducted using the agar well diffusion method. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay estimated the in vitro potential cytotoxicity on normal human dermal fibroblasts (NHDF) and cervical cancer (HeLa) cells. Results: A total of 88 biomolecules were detected, such as terpenoids, flavonoids, phenolic acids, coumarins, phenylpropanoids, iridoids, amino acids, phytosterols, fatty acids. The HS-Ag phytocarrier heightened efficacy in suppressing the growth of all tested bacterial strains compared to H. sphondylium and exhibited a significant inhibition of HeLa cell viability. Conclusions: The new HS-Ag phytocarrier system holds promise for a wide range of medical applications. The data confirm the capacity to augment the pertinent theoretical understanding in the innovative field of antimicrobial agents.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086 Timişoara, Timiş County, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086 Timişoara, Timiş County, Romania
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş County, Romania
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086 Timişoara, Timiş County, Romania
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş County, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Gabriela Buema
- National Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Avenue, 700050 Iaşi, Iaşi County, Romania
| | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Avenue, 700050 Iaşi, Iaşi County, Romania
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| |
Collapse
|
4
|
Omachi DO, Aryee ANA, Onuh JO. Functional Lipids and Cardiovascular Disease Reduction: A Concise Review. Nutrients 2024; 16:2453. [PMID: 39125334 PMCID: PMC11314407 DOI: 10.3390/nu16152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Functional lipids are dietary substances that may have an impact on human health by lowering the risk of chronic illnesses and enhancing the quality of life. Numerous functional lipids have been reported to have potential health benefits in the prevention, management, and treatment of cardiovascular disease, the leading cause of death in the United States. However, there is still insufficient and contradictory information in the literature about their effectiveness and associated mechanisms of action. The objective of this review, therefore, is to evaluate available literature regarding these functional lipids and their health benefits. Various studies have been conducted to understand the links between functional lipids and the prevention and treatment of chronic diseases. Recent studies on phytosterols have reported that CLA, medium-chain triglycerides, and omega-3 and 6 fatty acids have positive effects on human health. Also, eicosanoids, which are the metabolites of these fatty acids, are produced in relation to the ratio of omega-3 to omega-6 polyunsaturated fatty acids and may modulate disease conditions. These functional lipids are available either in dietary or supplement forms and have been proven to be efficient, accessible, and inexpensive to be included in the diet. However, further research is required to properly elucidate the dosages, dietary intake, effectiveness, and their mechanisms of action in addition to the development of valid disease biomarkers and long-term effects in humans.
Collapse
Affiliation(s)
- Deborah O. Omachi
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| | - Alberta N. A. Aryee
- Food Science and Biotechnology Program, Department of Human Ecology, Delaware State University, 1200 Dupont Highway, Dover, DE 19901, USA;
| | - John O. Onuh
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| |
Collapse
|
5
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
6
|
Baudin J, Hernandez-Baixauli J, Quesada-Vázquez S, Mulero F, Puiggròs F, Arola L, Caimari A. Combined supplementation with hesperidin, phytosterols and curcumin decreases adiposity and improves metabolic health in ovariectomized rats. Food Funct 2024; 15:4905-4924. [PMID: 38598180 DOI: 10.1039/d3fo05122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17β-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain.
| |
Collapse
|
7
|
Segneanu AE, Vlase G, Vlase T, Bita A, Bejenaru C, Buema G, Bejenaru LE, Dumitru A, Boia ER. An Innovative Approach to a Potential Neuroprotective Sideritis scardica-Clinoptilolite Phyto-Nanocarrier: In Vitro Investigation and Evaluation. Int J Mol Sci 2024; 25:1712. [PMID: 38338989 PMCID: PMC10855864 DOI: 10.3390/ijms25031712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The cutting-edge field of nanomedicine combines the power of medicinal plants with nanotechnology to create advanced scaffolds that boast improved bioavailability, biodistribution, and controlled release. In an innovative approach to performant herb nanoproducts, Sideritis scardica Griseb and clinoptilolite were used to benefit from the combined action of both components and enhance the phytochemical's bioavailability, controlled intake, and targeted release. A range of analytical methods, such as SEM-EDX, FT-IR, DLS, and XDR, was employed to examine the morpho-structural features of the nanoproducts. Additionally, thermal stability, antioxidant screening, and in vitro release were investigated. Chemical screening of Sideritis scardica Griseb revealed that it contains a total of ninety-one phytoconstituents from ten chemical categories, including terpenoids, flavonoids, amino acids, phenylethanoid glycosides, phenolic acids, fatty acids, iridoids, sterols, nucleosides, and miscellaneous. The study findings suggest the potential applications as a promising aspirant in neurodegenerative strategy.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
| | - Gabriela Vlase
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre “Thermal Anal Environm Problems”, Institute for Advanced Environmental Research-West University of Timisoara (WUT), Pestalozzi St 16, 300115 Timisoara, Romania
| | - Titus Vlase
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre “Thermal Anal Environm Problems”, Institute for Advanced Environmental Research-West University of Timisoara (WUT), Pestalozzi St 16, 300115 Timisoara, Romania
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (A.B.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania;
| | - Gabriela Buema
- National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi, Romania;
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (A.B.)
| | - Andrei Dumitru
- Faculty of Sciences, Physical Education and Informatics—Department of Medical Assistance and Physiotherapy, National University for Science and Technology Politehnica Bucharest, University Center of Pitesti, Targu din Vale 1, 110040 Pitesti, Romania;
| | - Eugen Radu Boia
- Department of Ear, Nose, and Throat, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu, 300041 Timisoara, Romania;
| |
Collapse
|
8
|
Gandhi S, Saha MR, Dey P. Improved antioxidant activities of spice require enrichment of distinct yet closely-related metabolic pathways. Heliyon 2023; 9:e21392. [PMID: 37920519 PMCID: PMC10618831 DOI: 10.1016/j.heliyon.2023.e21392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Improved biosynthesis of commercially and pharmacologically relevant phytometabolites through genetic and metabolic engineering is a lucrative strategy for crop improvement. However, identifying appropriate biosynthetic pathways pertaining to specific bioactivities has been challenging since the major metabolic pathways remain closely interconnected. Here we propose a reverse association strategy in which, based on the phytochemical profile, putative target metabolic pathways could be identified for increased production of phytochemicals. Dried seed fruits of Coriandrum sativum, Trachyspermum ammi, Cuminum cyminum, and Foeniculum vulgare (family Apiaceae) were subjected to untargeted gas chromatography-mass spectrometry-based phytochemical profiling followed by evaluation of the overall antioxidant profile using multiple antioxidant assays. Using bioinformatics approaches, specific phytochemical classes and the enrichment of their respective biosynthetic pathways were identified. Collectively, the data suggest enrichment of isoprenoids and fatty acids biosynthetic pathways. The close association of metabolic pathways with antioxidant capacities indicated a need for enrichment of specific yet closely-related metabolic pathways to achieve an improved quality of spices for better antioxidant effects.
Collapse
Affiliation(s)
- Sonia Gandhi
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Manas Ranjan Saha
- Department of Bio-sciences, Habibpur Teachers Training College, Malda, West Bengal, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
9
|
Truong VL, Bae YJ, Rarison RHG, Bang JH, Park SY, Jeong WS. Anti-Inflammatory and Antioxidant Activities of Lipophilic Fraction from Liriope platyphylla Seeds Using Network Pharmacology, Molecular Docking, and In Vitro Experiments. Int J Mol Sci 2023; 24:14958. [PMID: 37834406 PMCID: PMC10573744 DOI: 10.3390/ijms241914958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Antioxidant and anti-inflammatory mechanisms counteract the pathogenesis of chronic diseases, such as diabetes, aging, and cancer. Therefore, enhancing antioxidant and anti-inflammatory functions may help manage these pathological conditions. This study aimed to assess the antioxidant and anti-inflammatory potentials of lipophilic fraction of Liriope platyphylla seeds (LLPS) using network pharmacology, molecular docking, and in vitro experiments. Here GC-MS analysis tentatively identified forty-three lipophilic compounds in LLPS. LLPS exhibited powerful antioxidant activity, according to the results from chemical-based antioxidant assays on DPPH, ABTS+, superoxide anion, hydrogen peroxide, nitric oxide, and hydroxyl radicals scavenging, lipid peroxidation, reducing antioxidant powers, and total antioxidant capacity. Additionally, LLPS enhanced cellular antioxidant capacity by inhibiting reactive oxygen species formation and elevating antioxidant enzyme levels, including catalase and heme oxygenase-1. Moreover, LLPS attenuated inflammatory response by reducing nitric oxide secretion and downregulating the expression of inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β in lipopolysaccharide-treated macrophages. Network pharmacology and molecular docking analyses showed that key compounds in LPPS, particularly phytosterols and fatty acid esters, exerted antioxidant and anti-inflammatory properties through regulating NFKB1, PTGS1, PTGS2, TLR4, PRKCA, PRKCD, KEAP1, NFE2L2, and NR1l2. Overall, these data suggest that LLPS may be a potential antioxidant and anti-inflammatory agent for developing functional foods.
Collapse
Affiliation(s)
- Van-Long Truong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeon-Ji Bae
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Razanamanana H. G. Rarison
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Ji-Hong Bang
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - So-Yoon Park
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Woo-Sik Jeong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Micek A, Bolesławska I, Jagielski P, Konopka K, Waśkiewicz A, Witkowska AM, Przysławski J, Godos J. Association of dietary intake of polyphenols, lignans, and phytosterols with immune-stimulating microbiota and COVID-19 risk in a group of Polish men and women. Front Nutr 2023; 10:1241016. [PMID: 37599696 PMCID: PMC10436747 DOI: 10.3389/fnut.2023.1241016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives Devastating consequences of COVID-19 disease enhanced the role of promoting prevention-focused practices. Among targeted efforts, diet is regarded as one of the potential factors which can affect immune function and optimal nutrition is postulated as the method of augmentation of people's viral resistance. As epidemiological evidence is scarce, the present study aimed to explore the association between dietary intake of total polyphenols, lignans and plant sterols and the abundance of immunomodulatory gut microbiota such as Enterococcus spp. and Escherichia coli and the risk of developing COVID-19 disease. Methods Demographic data, dietary habits, physical activity as well as the composition of body and gut microbiota were analyzed in a sample of 95 young healthy individuals. Dietary polyphenol, lignan and plant sterol intakes have been retrieved based on the amount of food consumed by the participants, the phytochemical content was assessed in laboratory analysis and using available databases. Results For all investigated polyphenols and phytosterols, except campesterol, every unit increase in the tertile of intake category was associated with a decrease in the odds of contracting COVID-19. The risk reduction ranged from several dozen percent to 70 %, depending on the individual plant-based chemical, and after controlling for basic covariates it was statistically significant for secoisolariciresinol (OR = 0.28, 95% CI: 0.11-0.61), total phytosterols (OR = 0.47, 95% CI: 0.22-0.95) and for stigmasterols (OR = 0.34, 95% CI: 0.14-0.72). We found an inverse association between increased β-sitosterol intake and phytosterols in total and the occurrence of Escherichia coli in stool samples outside reference values, with 72% (OR = 0.28, 95% CI: 0.08-0.86) and 66% (OR = 0.34, 95% CI: 0.10-1.08) reduced odds of abnormal level of bacteria for the highest compared with the lowest tertile of phytochemical consumption. Additionally, there was a trend of more frequent presence of Enterococcus spp. at relevant level in people with a higher intake of lariciresinol. Conclusion The beneficial effects of polyphenols and phytosterols should be emphasized and these plant-based compounds should be regarded in the context of their utility as antiviral agents preventing influenza-type infections.
Collapse
Affiliation(s)
- Agnieszka Micek
- Statistical Laboratory, Jagiellonian University Medical College, Cracow, Poland
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Jagielski
- Department of Nutrition and Drug Research, Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Konopka
- Department of Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Waśkiewicz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warszawa, Poland
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Białystok, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Kauser S, Mughees M, Swami S, Wajid S. Pre-clinical toxicity assessment of Artemisia absinthium extract-loaded polymeric nanoparticles associated with their oral administration. Front Pharmacol 2023; 14:1196842. [PMID: 37492095 PMCID: PMC10363985 DOI: 10.3389/fphar.2023.1196842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Background: This study was designed to quantify the composition of the ethanolic extract of Artemisia absinthium through gas chromatography-mass spectrometry analysis and ensure in vivo safety of A. absinthium extract-loaded polymeric nanoparticles (ANPs) before considering their application as a drug carrier via the oral route. Methods: We synthesized N-isopropylacrylamide, N-vinyl pyrrolidone, and acrylic acid crosslinked polymeric NPs by free-radical polymerization reaction and characterized them by Fourier-transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering spectroscopy. Different concentrations of extract (50 mg/kg, 300 mg/kg, and 2,000 mg/kg body weight) were encapsulated into the hydrophobic core of polymeric micelles for the assessment of acute oral toxicity and their LD50 cut-off value as per the test procedure of OECD guideline 423. Orally administered female Wistar rats were observed for general appearance, behavioral changes, and mortality for the first 30 min, 4 h, 24 h, and then, daily once for 14 days. Result: ANPs at the dose of 300 mg/kg body weight were used as an initial dose, and rats showed few short-lived signs of toxicity, with few histological alterations in the kidney and intestine. Based on these observations, the next set of rats were treated at a lower dose of 50 mg/kg and a higher dose of 2,000 mg/kg ANPs. Rats administered with 50 mg/kg ANPs remained normal throughout the study with insignificant histological disintegration; however, rats treated at 2,000 mg/kg ANPs showed some signs of toxicity followed by mortality among all three rats within 24-36 h, affecting the intestine, liver, and kidney. There were no significant differences in hematological and biochemical parameters among rats treated at 50 mg/kg and 300 mg/kg ANPs. Conclusion: We conclude that the LD50 cut-off value of these ANPs will be 500 mg/kg extract loaded in polymeric NPs.
Collapse
|
12
|
Teixeira FS, Costa PT, Soares AMS, Fontes AL, Pintado ME, Vidigal SSMP, Pimentel LL, Rodríguez-Alcalá LM. Novel Lipids to Regulate Obesity and Brain Function: Comparing Available Evidence and Insights from QSAR In Silico Models. Foods 2023; 12:2576. [PMID: 37444314 DOI: 10.3390/foods12132576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Lipid molecules, such as policosanol, ergosterol, sphingomyelin, omega 3 rich phosphatidylcholine, α-tocopherol, and sodium butyrate, have emerged as novel additions to the portfolio of bioactive lipids. In this state-of-the-art review, we discuss these lipids, and their activity against obesity and mental or neurological disorders, with a focus on their proposed cellular targets and the ways in which they produce their beneficial effects. Furthermore, this available information is compared with that provided by in silico Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) models in order to understand the usefulness of these tools for the discovery of new bioactive compounds. Accordingly, it was possible to highlight how these lipids interact with various cellular targets related to the molecule transportation and absorption (e.g., α-tocopherol transfer protein for α-Tocopherol, ATP-binding cassette ABC transporters or Apolipoprotein E for sphingomyelins and phospholipids) or other processes, such as the regulation of gene expression (involving Sterol Regulatory Element-Binding Proteins for ergosterol or Peroxisome Proliferator-Activated Receptors in the case of policosanol) and inflammation (the regulation of interleukins by sodium butyrate). When comparing the literature with in silico Quantitative Structure-Activity Relationship (QSAR) models, it was observed that although they are useful for selecting bioactive molecules when compared in batch, the information they provide does not coincide when assessed individually. Our review highlights the importance of considering a broad range of lipids as potential bioactives and the need for accurate prediction of ADMET parameters in the discovery of new biomolecules. The information presented here provides a useful resource for researchers interested in developing new strategies for the treatment of obesity and mental or neurological disorders.
Collapse
Affiliation(s)
- Francisca S Teixeira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula T Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana M S Soares
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Luiza Fontes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Susana S M P Vidigal
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Lígia L Pimentel
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Luís M Rodríguez-Alcalá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
13
|
Villagrán Z, Martínez-Reyes M, Gómez-Rodríguez H, Ríos-García U, Montalvo-González E, Ortiz-Basurto RI, Anaya-Esparza LM, Pérez-Moreno J. Huitlacoche ( Ustilago maydis), an Iconic Mexican Fungal Resource: Biocultural Importance, Nutritional Content, Bioactive Compounds, and Potential Biotechnological Applications. Molecules 2023; 28:molecules28114415. [PMID: 37298890 DOI: 10.3390/molecules28114415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Worldwide, the fungus known as huitlacoche (Ustilago maydis (DC.) Corda) is a phytopathogen of maize plants that causes important economic losses in different countries. Conversely, it is an iconic edible fungus of Mexican culture and cuisine, and it has high commercial value in the domestic market, though recently there has been a growing interest in the international market. Huitlacoche is an excellent source of nutritional compounds such as protein, dietary fiber, fatty acids, minerals, and vitamins. It is also an important source of bioactive compounds with health-enhancing properties. Furthermore, scientific evidence shows that extracts or compounds isolated from huitlacoche have antioxidant, antimicrobial, anti-inflammatory, antimutagenic, antiplatelet, and dopaminergic properties. Additionally, the technological uses of huitlacoche include stabilizing and capping agents for inorganic nanoparticle synthesis, removing heavy metals from aqueous media, having biocontrol properties for wine production, and containing biosurfactant compounds and enzymes with potential industrial applications. Furthermore, huitlacoche has been used as a functional ingredient to develop foods with potential health-promoting benefits. The present review focuses on the biocultural importance, nutritional content, and phytochemical profile of huitlacoche and its related biological properties as a strategy to contribute to global food security through food diversification; moreover, the biotechnological uses of huitlacoche are also discussed with the aim of contributing to the use, propagation, and conservation of this valuable but overlooked fungal resource.
Collapse
Affiliation(s)
- Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | | | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Uzziel Ríos-García
- Edafología, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico
| | - Rosa Isela Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico
| | | | - Jesús Pérez-Moreno
- Edafología, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| |
Collapse
|
14
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:nu15102413. [PMID: 37242296 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
15
|
Chen Y, Pan Z, Li X, Yao X, He G, Xie S. Evaluation of Phytosterols as an Alternative to Cholesterol in Practical Diets on Growth and Nonspecific Immunity of Litopenaeus vannamei. AQUACULTURE NUTRITION 2023; 2023:7825559. [PMID: 37101712 PMCID: PMC10125761 DOI: 10.1155/2023/7825559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
This study is aimed at evaluating the effectiveness of phytosterols as an alternative to cholesterol in practical diets of Pacific white shrimp Litopenaeus vannamei from the perspective of growth and nonspecific immunity. Five diets were formulated to contain different sterol sources and levels. Two diets were supplemented with 1 g/kg cholesterol (LC (low cholesterol)) or phytosterol (LP (low phytosterol)). Other three experimental diets were supplemented with 2 g/kg cholesterol (HC (high cholesterol)), 2 g/kg phytosterol (HP (high phytosterol)), or mixed sterol source (CP, 1 g/kg cholesterol + 1 g/kg phytosterol), respectively. A total of 750 healthy and uniform-sized shrimp (0.52 ± 0.008 g) were randomly distributed into 5 groups with 3 replicates and fed with the five experimental diets for 60 days. Results showed that the growth performance of shrimp was influenced by the sterol levels and supplementation with 2 g/kg sterol level facilitated the growth of shrimp. The inclusion of phytosterol has a cholesterol-lowering effect on shrimp, as evidenced by a reduction in hemolymph cholesterol and triglyceride contents in the HP group. Besides, supplementation with 2 g/kg phytosterol or mixed sterol sources had positive effects on the hemolymph superoxide dismutase, phenol oxidase, and lysozyme as well as hepatopancreas alkaline phosphatase activities, demonstrating that the nonspecific immunity and antioxidative capacity were improved. In conclusion, phytosterols could be an appropriate alternative to partially replace dietary cholesterol in shrimp feeds. This study preliminarily revealed the effects of different sterol sources and levels on the growth and nonspecific immunity of shrimp and provided a basis for further exploration of the mechanism of phytosterol.
Collapse
Affiliation(s)
- Yongkang Chen
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China
| | - Zhongchao Pan
- Guangdong Wei Lai Biotechnology Co., Ltd, Guangzhou 510000, China
| | - Xiaoyue Li
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Xinzhou Yao
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Guilun He
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| |
Collapse
|
16
|
Li X, Li S, Wang J, Chen G, Tao X, Xu S. Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds. Antioxidants (Basel) 2023; 12:antiox12040912. [PMID: 37107287 PMCID: PMC10135580 DOI: 10.3390/antiox12040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Crop domestication has resulted in nutrient losses, so evaluating the reshaping of phytonutrients is crucial for improving nutrition. Soybean is an ideal model due to its abundant phytonutrients and wild relatives. In order to unravel the domestication consequence of phytonutrients, comparative and association analyses of metabolomes and antioxidant activities were performed on seeds of six wild (Glycine soja (Sieb. and Zucc.)) and six cultivated soybeans (Glycine max (L.) Merr.). Through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), we observed a greater metabolic diversity in wild soybeans, which also displayed higher antioxidant activities. (-)-Epicatechin, a potent antioxidant, displayed a 1750-fold greater abundance in wild soybeans than in cultivated soybeans. Multiple polyphenols in the catechin biosynthesis pathway were significantly higher in wild soybeans, including phlorizin, taxifolin, quercetin 3-O-galactoside, cyanidin 3-O-glucoside, (+)-catechin, (-)-epiafzelechin, catechin-glucoside, and three proanthocyanidins. They showed significant positive correlations with each other and antioxidant activities, indicating their cooperative contribution to the high antioxidant activities of wild soybeans. Additionally, natural acylation related to functional properties was characterized in a diverse range of polyphenols. Our study reveals the comprehensive reprogramming of polyphenolic antioxidants during domestication, providing valuable insights for metabolism-assisted fortification of crop nutrition.
Collapse
Affiliation(s)
- Xuetong Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyuan Tao
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
17
|
Shen J, Liu Y, Wang X, Bai J, Lin L, Luo F, Zhong H. A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients 2023; 15:999. [PMID: 36839357 PMCID: PMC9962526 DOI: 10.3390/nu15040999] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Rapeseed oil is the third most consumed culinary oil in the world. It is well-known for its high content of unsaturated fatty acids, especially polyunsaturated fatty acids, which make it of great nutritional value. There is increasing evidence that a diet rich in unsaturated fatty acids offers health benefits. Although the consumption of rapeseed oil cuts across many areas around the world, the nutritional elements of rapeseed oil and the exact efficacy of the nutrients remain unclear. In this review, we systematically summarized the latest studies on functional rapeseed components to ascertain which component of canola oil contributes to its function. Apart from unsaturated fatty acids, there are nine functional components in rapeseed oil that contribute to its anti-microbial, anti-inflammatory, anti-obesity, anti-diabetic, anti-cancer, neuroprotective, and cardioprotective, among others. These nine functional components are vitamin E, flavonoids, squalene, carotenoids, glucoraphanin, indole-3-Carbinol, sterols, phospholipids, and ferulic acid, which themselves or their derivatives have health-benefiting properties. This review sheds light on the health-benefiting effects of rapeseed oil in the hope of further development of functional foods from rapeseed.
Collapse
Affiliation(s)
- Junjun Shen
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Yejia Liu
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
- Faculty of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415006, China
| | - Xiaoling Wang
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Bai
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyan Zhong
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
18
|
Nyalo P, Omwenga G, Ngugi M. Quantitative Phytochemical Profile and In Vitro Antioxidant Properties of Ethyl Acetate Extracts of Xerophyta spekei (Baker) and Grewia tembensis (Fresen). J Evid Based Integr Med 2023; 28:2515690X231165096. [PMID: 36945829 PMCID: PMC10034282 DOI: 10.1177/2515690x231165096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Overproduction of free radicals in excess of antioxidants leads to oxidative stress which can cause harm to the body. Conventional antioxidants have drawbacks and are believed to be carcinogenic. The present study seeked to confirm folklore use and validate the antioxidant potentials of Grewia tembensis and Xerophyta spekei which have been widely used in the Mbeere community as medicinal plants. Antioxidant properties were determined through scavenging effects of diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide radicals as well as iron chelating effects. The data obtained was assayed in comparison to the standards (Ascorbic acid and EDTA). Ascorbic acid had a significantly greater DPPH radical scavenging property with an inhibitory concentration (IC50) value of 20.54 ± 2.24 µg/mL in comparison to the plant extracts, which had IC50 values of 33.00 ± 1.47 µg/mL, 69.66 ± 1.01 µg/mL and 86.88 ± 2.64 µg/mL for X. spekei, G. tembensis leaf and G. tembensis stem bark extracts, respectively. EDTA demonstrated a significantly greater iron chelating effect having a significantly lesser IC50 value of 25.05 ± 0.79 µg/mL as opposed to 43.56 ± 0.46 µg/mL, 89.78 ± 0.55 µg/mL, and 120.70 ± 0.71 µg/mL for X. spekei, G. tembensis leaf, and G. tembensis stem bark extracts respectively. Additionally, ascorbic acid also exhibited stronger hydrogen peroxide radical scavenging effect than the studied extracts. Generally, X. spekei extract had higher antioxidant activities as compared to both the leaf and stem bark extracts of G. tembensis. The phytochemical screening demonstrated the presence of secondary metabolites associated with antioxidant properties. The present study therefore, recommends ethno medicinal and therapeutic use of G. tembensis and X. spekei in the treatment and management of oxidative stress related infections.
Collapse
Affiliation(s)
- Paul Nyalo
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
- Medical Laboratory Department, Penda Health (K) Ltd, Nairobi, Kenya
| | - George Omwenga
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| | - Mathew Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| |
Collapse
|
19
|
Guo P, Feng R, Li Z, Han T. Gender differences in the relationships between dietary phytosterols intake and prevalence of obesity in Chinese population. Food Sci Nutr 2023; 11:569-577. [PMID: 36655093 PMCID: PMC9834890 DOI: 10.1002/fsn3.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/31/2022] [Accepted: 09/25/2022] [Indexed: 01/21/2023] Open
Abstract
To investigate the associations between different phytosterols (PSs) intake and subtype of obesity in Chinese. Total 6073 adults aged ≥18 years was enrolled from China. General characteristics were completed by the validated dietary questionnaire. For total phytosterols intake, comparing Q4 with Q1 was inversely associated with the risks of overweight [odds ratio (OR) 95% confidence interval (CI), 0.82 (0.69, 0.96), p < .05]. The intake of stigmasterol, β-sitosterol, β-sitostanol and campestanol were associated with the lower risks of obesity, whereas no significant correlationss were found between campesterol intake and any subtype of obesity in the multivariable-adjusted model. Interestingly, the stigmasterol intake was inversely related with the prevalence of central obesity in female, while the β-sitostanol intake was found in male [OR 95% CI in Q3 of 0.78 (0.60-0.99) and 0.71 (0.56-0.91), respectively; p < .05]. The multiple linear regression models showed that fruits, vegetable-oil, nuts and seeds may be important diet sources of PSs. The intake of total PSs, β-sitosterol, stigmasterol, β-sitostanol and campestanol were inversely associated with the prevalence of obesity. Moreover, the lower obesity risk for total PSs and PSs subgroups differed for the gender. The firm results deserve to be further verified in cohort studies.
Collapse
Affiliation(s)
- Panpan Guo
- Department of Clinical NutritionShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Clinical Nutrition Quality Control CenterShanghaiChina
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health CollegeHarbin Medical UniversityHarbinChina
| | - Zixiang Li
- Department of Clinical NutritionShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Clinical Nutrition Quality Control CenterShanghaiChina
| | - Ting Han
- Department of Clinical NutritionShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Clinical Nutrition Quality Control CenterShanghaiChina
| |
Collapse
|
20
|
Glenn AJ, Li J, Lo K, Jenkins DJ, Boucher BA, Hanley AJ, Kendall CW, Shadyab AH, Tinker LF, Chessler SD, Howard BV, Liu S, Sievenpiper JL. The Portfolio Diet and Incident Type 2 Diabetes: Findings From the Women's Health Initiative Prospective Cohort Study. Diabetes Care 2023; 46:28-37. [PMID: 36162007 PMCID: PMC9797645 DOI: 10.2337/dc22-1029] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A plant-based dietary pattern, the Portfolio Diet, has been shown to lower LDL cholesterol and other cardiovascular disease risk factors. However, no study has evaluated the association of this diet with incident type 2 diabetes. RESEARCH DESIGN AND METHODS This analysis included 145,299 postmenopausal women free of diabetes at baseline in the Women's Health Initiative (WHI) Clinical Trials and Observational Study from 1993 to 2021. Adherence to the diet was assessed with a score based on six components (high in plant protein [soy and pulses], nuts, viscous fiber, plant sterols, and monounsaturated fat and low in saturated fat and cholesterol) determined from a validated food-frequency questionnaire. We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% CIs of the association of the Portfolio Diet, alongside the Dietary Approaches to Stop Hypertension (DASH) and Mediterranean diets, with incident type 2 diabetes, with adjustment for potential confounders. RESULTS Over a mean follow-up of 16.0 years, 13,943 cases of incident type 2 diabetes were identified. In comparisons of the highest with the lowest quintiles of adherence, the HRs for risk of incident type 2 diabetes were 0.77 (95% CI 0.72, 0.82) for the Portfolio Diet, 0.69 (0.64, 0.73) for the DASH diet, and 0.78 (0.74, 0.83) for the Mediterranean diet. These findings were attenuated by 10% after additional adjustment for BMI. CONCLUSIONS Greater adherence to the plant-predominant Portfolio, DASH, and Mediterranean diets was prospectively associated with lower risk of type 2 diabetes in postmenopausal women.
Collapse
Affiliation(s)
- Andrea J. Glenn
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jie Li
- Global Health Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI
| | - Kenneth Lo
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - David J.A. Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Beatrice A. Boucher
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony J. Hanley
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cyril W.C. Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA
| | - Lesley F. Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Steven D. Chessler
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of California, Irvine, CA
| | - Barbara V. Howard
- MedStar Health Research Institute, Washington, DC
- Georgetown/Howard Universities Center for Clinical and Translational Sciences, Washington, DC
| | - Simin Liu
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI
- Departments of Surgery and Medicine, Alpert School of Medicine, Brown University, Providence, RI
| | - John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Sawaya K, Abou Najem S, Khawaja G, Khalil M. Proapoptotic and Antiproliferative Effects of the Desert Truffle Terfezia boudieri on Colon Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1693332. [PMID: 37064948 PMCID: PMC10104735 DOI: 10.1155/2023/1693332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 04/18/2023]
Abstract
Background Colon cancer is the second leading cause of cancer-related mortality, and ranks third among cancers in terms of prevalence. Despite advances in early detection and treatment with chemotherapy and surgery, colon cancer continues to be associated with high recurrence rates, thereby resulting in a heavy disease burden. Moreover, the effectiveness of currently available treatment modalities is limited by the occurrence of toxic side effects. Hence, there is an urgent need to develop alternative treatments. Extracts from the black desert truffle Terfezia boudieri (T. boudieri) have shown promising anticancer properties. However, the cellular mechanisms underlying this activity remain poorly understood. Methods In this study, the colon cancer cell lines HCT-116 and Caco-2 were treated with either water or ethanolic extract of T. boudieri. Cell viability and the half-maximal inhibitory concentration were determined using MTT assays. Then, the activity of the more potent water extract was further verified using crystal violet assays, and its role in inhibiting colony formation and wound healing was investigated. Protein levels of p53, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), cyclin D1 (CCND1), and c-Myc were measured in cells treated with different doses of the water extract. Results Treatment with the water extract of T. boudieri reduced the capacity of cells for wound healing and colony formation in a dose-dependent manner. The Bax/Bcl-2 ratio and p53 expression were elevated in both cell lines. In contrast, the levels of cyclin D1 and c-Myc were suppressed. Conclusion T. boudieri water extract exerted a cytotoxic effect on colon cancer cells, and blocked colony formation and wound healing potentially through inhibition of proliferation. Mechanistically, these effects are attributed to influence the mitochondrial pathway of apoptosis, proteins involved in cellular proliferation, and the cell cycle.
Collapse
Affiliation(s)
- Katia Sawaya
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Sonia Abou Najem
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, UAE
| | - Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mahmoud Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Iji M, Yamada K, Yamane Y, Watanabe C, Takemoto K, Tanaka M, Takei Y, Miyaue T, Miura Y, Watanabe H. Potential for Improvement of Gut Microbiota Deterioration Caused by a High-fat, High-sucrose Diet through Administration of Acylated Steryl-β-glycosides. J Oleo Sci 2023; 72:1125-1131. [PMID: 38044136 DOI: 10.5650/jos.ess23151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Consumption of a high-fat diet (HFD) is associated with an increased risk of metabolic diseases, cancer, and neurological disorders, which are major global health concerns. In the present study, mice were fed a HFD containing 40% fat and 0.5% or 1.0% acylated steryl-β-glucosides (ASG) and their gut microbiota was compared to that of mice fed with a low-fat diet (LFD). After 55 d, the epididymal fat weight was higher in the HFD and ASG groups than in the LFD group; however, the epididymal fat weight was lower in the ASG group than in the HFD group. The abundance of gut microbiota increased with HFD in obese micespecific Bacillota, but decreased when ASG was added to the HFD. The number of intestinal bacteria involved in the production of carcinogenic secondary bile acids was increased by the consumption of HFD, but decreased by the addition of ASG to HSD. This finding may indicate the gut bacteria-mediated health benefits of ASG.
Collapse
Affiliation(s)
- Masaki Iji
- Graduate School of Human Life Sciences, University of Kochi
| | | | - Yuta Yamane
- Graduate School of Human Life Sciences, University of Kochi
| | | | | | - Mamoru Tanaka
- Department of Food and Nutritional Sciences, Chubu University
| | - Yuichiro Takei
- Graduate School of Human Life Sciences, University of Kochi
| | - Takako Miyaue
- Graduate School of Human Life Sciences, University of Kochi
| | - Yoichi Miura
- Graduate School of Human Life Sciences, University of Kochi
| | | |
Collapse
|
23
|
Liu D, Pi J, Zhang B, Zeng H, Li C, Xiao Z, Fang F, Liu M, Deng N, Wang J. Phytosterol of lotus seed core powder alleviates hypercholesterolemia by regulating gut microbiota in high-cholesterol diet-induced C57BL/6J mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Yang L, Yang C, Chu C, Wan M, Xu D, Pan D, Xia H, Wang SK, Shu G, Chen S, Sun G. Beneficial effects of monounsaturated fatty acid-rich blended oils with an appropriate polyunsaturated/saturated fatty acid ratio and a low n-6/n-3 fatty acid ratio on the health of rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7172-7185. [PMID: 35727941 DOI: 10.1002/jsfa.12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The effects of dietary fat on health are influenced by its fatty acid profile. We aimed to determine the effects of monounsaturated fatty acid (MUFA)-rich blended oils (BO) containing a balance of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) and with a low n-6/n-3 PUFA ratio on the health of rats fed normal or high-fat diets. The BO was obtained by mixing red palm oil, rice bran oil (RO), tea seed oil and flaxseed oil in appropriate proportions. RESULTS BO consumption reduced the serum low-density lipoprotein cholesterol (LDL-C), non-esterified fatty acid (NEFA), insulin (INS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 (IL-1), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), lipid peroxide (LPO) and oxidized LDL (ox-LDL) concentrations and the homeostasis model assessment of insulin resistance (HOMA-IR); it increased the high-density lipoprotein cholesterol (HDL-C), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) concentrations, and the bone mineral density (BMD) versus control oil-containing normal and high-fat diets. BO also reduced the triglyceride (TG), hs-CRP, MDA, ox-LDL and reactive oxygen species (ROS) concentrations; and increased the serum HDL-C and SOD, and BMD versus RO-containing high-fat diets. Finally, BO reduced the glucose (GLU) and INS, and HOMA-IR; it increased HDL-C, SOD, femoral weight and BMD versus RO-containing normal diets. CONCLUSION BOs with an appropriate fatty acid profile have beneficial effects on the glucolipid metabolism, inflammation, oxidative stress and bone quality of rats when included in both normal and high-fat diets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chu Chu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Shao Kang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guofang Shu
- Department of Clinical Laboratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Shiqing Chen
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
25
|
A multifunctional key to open a new window on the path to natural resources-lessons from a study on chemical composition and biological capability of Paeonia mascula L. from Turkey. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
In Vitro and In Vivo Anti-Arthritic Potential of Caralluma tuberculata N. E. Brown. and Its Chemical Characterization. Molecules 2022; 27:molecules27196323. [PMID: 36234860 PMCID: PMC9572219 DOI: 10.3390/molecules27196323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Present research was planned to assess the in vitro and in vivo anti-arthritic potential of Caralluma tuberculata N. E. Brown. methanolic (CTME) and aqueous (CTAQ) extracts. Chemical characterization was done by high-performance liquid chromatography and gas chromatography−mass spectrometry analysis. The Complete Freund’s Adjuvant (CFA) was injected in left hind paw of rat at day 1 and dosing at 150, 300 and 600 mg/kg was started on the 8th day via oral gavage in all groups except normal and disease control rats (which were given distilled water), whereas methotrexate (intraperitoneal; 1 mg/kg/mL) was administered to standard control. The CTME and CTAQ exerted significant (p < 0.01−0.0001) in vitro anti-arthritic action. Both extracts notably reduced paw edema, and restored weight loss, immune organs weight, arthritic score, RBCs, ESR, platelet count, rheumatoid factor (RF), C-reactive protein, and WBCs in treated rats. The plant extracts showed significant (p < 0.05−0.0001) downregulation of tumor necrosis factor-α, Interleukin-6, -1β, NF-κB, and cyclooxygenase-2, while notably upregulated IL-4, IL-10, I-κBα in contrast to disease control rats. The plant extracts noticeably (p < 0.001−0.0001) restored the superoxide dismutase and catalase activities and MDA levels in treated rats. Both extracts exhibited significant anti-arthritic potential. The promising potential was exhibited by both extracts probably due to phenolic, and flavonoids compounds.
Collapse
|
27
|
Atanu FO, Ikeojukwu A, Owolabi PA, Avwioroko OJ. Evaluation of chemical composition, in vitro antioxidant, and antidiabetic activities of solvent extracts of Irvingia gabonensis leaves. Heliyon 2022; 8:e09922. [PMID: 35847614 PMCID: PMC9283886 DOI: 10.1016/j.heliyon.2022.e09922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Irvingia gabonensis commonly referred to as wild mango or ogbono is a tropical plant with both nutritional and medicinal uses. The present study was designed to evaluate the chemical composition, in vitro antioxidant activity, and inhibitory activity of carbohydrate hydrolyzing enzymes related to diabetes by different extracts of the plant. From the results of the study, Total Phenolic Content (TPC) was highest in the aqueous and ethanol extracts (367.30 ± 00 mg/100g GAE) compared to the chloroform and n-hexane extracts whereas the Total Flavonoid Content (TFC) was highest (230.69 ± 0.18 mg/100g QE) in the ethanol extract. Analysis of the in vitro antioxidant activity showed that the ethanol extract also possessed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (IC50: 21.42 ± 0.05 μg/ml) and hydroxyl radical scavenging activity (81.43 ± 0.11%) compared to other solvent extracts. The aqueous extract had the highest (23.91 ± 0.04 mM Fe++ equivalent) ferric antioxidant reducing power (FRAP). However, the antioxidant activity of the extracts was significantly lower than that of the reference compounds used for the study (butylated hydroxytoluene and Gallic acid). In vitro antidiabetic activity of the extracts was measured based on inhibition of α-amylase and α-glucosidase. The aqueous extract had the highest α-amylase and α-glucosidase inhibitory activity followed by the ethanol extract compared to the chloroform and n-hexane extracts. The inhibitory activity of the aqueous extract against both enzymes was higher compared to the reference compound Acarbose. Gas Chromatography-Mass Spectrometry analysis of the extracts revealed the presence of chemical constituents including fatty acids, vitamin, phytosterols, aromatic compounds, glycosides. The interaction of these compounds with α-amylase and α-glucosidase was evaluated in silico by molecular docking. Phytosterols namely, campesterol, stimasterol and γ-sitosterol had the best binding affinities to α-amylase and α-glucosidase. In conclusion, the results of this study revealed that the aqueous and ethanol extracts of Irvingia gabonensis had the highest phenolic content, antioxidant activity, and in vitro antidiabetic activity. These results offer a scientific explanation for the mode of preparation and traditional use of the plant in the treatment of diabetes.
Collapse
Affiliation(s)
- Francis O Atanu
- Department of Biochemistry, Kogi State University, P.M.B. 1008, Anyigba, Nigeria.,Department of Biochemistry, Faculty of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Arinzechukwu Ikeojukwu
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Peter A Owolabi
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| |
Collapse
|
28
|
Bari A, Shah SMM, Al-Joufi FA, Shah SWA, Shoaib M, Shah I, Zahoor M, Ahmed MN, Ghias M, Shah SMH, Khalil AAK. Effects of Artemisia macrocephala Jacquem on Memory Deficits and Brain Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Molecules 2022; 27:molecules27082399. [PMID: 35458597 PMCID: PMC9028531 DOI: 10.3390/molecules27082399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Different species of Artemisia have been reported to have therapeutic potential in treating various health disorders, including diabetes and memory dysfunction. The present study was planned to evaluate the effects of Artemisia macrocephala Jacquem crude extract and its subfractions as antiamnesic agents in streptozotocin-induced (STZ) diabetic mice. The in vivo behavioral studies were performed using the Y Maze test and novel object recognition test (NORT) test at doses of 100 and 200 mg/kg of crude extract and 75 and 150 mg/kg of fractions. The in vitro and ex vivo anticholinesterase activities, along with biochemical parameters (superoxide dismutase, catalase, glutathione and lipid peroxidation) in the brain, were evaluated. Blood glucose levels were monitored with a glucometer; crude extract and fractions reduced the glucose level considerably, with some differences in the extent of their efficacies. The crude extract and fractions demonstrated significant inhibitory activity against cholinesterases (AChE and BuChE) in vitro. Crude, chloroform and ethyl acetate extract were found to be more potent than the other fractions, with IC50 of Crd-Am = 116.36 ± 1.48 and 240.52 ± 1.35 µg/mL, Chl-Am = 52.68 ± 1.09 and 57.45 ± 1.39 µg/mL and Et-Am = 75.19 ± 1.02 and 116.58 ± 1.09 µg/mL, respectively. Oxidative stress biomarkers like superoxide dismutase, catalase and glutathione levels were elevated, whereas MDA levels were reduced by crude extract and all fractions with little difference in their respective values. The Y-maze test and novel object recognition test demonstrated declines in memory impairment in groups (n = 6) treated with crude extract and fractions as compared to STZ diabetic (amnesic) group. The most active fraction, Chl-Am, was also subjected to isolation of bioactive compounds; three compounds were obtained in pure state and designated as AB-I, AB-II and AB-III. Overall, the results of the study showed that Artemisia macrocephala Jacquem enhanced the memory impairment associated with diabetes, elevated acetylcholine levels and ameliorated oxidative stress. Further studies are needed to explore the beneficial role of the secondary metabolites isolated in the present study as memory enhancers. Toxicological aspects of the extracts are also important and need to be evaluated in other animal models.
Collapse
Affiliation(s)
- Atiqul Bari
- Department of Pharmacy, University of Swabi, Swabi 23460, Khyber Pakhtunkhwa, Pakistan; (A.B.); (S.M.M.S.)
| | | | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Aljouf, Saudi Arabia;
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (M.S.); (M.G.)
- Correspondence: (S.W.A.S.); (M.Z.)
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (M.S.); (M.G.)
| | - Ismail Shah
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (S.W.A.S.); (M.Z.)
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu & Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan;
| | - Mehreen Ghias
- Department of Pharmacy, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (M.S.); (M.G.)
| | - Syed Muhammad Hassan Shah
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan;
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Punjab, Pakistan;
| |
Collapse
|
29
|
Tsiantas K, Konteles SJ, Kritsi E, Sinanoglou VJ, Tsiaka T, Zoumpoulakis P. Effects of Non-Polar Dietary and Endogenous Lipids on Gut Microbiota Alterations: The Role of Lipidomics. Int J Mol Sci 2022; 23:ijms23084070. [PMID: 35456888 PMCID: PMC9024800 DOI: 10.3390/ijms23084070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components. This review firstly summarizes the general background regarding the interactions between important non-polar dietary (i.e., sterols, fat-soluble vitamins, and carotenoids) or amphoteric endogenous (i.e., eicosanoids, endocannabinoids-eCBs, and specialized pro-resolving mediators-SPMs) lipids and gut microbiota. In the second stage, through the evaluation of a vast number of dietary clinical interventions, a comprehensive effort is made to highlight the role of the above lipid categories on gut microbiota and vice versa. In addition, the present status of lipidomics in current clinical interventions as well as their strengths and limitations are also presented. Indisputably, dietary lipids and most phytochemicals, such as sterols and carotenoids, can play an important role on the development of medical foods or nutraceuticals, as they exert prebiotic-like effects. On the other hand, endogenous lipids can be considered either prognostic indicators of symbiosis or dysbiosis or even play a role as specialized mediators through dietary interventions, which seem to be regulated by gut microbiota.
Collapse
Affiliation(s)
- Konstantinos Tsiantas
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Spyridon J. Konteles
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Vassilia J. Sinanoglou
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Thalia Tsiaka
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
30
|
Gan C, Liu Q, Zhang Y, Shi T, He WS, Jia C. A novel phytosterols delivery system based on sodium caseinate-pectin soluble complexes: Improving stability and bioaccessibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Rajagopalan VR, Manickam S, Muthurajan R. A Comparative Metabolomic Analysis Reveals the Nutritional and Therapeutic Potential of Grains of the Traditional Rice Variety Mappillai Samba. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040543. [PMID: 35214876 PMCID: PMC8876031 DOI: 10.3390/plants11040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 05/29/2023]
Abstract
Rice (Oryza sativa L.) is the staple food of the majority of the population, particularly in Asia and Africa. Enriching rice with nutritional and therapeutic contents can improve its benefits for patients with lifestyle disorders. This study aimed to profile the phytochemical contents of the therapeutically known traditional rice Mappillai Samba against white rice CBMAS 14065 using non-targeted gas chromatography-mass spectrometry (GC-MS/MS). An analysis of the data using a mass spectrometry-data independent analysis (MS-DIAL) and MetaboAnalyst identified 113 metabolites belonging to 21 different classes of metabolites. A partial least square-discriminant analysis (PLS-DA) revealed 43 variable importance in projection (VIP) metabolites. This study identified therapeutically important metabolites, including phenylpropanoids, phytosterols, flavonoids, and polyamines, in the grains of Mappillai Samba. Three significant metabolic pathways, viz., phenylpropanoid biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, and steroid biosynthesis, were responsible for the grain metabolome variation between CBMAS 14065 and Mappillai Samba. Overall, the results of this study unravelled the biochemical complexity of Mappillai Samba, paving the way for the genetic mapping of the therapeutic compound accumulation in rice and the development of similar therapeutic rice varieties through molecular breeding.
Collapse
|
32
|
Olive oil and wine as source of multi-target agents in the prevention of Alzheimer disease. Nutr Res Rev 2021; 36:140-154. [PMID: 34895363 DOI: 10.1017/s095442242100041x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olive oil and wine are consumed daily worldwide and they constitute the fundamental pillars of the healthy Mediterranean diet. Polyphenolic compounds, naturally present in both olive oil and wine, are responsible for their beneficial properties. Current studies have shown the neuroprotective effects of polyphenols independently of their well-known antioxidant action. In this work, we have focused on reviewing the protective effect of polyphenols from extra virgin olive oil and wine in Alzheimer´s disease (AD), to emphasize that both food could be a possible therapeutic tool. Beneficial effects have been described in β-aggregation, neurofibrillary tangles, autophagy and mitochondrial function, as well as in cerebral insulin resistance. Furthermore, to date a harmful dose has not been described. Both preclinical and clinical works demonstrate that polyphenols act on neuropathological and cognitive disorders of AD, preventing or stopping the onset of this devastating disease. However, there are certain limitations in these studies, since it is very difficult to research diseases that lead to cognitive impairment. Although all the findings obtained are very encouraging, more studies should be carried out to use the polyphenols from olive oil and wine as therapeutic agents in the progression of AD. Therefore, more longitudinal studies in humans with a homogeneous cohort of patients are necessary to corroborate the efficacy of these nutraceuticals, as well as analyze which is the most appropriate dose for this purpose.
Collapse
|
33
|
Jayaraman S, Roy A, Vengadassalapathy S, Sekar R, Veeraraghavan VP, Rajagopal P, Rengasamy G, Mukherjee R, Sekar D, Manjunathan R. An Overview on the Therapeutic Function of Foods Enriched with Plant Sterols in Diabetes Management. Antioxidants (Basel) 2021; 10:antiox10121903. [PMID: 34943006 PMCID: PMC8750040 DOI: 10.3390/antiox10121903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes is one of the most significant health issues across the world. People identified with diabetes are more vulnerable to various infections and are at a greater risk of developing cardiovascular diseases. The plant-based food we consume often contains many sterol-based bioactive compounds. It is well documented that these compounds could effectively manage the processes of insulin metabolism and cholesterol regulation. Insulin resistance followed by hyperglycemia often results in oxidative stress level enhancement and increased reactive oxygen species production. At the molecular level, these changes induce apoptosis in pancreatic cells and hence lead to insulin insufficiency. Studies have proved that plant sterols can lower inflammatory and oxidative stress damage connected with DNA repair mechanisms. The effective forms of phyto compounds are polyphenols, terpenoids, and thiols abundant in vegetables, fruits, nuts, and seeds. The available conventional drug-based therapies for the prevention and management of diabetes are time-consuming, costly, and with life-threatening side effects. Thereby, the therapeutic management of diabetes with plant sterols available in our daily diet is highly welcome as there are no side effects. This review intends to offer an overview of the present scenario of the anti-diabetic compounds from food ingredients towards the therapeutic beneficial against diabetes.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 602105, India
| | - Ramya Sekar
- Department of Oral Pathology, Meenakshi Ammal Dental College and Hospitals, Chennai 600095, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Ponnulakshmi Rajagopal
- Department of Central Research Laboratory, Meenakshi Ammal Dental College and Hospitals, Chennai 600095, India
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Raktim Mukherjee
- Shree PM Patel Institute of PG Studies and Research in Science, Sardar Patel University, Anand 388001, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Reji Manjunathan
- Multi-Disciplinary Research Unit, Chengalpattu Government Medical College, Chengalpattu 60300, India
| |
Collapse
|
34
|
Zhao Y, Zhang L, Guo M, Yang H. Taraxasterol suppresses cell proliferation and boosts cell apoptosis via inhibiting GPD2-mediated glycolysis in gastric cancer. Cytotechnology 2021; 73:815-825. [PMID: 34776631 DOI: 10.1007/s10616-021-00499-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is the most common malignant tumor of digestive tract. Taraxasterol (TAX), a kind of phytosterol, has been proved to exert anti-tumor functions in GC. Herein, the current work was carried out to identify the biological role of TAX and molecular mechanisms underlying TAX in the progression of GC. In the present study, CCK-8 assay, Colony formation assay, EDU staining and TUNEL staining were performed to evaluate the malignant behaviors of GC cells. Levels of proliferation and apoptosis-associated proteins were assessed using western blotting analysis. Besides, GPD2 expression in GC cells was presented on CCLE database and the interaction between TAX and GPD2 was obtained from STRING database. The glucose uptake, lactate production, LDH activity, ATP and expressions of glycolysis-associated enzymes were measured to evaluate glycolysis level. Results of the present research revealed that TAX suppressed the proliferative and clone-forming abilities of GC cells and boosted the apoptosis of GC cells. TAX reduced GPD2 expression in GC cells. Furthermore, overexpression of GPD2 reversed the inhibitory effects of TAX on the proliferative and clone-forming abilities of GC cells as well as abolished the promoting effects of TAX on the apoptosis of GC cells. Besides, upregulation of GPD2 abrogated the inhibition of TAX on glycolysis. To conclude, TAX could suppress GC progression via inhibiting GPD2-mediated glycolysis, which helps to develop a promising molecular target for GC therapies.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Surgical Oncology II, General Hospital of Ningxia Medical University, No. 804 Shengli Road, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Li Zhang
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004 Shaanxi China
| | - Min Guo
- Health Science Center, Xi'an Jiaotong University, No. 76 West Yanta Road, Xi'an, 710061 Shaanxi China
| | - Haixia Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004 Shaanxi China
| |
Collapse
|
35
|
Karim N, Khan I, Abdelhalim A, Halim SA, Khan A, Al-Harrasi A. Stigmasterol can be new steroidal drug for neurological disorders: Evidence of the GABAergic mechanism via receptor modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153646. [PMID: 34280827 DOI: 10.1016/j.phymed.2021.153646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Gamma-aminobutyric acid A (GABAA) receptors have been implicated in anxiety and epileptic disorders. HYPOTHESIS/PURPOSE This study aimed to investigate the effects of stigmasterol, a plant sterol (phytosterol) isolated from Artemisia indica Linn on neurological disorders. METHODS Stigmasterol was evaluated on various recombinant GABAA receptor subtypes expressed in Xenopus laevis oocytes and its anxiolytic and anticonvulsant potential was assessed using the elevated plus maze (EPM), light-dark box (LDB) test, and pentylenetetrazole- (PTZ-) induced seizure paradigms. Furthermore, computational modeling of α2β2γ2L, α4β3δ, and α4β3 subtypes was performed to gain insights into the GABAergic mechanism of stigmasterol. For the first time, a model of GABAδ subtype was generated. Stigmasterol was targeted to all the binding sites (neurotransmitters, positive and negative modulator binding sites) of GABAA α2β2γ2L, α4β3, and α4β3δ complexes by in silico docking. RESULTS Stigmasterol enhanced GABA-induced currents at ternary α2β2γ2L, α4β3δ, and binary α4β3 GABAAR subtypes. The potentiation of GABA-induced currents at extrasynaptic α4β3δ was significantly higher compared to the binary α4β3 subtype, indicating that the δ subunit is important for efficacy. Stigmasterol was found to be a potent positive modulator of the extrasynaptic α4β3δ subtype, which was also confirmed by computational analysis. The computational analysis reveals that stigmasterol preferentially binds at the transmembrane region shared by positive modulators or a binding site constituted by the M2-M3 region of α4 and M1-M2 of β3 at α4β3δ complex. In in vivo studies, Stigmasterol (0.5-3.0 mg/kg, i.p.) exerted significant anxiolytic and anticonvulsant effects in an identical manner of allopregnanolone, indicating the involvement of a GABAergic mechanism. CONCLUSION To our knowledge, this is the first study reporting the positive modulation of GABAA receptors, anxiolytic and anticonvulsant potential of stigmasterol. Thus, stigmasterol is considered to be a candidate steroidal drug for the treatment of neurological disorders due to its positive modulation of GABA receptors.
Collapse
Affiliation(s)
- Nasiara Karim
- Department of Pharmacy, University of Malakand, Chakdara, Dir (Lower), KPK, Pakistan.
| | - Imran Khan
- Department of Pharmacy, University of Swabi, KPK, Pakistan
| | - Abeer Abdelhalim
- Faculty of Science, Taibah University, Almadina Almonawara, Saudi Arabia
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz 616, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz 616, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
36
|
Silva TJ, Barrera-Arellano D, Ribeiro APB. Margarines: Historical approach, technological aspects, nutritional profile, and global trends. Food Res Int 2021; 147:110486. [PMID: 34399482 DOI: 10.1016/j.foodres.2021.110486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Margarines are an expanding market worldwide due to large-scale commercial, lower cost, growth of bakery and confectionery markets, and seasonal independence. The fatty acid composition, solid fat content, consistency, and melting point of the fats used in margarine determine their functional properties. Due to its proven association with increased risk of cardiovascular diseases, the recommendations of the World Health Organization and the enactment of laws in several countries to eliminate industrially produced trans fatty acids (TFA) have resulted in the prohibition or progressive reduction in the use of partially hydrogenated fat. However, issues related to high levels of TFA and saturated fatty acids still constitute a challenge in the formulation of this product category. Current trends on margarine production addition of phytosterols, non-lipid components, organogels, and new interesterified fat bases are reviewed. This review aims to present a historical view and the technological evolution of margarines, including their production processes, formulations, and physical and nutritional characteristics, as well as legislation, and main trends.
Collapse
Affiliation(s)
- Thaís Jordânia Silva
- Fats and Oils Laboratory, Department of Food Technology, School of Food Engineering, University of Campinas (Unicamp), Campinas, SP, Brazil.
| | - Daniel Barrera-Arellano
- Fats and Oils Laboratory, Department of Food Technology, School of Food Engineering, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Ana Paula Badan Ribeiro
- Fats and Oils Laboratory, Department of Food Technology, School of Food Engineering, University of Campinas (Unicamp), Campinas, SP, Brazil
| |
Collapse
|
37
|
Poli A, Marangoni F, Corsini A, Manzato E, Marrocco W, Martini D, Medea G, Visioli F. Phytosterols, Cholesterol Control, and Cardiovascular Disease. Nutrients 2021; 13:nu13082810. [PMID: 34444970 PMCID: PMC8399210 DOI: 10.3390/nu13082810] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
The use of phytosterols (or plant sterols) for the control of plasma cholesterol concentrations has recently gained traction because their efficacy is acknowledged by scientific authorities and leading guidelines. Phytosterols, marketed as supplements or functional foods, are formally classified as food in the European Union, are freely available for purchase, and are frequently used without any health professional advice; therefore, they are often self-prescribed, either inappropriately or in situations in which no significant advantage can be obtained. For this reason, a panel of experts with diverse medical and scientific backgrounds was convened by NFI—Nutrition Foundation of Italy—to critically evaluate and summarize the literature available on the topic, with the goal of providing medical doctors and all health professionals useful information to actively govern the use of phytosterols in the context of plasma cholesterol control. Some practical indications to help professionals identify subjects who will most likely benefit from the use of these products, optimizing the therapeutic outcomes, are also provided. The panel concluded that the use of phytosterols as supplements or functional foods to control Low Density Lipoprotein (LDL) cholesterol levels should be preceded by the assessment of some relevant individual characteristics: cardiovascular risk, lipid profile, correct understanding of how to use these products, and willingness to pay for the treatment.
Collapse
Affiliation(s)
- Andrea Poli
- Nutrition Foundation of Italy, 20124 Milan, Italy;
- Correspondence: ; Tel.: +39-02-7600-6271
| | | | - Alberto Corsini
- Department of Pharmaceutical and Pharmacological Sciences, University of Milan, 20133 Milan, Italy;
- IRCCS MultiMedica, 20099 Sesto San Giovanni, Italy
| | - Enzo Manzato
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy;
| | - Walter Marrocco
- FIMMG—Italian Federation of General Medicine Doctors and SIMPeSV–Italian Society of Preventive and Lifestyle Medicine, 00144 Rome, Italy;
| | - Daniela Martini
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy;
| | - Gerardo Medea
- SIMG—Italian Society of General Medicine, 50142 Firenze, Italy;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| |
Collapse
|
38
|
Witkowska AM, Waśkiewicz A, Zujko ME, Mirończuk-Chodakowska I, Cicha-Mikołajczyk A, Drygas W. Assessment of Plant Sterols in the Diet of Adult Polish Population with the Use of a Newly Developed Database. Nutrients 2021; 13:nu13082722. [PMID: 34444882 PMCID: PMC8398305 DOI: 10.3390/nu13082722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Plant sterols are compounds with multiple biological functions, mainly cholesterol-reducing. There are no comprehensive databases on plant sterols, which makes it difficult to estimate their intake in the Polish population. This work attempted to use international food databases, additionally supplemented by scientific data from the literature, to create a database of plant sterols, which would cover various kinds of foods and dishes consumed in Poland. The aim was to assess the size and sources of dietary plant sterols in the adult population of Poland. The literature search was conducted using PubMed, Web of Science, Scopus, and Google Scholar to identify possible sources of published food composition data for plant sterols. The study group consisted of 5690 participants of the WOBASZ II survey. We identified 361 dietary sources of plant sterols based on the consumption of foods and dishes reported by participants. Cereals and fats provided 61% of the total plant sterols, and together with vegetables and fruits, this totaled 80%. The median intake of plant sterols in the Polish population was 255.96 mg/day, and for men and women 291.76 and 230.61 mg/day, respectively. Canola oil provided the most plant sterols at 16.92%, followed by white bread at 16.65% and soft margarine at 8.33%. The study found that plant sterol intake in Poland is comparable to other populations, and women’s diets are more dense in plant sterols. Due to the lack of literature sources on plant sterol content in some foods, future studies should expand and complete the databases on plant sterol content in foods.
Collapse
Affiliation(s)
- Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (M.E.Z.); (I.M.-C.)
- Correspondence: ; Tel.: +48-85-6865088; Fax: +48-85-6865089
| | - Anna Waśkiewicz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland; (A.W.); (A.C.-M.); (W.D.)
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (M.E.Z.); (I.M.-C.)
| | - Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (M.E.Z.); (I.M.-C.)
| | - Alicja Cicha-Mikołajczyk
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland; (A.W.); (A.C.-M.); (W.D.)
| | - Wojciech Drygas
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland; (A.W.); (A.C.-M.); (W.D.)
- Department of Social and Preventive Medicine, Faculty of Health Sciences, Medical University of Lodz, Hallera 1, 90-001 Lodz, Poland
| |
Collapse
|
39
|
Anti-Inflammatory and Antioxidant Properties of Plant Extracts. Antioxidants (Basel) 2021; 10:antiox10060921. [PMID: 34200199 PMCID: PMC8227619 DOI: 10.3390/antiox10060921] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
|
40
|
Guerrero-Castillo P, Reyes S, Acha O, Sepulveda B, Areche C. Agro-industrial waste seeds from Peruvian Pouteria lucuma as new source of phytosterols. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|